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Abstract—Serious games have been widely used as medium of
instruction in various domains. A serious game is composed of
various exercises a player has to accomplish in order to achieve
the final goal. Each exercise is designed using a set of concepts
that a player has to achieve proficiency in. The design of problems
is of greater importance in such scenarios than the physical
game design. However, traversal through the game is challenging
for users with no gaming experience. Spatial distribution of
these exercises in the game may influence the learning potential
of a player, especially when the exercises have a conceptual
dependency associated with them. Our approach in this project
is to map the problem graph on to a selected environment in the
game for efficient traversal through the game space. Towards
this goal, we plan to explore existing environments from Unreal
Engine with possible locations for exercises. We will study the
theory of graph embedding used to map multi-threaded programs
to high performance architecture topologies and explore their
adaptation to the problem of exercise distribution in serious game
environments.

Index Terms—Graph embedding, serious game design, quan-
tum computing

I. INTRODUCTION

Serious games have become widely used medium of in-
struction, especially, for online only instruction where students
can be more actively engaged in the gaming environment
while learning the content. A serious game typically contains
targets or exercises that a player has to complete to achieve the
learning goal of the level in the game. For this purpose, a set
of concepts can be distributed in the game environment that a
player has to solve to move further in the game. In most cases,
this distribution of concepts and exercises can be random when
the concepts are independent of each other. When there is a
dependency involved in the concepts that a player has to learn,
then a controlled distribution of the exercises helps a player
to traverse through the game space to achieve the desired
proficiency efficiently. In this project we address this challenge
by embedding a problem graph of a serious game to hypercube
to preserve concept adjacency and dependencies in a gaming
environment.

A hypercube is a n-dimensional structure initially intro-
duced for parallel processing. A hypercube of n-dimension has
2™ nodes as vertices of the cube. Each node of the hypercube is
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a binary number and the distance between two adjacent nodes
is a hamming distance of one bit. Hypercube graphs are used
to perform parallel processing by placing multiple processors
at each node of the hypercube that performs a subset of the
task. Hypercubes are used for parallel processing of sort, and
search operations on large data structures quickly. Further,
there are studies on embedding graphs onto hypercubes such
as a complete binary tree on to a hypercube [13].

In this work in progress, we use the bipartite nature of
hypercube to distribute the problem graph of the game onto the
game environment. We have used the serious game QuaSim
[26] developed for teaching quantum cryptography concepts
to students.

II. BACKGROUND

Serious games have been widely studied in education, in-
dustry, rehabilitation, medical illness improvements and many
such areas with promising results [14], [31]. Serious games
in industry have become popular to train the interns and new
employees about company policies and also project training
[7]. Studies have been conducted to bridge the gap between
teaching and learning through serious games by integrating
the serious games with learning management systems. With
the increase in serious games for different disciplines studies
have also been conducted to standardize the learning and
teaching process [11]. Serious games have been used for
mental health improvement [10] and studied for different
serious game frameworks that best suits the domain. Adaptive
learning in serious games is a major concern as each player
has different background and learning abilities [29]. Latest
artificial intelligence techniques such as deep learning and
reinforcement learning techniques have been used to improve
performance of players in serious games. Various frameworks
for designing serious games have been studied [30] along with
analysis of mood and navigation in serious games [9], [16].

On the other hand, hypercubes are used for parallel process-
ing in high performance environments [12] and for scheduling
multiple jobs in parallel on each node of the n-dimensional
hypercube [5], [28]. Trees such as binary trees can be embed-
ded on the hypercubes for efficient processing [1]. Hypercubes
are a type of bipartite graphs as they can only be two colored
[6]. The distance between two adjacent nodes in a hypercube
is one hamming distance and a hypercube can be defined as
union of multiple hypercube subgraphs [8].
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III. APPROACH

This section provides the strategy used for embedding a
problem graph of a serious game onto a hypercube.

A. Hypercubes as Bipartite Graphs

A hypercube is an n-dimensional cube with 2" nodes. Each
node is arranged in the hypercube such that the hamming
distance between two adjacent binary number is one. A 2-
dimensional hypercube is a square with 4 nodes or vertices, a
3-dimensional hypercube has 8 nodes, and a 4-dimensional
hypercube is called a fesseract and has 16 nodes. Figure
1 pictorially shows the construction of higher dimensional
hypercubes from the lower dimensional hypercubes. Each
hypercube can be represented using a bipartite graph. The
two sets of the nodes in the graph are a partition of the
nodes of the hypercube. There is an edge from node u in
one set in the graph to node v in another set if nodes u and
v are adjacent in corresponding hypercube, i.e., there is an
edge connecting them in the hypercube. A 3D hypercube and
its corresponding bipartite graph are shown in 2. Each node
in an n-dimensional hypercube has n-adjacent nodes. It can
be observed that a n-dimensional hypercube has a n — 1-
dimensional hypercube as its subgraph. Hence by repeated
decomposition it follows that an n-dimensional hypercube is
a combination of bipartite graphs corresponding to its 3D
hypercube components. A 4-dimensional hypercube fesseract
and its corresponding bipartite graph combination is shown in
figure 3. The nodes of an n-dimensional hypercube are usually
indexed by a gray code which is n-bits wide and this results in
adjacent nodes of the hypercube to have a hamming distance
of 1. As an example, the tesseract in Figure 3 is indexed by 4-
bit gray code with adjacent nodes having a hamming distance
of 1. The combination of the bipartite graphs corresponding
to this hypercube is depicted on the right of Figure 3. The
combination of the bipartite graphs consists of 4 sets of 4
nodes each. Three game exercises are assigned to the nodes
in each set (one of these nodes is unassigned) are depicted in
the figure. These sets correspond to 4 levels in the game LA,
LB, LC, LD. The rules used to assign these game exercises
to the sets (or game levels) in the bipartite graph combination
are discussed later in Section 4.
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Fig. 1. Hamming Distance

