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Abstract—Achieving accurate multi-modal Deep Neural Net-
works (DNN) testing often requires operating rich model param-
eters under limited computing and memory resources. The low-
cost Resistive Random-Access Memory (ReRAM)-based DNN
accelerator is a promising solution for such an application thanks
to its inherent processing-in-memory capability. However, its
lifetime, which is crucial for applications with strict reliability
standards such as self-driving cars, can be significantly limited
due to: 1) the need to frequently switch weights among different
models for real-time streaming applications; 2) the low endurance
of ReRAM devices compare to DRAMs by orders of magnitude.
This work proposed an Endurance-Aware multi-modal DNN
Scheduling (EAS) strategy to address this issue using real-time
techniques. First, a pre-processing methodology transformed a
DNN into an end-to-end execution sequence for partitioning and
scheduling. Then, a periodic real-time scheduling method was
developed via data reusing for extending ReRAM programming
cycles under deadline constraints. The experiment results showed
that our EAS approach can extend the baseline ReRAM accel-
erator’s lifetime from 0.98 years to 3.14 years on average at a
low scheduling overhead.

Index Terms—Resistive random-access memory (ReRAM),
deep neural network (DNN), real-time, reliability, and streaming
applications.

[. INTRODUCTION

Multi-Modal Deep Neural Network (DNN) testing with
constrained response latency is indispensable for future intel-
ligent systems [1]. For example, autonomous driving needs
the fusion of heterogeneous neural network architectures,
including CNNs and RNNs for sensor-streamed video, audio,
location tracking, and thermal video processing [2]. Moving
from computing to a data-centric paradigm, the miniature de-
vice parameters—such as cost, area, and energy consumption—
impose intra-/inter-task resource contention upon intrinsic pro-
cessing demands, which could be even more challenging when
sustaining hardware endurance upon complicated scheduling
policies. Since aging-induced memristor defects downgrade
inference accuracy significantly [3], this work focuses on
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prolonging the Resistive Random-Access Memory (ReRAM)
lifetime in the context of distinguished DNN data flow prop-
erties using real-time scheduling techniques.

ReRAM-based Processing-In-Memory (PIM) accelerators
achieve fast and energy-efficient DNN execution by inherent
in-situ multiply-accumulate operations [4], [5], [6], [7], e.g.
the ReRAM convolution computing efficiency can achieve
> 103 times over traditional ASIC designs [2]. However, a
ReRAM can only sustain a limited number of programming
cycles ~ 108 [8], [9], [10] as opposed to > 10'6 for DRAM
memory [11]. For example, the ReRAM lifetime is 0.95 years
for sequential DNN testing [12] on an autonomous vehicle
at 40 frames per second (FPS) sensing rate [13] and running
2 hours per day. The need to simultaneously execute multi-
modal DNNs with targeted deadlines in such resource-limited
PIM accelerators can further aggravate the lifetime issue since
weights shall be frequently reprogrammed to execute different
models.

Frequently programming ReRAM not only expedites mem-
ristors’ aging effect but also extends response latency, in-
creases local power density and temperature, and downgrades
inference accuracy. Writing on ReRAM cells costs a typical
latency of 1 write-verify cycle (=500ns) for 1-bit/cell [14],
during which the high voltages and large currents are applied
to establish the conductive filaments at targeting memristor
resistances. Meanwhile, the large conductance and current
result in soaring local power density that increases internal
and ambient temperature [15]. As memristors’ resistivity is
strongly temperature-sensitive, the thermal instability leads
to inaccurate programming conductance. Consequently, con-
ductance deviation from the pre-trained DNN can downgrade
inference accuracy [16].

