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Abstract—Achieving accurate multi-modal Deep Neural Net-
works (DNN) testing often requires operating rich model param-
eters under limited computing and memory resources. The low-
cost Resistive Random-Access Memory (ReRAM)-based DNN
accelerator is a promising solution for such an application thanks
to its inherent processing-in-memory capability. However, its
lifetime, which is crucial for applications with strict reliability
standards such as self-driving cars, can be significantly limited
due to: 1) the need to frequently switch weights among different
models for real-time streaming applications; 2) the low endurance
of ReRAM devices compare to DRAMs by orders of magnitude.
This work proposed an Endurance-Aware multi-modal DNN
Scheduling (EAS) strategy to address this issue using real-time
techniques. First, a pre-processing methodology transformed a
DNN into an end-to-end execution sequence for partitioning and
scheduling. Then, a periodic real-time scheduling method was
developed via data reusing for extending ReRAM programming
cycles under deadline constraints. The experiment results showed
that our EAS approach can extend the baseline ReRAM accel-
erator’s lifetime from 0.98 years to 3.14 years on average at a
low scheduling overhead.

Index Terms—Resistive random-access memory (ReRAM),
deep neural network (DNN), real-time, reliability, and streaming
applications.

I. INTRODUCTION

Multi-Modal Deep Neural Network (DNN) testing with

constrained response latency is indispensable for future intel-

ligent systems [1]. For example, autonomous driving needs

the fusion of heterogeneous neural network architectures,

including CNNs and RNNs for sensor-streamed video, audio,

location tracking, and thermal video processing [2]. Moving

from computing to a data-centric paradigm, the miniature de-

vice parameters–such as cost, area, and energy consumption–

impose intra-/inter-task resource contention upon intrinsic pro-

cessing demands, which could be even more challenging when

sustaining hardware endurance upon complicated scheduling

policies. Since aging-induced memristor defects downgrade

inference accuracy significantly [3], this work focuses on

prolonging the Resistive Random-Access Memory (ReRAM)

lifetime in the context of distinguished DNN data flow prop-

erties using real-time scheduling techniques.

ReRAM-based Processing-In-Memory (PIM) accelerators

achieve fast and energy-efficient DNN execution by inherent

in-situ multiply-accumulate operations [4], [5], [6], [7], e.g.

the ReRAM convolution computing efficiency can achieve

> 103 times over traditional ASIC designs [2]. However, a

ReRAM can only sustain a limited number of programming

cycles ≈ 108 [8], [9], [10] as opposed to > 1016 for DRAM

memory [11]. For example, the ReRAM lifetime is 0.95 years

for sequential DNN testing [12] on an autonomous vehicle

at 40 frames per second (FPS) sensing rate [13] and running

2 hours per day. The need to simultaneously execute multi-

modal DNNs with targeted deadlines in such resource-limited

PIM accelerators can further aggravate the lifetime issue since

weights shall be frequently reprogrammed to execute different

models.

Frequently programming ReRAM not only expedites mem-

ristors’ aging effect but also extends response latency, in-

creases local power density and temperature, and downgrades

inference accuracy. Writing on ReRAM cells costs a typical

latency of 1 write-verify cycle (≈500ns) for 1-bit/cell [14],

during which the high voltages and large currents are applied

to establish the conductive filaments at targeting memristor

resistances. Meanwhile, the large conductance and current

result in soaring local power density that increases internal

and ambient temperature [15]. As memristors’ resistivity is

strongly temperature-sensitive, the thermal instability leads

to inaccurate programming conductance. Consequently, con-

ductance deviation from the pre-trained DNN can downgrade

inference accuracy [16].

The ReRAM endurance can be leveraged by reducing the

memory writes [17], [18], [19], [20], adjusting programming

modes [16], or managing runtime thermal status [15], [9].