B. Hypercube Mapping to the Problem Graph

An exercise in game space is a subset of two or more
concepts that are needed to complete that game level. A
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Fig. 3. A 4-dimensional hypercube and corresponding bipartite graph with
mapping of the exercises to nodes.

problem graph represents the exercise graph of the game space
showing the distribution of concepts and their dependencies in
the exercises. Each node in the problem graph is an exercise
and a directed edge from one exercise to the other represents
dependency between the two exercises in terms of difficulty
level or concept dependency meaning concepts in the prior
exercise are mandatory to learn the concepts in the later
exercise. These concepts can include independent concepts as
well as multiple independent trees of concept dependencies.
A problem graph is built using the concept dependency graph.

The first factor to consider to map a hypercube to the
problem graph is to chose the dimension of the hypercube.
We have considered the number of targets or exercises in
the game space to chose the hypercube dimension. Since the
total number of nodes in the hypercube is a power of 2, the
dimension we chose is the nearest power of two as the number
of exercises in the game space. For example, if game space
has 27 possible exercises, the hypercube dimension to map
with the game space is 5 with 32 nodes. The remaining nodes
can either be left empty or can have new exercises with a
different combination of concepts. The formula to calculate
the dimension of hypercube is given by equation 1, where N
is the number of exercises in the game space.

dim = ceil(loga(N)) (D
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Once the dimension of the hypercube is chosen, the bipartite
graph for each 3D hypercube component of the chosen hyper-
cube is generated with adjacent edges to each node. The nodes
in a set are not adjacent to each other. The adjacency property
determines the mapping of exercises to nodes: assign exercises
having same combination of concepts or independent concepts
and to the same set in the bipartite graph. As mentioned
earlier, n-dimensional hypercube consists of subgraphs of n—1
dimension. The second set in the pair of bipartite graph are
assigned with exercises using the adjacency rule. A connection
exists from one node in a set to another node in another set
if there is a dependency relation between the nodes of the
sets. Usually, after assigning exercises to first set, the exercises
assigned to the second set involve concepts that are deeper (in
comparison to those in the first set) in the concept dependency
graph. Also, the edge from a node in a bipartite subgraph
to a node in another bipartite subgraph with a higher most
significant bit represents that the exercises in the higher order
are involving concepts that are at a deeper level in the concept
graph. This kind of mapping helps players to traverse to higher
level concepts instead of solving the exercises with concepts
that the player has encountered earlier and become proficient
in.

As each node in the hypercube has n degrees of freedom,
once a player successfully solves an exercise (node) in the
graph, there are n choices from which a player can choose to
proceed further in the game. Once a player solves an exercise
(node) successfully or fails at a node, the edge connecting
the current and previous nodes is broken to indicate that the
exercises are not available for the player anymore. Each node
and their adjacent nodes list are maintained in a database.
In case of a failure at a node, the player still has adjacent
nodes for the current node that directs them to a lower level
concept or a higher level concept. This choice of the next
best exercise based on the current performance is done by a
dependency algorithm. This next best exercise can be chosen
based on an exercise dependency graph and the weighting
schema calculated based on the algorithm discussed in the
next section.

As the player solves nodes (exercises), the edges in the
hypercube get activated showing the navigation points for
the player to proceed further in the game. These points are
associated with rewards that manifest in the form of game
elements such as stair cases, a normal road, an elevator or
teleportation.

C. Next Target Algorithm: Preliminary Approach

In order to choose the next target for the player from among
the adjacent nodes or the available nodes in the graph that
can be reached through teleportation, vertices in the problem
dependency graph as shown in figure 4 are assigned with
weights. Value of each node is given by,

v=> (I/|E,E€C) @)

where |E| is the number of exercises that each concept
in current node is present in and C' is the set of concepts

Fig. 4. Distribution of concepts to exercises and the associated problem graph
of the polarization level in the QuaSim game. Here Q stands for Opposite
Quadrant, S stands for Same Angle, and O stands for Orthogonal Angle of
Qubit polarization, B stands for Basis, K stands for Ket representation, and
LC stands for Linear Combination.

addressed at the current node or exercise. Each value of
the nodes adjacent to the current node are calculated and
maximum value is chosen. Following this, a topological sort of
the exercises is performed to preserve the dependency between
the exercises. The node with the highest value after topological
sort is chosen as the next target for the player. The value of
a concept in a node is assigned with a zero if the concept is
learnt in any of the exercises, else the value is set to 1. A
success tuple is maintained that keeps track of the learning
progress. The tuple is a Boolean tuple where each component
represents the concepts the player should achieve proficiency
in by the end of the game. Once all the values in the success
tuple are set to 1, the game exits as the player has successfully
reached the goal of that level.

