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A B S T R A C T

Vaginal delivery causes significant stretching of the vagina and surrounding muscles, potentially leading to
the development of pelvic floor disorders and other maternal morbidities. Despite the extended duration
of labor, little experimental and theoretical work has been done to characterize the long-term viscoelastic
behavior of vaginal tissue. To mathematically capture the creep response of rat vaginal tissue measured,
this study presents a new anisotropic finite-strain constitutive model within the single integral Pipkin-
Rogers viscoelastic framework. The constitutive parameters are computed by curve-fitting the model to strain
versus time data collected from ex vivo inflation testing along the two primary anatomical directions of the
vagina, the longitudinal and circumferential directions. The results showed good agreement between theory
and experiments, suggesting that the proposed model could be used to advance our understanding of the
time-dependent deformations that are experienced by the vagina during delivery. This modeling framework
represents a first step toward the development of accurate computational tools that can predict the safety of
vaginal deliveries, reducing unnecessary Cesarean sections and their related complications.

1. Introduction

Vaginal delivery is a natural physiological process that induces
extreme changes in the vagina, potentially leading to many health
complications later in a woman’s life. Of the nearly 2.5 million women
who undergo vaginal delivery annually in the United States [1], a
notable 30% will experience at least one pelvic floor disorder later in
life. This incidence is notably higher when contrasted with the 11%
occurrence observed in women who have never been pregnant [2]. The
fear of childbirth has led to an increasing number of elective Cesarean
procedures in the United States [3,4]. This in turn has contributed to
the country having one of the highest Cesarean rates in the world [1,5],
resulting in a substantial increase in the average cost of childbirth [6].
The Cesarean delivery is an alternative procedure to vaginal delivery
which is associated with its own set of risks and potential complications
such as uterine rupture and the need for a hysterectomy [7]. Opting for
a C-section does not conclusively eliminate the risk of the same health
issues that some women seek to avoid through elective C-sections [8,9].

Detailed knowledge of the properties of the pelvic floor organs and
tissues is necessary for gaining insight into the mechanics of child-
birth and for the development of effective tools to improve maternal
care. Vaginal delivery is a biomechanically intensive event that places
the pelvic floor organs and surrounding tissues under prolonged and
significant stress and stretching [10]. The vagina in particular can
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significantly stretch over time, going from a reference diameter of
roughly 2.5 cm up to a diameter of nearly 10 cm within the second
stage of labor [11]. While studies of the biomechanical behavior of
vaginal tissue have been performed [12], insufficient attention has
been given to characterizing the viscoelastic properties of this tissue,
which undoubtedly play a crucial role during extended biomechanical
processes like childbirth. In particular, the development of constitutive
models that can describe the creep response (i.e., the time-dependent
increase in deformation under constant load) of the vagina is crucial
for the advancement of computational tools aimed at modeling and
comprehending the complexities of vaginal delivery.

The characteristic mechanical behavior of the vagina is primarily
attributed to its complex and heterogeneous microstructure [13,14].
In both humans and other mammals [15], the primary components of
this organ, including collagen, smooth muscle, and elastin fibers, play
a crucial role in determining the biomechanical properties of the or-
gan, including the viscoelastic behavior. Previous experimental studies,
performed on cadaveric tissue and other animal tissue, have revealed
several viscoelastic phenomena in vaginal tissue. In a preliminary study
that established a consistent protocol for uniaxial tensile testing, Rubod
et al. observed that the rate of deformation can have a significant
influence on the mechanical response of ewe vaginal tissue [16]. Mul-
tiple other studies have utilized uniaxial tensile testing to observe
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Mullins-type softening of vaginal tissue from both humans and other
animal species, a phenomenon resulting from cyclic loading [17–20].
Uniaxial testing has also been employed to quantify stress relaxation
(i.e., decrease in stress over time at constant deformation) of the human
vaginal tissue [21].

Over the past few years, alternative experimental methods for test-
ing the mechanical properties of the vagina have gained popularity due
to their ability to replicate more physiologically relevant loading con-
ditions. Pack et al. utilized planar biaxial testing to measure the stress
relaxation behavior of gilt vaginal tissue simultaneously stretched along
the two primary anatomical directions of the vagina, the longitudinal
direction (LD) and circumferential direction (CD) [22]. Retaining the
vagina’s original anatomical geometry of a cylinder, Clark-Patterson
et al. performed biaxial inflation testing at variable fixed axial defor-
mations, investigating how strain coupling between the LD and CD
may affect creep behavior of mice vaginal tissue [23]. Clark-Patterson
et al. also recently investigated the creep behavior of mice vaginal
canals in their active state (i.e., while the organ is contracted) using
a similar setup, observing that more creep strain occurred in the active
state than in the passive tissue [24]. Finally, our lab has conducted
free-extension inflation tests to quantify the creep behavior of the rat
vagina in both the LD and CD in response to consecutive and increasing
loading pressures. In particular, we observed key differences in the
elastic and viscoelastic behavior between the two loading directions,
and that both the short-term and long-term creep behaviors of the
vaginal tissue depended on the loading history [25].

