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ABSTRACT: Neuropeptides represent a unique class of signaling molecules that have
garnered much attention but require special consideration when identifications are
gleaned from mass spectra. With highly variable sequence lengths, neuropeptides must
be analyzed in their endogenous state. Further, neuropeptides share great homology
within families, differing by as little as a single amino acid residue, complicating even
routine analyses and necessitating optimized computational strategies for confident and
accurate identifications. We present EndoGenius, a database searching strategy
designed specifically for elucidating neuropeptide identifications from mass spectra
by leveraging optimized peptide−spectrum matching approaches, an expansive motif
database, and a novel scoring algorithm to achieve broader representation of the
neuropeptidome and minimize reidentification. This work describes an algorithm
capable of reporting more neuropeptide identifications at 1% false-discovery rate than
alternative software in five Callinectes sapidus neuronal tissue types.
KEYWORDS: neuropeptide, EndoGenius, homology, peptide, mass spectrometry, database searching, FDR, peptidomics, endogenous,
digest-free

■ INTRODUCTION
Neuropeptides, essential signaling molecules originating from
neurons or endocrine cells, serve as a resource for obtaining
dynamic information on neuronal processes.1 To date, neuro-
peptides have provided valuable insight into biological disorders
including Alzheimer’s disease2,3 and obesity.4−6 Mass spectrom-
etry (MS) is revered for its high accuracy and sensitivity and has
been utilized in many neuropeptide studies to date.7−10 With
regard to processing MS data and subsequently obtaining
peptide−spectrum matches (PSMs), database searching is a
routine method, which compares the theoretical spectrum of a
peptide with an experimental spectrum to make identifications.
The area of database searching has seen tremendous growth in
recent decades, with many software packages available for use
including MSFragger,11 MaxQuant,12 PEAKS,13 Comet,14 and
MetaMorpheus,15 each of which were designed for application
in proteomics investigations.
While in principle these software packages can be used for

neuropeptidomic analyses, an apparent discrepancy between the
number of anticipated neuropeptide identifications, supported
by the literature,1,16 and the much lower actual number of
identified neuropeptides by MS is evident. This discrepancy can
be explained by the unique nature of neuropeptides, which
warrants atypical search considerations. In vivo, neuropeptides
are cleaved from prohormones in a largely uncharacterized
manner, producing fragments ranging from three to greater than
70 amino acids in length.1 Thus, typical sample preparation

involving enzymatic digestion can be detrimental, and neuro-
peptides are analyzed in their endogenous form. Though many
software packages offer the ability to search under digest-free
conditions, neuropeptides share high levels of sequence
similarity, sometimes sharing all but a single amino acid residue
in common, further complicating search tasks.
Software optimized for neuropeptide identifications are

sparse, though recently our group presented two packages that
complement de novo sequencing analysis methods, which
demonstrated the benefit of using optimized software pack-
ages.7,17 Herein we detail a novel platform, EndoGenius, which
capitalizes on modifications of existing database searching
principles to achieve optimized database searching of neuro-
peptide extracts. EndoGenius is the first standalone platform
designed specifically for the identification of neuropeptides from
data-dependent acquisition (DDA) mass spectra. Traditional
database search strategies provided a nice framework to model
our system after, however they make assumptions, such as the
identities of termini residues, that are not applicable to our
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neuropeptide analyses,18−20 thus providing an area of
optimization for our neuropeptide applications, through which
we optimized a scoring method to relay the confidence of an
identification. The premise of our DDA searching algorithm lies
in generating theoretical spectra for a given neuropeptide
sequence, including any modifications, and then searching this
against experimental spectra to identify any matches, scoring the
matches to reflect the confidence of the match.21−23 Typical
methods used to represent the quality of a spectral match
employ one of the following two approaches: either examining a
false-discovery rate (FDR), often including decoy database
entries in the search to calculate the likelihood of identifying a
false entry, or employing scoring methods, which rely on a
number of factors to arrive at a value which represents the
probability of the match to be true.18,24,25 Representing the
accuracy of a neuropeptide match through a score alone is not
intuitive, while calculating the FDR using a decoy database alone
can be ineffective at determining the correct sequences, a unique
challenge due to inherent neuropeptide homology.25 Algorithms
where a score is calculated based on metrics rely on properties
such as the number of missed cleavages or the identity of the end
residues of a given peptide, features which are not applicable to
neuropeptide searches.12,26 For the program described herein,
we developed a scoring system that is ideal for neuropeptides,
free of any irrelevant terms. We then use these scores in tandem
with a target−decoy strategy to determine a score threshold
corresponding to a particular FDR value, where peptides with
scores greater than the threshold are accepted as hits (Figure 1).