The ReRAM endurance can be leveraged by reducing the
memory writes [17], [18], [19], [20], adjusting programming
modes [16], or managing runtime thermal status [15], [9].
However, some solutions exhibited either accuracy degrada-



tion [17], [18], [20] or scalability limitations [19], [9]. To
satisfy real-time constraints, some works took advantage of
the “intrinsic resilience” of DNNs to approximate results
by judiciously reducing the data volume and the response
latency [21], [22], [23], e.g. formulating the DNN as a scalable
computational model [24], [25] or adjusting the NN hyper-
parameters, such as compression [26], network pruning [27],
precision scaling [28], etc. However, these solutions still
suffered from accuracy degradation. We propose to take advan-
tage of the slack time between the task arrival and its deadline
for reusing the mapped data on the ReRAM and testing a
maximal number of feature maps sharing the same kernels
without shrinking network architectures or any accuracy loss.

This work utilized real-time techniques to reschedule DNN

data flow for ReRAM endurance enhancement under deadline
constraints, which was orthogonal to other state-of-the-art
works. Our proposed methodologies can also be applied to
different reprogrammable devices when mitigating the inten-
sive reprogramming-induced lifetime reduction in the real-time
domain. The contributions included

o We designed a DNN pre-processing methodology that
converted a DNN to an end-to-end execution sequence
with bounded layer-wise computational and data storage
demands for partitioning and scheduling.

« We developed a real-time DNN inference scheduling
framework on ReRAMs that can reuse the mapped kernel
weights for minimizing the memristor writes and enhanc-
ing the ReRAM endurance under time constraints.

o Our experimental results showed that our approach can
extend the baseline ReRAM lifetime by 3.2 times at high
feasibility for different deadlines and workload intensities
with low scheduling overhead.

The rest of this paper is organized as follows. Section II
presents the system architecture, task model, and problem
formulation. Section III presents our approach. Section IV
shows the experiment results and is followed by a conclusion
in Section V.

II. PRELIMINARIES

This section presents the architecture and task models
followed by the problem formulation. The bold characters
represent the vectors and matrices, and non-bold characters
are used for ordinary variables and coefficients. All of the
matrices/vectors/values are in the real number domain R.

A. Architecture Overview

We adopt the 3D stacking ReRAM [9], [18], [29], [8] as a
full-fledged DNN accelerator R, as shown in Figure 1. The
ReRAM accelerator consists of N tilesas R = {14, - ,Tn},
which can be independently controlled and configured. The
data and signal are transmitted through vertical Through-
Silicon-Via (TSV). Each tile, similar to [30], has a mesh of
multiply-accumulator (MA) units, each of which consists of
arrays of homogeneous crossbars (Xbar). Other components,
such as shift-and-add, activation (o), and pooling units are
built on each tile and their execution times are added to
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Fig. 1. Architecture Overview

the MA operations for bounding the layer-wise worst-case
execution time (WCET). Each tile controls memory access
independently and has a fixed size of eDRAMs [18] for storing
transient results. Without losing generality, this work assumes
that each tile cannot be shared by multiple applications, and
all tiles run at a uniform frequency.

DNN tasks use memristors to perform analog computing
and their transient results are stored in eDRAMs. Let M and
E represent the sizes of memristors and eDRAMs of a tile,
respectively. The total sizes of memristors and eDRAMs on
the ReRAM are N-M and N -, respectively. Assume ny, tiles
are assigned to the k-th task I'y, € T, the allocated sizes of
memristors and eDRAMs are ny - M and ny - E, respectively.

B. Task Model

Consider that a DNN inference task set I' contains 6
independent tasks of different models as I' = {T'y,--- , g}
The k-th task 'y has Lj layers as 1 < [ < Ly, contains sy
real-time streaming instances sharing the same kernel set, and
is constrained by an end-to-end deadline equal to the period
of D. For I'y, each layer abstracts the characteristic elements
by strikingly convolute a set of kernels with data from the
previous layer (layer [ — 1) to generate feature maps of the
next layer (layer /) [31], where the output feature map of layer
[ —1, denoted as 02_1, is temporarily stored in eDRAMs and
serves as the input feature map of layer [. Let I}, be the (-
th layer of T'y. Then, the j-th computational instance of I',
can be denoted as yj, ; = OL:jITWL + bj,, where yj ; is the
j-th convoluted output of I'},, Wi ¢ R™' "™ contains the
weight parameters and b}, € R™ is the bias [32]. Next, an
activation function, e.g. sigmoid o(-), rectifies the convoluted
instance as ofw- = a(yé’j), where Oém’ is the j-th instance’s
output neuron value of Fﬁﬂ. The latter layer can be executed
only after the completion of the previous one due to data
dependency [33].