IV. EXAMPLE EVALUATION

For preliminary evaluation purposes we have used the game
QuaSim [2], [17], [21], [24]-[27], a serious game developed
for teaching quantum cryptography and quantum computing.
These lay the foundations for future quantum internet [3], [4],
[15], [18]-[20], [22], [23]. QuaSim is built using Unreal game
engine. The game comprises of five levels each with a learning
goal. Here, as a proof-of-concept, we have considered level 1
of the game called Polarization. Figure 5 shows an exercise
in the game from polarization level. The game teaches the
concept of polarization through set of 12 exercises distributed
over a city building in the game. The exercises are built using
combination of seven different concepts for representation of
qubits such as matrix representation (M), ket representation
(K), linear combination (LC), basis (B) over three orientations
of qubit such as same angle (S), orthogonal (O), and opposite
quadrant (Q). The concept dependency graph of these concepts
is shown in the figure 6. The graph shows that in order to learn
the concept LC it is necessary to gain efficiency in concept
M.

The game QuaSim comprises of 12 exercises to be dis-
tributed in the gamespace. Hence, the dimension of hypercube
as calculated by equation 1 is 4, which is a 4D hypercube,
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Fig. 5. Sample exercise in polarization level in QuaSim game teaching qubit
representations.

Fig. 6. Concept dependency graph of level 1 exercises in QuaSim.

tesseract as shown in figure 3. The corresponding bipartite
graph is shown in the figure 2. Following, the bipartite graph of
the 4D hypercube is generated and mapped with the exercises
is shown in figure 3. The distribution of concepts over the
exercises and the corresponding dependency graph based on
the concept dependency graph is shown in figure 4.

Once the player has successfully solved the concepts in the
node with index 0, the player has 4 possible nodes (indices
1, 2, 4, and 8 at hamming distance 1) that they can travel to.
These nodes are further chosen using the algorithm mentioned
above. In case of failure at, say node with index 1, player has
outgoing edges from this node, which are already stored into
the database. Of the available nodes, the algorithm is used to
choose one for the player. In such a case, teleportation can
be used to move player automatically to a different node.
This helps the player to learn the concepts in an adaptive
environment while also providing new concepts through the
bipartite mapping maintaining player engagement in the game.

Embedding the problem graph into a hypercube through
a bipartite graph enables the game developer to position
the game exercise in a systematic way to help the player
navigate through the game easily especially for the player
with beginner level of gaming experience. Player can spend
significant amount of time in learning the concepts rather than
exploring the game environment for the exercises.

The game QuaSim comprises of a 4 level building where
each level is connected to the other using staircases and an
elevator. As per the bipartite graph distribution each level of
the building can be distributed with the exercises such that
set corresponding to level LA corresponds to the first level
of the building, set corresponding to level LB and LC could
be present in the same level of the building according to the

Fig. 7. QuaSim game Level 1 polarization map in top view.Top row shows
distribution of exercises in the building, bot-tom row shows navigation points
(staircases).

ordering of bipartite graph. In order to reach set corresponding
to LD the player has to go through LC that is at least one-hop
in the hypercube in order to reach LD. Figure 7 shows the
map layout of the building in level 1 of the QuaSim game
environment in the top view. The two figures on the top row
show the exercises distributed in each level of the building
where the indices 1, 2, 3 on the map layout shown in the figure
correspond to nodes 0, 3, 5 in LA of bipartite graph. Each
inner and outer ring of the map corresponds to each set in the
bipartite graph. The two figures on the bottom row in Figure
7 represent the navigation points, here staircase, activated that
represent the edge in the hypercube to navigate between the
nodes in the graph.

V. CONCLUSION AND FUTURE WORK

Hypercubes are widely known to be used in for parallel
processing in a high performance environment. Single or
multi player games requiring high performance environments
can use hypercube graph embedding to improve the game
performance. This study is a novel approach that helps game
developers embed the problem graph into hypercube for high
performance and also systematic distribution of targets in the
serious game. In this work we have developed a strategy to
map the problem graph on to a serious game using bipartite
characteristic of the hypercube. We developed an algorithm
to choose the next target that helps players to improve their
performance adaptively.

The future goals of the research include being able to
embed problem graphs onto various unreal environments and
study the player performance for different problem graphs and
different environments. One of the limitations of the approach
is selecting the dimension of the hypercube as the nodes
are increasing exponentially. Choosing a dimension when the
number of exercises are say 35, will result in a dimension of
6 which is 64 node, higher than the required nodes. Moreover,
here we have assumed that concepts are distributed in the
exercises following the dependency graph. Further research
direction of this approach would also be to identify a different
graph or a mesh network that can aptly embed the problem
graph.
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