Altogether, the novel platform described herein, EndoGenius,
achieves improved identification of a broad selection of
neuropeptides with respect to alternative software solutions.

■ MATERIALS AND METHODS

Reagents and Materials
Crab saline components as well as methanol (MeOH),
acetonitrile (ACN), glacial acetic acid (GAA), ammonium
bicarbonate, and formic acid (FA) were purchased from Fisher
Scientific (Pittsburgh, PA). For this study, only HPLC grade or
water (H2O) that was doubly distilled on a Millipore filtration

system (Burlington, MA) were used. C18 Ziptips were
purchased from Millipore (Burlington, MA). Optima grade
solvents were used for all LC (Fisher Scientific; Pittsburgh, PA).
Animals
Female blue crabs, Callinectes sapidus, were obtained from
Midway Asian Foods and subsequently stored in artificial
seawater at 35 parts per thousand (ppt) salinity, 13−16 °C, and
8−10 ppm of O2. Prior to sacrifice, crabs were anesthetized on
ice for 20 min. The brain, sinus glands (SG), pericardial organs
(PO), thoracic ganglia (TG), and commissural ganglia (CoG)
were collected as previously described.27 Dissections were
conducted in chilled (10 °C) physiological saline, composed of
440 mM NaCl, 11 mM KCl, 13 mM CaCl2, 26 mMMgCl2, and
10 mM Trizma acid. Saline was adjusted to pH 7.4 with NaOH.
Neuropeptide Sample Preparation and Data Acquisition
For each tissue type, three tissue samples were pooled.
Neuropeptides were extracted from tissue using 90/9/1 (v/v/
v) MeOH/H2O/GAA and subsequently desalted via Millipore
Ziptips. A solution of 0.1% FA in water was used to reconstitute
the neuropeptide extracts and was then loaded onto a 15 cm
capillary (75 μm internal diameter), which was packed with 1.7
μm diameter ethylene bridged hybrid C18 material. The
integrated emitter tip was confirmed to be in line with the
instrument inlet.
Untargeted profiling of neuropeptides was conducted via LC-

MS/MS with a Thermo Q-Exactive HF mass spectrometer
coupled to a Dionex Ultimate 3000 LC system. Mobile phase A,
0.1% FA in H2O, and mobile phase B, 0.1% FA in ACN, were
used to separate peptides with a gradient elution of 10% to 20%
B over 70 min and 20% to 95% B over 20 min at a flow rate of
300 nL/min. Profile mode was used to acquire full MS scans
ranging from m/z 200 tom/z 2000 at a resolution of 60 K. The
automatic gain control (AGC) target was set to 1 × 106 with a
maximum injection time of 250 ms. Tandem mass spectra were
acquired in centroidmode. The top 10most abundant precursor
ions were selected for higher-energy collisional dissociation
(HCD) fragmentation with a dynamic exclusion window of 30 s.
A resolution power of 15 K, isolation window of 2.0 Th,
normalized collision energy (NCE) of 30, maximum injection
time of 120 ms, AGC target of 2 × 105, and fixed first mass ofm/
z 100 were set as parameters for data-dependent acquisition
(DDA). Each sample was injected in a technical triplicate.
Software Notes
The EndoGenius algorithm and graphical user interface (GUI)
were written in Python. The program is compatible with Python
3 and was validated with Python v.3.10 in an Anaconda
environment. The program is open-source and freely available at
https://github.com/lingjunli-research/EndoGenius, with a user
manual and tutorial included. A schematic of the program
workflow is shown in Figure 1. The GUI was built in Figma and
converted to Python using the Tkinter Designer program.
All data files were processed on a Dell Inc. Precision Tower

5810 computer using Windows 10 with a 64-bit processor and
four cores operating at 3.10 GHz and 128 GB of installed RAM.
Target Decoy Database

A target−decoy database was built using a decoy-shuffle
strategy, with a previously reported crustacean neuropeptide
database (891 unique neuropeptides).7 A Biopython package
was used to parse the neuropeptide database from FASTA
format.28 Using the Python Itertools package, decoy-shuffle
sequences were generated and concatenated to the original