To quantify the inferencing resource demands, assuming
that executing T} needs a size of m! memristors to load
weights and a size of e/, eDRAMs to store intermediate
feature maps. Then, in the run time, if loading d consecutive
layers’ kernel weights to its partition at the same time, the
total size of weights Zﬁjld m! should not exceed ny - M.
Meanwhile, if a collection of intermediate feature maps, e.g.
02 € J, need to be stored in the eDRAMSs, the total size
of ZOL ¢ €k should not exceed ny, - E. Since convolutional



operations dominate the DNN computation [34], we let T,i be
the WCET of T, including convolution, pooling, activation,
and their communications through buses.

C. Problem Formulation

DNN inference involves a combination of convolutional,
normalization, pooling, and classification operations [35].
Since the number of weight parameters is magnitudes larger
than neurons on most DNNs [32], this work focuses on
reusing the mapped weights to reduce the memristor writes and
improve ReRAM endurance. When a ReRAM is large enough
to load all the kernels in T, ie. N - M > Y0 S il
memristors only need to be programmed once. However,
when multiple concurrent DNNs share one ReRAM under
deadline constraints, it needs to update the weights frequently
as network inference proceeds. Therefore, the short program-
ming cycles, which are detrimental to hardware endurance,
motivate us to develop innovative multi-modal DNN schedul-
ing methodologies to maximally attain endurance under the
targeted deadline. With the above analyses, the problem to be
solved in this work is formulated as follows.

Problem 1: Given a real-time streaming DNN inference task
set I' = {I'y - -- , 'y}, with the end-to-end deadline of D, to
be executed on a ReRAM platform R = {73, ---,Tn}, the
problem is to fit I' into R and create real-time schedules to
maximally attain the ReRAM endurance under the deadline
constraint.

III. OUR APPROACH

With the formulated problem, we present our ReRAM
partitioning, DNN pre-processing, and real-time scheduling
approaches for endurance enhancement. The main idea is
to convert heterogeneous DNN layers into a sequence of
homogeneous sub-layers to fit into partitioned resources and
reuse the mapped kernel weights in consecutive layers to
prolong the ReRAM endurance without violating deadline
constraints.

A. ReRAM PFartitioning

For a multi-modal DNN task set, the number of partitioned
tiles for each task is proportional to the workload intensity.
Assuming a uniform sensing rate is applied to the multi-
modal DNN tests, e.g. in-sync video and audio for autonomous
driving, increasing s leads to a longer response latency, as ex-
plained later in Figure (4b), so more tiles should be allocated to

Sk ZLL:k 1 "”i« J

6 Ly i
. . . > k=1 ZL: Sk,
in the run time. However, the sizes of parameters and feature

maps for different layers vary significantly as shown in Fig-
ure 2, which may exceed the allocated tiles’ total capacity or
lead to an unbalanced execution pipeline. To this end, we first
develop a DNN pre-processing method to decompose “large”
layers into a sequence of end-to-end sub-layers for fitting each
DNN into partitioned resources. Then, an endurance-aware
real-time scheduling approach is introduced.

I';;, under deadline constraints as ny = | N -
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Fig. 2. Layer-wise parameter and feature map sizes vary significantly
before processing
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Fig. 3. Layer decomposition: (a) Given DNN workload; (b) A layer before
decomposition; (c) Split filters into multiple sub-layers; (d) Split the feature
map inputs into multiple sub-layers.