However, some solutions exhibited either accuracy degrada-
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tion [17], [18], [20] or scalability limitations [19], [9]. To

satisfy real-time constraints, some works took advantage of

the “intrinsic resilience” of DNNs to approximate results

by judiciously reducing the data volume and the response

latency [21], [22], [23], e.g. formulating the DNN as a scalable

computational model [24], [25] or adjusting the NN hyper-

parameters, such as compression [26], network pruning [27],

precision scaling [28], etc. However, these solutions still

suffered from accuracy degradation. We propose to take advan-

tage of the slack time between the task arrival and its deadline

for reusing the mapped data on the ReRAM and testing a

maximal number of feature maps sharing the same kernels

without shrinking network architectures or any accuracy loss.

This work utilized real-time techniques to reschedule DNN

data flow for ReRAM endurance enhancement under deadline

constraints, which was orthogonal to other state-of-the-art

works. Our proposed methodologies can also be applied to

different reprogrammable devices when mitigating the inten-

sive reprogramming-induced lifetime reduction in the real-time

domain. The contributions included

• We designed a DNN pre-processing methodology that

converted a DNN to an end-to-end execution sequence

with bounded layer-wise computational and data storage

demands for partitioning and scheduling.

• We developed a real-time DNN inference scheduling

framework on ReRAMs that can reuse the mapped kernel

weights for minimizing the memristor writes and enhanc-

ing the ReRAM endurance under time constraints.

• Our experimental results showed that our approach can

extend the baseline ReRAM lifetime by 3.2 times at high

feasibility for different deadlines and workload intensities

with low scheduling overhead.

The rest of this paper is organized as follows. Section II

presents the system architecture, task model, and problem

formulation. Section III presents our approach. Section IV

shows the experiment results and is followed by a conclusion

in Section V.

II. PRELIMINARIES

This section presents the architecture and task models

followed by the problem formulation. The bold characters

represent the vectors and matrices, and non-bold characters

are used for ordinary variables and coefficients. All of the

matrices/vectors/values are in the real number domain R.

A. Architecture Overview

We adopt the 3D stacking ReRAM [9], [18], [29], [8] as a

full-fledged DNN accelerator R, as shown in Figure 1. The

ReRAM accelerator consists of N tiles as R = {T1, · · · , TN},

which can be independently controlled and configured. The

data and signal are transmitted through vertical Through-

Silicon-Via (TSV). Each tile, similar to [30], has a mesh of

multiply-accumulator (MA) units, each of which consists of

arrays of homogeneous crossbars (Xbar). Other components,

such as shift-and-add, activation (σ), and pooling units are

built on each tile and their execution times are added to

Fig. 1. Architecture Overview

the MA operations for bounding the layer-wise worst-case

execution time (WCET). Each tile controls memory access

independently and has a fixed size of eDRAMs [18] for storing

transient results. Without losing generality, this work assumes

that each tile cannot be shared by multiple applications, and

all tiles run at a uniform frequency.

DNN tasks use memristors to perform analog computing

and their transient results are stored in eDRAMs. Let M and

E represent the sizes of memristors and eDRAMs of a tile,

respectively. The total sizes of memristors and eDRAMs on

the ReRAM are N ·M and N ·E, respectively. Assume nk tiles

are assigned to the k-th task Γk ∈ ΓΓΓ, the allocated sizes of

memristors and eDRAMs are nk ·M and nk ·E, respectively.

B. Task Model

Consider that a DNN inference task set ΓΓΓ contains θ
independent tasks of different models as ΓΓΓ = {Γ1, · · · ,Γθ}.

The k-th task Γk has Lk layers as 1 ≤ l ≤ Lk, contains sk
real-time streaming instances sharing the same kernel set, and

is constrained by an end-to-end deadline equal to the period

of D. For Γk, each layer abstracts the characteristic elements

by strikingly convolute a set of kernels with data from the

previous layer (layer l − 1) to generate feature maps of the

next layer (layer l) [31], where the output feature map of layer

l− 1, denoted as ol−1
k , is temporarily stored in eDRAMs and

serves as the input feature map of layer l. Let Γl
k be the l-

th layer of Γk. Then, the j-th computational instance of Γl
k

can be denoted as ylk,j = ol−1�
k,j Wl

k + blk, where ylk,j is the

j-th convoluted output of Γl
k, Wl

k ∈ Rml−1×ml

contains the

weight parameters and blk ∈ Rml

is the bias [32]. Next, an

activation function, e.g. sigmoid σ(·), rectifies the convoluted

instance as olk,j = σ(ylk,j), where olk,j is the j-th instance’s

output neuron value of Γl
k. The latter layer can be executed

only after the completion of the previous one due to data

dependency [33].