Figure 1. Generalized workflow of EndoGenius. From a target
neuropeptide database, a shuffled decoy sequence is generated for
each target. Target and decoy sequence databases are concatenated and
shuffled to avoid biasing. Each peptide undergoes precursor and, if
applicable, fragment ion matching, following which sequence coverage
and spectral correlation calculations are completed. These data are
input to the optimized peptide−spectrum match (PSM) assignment,
which conducts a filtering to reward neuropeptide-typic attributes.
Following the fine-tuning of peptide scoring, a score is associated with a
1% false-discovery rate (FDR) threshold, wherein peptides surpassing
the threshold are exported as identifications.
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database. The sequence order of all entries within the
concatenated database were scrambled to minimize biasing.
Motif Database

The motif database was built upon the previously reported
crustacean neuropeptide motif database using the same
methodology.17 In brief, the neuropeptide database, described
previously,7 was divided into families, derived from their
structural homology.29 All peptides within a family were aligned
through the UniProt Align platform.30 The alignment produced
a series of peptides adjusted to the same length, which were
input to the WebLogo platform.31 A full motif was defined as a
series of unambiguous, continuous amino acids within all
familial sequences. A partial motif was designed as an extension
to a full motif, where one variable or ambiguous amino acid
position was allowed, provided that it was flanked by two
unambiguous amino acid residues. A complete depiction of the
motif database generation workflow is shown in Figure 2a.
Motif Scoring

To assign a score to a motif−sequence match, a ratio score (SA)
was first assigned, determined by dividing the length of the motif
(LM) by the length of the neuropeptide (LN; eq 1). As this first
step can be biased against a singular, short motif present in a
lengthy neuropeptide, we applied a square root normalization
procedure (eq 2).32,33 The normalized ratio score was then
multiplied by the neuropeptide’s sequence coverage (CS), or the
number of expected fragment ions present, to reward motif−
peptide matches with strong experimental evidence. The
sequence coverage calculation was produced by dividing the
number of experimental fragment ions present (NE) by the
number of theoretical fragment ions (NT) expected (eq 3). The
final motif score (SF) is reported as the normalized ratio score
(SB) multiplied by the sequence coverage (CS; eq 4).

S
L
LA

M

N
=

(1)

S S LB A N= × (2)

C
N
NS

E

T
=

(3)

S S CF B S= × (4)

Database Search Methods
In preparation of database searching, Thermo .RAW files were
converted to .MS2 files via RawConverter.34 Raw files were also
converted tomzML format for compatibility with PyOpenMS.35

Conversion was done using MSconvert under default settings.36

All search settings selected are designed to be adjustable by the
user for the best performance. For the purposes of this
manuscript, the following parameters were used: precursor
error cutoff, 20 ppm; fragment error cutoff, 0.02 Da; minimum
m/z value, 50; minimum intensity value, 1000; maximum
number of modifications per peptide, 3. Modifications
considered in the search were C-terminal amidation, oxidation
of methionine, N-termini cyclization of glutamic acid and
glutamine, and sulfation of tyrosine, common modifications
documented within neuropeptides.37,38 Database searching was
completed first at the precursor ion level, followed by the
fragment ion level. Following this analysis, two metrics were
calculated: percent sequence coverage (Cseq) and correlation
values. The percent sequence coverage (eq 5) reflects the
quantity of fragment ions identified (Ni) with respect to the
length of the peptide (Lp). The correlation value reflects the
level of similarity of a peptide’s theoretical spectrum to its actual
spectrum. Correlation values were calculated using the Hyper-
score algorithm via the PyOpenMS Python package.35

Figure 2. (A) A motif database generation workflow was constructed by which a list of target neuropeptides was divided into sublists based on familial
association. All peptides within a given neuropeptide family were aligned, from which full motifs, or regions of complete alignment, or partial motifs,
wherein two regions of complete alignment were separated by a single variable residue, were assigned. (B) Using the motif algorithm, a selection of 85
motif entries were assigned, corresponding to 23 families.
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p
= ×

(5)