B. DNN Pre-processing

When allocating a DNN to its partitioned tiles, the hetero-
geneity of the layer-wise parameters may exceed the allocated
resources. In the meantime, different volumes of multiply-
accumulation operations cause varying layer-wise latency that
can be detrimental to throughput performance due to the unbal-
anced execution pipeline. To resolve the layer heterogeneity-
induced resource contention and unbalanced pipeline for a
better response latency, we propose a pre-processing stage
for bounding the sizes of parameters, the input feature maps,
and the WCET for each layer. Then, each DNN inference
task can be treated as a sequence of homogeneous layers for



Partitioned ReRAM Tiles
Memristors

Reconfig.

Reconfig.
1 Outputs

iy e

Start next I inference

LCDRAM 01 |
o} T2 3| Ohe
k1 thsk1| Ty 4| Tt 4| Tid 4 3
o TL T2, |3 034
o task2 | ol [Tz 5
[ 1 |2 3 o
0’3(3 task3 | Tis[ T2, |35 %K .
L lask4l AL Qe
eDRAM Reconfiguration I‘,él l"lil l",g1 Ok Time
4 (15 |16 ] O
"ﬂm T2 TRz | Ticz 3 .
4 (15 |6 | ©O
Ok,2 1 T3 ka r};s . Kt
Ok3 | Tiea | Tiea F""’L v
o5, Reconfiguration Time
LT

(b)

Fig. 4. Endurance-aware real-time scheduling. Notations 1‘2 and oﬁe  Tepresents the 1p-th inference instance of Fﬁ@ and its output feature map, respectively.
(a) ReRAM accelerator partition. (b) Data flow of multi-DNN endurance-aware pipelined execution.

scheduling.

To put the DNN pre-processing into perspective, given an
arbitrary network as Figure 3(a), the kernel filters convolute
through the input feature maps on layer [ to output feature
maps for layer /41 as Figure 3(b). Assume layer [ is pending to
be decomposed, let my, be the layer-wise parameter size bound
and fj be the feature map size bound for I'y. We first split
kernels according to my without reshaping the input feature
maps as Figure 3(c). Then, we split its input feature maps ac-
cording to f into multiple sub-layers as Figure 3(d). Note that
splitting kernels or input feature maps also impacts the output
feature map sizes. The post-processing DNN should contain all
consecutive layers with bounded kernel and feature map sizes,
which caps the total multiply-accumulation operations. Since
the multiply-accumulation dominates and is proportional to the
WCET, the post-processing layer-wise latency is also bounded
as Tp. Overall, the pre-processing stage could dramatically
enhance DNN’s real-time predictability and schedulability.

To enhance the ReRAM endurance, we propose to reuse
mapped kernel weights to test as many feature maps as pos-
sible under deadline constraints. In addition, the tasks sharing
the same kernels are expected to be executed in the pipeline to
minimize the response latency [33], [36]. When the partitioned
tiles cannot hold all kernels at once, we define reconfiguration
as a renewal of kernel weights on the memristors as DNN
inference proceeds. Then, each configuration can only hold
the kernels of several consecutive layers, if not all. Therefore,
an inference task usually needs multiple reconfigurations as
shown in Figure 4(a). In addition, due to the continuity of
DNN execution, once the inference starts, it must proceed
until the completion of all layers in consecutive configurations.
Otherwise, storing intermediate results consumes eDRAM
capacity, and squeezes later configurations’ data-preserving
space.

Specifically, as shown in Figure 4(b), the kernels that belong
to one configuration can be reused by multiple inferencing in-
stances, and partitioned eDRAMs are shared among them. For
each inferencing instance, the previous layer’s output feature
map is stored in the eDRAM and immediately transferred to
the next layer, except that the last output feature map of a

configuration should be stored in the eDRAM longer to serve
as the first input feature map for the following configuration.
Since the feature map sizes are bounded, as fj, for task 'y, and
the number of intermediate feature maps to be stored in the
eDRAM are identical for all configurations, eEDRAM overflow
should never occur.