To quantify the inferencing resource demands, assuming

that executing Γl
k needs a size of ml

k memristors to load

weights and a size of elk eDRAMs to store intermediate

feature maps. Then, in the run time, if loading d consecutive

layers’ kernel weights to its partition at the same time, the

total size of weights
∑l1+d

l=l1 ml
k should not exceed nk · M .

Meanwhile, if a collection of intermediate feature maps, e.g.

ol
k ∈ J, need to be stored in the eDRAMs, the total size

of
∑

ol
k∈J

elk, should not exceed nk · E. Since convolutional
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operations dominate the DNN computation [34], we let τ lk be

the WCET of Γl
k, including convolution, pooling, activation,

and their communications through buses.

C. Problem Formulation

DNN inference involves a combination of convolutional,

normalization, pooling, and classification operations [35].

Since the number of weight parameters is magnitudes larger

than neurons on most DNNs [32], this work focuses on

reusing the mapped weights to reduce the memristor writes and

improve ReRAM endurance. When a ReRAM is large enough

to load all the kernels in ΓΓΓ, i.e. N · M ≥ ∑θ
k=1

∑Lk

l=1 m
l
k,

memristors only need to be programmed once. However,

when multiple concurrent DNNs share one ReRAM under

deadline constraints, it needs to update the weights frequently

as network inference proceeds. Therefore, the short program-

ming cycles, which are detrimental to hardware endurance,

motivate us to develop innovative multi-modal DNN schedul-

ing methodologies to maximally attain endurance under the

targeted deadline. With the above analyses, the problem to be

solved in this work is formulated as follows.

Problem 1: Given a real-time streaming DNN inference task

set ΓΓΓ = {Γ1 · · · ,Γθ}, with the end-to-end deadline of D, to

be executed on a ReRAM platform R = {T1, · · · , TN}, the

problem is to fit ΓΓΓ into R and create real-time schedules to

maximally attain the ReRAM endurance under the deadline

constraint.

III. OUR APPROACH

With the formulated problem, we present our ReRAM

partitioning, DNN pre-processing, and real-time scheduling

approaches for endurance enhancement. The main idea is

to convert heterogeneous DNN layers into a sequence of

homogeneous sub-layers to fit into partitioned resources and

reuse the mapped kernel weights in consecutive layers to

prolong the ReRAM endurance without violating deadline

constraints.

A. ReRAM Partitioning

For a multi-modal DNN task set, the number of partitioned

tiles for each task is proportional to the workload intensity.

Assuming a uniform sensing rate is applied to the multi-

modal DNN tests, e.g. in-sync video and audio for autonomous

driving, increasing sk leads to a longer response latency, as ex-

plained later in Figure (4b), so more tiles should be allocated to

Γk under deadline constraints as nk = �N · sk·
∑Lk

l=1 ml
k∑θ

k=1

∑Lk
l=1 sk·ml

k

�
in the run time. However, the sizes of parameters and feature

maps for different layers vary significantly as shown in Fig-

ure 2, which may exceed the allocated tiles’ total capacity or

lead to an unbalanced execution pipeline. To this end, we first

develop a DNN pre-processing method to decompose “large”

layers into a sequence of end-to-end sub-layers for fitting each

DNN into partitioned resources. Then, an endurance-aware

real-time scheduling approach is introduced.

Fig. 2. Layer-wise parameter and feature map sizes vary significantly
before processing

l l+1

Fig. 3. Layer decomposition: (a) Given DNN workload; (b) A layer before
decomposition; (c) Split filters into multiple sub-layers; (d) Split the feature
map inputs into multiple sub-layers.