PSM Assignment

A PSM algorithm was carefully designed to reward the hallmark
attributes of neuropeptides when determining whether a
spectrum corresponds to any number of candidate matched
peptides. As chimeric spectra are frequently associated with
neuropeptides, this module also includes the ability to assess if a
spectrum is indeed chimeric. The principle of chimeric spectra
refers to when two or more peptides have similar mass and
retention times, resulting in coelution and cofragmentation at
the MS/MS level, often culminating in fewer identifications
overall.39 Thus, the highly homologous nature of neuropeptides
makes them further predispositioned to producing chimeric
spectra, warranting careful consideration in PSM filtering, as
outlined in Figure S1. After the filtering of putative PSMs, two
peptides remain, and these share adjacent, swapped residues
(e.g., PNFLRF and PFNLRF). These peptides will be assumed
to be chimeric, and both will be subjected to scoring and
subsequent FDR filtering. While many of the metrics outlined in
Figure S1 are rather intuitive, such as average fragment ion error,
other metrics were specifically generated for this task. For
example, we first search for if a motif is present in a peptide. If
multiple peptide candidates have a motif, we then look to
identify what percentage of the peptide is comprised of that
motif. When somemotif sequences are as short as three residues,
the likelihood of a decoy possessing this motif by pure chance
can be quite high. Thus, including a metric of this nature helps to
parse this out. In addition, a metric of minimium confidence of
sequence coverage threshold is included. This is included as
there is literature stating that it is reasonable to assume a
spectrum−peptide match is correct above a certain percent
sequence coverage threshold,40 thus this was applied throughout
the PSM assignment decision tree. For the purpose of this paper,
PSM assignment metric filtering values were adjusted to be
confidence sequence coverage threshold, 70%; maximum
number of adjacent swapped amino acids, 2; minimum motif
length, 3; and number of substituted amino acids, 1.
Definitive Screening Design and Fine-Tune Scoring

A definitive screening design (DSD) was generated and
interpreted with JMP Pro 15.0.0, as outlined previously.41 A
series of continuous attributes were selected to represent levels
of spectrum−peptide match quality. These terms included
average fragment error, precursor error, number of consecutive
b-ions, number of consecutive y-ions, average number of
annotations per fragment ion, average number of annotations
per fragment ion that were not associated with a neutral loss of
water or ammonia, hyperscore,35 and motif score. Here, the
number of annotations describes the number of fragment ions
identified for a theoretical fragment ion type; for example,
fragment ion y5 could potentially be identified at multiple charge
states, as well as in water and ammonia neutral loss forms, each
representing an annotation. For each metric, the corresponding
value was extracted and normalized across the whole of peptide
identifications to a value of 1, where the maximum value was
equal to 1, and all other values were scaled accordingly. The
DSD was applied to adequately determine the necessary
magnitude of these factors in building a final calculation to
reflect the confidence of the PSM. These continuous metrics
were assigned a value of 0, 5, or 10, representing the integer for
the normalized metric value from above to be multiplied by.

Each metric was also assigned a categorial value of “multiply” or
“divide” to determine whether the factor should be rewarded or
penalized in the final score. The design was assessed on the basis
of 15 responses, reflecting the number of unique IDs found at 1%
FDR across three technical replicates of five crustacean tissues:
brain, commissural ganglia (CoG), pericardial organs (PO),
sinus glands (SG), and thoracic ganglia (TG). A response goal of
unique ID maximization was indicated within the design. Using
the JMP Fit Definitive Screening tool, significant factors were
revealed. FDRwas calculated as the ratio of the number of decoy
identifications (Ndecoy) to the number of target identifications
(Ntarget), as reported elsewhere (eq 6).7,13 The DSD and
accompanying responses across the 50 prescribed combinations
of runs are outlined in Supplemental File 1.
Upon determining the significant factors across all tissues,

discrepancies in factor values were parsed through application of
a full-factorial design for just those factors (Supplemental File
2). The factors assessed through the full-factorial design were
precursor error, number of consecutive b-fragment ions, motif
score, average number of non-neutral fragment ions per amino
acid, percent sequence coverage, average number of annotations
per amino acid, and average number of fragment ions per amino
acid. These factors were assigned a continuous component from
0 through 10, and a categorial component of multiply and divide,
as above. The design was generated with JMP Pro 15.0.0. After
responses were obtained for each prescribed combination of
factor values, given the exhaustive nature of this design, the
optimized factor values were determined to be those that
provided the greatest number of identifications at 1% FDR.
The fine-tune scoring was assessed for biasing by searching

against an entrapment database alone, composed of sequences
from noncrustacean neuropeptides. The database used was
previously described.7 Search settings were held consistent with
those described above.