C. Endurance-Aware Real-Time Scheduling

For each task I'y, € I', we are ready to create its real-
time schedule for maximizing the programming cycles (CY)
and enhancing the ReRAM endurance under the hardware
and timing constraints. Let v; be the number of instances
reusing the same set of kernels when executing I';, where
vy is a positive integer (v, € Z7%). The larger the vy, the
more input feature maps can reuse the same mapped kernel
weights, and, thus, ReRAM has longer programming cycles
and better endurance. However, from Figure 4(b), we can see
that increasing v leads to a longer inference latency and a
higher eDRAM utilization in each configuration. Let v? and
v,’f be the maximal vy, values concerning the deadline and the
assigned eDRAM size, respectively. Then, we have

v, =min{ vP, vf, s, }, where vF = LnkE/ka (1

To identify the maximal v,? , let dj; be the execution pipeline
depth. The value of dj is constrained by the largest number
of layers that can be concurrently loaded onto the partitioned
tiles in one configuration as dp = |ng - M/my|. Assume
that the completion of I'y needs 7 configurations, we have
7k = [Ly/dy]. If the last configuration contains d{*** remnant
layers, we can infer dfc‘wt = Ly — (rp — 1)dy. To guarantee
the completion of I';, within the time frame [0, D], v} needs
to satisfy

Crlry—1)+ 7 - (1);? + diCaSt —-1)< D,
where Cp =7 - (vF +d. —1). (2)
Solving Equation (2), we have

D dr — dlast

D k

v =|l—%+ .
Tk Tk Tk

—dy +1]. 3)



Algorithm 1 Endurance-aware DNN scheduling (EAS)
: Inputs: Task set I', ReRAM platform R, Deadline D

1

2: Outputs: S(vy, Cy,dg, 1), where 1 < k <60

3: Partition R and identify ny

4: Pre-processing initialization: TV =[], k =1

5: while £ <60 do N
6: linearly search max(dy) and determine my, and fj
7. while 3 sizeof (T}) > my, or f do

8: Decompose FL kernels or input feature maps
9: Update I'y,

10 end while

n: D4 =0y, T— =Ty, k++

12: end while

13: Scheduling initialization: S=[], k =1

14: whileI' £ [ ] do

15:  Determine dj, i and d{@*!

16:  Identify vy and C} in Equation (1) and (2)

17:  if v < s; then

18: Return Infeasible

19:  end if

2000 S+ =S, I'—=T%

21: end while

22: Output S(Uk, Ch,dy, ’f’k)

The pre-processing procedures and endurance-aware real-
time scheduling approaches are summarized in Algorithm 1.

In Algorithm 1, the larger the dj, the less 7, and the higher
the endurance. Thus, assuming v,? s in Equation (2),
we linearly search the maximum dj; without exceeding the
partitioned eDRAMs _capacity or violating deadline D for
determining 7y, and f, in line 6. With the bounded memristors
and feature maps, Algorithm 1 lines 4-12 can be applied
to decompose kernels and feature map inputs. Next, we
can readily create endurance-aware real-time DNN inference
schedules for each Sy (vy, Ck, di, 1) as shown in lines 13-21.
The effectiveness of Algorithm 1 are formalized and proved in
Lemma 3.1 and 3.2, assuming that the post-processing DNNs
have their layer-wise size of weights and size of feature maps
ideally equal to their corresponding bounds.

Lemma 3.1: [Temporal Tightness] When s, — oo and
ny - 2 — oo, parameter vy, is tight regarding deadline D.

Proof Since n;, - E — oo, we have v,’f — oo, and, thus,

v, = vf in Equation (1). Assume 0} = v}’ +1 satisfies Equa-
tion (2), where 9P, vP € Z*, taking 9} into Equation (2),
we have f)}? < Q and Q = ”_’I_)?k + % — dj. Since
v,? = |@ + 1] in Equation (3), we have U]? > (. Therefore,

ﬁkD < Q< ka is contradict with the initial assumption of
P =vP + 1.

Lemma 3.2: [Spatial Tightness] When D — oo and s —
0o, eDRAM can be filled with intermediate feature maps as
vk - fr =nik - F — ¢, where € is a very small value.