B. DNN Pre-processing

When allocating a DNN to its partitioned tiles, the hetero-

geneity of the layer-wise parameters may exceed the allocated

resources. In the meantime, different volumes of multiply-

accumulation operations cause varying layer-wise latency that

can be detrimental to throughput performance due to the unbal-

anced execution pipeline. To resolve the layer heterogeneity-

induced resource contention and unbalanced pipeline for a

better response latency, we propose a pre-processing stage

for bounding the sizes of parameters, the input feature maps,

and the WCET for each layer. Then, each DNN inference

task can be treated as a sequence of homogeneous layers for
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Fig. 4. Endurance-aware real-time scheduling. Notations Γl
k,ψ and ol

k,ψ represents the ψ-th inference instance of Γl
k and its output feature map, respectively.

(a) ReRAM accelerator partition. (b) Data flow of multi-DNN endurance-aware pipelined execution.

scheduling.

To put the DNN pre-processing into perspective, given an

arbitrary network as Figure 3(a), the kernel filters convolute

through the input feature maps on layer l to output feature

maps for layer l+1 as Figure 3(b). Assume layer l is pending to

be decomposed, let m̂k be the layer-wise parameter size bound

and f̂k be the feature map size bound for Γk. We first split

kernels according to m̂k without reshaping the input feature

maps as Figure 3(c). Then, we split its input feature maps ac-

cording to f̂k into multiple sub-layers as Figure 3(d). Note that

splitting kernels or input feature maps also impacts the output

feature map sizes. The post-processing DNN should contain all

consecutive layers with bounded kernel and feature map sizes,

which caps the total multiply-accumulation operations. Since

the multiply-accumulation dominates and is proportional to the

WCET, the post-processing layer-wise latency is also bounded

as τ̂k. Overall, the pre-processing stage could dramatically

enhance DNN’s real-time predictability and schedulability.

To enhance the ReRAM endurance, we propose to reuse

mapped kernel weights to test as many feature maps as pos-

sible under deadline constraints. In addition, the tasks sharing

the same kernels are expected to be executed in the pipeline to

minimize the response latency [33], [36]. When the partitioned

tiles cannot hold all kernels at once, we define reconfiguration
as a renewal of kernel weights on the memristors as DNN

inference proceeds. Then, each configuration can only hold

the kernels of several consecutive layers, if not all. Therefore,

an inference task usually needs multiple reconfigurations as

shown in Figure 4(a). In addition, due to the continuity of

DNN execution, once the inference starts, it must proceed

until the completion of all layers in consecutive configurations.

Otherwise, storing intermediate results consumes eDRAM

capacity, and squeezes later configurations’ data-preserving

space.

Specifically, as shown in Figure 4(b), the kernels that belong

to one configuration can be reused by multiple inferencing in-

stances, and partitioned eDRAMs are shared among them. For

each inferencing instance, the previous layer’s output feature

map is stored in the eDRAM and immediately transferred to

the next layer, except that the last output feature map of a

configuration should be stored in the eDRAM longer to serve

as the first input feature map for the following configuration.

Since the feature map sizes are bounded, as f̂k for task Γk, and

the number of intermediate feature maps to be stored in the

eDRAM are identical for all configurations, eDRAM overflow

should never occur.

C. Endurance-Aware Real-Time Scheduling

For each task Γk ∈ ΓΓΓ, we are ready to create its real-

time schedule for maximizing the programming cycles (Ck)

and enhancing the ReRAM endurance under the hardware

and timing constraints. Let vk be the number of instances

reusing the same set of kernels when executing Γk, where

vk is a positive integer (vk ∈ Z+). The larger the vk, the

more input feature maps can reuse the same mapped kernel

weights, and, thus, ReRAM has longer programming cycles

and better endurance. However, from Figure 4(b), we can see

that increasing vk leads to a longer inference latency and a

higher eDRAM utilization in each configuration. Let vDk and

vEk be the maximal vk values concerning the deadline and the

assigned eDRAM size, respectively. Then, we have

vk = min{ vDk , vEk , sk }, where vEk = �nk ·E/f̂k�. (1)

