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Main 23 

Streptococcus pneumoniae (Spn) is a common member of the human nasopharyngeal microflora; 24 

yet, this same bacterium inflicts tissue damage and significant mortality worldwide (1). 25 

Identifying host mechanisms that mediate the virulence of Spn will enable therapeutic 26 

development to mitigate Spn infections. 27 

 28 

Upon mucosal colonization, Spn encounters mucins, the extensive glycoprotein polymers that are 29 

integral to host defense (Supplemental Figure 1A). Mucins form a robust barrier and mediate 30 

interactions with pathogenic microbes (2). Despite their central role in host-pathogen 31 

interactions, the extent to which mucins protect against Spn-mediated damage remains unclear. 32 

To address this gap, we utilized natively purified porcine gastric MUC5AC, a mucin source that 33 

replicates structural and functional attributes of human airway MUC5AC (3). 34 

 35 

To investigate the potential protective effect of mucins, we grew Spn TIGR4, an invasive human 36 

disease isolate, in the presence of MUC5AC and exposed relevant host cells to Spn culture 37 

supernatant. We found that MUC5AC-treated Spn was less toxic to A549 lung cells and primary 38 

human neutrophils (Figure 1A). This protective effect extended to isolated mucin glycans and 39 

porcine intestinal MUC2, but not to a pool of monosaccharides that comprise mucin glycans, or 40 

carboxy methylcellulose (CMC), a control gel-forming polymer (Figure 1, B and C; 41 

Supplemental Figure 1, B and C). These findings highlight a specific role of mucins and mucin 42 

glycans in reducing Spn cytotoxicity and open questions as to how mucins attenuate Spn.  43 

 44 

To assess whether mucins impact virulence factor expression in Spn, we exposed Spn TIGR4 to 45 
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MUC5AC or mucin glycans and measured gene expression through RNA-sequencing. We found 46 

that MUC5AC and mucin glycans induced widespread gene expression changes (Figure 1, D and 47 

E). Strikingly, MUC5AC and glycans potently downregulated pneumolysin (ply), a key toxin 48 

and virulence factor implicated in tissue damage, transmission enhancement, and inflammatory 49 

responses (4, 5). Beyond ply regulation, mucins downregulated virulence genes including the blp 50 

bacteriocins and rlrA pilus, while upregulating galactose metabolism genes. Quantitative reverse-51 

transcription PCR (RT-qPCR) analysis of ply expression indicated that MUC5AC, along with 52 

mucins from other mucosal surfaces, MUC2, and MUC5B (human salivary mucin) reduced ply 53 

expression despite their different structures and glycan profiles, indicating a shared function. 54 

This effect was specific to mucins and mucin glycans, as CMC and a monosaccharide pool failed 55 

to suppress ply expression (Figure 1F). The downregulation of ply was consistent across different 56 

Spn serotypes, carbon sources, growth stages, and after short exposures (Figure 1G; 57 

Supplemental Figure 2, A–D). Western blot and hemolysis assay confirmed a decrease in active 58 

PLY protein after mucin exposure (Supplemental Figure 2, E and F). Notably, the decrease in 59 

PLY did not correlate with changes in bacterial growth, and Spn cannot utilize mucin or mucin 60 

glycans as a carbon source (Supplemental Figure 2, G–I). Ply regulation is not well understood, 61 

and disruption of putative regulators did not dampen the effects of mucin on ply expression, 62 

suggesting mucin acts through an uncharacterized mechanism (Supplemental Figure 3, A–C).  63 

 64 

The reduced PLY expression is intriguing, considering its role in modulating the immune 65 

response. We confirmed that mucins protect neutrophil survival after exposure to live Spn 66 

(Supplemental Figure 4A); this protection was PLY-dependent, as TIGR4Δply that does not 67 

express PLY exhibited reduced cytotoxicity. To investigate the impact of mucin-PLY regulation 68 
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on neutrophil function, we examined neutrophil activation and cytokine production. We 69 

measured the release of pro-inflammatory cytokine IL-1β, which is stimulated by PLY, and 70 

myeloperoxidase (MPO), a neutrophil activation marker. We observed reduced IL-1β (Figure 71 

1H) and MPO (Supplemental Figure 4B) release when neutrophils were co-cultured with mucin-72 

treated Spn, approaching levels observed for TIGR4Δply. 73 

 74 

The reduced neutrophil activation could suggest cellular inactivity, potentially compromising 75 

neutrophil phagocytosis. To address this, we examined whether mucin-treated Spn impacts 76 

neutrophil microbicidal function by measuring bacterial engulfment and killing. We co-cultured 77 

GFP-tagged Spn with neutrophils and used flow cytometry and a gentamicin protection assay to 78 

assess phagocytosis and bacterial killing, respectively. We found that neutrophil phagocytosis 79 

and killing persisted in the presence of mucins (Figure 1I; Supplemental Figure 4, C and D), 80 

suggesting that mucins do not impair neutrophil function. The TIGR4Δply mutant exhibited 81 

dramatically reduced phagocytosis and killing, underscoring PLY’s role in neutrophil activation. 82 

This nuanced PLY regulation could reflect a balanced host-pathogen interaction, wherein host 83 

defenses eradicate pathogens without overactivation leading to excessive inflammation. 84 

 85 

Finally, to assess whether mucin or glycan exposure is sufficient to reduce virulence in vivo, we 86 

infected mice intratracheally with mucin- or glycan-treated Spn, administering an additional 87 

mucin or glycan treatment after 8 h. After 24 h, we analyzed recovered bacteria from the lung 88 

and blood and observed that mucin treatment significantly reduced lung bacterial levels (Figure 89 

1, J and K). This mucin-Spn interplay highlights the key role of mucins in host defense and 90 

opens avenues for novel therapeutic interventions to diminish the virulence of Spn 91 
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103 

Figure 1. Mucins temper PLY expression to protect host cells, modulate immune responses, 104 

and attenuate infection. 105 

 (A) Host cell survival after Spn supernatant exposure, shown by confocal microscopy using a 106 

LIVE (green)/DEAD (magenta) stain. Scale bar: 20 μm. (B and C) Host cell survival after 107 

mucin-, glycan-, or monosaccharides (MS)-treated Spn supernatant exposure, measured by 108 

alamarBlue. (D and E) MUC5AC and glycans exposure triggers transcriptional changes in Spn 109 
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TIGR4 at 5 h (average fold-change [FC] from three biological replicates). (F and G) RT-qPCR 110 

quantification of ply gene expression post 5-h exposure to mucin isoforms (F) and multiple Spn 111 

strains (G). (H) IL-1β release upon Spn-neutrophil interaction, measured by ELISA. (I) 112 

Neutrophil phagocytosis of GFP-tagged Spn TIGR4, with or without mucins, measured by flow 113 

cytometry. (J and K) Lung and blood bacterial burden in mice infected with mucin-treated Spn. 114 

n=10/group. (B, C, F–K) Data represent mean ± SEM with biological replicates shown. (B, C, 115 

H) Mann-Whitney U-test; (F) Wilcoxon test; (J–K) Kruskal-Wallis test with Dunn’s correction; 116 

* (P<0.05), ** (P<0.01), *** (P<0.001), **** (P<0.0001). 117 