Proof When D — oo, we have ’U]? — oo from Equation (3).
In addition, since s; — oo, from Equation (1), we have v, =
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TABLE 1
RERAM ACCELERATOR PARAMETERS [30]

Component Spec Value
ReRAM Nrp, 192 tiles
MA number 12 per tile
number 8 per MA
Xbar size 128 x 128 cells
bit 2 per cell
eDRAM num. of banks 2 per tile
size 64 KB

[ng - E/fkj and vy, is the largest integer that satisfies vy, fk <

With Lemma 3.1 and 3.2, we can infer that Algorithm 1
can maximally explore the temporal slack time and spatial
eDRAM storage when reusing the mapped kernels on the
ReRAM, either constrained by the given real-time deadline
or by the partitioned eDRAM storage size, when sy, is not a
limiting factor.

IV. EXPERIMENTAL RESULTS

In Section IV, we verified our design and compared their
endurance and real-time performances with state-of-the-art
techniques.

A. Experimental Setup

We adopted the similar ReRAM accelerator settings as [30]
in Table 1. All DNN inferences employed 16-bit operation
if not otherwise specified. The DNN inference task set
was randomly composed of VGG16, AlexNet, GoogleNet,
SqueezeNet, and ResNet, which had different kernel sizes,
output shapes, and parameter volumes [12]. The execution
time of each layer was normalized to the system ticks. We
assumed an optimized and negligible memristor writing over-
head [16], [31] compared with the longer inference latency in
the experiment. The simulation was written in C++ and ran at
Intel-i9 CPU at 2.40 GHz. We evaluated the effectiveness of
our proposed approach by comparing the following methods.

« Baseline Approach (BL): The single-priority sequential
execution as the default setting in the state-of-art DNN
frameworks, such as Caffe, TensorFlow, and Torch [12].
Pipelined Approach (PA): The best-effort pipelined DNN
execution to maximize the system throughput [33], [36].
Endurance-aware DNN scheduling Approach (EAS): Our
proposed endurance-aware real-time multi-modal DNN
scheduling in Algorithm 1.

The experiment was conducted by setting the deadlines D
from 30 to 240ms with an increment of 30ms. Let Ub(sy)
be the upper boundary of s; and serve as an index for the
workload intensity given fixed DNN models. For each D
setting, we increased Ub(sy) from 2 to 24 at the step size
of 2. Then, for each pair of D and Ub(sy), the composition
of the task set I', in terms of 'y, and sx, were generated for
1K random cases and took their average results.
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changes for different D and Ub(sy,) of the EAS approach.

B. Endurance and Feasibility Comparisons

We adopted the typical ReRAM endurance as 4.14 x 108
writes [8], [9], [10]. Assuming a ReRAM in a commercial
autonomous vehicle runs 8 hours/day at 40 frames per sec-
ond [13] sensing rate, it can sustain 0.98 years using the BL
approach. Although PA’s pipelined execution pattern benefits
its response time, it does not consider saving memristor writes
for endurance attainment and has the same endurance as BL.

The proposed EAS’s lifetime monotonically decreases as
the total amount of workload increases. As shown in Fig-
ure 5(a), when Ub(sy) increased from 2 to 24, the average
ReRAM lifetime reduced from 12.89 to 0.98 years in an
average of 3.14 years. Overall, the proposed EAS can attain
more than 3.2x lifetime compared with the baseline.

Figure 5(b) compares the feasibility of different approaches.
The BL approach has the lowest feasibility because it executes
DNNSs in sequential patterns without pipelining or overlapping
different tasks, which results in the longest response time. For
example, as Ub(sy) increased from 4 to 10, the feasibility
of BL decreased from 62.4% to 9.7% and became totally
infeasible when Ub(s;) > 12. On the contrary, the PA
approach pipelines different layers to achieve the best-effort
throughput, so the feasibility of PA is the highest among these
methods, which exceeded 87.5% for all the cases.