N

L
FDR (%) 100

decoy

target
= ×

(6)

Alternative Software Evaluation
PEAKS analysis of neuropeptides was performed as described
previously.7 All analyses were conducted in PEAKS Studio
version 10.6.13,42 Analysis parameters were set to the equivalent
of all EndoGenius parameters: parent mass error tolerance, 20
ppm; fragment mass error tolerance, 0.02 Da; precursor mass
search type, monoisotopic; enzyme, none; maximum missed
cleavages, 100; digest mode, unspecific; maximum variable PTM
per peptide, 3. Variable PTMs included C-termini amidation,
oxidation of M, pyro-glu from Q, pyro-glu from E, and sulfation.
Results were exported by adjusting the peptide −10log P value
to be greater than or equal to the equivalent of 1% FDR. Results
were filtered to include only significant peptides. The output
peptide report was referenced for all results described herein.
The MetaMorpheus evaluation was conducted using version

1.0.5.43 Error tolerance and variable PTMs were the same as
those described above. The protease selected was “top-down”.
Search for truncated proteins and proteolysis products was
selected as false. The maximum number of missed cleavages was
set to 2. All other MetaMorpheus parameters were left as the
default.
MSFragger version 4.0 was operated via FragPipe version

18.0.44 Once more, the precursor mass tolerance was 20 ppm
and the fragment mass tolerance was 0.02 Da. The cleavage type
was set to nonspecific with up to 12missed cleavages. The PTMs
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were set as above with up to three variable PTMs tolerated. All
other MSFragger parameters were left as the default. Validation
tools were run, specifically Percolator, with a minimum
probability value of 0.5 (default).
EndoGenius Validation with Alternative Dataset

Brain, SG, and PO tissue from three bioreplicates of blue crab,C.
sapidus, were collected and processed as with the first dataset.
Tissues were analyzed once more on an LC-MS/MS instrument
with a Thermo Q-Exactive HF mass spectrometer coupled to a
Dionex Ultimate 3000 LC system using the same acquisition
parameters. These spectra were processed through EndoGenius
using the same parameters as those before. Data were filtered to
an EndoGenius score of 1000.

■ RESULTS AND DISCUSSION

EndoGenius Outperforms Alternative Software Strategies

As most software implemented in neuropeptide workflows are
typically designed for proteomics-based inquiries, the subse-
quent search results often lack optimization, illustrated by few
PSMs and unique identifications. PEAKS Studio is a program
routinely used in neuropeptide investigations, with notably
increased performance compared to alternative software,
attributed primarily to its hybrid de novo sequencing and
database searching approach, which helps parse through highly
homologous neuropeptides.45 In particular, its de novo
sequencing algorithm is exhaustive, searching all possible
combinations of amino acids, enabling a more sensitive
algorithm compared with more common spectral graph-based
algorithms.17 Our group has recently released two software
packages designed to redirect PEAKS results through pre- and
postprocessing strategies aimed to increase the frequency of
neuropeptide identification.7,17 The work described herein
presents the first fully independent open-source database
searching strategy for neuropeptides. Through careful opti-
mization of each step of traditional database searching
workflows (Figure 1),14,23 including decoy database generation,
precursor and fragment ion matching, post-translational
modification (PTM) identification and localization, spectral
correlation evaluations, and scoring algorithms, as well as
strategic inclusion of a motif database (Figure 2a), we have
successfully developed a platform capable of effectively and
efficiently identifying a wide breadth of neuropeptides.
In the current application, results were sought from

crustacean neuropeptide extracts. As the crustacean neuro-
peptide database only contains 891 peptide entries,7 specific
filtering strategies are necessary to enable statistical leverage to
achieve a reasonable number of identifications. For example, in
previous analyses outside of EndoGenius, the FDR threshold
was required to be extended from the typical 1% value to 5% to
glean a reasonable number of identifications, following by
manual inspection, given that only a few hundred neuropeptides
are expected to be identified, and thus a single decoy
identification can rapidly decrease the number of results.41

Thus, this work leverages statistical power by implementing
strategic filtering steps to gradually increase the precision of
identification as the workflow progresses.
Target−Decoy Database Approach

A neuropeptide database for crustacea has been described
previously7 and was employed in this work. Use of a target−
decoy search strategy is routine in database searching software,
particularly useful in assigning a false-discovery rate (FDR), or

the ratio of the number of decoy identifications to the number of
target identifications. The key to applying this approach is to
develop decoy sequences that share similar characteristics so
that a decoy sequence is reasonably similar to its corresponding
target sequence.46 Recently, we reported the advantage of using
a decoy-shuffle database for neuropeptide application, as
opposed to other strategies such as decoy-reverse, decoy-
random, and decoy-hybrid.7 Thus, the decoy-shuffle strategy
was also employed here, where all target sequences from the
neuropeptide database file were shuffled and concatenated with
the target database and all sequences were shuffled to minimize
bias toward a particular database.
PSM Assignment