To identify the maximal vDk , let dk be the execution pipeline

depth. The value of dk is constrained by the largest number

of layers that can be concurrently loaded onto the partitioned

tiles in one configuration as dk = �nk · M/m̂k�. Assume

that the completion of Γk needs rk configurations, we have

rk = �Lk/dk	. If the last configuration contains dlastk remnant

layers, we can infer dlastk = Lk − (rk − 1)dk. To guarantee

the completion of Γk within the time frame [0, D], vDk needs

to satisfy

Ck(rk − 1) + τ̂k · (vDk + dlastk − 1) ≤ D,

where Ck = τ̂k · (vDk + dk − 1). (2)

Solving Equation (2), we have

vDk = � D

rk · τ̂k +
dk − dlastk

rk
− dk + 1�. (3)
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Algorithm 1 Endurance-aware DNN scheduling (EAS)

1: Inputs: Task set ΓΓΓ, ReRAM platform R, Deadline D
2: Outputs: S(vk, Ck, dk, rk), where 1 ≤ k ≤ θ
3: Partition R and identify nk

4: Pre-processing initialization: ΓΓΓ′ = [ ], k = 1
5: while k ≤ θ do
6: linearly search max(dk) and determine m̂k and f̂k
7: while ∃ sizeof (Γl

k) > m̂k or f̂k do
8: Decompose Γl

k kernels or input feature maps

9: Update Γk

10: end while
11: ΓΓΓ

′
+ = Γk, ΓΓΓ− = Γk, k ++

12: end while
13: Scheduling initialization: S = [ ], k = 1
14: while ΓΓΓ �= [ ] do
15: Determine dk, rk and dlastk

16: Identify vk and Ck in Equation (1) and (2)

17: if vk < sk then
18: Return Infeasible

19: end if
20: S + = Sk, ΓΓΓ− = Γk

21: end while
22: Output S(vk, Ck, dk, rk)

The pre-processing procedures and endurance-aware real-

time scheduling approaches are summarized in Algorithm 1.

In Algorithm 1, the larger the dk, the less rk and the higher

the endurance. Thus, assuming vDk = sk in Equation (2),

we linearly search the maximum dk without exceeding the

partitioned eDRAMs capacity or violating deadline D for

determining m̂k and f̂k in line 6. With the bounded memristors

and feature maps, Algorithm 1 lines 4-12 can be applied

to decompose kernels and feature map inputs. Next, we

can readily create endurance-aware real-time DNN inference

schedules for each Sk(vk, Ck, dk, rk) as shown in lines 13-21.

The effectiveness of Algorithm 1 are formalized and proved in

Lemma 3.1 and 3.2, assuming that the post-processing DNNs

have their layer-wise size of weights and size of feature maps

ideally equal to their corresponding bounds.

Lemma 3.1: [Temporal Tightness] When sk → ∞ and

nk · E → ∞, parameter vk is tight regarding deadline D.

Proof Since nk · E → ∞, we have vEk → ∞, and, thus,

vk = vDk in Equation (1). Assume ṽDk = vDk +1 satisfies Equa-

tion (2), where ṽDk , vDk ∈ Z+, taking ṽDk into Equation (2),

we have ṽDk ≤ Q and Q = D
rk·τ̂k +

dk−dlast
k

rk
− dk. Since

vDk = �Q+ 1� in Equation (3), we have vDk ≥ Q. Therefore,

ṽDk ≤ Q ≤ vDk is contradict with the initial assumption of

ṽDk = vDk + 1.

Lemma 3.2: [Spatial Tightness] When D → ∞ and sk →
∞, eDRAM can be filled with intermediate feature maps as

vk · f̂k = nk · E − ε, where ε is a very small value.

Proof When D → ∞, we have vDk → ∞ from Equation (3).

In addition, since sk → ∞, from Equation (1), we have vk =

TABLE I
RERAM ACCELERATOR PARAMETERS [30]

Component Spec Value
ReRAM NTL 192 tiles

MA number 12 per tile

number 8 per MA

Xbar size 128 × 128 cells

bit 2 per cell

eDRAM num. of banks 2 per tile

size 64 KB

�nk · E/f̂k� and vk is the largest integer that satisfies vk ·f̂k ≤
nk · E.