Our proposed EAS approach feasibility is better than BL,
but lower than PA. The reason is that EAS adopts the pipelined
execution pattern; however, due to endurance consideration,
when reusing the mapped weights, the early finished layers
must wait until the completion of other tasks that share the
same kernel. Therefore, the EAS response time for each
task becomes longer than PA. As shown in Figure 5(b),
when Ub(sy,) increased from 4 to 22, the feasibility of EAS
decreased from 99.6% to 10.1% with an average of 60.3%.

Figure 5(c) evaluates the feasibility of our proposed EAS
approach for different D and Ub(sy). For each deadline, the
feasibility decreases as the amount of workload increases.
Further, as the deadline becomes larger, it could achieve better
feasibility since more tasks can meet their deadlines. For
example, when D increased from 30 to 90ms, the earliest
all-infeasible Ub(sy) extended from 12 to 22 and kept at 22
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when D > 90ms, which indicated the feasibility improvement
as the deadline was relaxed.

C. System Utilization

This section evaluates the system utilization on memristors
and eDRAMs for the proposed EAS approach. The utilization
of memristors is defined as the number of engaged memris-
tors versus the total ReRAM memristors within one period.
Similarly, the utilization of eDRAMs is defined as the size of
eDRAMSs storing intermediate results versus the system-wide
eDRAM capacity in one period.

Figure 6 shows that both memristors’ and eDRAMs’ utiliza-
tion increase as the total amount of workload become larger for
all different deadline settings. For example, when D = 120ms
and Ub(sy) = 2, the memristor and eDRAM utilization was
38.1% and 22.4%, respectively. As Ub(sy) increased to 20,
the memristor and eDRAM utilization became 74.7% and
41.7%, respectively. The reason is that when there are fewer
inferencing instances for a task, the completion time may be
earlier than the deadline, so both memristors’ and eDRAMSs’
utilization could be low because of idle time. However, as
Ub(sy) increased to the extent that the completion time of
T’ violated the deadline, the infeasible cases’ utilization for
memristors and eDRAMs was set as 0.

We also observed that for all different deadline settings, the
memristor utilization was higher than the eDRAM utilization
for feasible cases. The reason is that the number of weights
in most DNNs is several magnitudes larger than neurons.
Therefore, in Figure 6, the maximum memristor utilization
can reach 75.7% at D = 240ms, but the maximum eDRAM
utilization can only achieve 47.2% at D 150ms. The
“headroom” of the memristor utilization was caused by the
margin between the actual size of weights m! and the bounded
size of weights iy, per layer.

D. Execution Overhead

Lastly, we evaluated the execution overhead of our pro-
posed EAS method. We found that the partitioning and
scheduling consumed a negligible overhead, e.g. the aver-
age partitioning and scheduling overheads were 0.29us and
5.58us, respectively. A majority of the time was spent on
decomposition at 0.45ms on average. As shown in Table II, the
CPU time increases as Ub(sy) becomes larger. The reason is
that the larger number of work items that can share the same
kernel, the lower bounded layer-wise weights, and feature map
sizes may apply, and, thus, layer decomposition is needed



TABLE 1T
CPU TIME OF EAS FOR DIFFERENT WORKLOAD INTENSITIES. (IN
ms)
Ub(sg) 4 8 12 16 20 24 Avg
CPU time | 023 034 039 043 0.61 071 | 045

to generate more sub-layers in pre-processing. Overall, our
proposed EAS method is computationally efficient.

V. CONCLUSION

ReRAM exhibits high computing and energy efficiency,
but the low endurance limits its lifetime and reliability.
When multi-modal DNNs share limited crossbars under con-
strained latency, the high programming density exacerbates
the ReRAM lifetime. In this work, we developed a novel
endurance-enhancement real-time multi-DNN scheduling ap-
proach, including resource partitioning, DNN pre-processing,
and real-time scheduling. The proposed approach can max-
imally explore the temporal and spatial ReRAM resources
for reusing the mapped kernels and extending programming
cycles, which dramatically leverages ReRAM endurance with-
out any accuracy loss. The experimental results showed that
our proposed method can effectively and efficiently enhance
the ReRAM lifetime by 3.2x compared to the state-of-the-art
techniques.
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