Database searching begins by calculating the theoretical m/z
values for all target and decoy peptides, identifying precursorm/
z values that align with these within an indicated error threshold.
Given that a target peptide and its corresponding decoy peptide
have the same precursor mass, it is expected that at least two
peptides will match a single precursor peak. Thus, we generate a
shortlist of candidate peptides for a particular spectrum on the
basis of precursor m/z alone. Following this, we impart filtering
strategies to delineate the strongest peptide match within the
shortlist for the spectrum. This is conducted through the use of a
decision tree, outlined in Figure S1. Here, we incorporate
additional criteria for putative PSM filtering, such as the score of
spectrum correlation with theoretical spectra and percent
sequence coverage of fragment ions. As shown previously,
neuropeptides often share a conserved sequence motif with a
high degree of homology,7 particularly within neuropeptide
families, with two distinct neuropeptides differing by as little as a
single amino acid residue.1 This homology can lead to plenty of
putative peptide matches for a single spectrum, producing the
need for a more sophisticated assignment algorithm. In our
method of PSM assignment, we placed much emphasis on a
motif database that describes expected and conserved neuro-
peptide sequences to aid in the assignment process. The
crustacean neuropeptide motif database (Supplemental File 3)
utilized in this study is an elaborated version of the one
previously described by our lab,17 with motifs representing 23
neuropeptide families (Figure 2b). This elaborated version
contained both new full motifs and a newer concept, partial
motifs. Partial motifs are generated when two conserved motif
regions are joined by a singular variable amino acid. To retain
the knowledge of this motif, while accommodating the interior,
varying amino acid, we incorporated multiple entries within the
motif database to account for these subtle changes. Further, to
address the differences between partial and full motifs, we
generated a novel motif scoring algorithm. While previous work
scored a motif through the ratio of the motif length to the length
of the peptide (eq 1),17 we noted that this could inadvertently
impart biasing against neuropeptides of longer lengths, given
that some peptide prohormone families can extend beyond 200
amino acid residues in length. To overcome this, we applied a
square-root normalization procedure,33 wherein the original
motif score was normalized by multiplying by the square root of
the length of the neuropeptide (eq 2), reducing this biasing. We
then reward this score for the presence of the corresponding
fragment ions, multiplying by sequence coverage (eq 3). These
key advances upon previous neuropeptide motif analysis
strategies were imperative to improved identification of
neuropeptides. Indeed, we found that inclusion of the motif
database in the PSM assignment substantially improved the
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number of unique neuropeptide identifications at 1% FDR
(Figure S2).
We wanted to assess any biasing of our model toward targets

over decoys, ensuring that the identifications produced by
EndoGenius were real. To do this, we utilized an entrapment
database described previously.7 We wanted to ensure that in the
presence of no relevant peptides, EndoGenius did not provide
identifications. Indeed, we found only less than five
identifications for each of the 15 raw spectra files searched
(Figure S3).
The improvement of this intricate PSM assignment algorithm

was evident when the results from EndoGenius were compared
to the results of PEAKS, routinely used for neuropeptide
identification. As shown in Figure 3, across 15 samples

(encompassing five tissues), with our algorithm there were 86
times that a neuropeptide backbone was identified just one time,
whereas in PEAKS this was only present 16 times. More notably,
there was a single neuropeptide backbone that was identified
757 times in PEAKS across these 15 samples, underscoring the
need for an optimized software program to minimize routine
reidentification and reassignment of highly homologous neuro-
peptides. Alternatively, most frequently, a single neuropeptide
backbone was identified in EndoGenius 170 times. These
findings carry through to the final results of the program, where
we find a substantial increase in the number of unique
neuropeptides identified from a single experiment (Figure 4).
Fine-Tune Scoring
Many established programs, particularly PEAKS, have adopted a
scoring algorithm to reflect the confidence of a score, used to
establish score cutoffs to accompany FDR values. In PEAKS, this
proprietary algorithm is termed the −log P value. While the
details of this calculation are not publicly available, previous
reports have shown that factors contributing to the score include
precursor mass error, charge state, and maximum length of the
consecutively matched fragment ion series.13 With this
inspiration, we sought to apply this same theory to develop
our own score calculation algorithm, which can be used to
effectively represent and filter PSMmatches. To effectively craft
a scoring algorithm in an unbiased fashion, we employed use of a
DSD, a statistical practice routinely used in engineering fields,
that has recently been adopted as an application in neuro-