With Lemma 3.1 and 3.2, we can infer that Algorithm 1

can maximally explore the temporal slack time and spatial

eDRAM storage when reusing the mapped kernels on the

ReRAM, either constrained by the given real-time deadline

or by the partitioned eDRAM storage size, when sk is not a

limiting factor.

IV. EXPERIMENTAL RESULTS

In Section IV, we verified our design and compared their

endurance and real-time performances with state-of-the-art

techniques.

A. Experimental Setup

We adopted the similar ReRAM accelerator settings as [30]

in Table I. All DNN inferences employed 16-bit operation

if not otherwise specified. The DNN inference task set

was randomly composed of VGG16, AlexNet, GoogleNet,

SqueezeNet, and ResNet, which had different kernel sizes,

output shapes, and parameter volumes [12]. The execution

time of each layer was normalized to the system ticks. We

assumed an optimized and negligible memristor writing over-

head [16], [31] compared with the longer inference latency in

the experiment. The simulation was written in C++ and ran at

Intel-i9 CPU at 2.40 GHz. We evaluated the effectiveness of

our proposed approach by comparing the following methods.

• Baseline Approach (BL): The single-priority sequential

execution as the default setting in the state-of-art DNN

frameworks, such as Caffe, TensorFlow, and Torch [12].

• Pipelined Approach (PA): The best-effort pipelined DNN

execution to maximize the system throughput [33], [36].

• Endurance-aware DNN scheduling Approach (EAS): Our

proposed endurance-aware real-time multi-modal DNN

scheduling in Algorithm 1.

The experiment was conducted by setting the deadlines D
from 30 to 240ms with an increment of 30ms. Let Ub(sk)
be the upper boundary of sk and serve as an index for the

workload intensity given fixed DNN models. For each D
setting, we increased Ub(sk) from 2 to 24 at the step size

of 2. Then, for each pair of D and Ub(sk), the composition

of the task set ΓΓΓ, in terms of Γk and sk, were generated for

1K random cases and took their average results.
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Ub( )Ub( )

Baseline = 0.98

16 22Ub( ) = 12 ms

Fig. 5. (a) ReRAM endurance; (b) Feasibility comparisons; (c) Feasibility
changes for different D and Ub(sk) of the EAS approach.

B. Endurance and Feasibility Comparisons

We adopted the typical ReRAM endurance as 4.14 × 108

writes [8], [9], [10]. Assuming a ReRAM in a commercial

autonomous vehicle runs 8 hours/day at 40 frames per sec-

ond [13] sensing rate, it can sustain 0.98 years using the BL
approach. Although PA’s pipelined execution pattern benefits

its response time, it does not consider saving memristor writes

for endurance attainment and has the same endurance as BL.

The proposed EAS’s lifetime monotonically decreases as

the total amount of workload increases. As shown in Fig-

ure 5(a), when Ub(sk) increased from 2 to 24, the average

ReRAM lifetime reduced from 12.89 to 0.98 years in an

average of 3.14 years. Overall, the proposed EAS can attain

more than 3.2× lifetime compared with the baseline.

Figure 5(b) compares the feasibility of different approaches.

The BL approach has the lowest feasibility because it executes

DNNs in sequential patterns without pipelining or overlapping

different tasks, which results in the longest response time. For

example, as Ub(sk) increased from 4 to 10, the feasibility

of BL decreased from 62.4% to 9.7% and became totally

infeasible when Ub(sk) ≥ 12. On the contrary, the PA
approach pipelines different layers to achieve the best-effort

throughput, so the feasibility of PA is the highest among these

methods, which exceeded 87.5% for all the cases.

Our proposed EAS approach feasibility is better than BL,

but lower than PA. The reason is that EAS adopts the pipelined

execution pattern; however, due to endurance consideration,

when reusing the mapped weights, the early finished layers

must wait until the completion of other tasks that share the

same kernel. Therefore, the EAS response time for each

task becomes longer than PA. As shown in Figure 5(b),

when Ub(sk) increased from 4 to 22, the feasibility of EAS
decreased from 99.6% to 10.1% with an average of 60.3%.