peptidomic applications, albeit for data acquisition purpo-
ses.41,47 DSDs can be used to leverage statistical power to
optimize conditions while minimizing the number of assessment
experiments necessary.48 For example, in the work described
herein, we evaluated 20 different factors through conducting 50
experimental runs prescribed by the DSD. Alternatively, probing
the effects of each factor manipulation in a full-factorial manner
would require 8000 experiments. In this context, an experiment
refers to the evaluation of a given combination of factor values.
Each combination from the DSD was evaluated and assessed
based on the number of unique identifications resulting at 1%
FDR (Supplemental File 1). We started with 10 components we
hypothesized could contribute to a score that effectively
described the likelihood of a strong match: average fragment
error (in Da), precursor error (in ppm), number of consecutive
b-fragment ions identified, number of consecutive y-fragment
ions identified, average number of annotations per fragment ion
(including neutral loss fragments and multiple charge states),
percent sequence coverage (eq 5), average number of fragment
ions per amino acid (all corresponding b- and y-ions), average
number of fragment ions not corresponding to a neutral-loss per
amino acid, spectral correlation (Hyperscore),35 andmotif score
(eq 4). Each of these factors were treated as continuous to
determine the optimal integer-based weighting of this factor.
Each of these components was also designated a categorial
factor, equal to +1 or −1, which would determine if the
component should contribute to the final score (multiply) or if it
should detract from the final score (divide). Following fitting the
DSD with its responses using the JMP Fit Definitive Screening
function, the statistical response revealed any significant and
insignificant metrics that resulted in the number of IDs, the
response selected for which to maximize desirability. This
analysis revealed that each of the samples had different factors
that were influential in the high number of identifications.
Associated response residuals are located in Figure S4. It should
be noted that some components, seemingly complementary,
such as the number of consecutive b- and y-fragment ions,
revealed differences in significance, where the b-fragment ions
were significant and y-fragment ions were not. While the
underlying mechanistic reason for this significance was not
probed, it can be speculated that this is due to the discrepancy in
ionization efficiency, kinetic stability, and subsequent fragment
ion abundance between b- and y-type fragment ions. In fact, with
nontryptic, doubly charged peptides, a higher abundance of b-
type fragment ions has been noted previously,49 and it is perhaps
a reasonable hypothesis given the high propensity for neuro-

Figure 3. Comparison of the frequency of neuropeptide backbone
reidentification in PEAKS compared to EndoGenius across 15 samples,
corresponding to three technical replicates of five crustacean tissue
samples.

Figure 4. Representative plots describing peptide score versus the
number of PSMs, with FDR thresholds of 0−5% indicated. Plots here
describe sinus gland (SG) sample results.
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peptide precursors to appear at a +2 charge state.50 Interestingly,
a handful of significant factors had widely diverging optimal
values across tissue types (Figure S4). Thus, a second, full-
factorial design was generated for these remaining significant
factors: precursor error, precursor error operation, number of
consecutive b-ions, motif score, and average number of non-
neutral-loss fragment ions per amino acid. This second design
was necessary to identify the true optimal factor combination
that was fitting for all tissue types (Supplemental File 2).
Significant factors, as well as their final optimal value, are
illustrated in Table 1. Upon determination of the optimal

combination of factors, an FDR evaluation script was written to
determine the fine-tune score associated with a selected FDR
threshold. This script simply probed score thresholds iteratively,
localizing on the lowest score that produced an FDR threshold

less than or equal to the specified value, based on eq 6. Herein,
the selected FDR was 1%. Figure 4 describes the number of IDs
and the corresponding fine-tuning score at FDR cutoff intervals.
Benchmarking of EndoGenius with Other Software

As PEAKS software has routinely been used for neuropeptide
analyses, it was imperative to benchmark the presented results of
EndoGenius against the results generated by PEAKS. Addition-
ally, as PEAKS is a commercial software, we sought to
benchmark EndoGenius also against MSFragger44 and Meta-
Morpheus,43 both popular tools that are freely available and
open-source. It was immediately apparent that there were
unique profiles of neuropeptides, signified by the differing
quantities of unique peptide IDs reported in each method
(Figure 5a). When further investigating identifications, it was
largely apparent that a statistically significant (p-value < 0.05)
increase in number of peptide backbones, defined as a peptide
sequence alone, were consistently identified by EndoGenius
(Figure 5b). These results are in line with the aforementioned
finding, in which it was evident that PEAKS has a higher
frequency of reidentifying the same peptides, likely a result of the
high level of homology between individual neuropeptides.
These results were underscored in the number of unique IDs
achieved by EndoGenius that were not identified with PEAKS,
while still largely corroborating the identifications from PEAKS
(Figure 5c).
Application of EndoGenius to an Unknown Dataset