Figure 5(c) evaluates the feasibility of our proposed EAS
approach for different D and Ub(sk). For each deadline, the

feasibility decreases as the amount of workload increases.

Further, as the deadline becomes larger, it could achieve better

feasibility since more tasks can meet their deadlines. For

example, when D increased from 30 to 90ms, the earliest

all-infeasible Ub(sk) extended from 12 to 22 and kept at 22

ms

Fig. 6. Memristor and eDRAM utilization comparisons for different D and
Ub(sk) of the EAS approach.

when D ≥ 90ms, which indicated the feasibility improvement

as the deadline was relaxed.

C. System Utilization

This section evaluates the system utilization on memristors

and eDRAMs for the proposed EAS approach. The utilization
of memristors is defined as the number of engaged memris-

tors versus the total ReRAM memristors within one period.

Similarly, the utilization of eDRAMs is defined as the size of

eDRAMs storing intermediate results versus the system-wide

eDRAM capacity in one period.

Figure 6 shows that both memristors’ and eDRAMs’ utiliza-

tion increase as the total amount of workload become larger for

all different deadline settings. For example, when D = 120ms
and Ub(sk) = 2, the memristor and eDRAM utilization was

38.1% and 22.4%, respectively. As Ub(sk) increased to 20,

the memristor and eDRAM utilization became 74.7% and

41.7%, respectively. The reason is that when there are fewer

inferencing instances for a task, the completion time may be

earlier than the deadline, so both memristors’ and eDRAMs’

utilization could be low because of idle time. However, as

Ub(sk) increased to the extent that the completion time of

ΓΓΓ violated the deadline, the infeasible cases’ utilization for

memristors and eDRAMs was set as 0.

We also observed that for all different deadline settings, the

memristor utilization was higher than the eDRAM utilization

for feasible cases. The reason is that the number of weights

in most DNNs is several magnitudes larger than neurons.

Therefore, in Figure 6, the maximum memristor utilization

can reach 75.7% at D = 240ms, but the maximum eDRAM

utilization can only achieve 47.2% at D = 150ms. The

“headroom” of the memristor utilization was caused by the

margin between the actual size of weights ml
k and the bounded

size of weights m̂k per layer.

D. Execution Overhead

Lastly, we evaluated the execution overhead of our pro-

posed EAS method. We found that the partitioning and

scheduling consumed a negligible overhead, e.g. the aver-

age partitioning and scheduling overheads were 0.29μs and

5.58μs, respectively. A majority of the time was spent on

decomposition at 0.45ms on average. As shown in Table II, the

CPU time increases as Ub(sk) becomes larger. The reason is

that the larger number of work items that can share the same

kernel, the lower bounded layer-wise weights, and feature map

sizes may apply, and, thus, layer decomposition is needed
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TABLE II
CPU TIME OF EAS FOR DIFFERENT WORKLOAD INTENSITIES. (IN

ms)

Ub(sk) 4 8 12 16 20 24 Avg

CPU time 0.23 0.34 0.39 0.43 0.61 0.71 0.45

to generate more sub-layers in pre-processing. Overall, our

proposed EAS method is computationally efficient.

V. CONCLUSION

ReRAM exhibits high computing and energy efficiency,

but the low endurance limits its lifetime and reliability.

When multi-modal DNNs share limited crossbars under con-

strained latency, the high programming density exacerbates

the ReRAM lifetime. In this work, we developed a novel

endurance-enhancement real-time multi-DNN scheduling ap-

proach, including resource partitioning, DNN pre-processing,

and real-time scheduling. The proposed approach can max-

imally explore the temporal and spatial ReRAM resources

for reusing the mapped kernels and extending programming

cycles, which dramatically leverages ReRAM endurance with-

out any accuracy loss. The experimental results showed that

our proposed method can effectively and efficiently enhance

the ReRAM lifetime by 3.2× compared to the state-of-the-art

techniques.
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