While using a 1% FDR threshold for comparison of
identifications across platforms provided a relatively translatable
metric for comparison, we hypothesized that for our own
method, defining a threshold using our “EndoGenius Score”
may be more fruitful for generating reproducible identifications.
The logic is simple. The FDR threshold was initially generated

Table 1. Final DSD Factorsa

factor value operation

precursor error 10 divide
# consecutive b-ions 10 multiply
% sequence coverage 10 multiply
# fragment ions not from neutral-loss per AA 10 divide

aEach factor and value were proven significant by definitive screening
design (DSD) and subsequent analysis. Value refers to the integer that
the normalized result is multiplied by, and the operation refers to how
the factor is included in the final calculation, having either a positive
role, by multiplication, or a negative role, by division. Other factors
searched but deemed insignificant were average fragment error,
number of consecutive y-ions, average number of annotations per
fragment, average number of fragment ions per amino acid,
hyperscore, and motif score.

Figure 5. Analysis of results from EndoGenius, PEAKS, MSFragger, and MetaMorpheus of brain, commissural ganglion (CoG), pericardial organs
(PO), sinus glands (SG), and thoracic ganglion (TG) tissue types. (A) Unique peptide IDs identified in all software. Unique IDs are defined as
peptides including PTMs. (B) Unique backbones identified in all software. Unique backbones are defined as the peptide sequence only. For A and B,
the bar graphs show the ANOVA test result, error bars, mean ± s.d. (* p-value < 0.05, ** p-value < 0.001, *** p-value < 0.0001). (C) Overlap of
neuropeptide backbone identifications from EndoGenius and PEAKS across five tissue types.
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for proteomics, in which thousands of proteins are expected to
be identified. With samples in which the analyte of interest is
sparce, such as neuropeptides, an FDR can be detrimental to
producing accurate results. In these experiments, in which
sometimes less than 100 neuropeptides are anticipated, just one
false positive (decoy) identification can quickly raise the FDR.
Thus, in many instances, the reported number of peptides at 1%
FDR typically includes no decoy identifications, and the results
are actually more equal to 0% FDR. This well-documented
challenge has been addressed in a few different ways. Perhaps the
simplest method has been to increase the FDR threshold to 5%
and exercise more caution to manually verify results.41

Alternatively, non-FDR thresholds have been suggested, such
as in PEAKS, where it is recommended to use a −10log P, their
proprietary scoring method, of 20.13 We noted in our work that
this value routinely corresponds to approximately 3−5% FDR.
To address this FDR concern within our own data set and to
enable the ability to search very neuropeptide-sparse samples,
we sought to establish a confident scoring value with respect to
our own EndoGenius score that routinely reported a low
number of false identifications. As we compared the
EndoGenius score to FDR across 15 samples, we noted
consistency in the EndoGenius score, with an increased score
agreeing with a reduced FDR (Figure S5). From this, we began
to speculate if an EndoGenius score threshold application, rather
than an FDR, could more consistently separate true from false
peptides while ensuring adequate representation of neuro-
peptides, not lost to the statistical shortcomings of the FDR
value.
We used this knowledge to apply our optimized EndoGenius

platform for the identification of neuropeptides from an
unknown data set. We analyzed brain, PO, and SG samples
obtained from blue crabs (C. sapidus). In doing so, we found
results comparable to our initial work when examining both
unique identifications (Figure 6a) and unique backbones
(Figure 6b). Here, a unique identification represents a peptide
and any PTMs, while the unique backbone represents the amino
acid sequence alone.

■ CONCLUSION
The work described herein presents an optimized database
searching program, ideal for the analysis of neuropeptides. This
program utilizes a strategic PSM assignment algorithm in
conjuncture with a fine-tune scoring calculation to achieve a
substantial increase in the number of neuropeptide PSMs,
unique peptides, and unique peptide backbones. This finding is
in-part achieved through the referencing of a motif database,
capable of parsing highly homologous neuropeptide sequences,
to greatly increase the diversity of neuropeptide identifications,
where other programs may repeatedly reidentify a single
neuropeptide. Future work in this area will include the
integration of an automated motif library-building program.
Altogether, EndoGenius represents the first standalone, open-
source program optimized for the identification of neuro-
peptides in their endogenous state from the mass spectrum. The
source code, in addition to usage instructions (Supplemental
File 4), can be found online at https://github.com/lingjunli-
research/EndoGenius.
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