The isotropic elastic properties of the vagina have been modeled
using the Mooney–Rivlin constitutive equation [20,26–28]. While the
use of this model helped the comparisons of elastic parameters be-
tween groups (e.g., prolapsed versus non-prolapsed tissue), constitutive
equations that capture the anisotropic and viscoelastic behavior of
vaginal tissue are more accurate. Martins et al. successfully used a
transversely isotropic model to describe the response of prolapsed
human vaginal tissue under tension in the LD [29]. Akintunde et al.
demonstrated that the Holzapfel-Gasser-Ogden model with two fiber
families can be applied to model the mechanical response of murine
vaginal tissue to inflation [30]. Calvo et al. [31] and Peña et al. [18]
proposed new anisotropic models that incorporate the description of
damage to reproduce the experimentally observed mechanical response
of prolapsed human vaginal tissue to uniaxial cyclic loading in the
LD and CD [18,31]. Finally, Peña et al. presented an anisotropic vis-
coelastic model for the stress relaxation behavior of prolapsed human
vaginal tissue elongated along the LD [21]. To our knowledge, despite
some progress being made on collecting creep data [23–25], there are
no constitutive models that reproduce the experimentally measured
biaxial creep response of vaginal tissue by accounting for the tissue’s
anisotropy, nonlinearity, and large deformations.

One of the most common approaches used in modeling the vis-
coelasticity of soft biological tissue is the rheological approach, where
the creep behavior is modeled as a combination of springs and dash-
pots [32–34]. More popular for high fidelity modeling, however, are
mathematical formulations in continuum mechanics, particularly for
modeling large deformations in three-dimensions. The viscoelastic con-
tinuum models can generally be described by three categories:
differential-type, rate-type, and integral-type equations [35]. Differential-
type equations, in which the stress of a material depends only on recent
deformations and deformation rates, have been utilized before [36,
37], but are insufficient in cases where the mechanical behavior is
history-dependent [35]. Rate-type viscoelastic models, in which the
current stress depends on both recent deformations and recent stress
history, are quite popular due to their relatively low computational
complexity [38]. Finally, integral formulations describe the stress or
deformation behavior of materials in the form of integrals in order to
account for the complete stretch or stress history. While computation-
ally expensive, their accuracy in capturing the response of materials
whose mechanical behavior varies with loading/deformation history is

valuable. Because of this, such models have been proposed to describe
the three-dimensional creep behavior of non-biological soft bodies [39],
and such integral formulations have been used for describing the creep
and relaxation behavior of ligaments [40–42]. However, the full three-
dimensional formulations have gone largely unused for describing
creep behavior of soft tissues [43].

In this study, we present a three-dimensional constitutive model
that describes the creep behavior of vaginal tissue within the integral
formulation established by Pipkin and Rogers [44]. We selected the
integral formulation since we have observed that the creep response of
vaginal tissue depends on the loading history by conducting inflation
tests at three progressively increasing pressures on rat vaginas [25]. In
this formulation, the vaginal tissue undergoes large deformations while
being in a state of plane stress that results from the thin-walled pressure
vessel assumptions. The creep behavior of the vaginal tissue is modeled
by the use of a separable nonlinear viscoelastic anisotropic model with
axes of material symmetry which coincide with the organ’s natural
anatomical directions, the LD and CD. We evaluate the constitutive
model using experimentally collected strain versus time data along LD
and CD. This modeling framework represents a significant step toward
the development of accurate constitutive models which could lead to
computational tools that guide decisions about the optimal delivery
method for expectant women.

2. Modeling framework

In this section, we provide a brief overview of the nonlinear integral
representation theory for viscoelastic materials that is presented in
great detail by Pipkin and Rogers [44]. Specifically, we first represent
the creep response in terms of the stress history (Section 2.1). Then,
we provide a general form of the creep kernel function by accounting
for the material properties of vaginal tissue and the organization of the
fibers in the two main physiological loading directions of the vagina:
the LD and the CD (Section 2.2).

2.1. Creep

The most general constitutive equation for a non-aging viscoelastic
material takes the following form [45]:

�(t) = F [F(t * ⌧)ÿ⌧=0] , (1)

where � is the Cauchy stress tensor, F is the deformation gradient, and
F is a tensor-valued response functional representing the dependence
of the stress on the deformation history up to time t. By applying
the invariance under superposed rigid body motions, Eq. (1) can be
rewritten as [43]

S(t) = F [C(t * ⌧)ÿ⌧=0] , (2)

where S = JF*1�F*T , with J = det(F), is the second Piola–Kirchhoff
stress tensor and C = FTF is the right Cauchy–Green deformation
tensor, with an obviously new meaning for F .

The constitutive Eq. (2) can be used to describe the results of stress
relaxation experiments. In order to describe the results of creep tests,
the following constitutive equation can be used:

C(t) = G[S(t * ⌧)ÿ⌧=0] , (3)

where G is a tensor-valued response functional that describes the de-
pendence of the strain on the stress history up to time t. Eq. (3), which
is the dual counterpart of Eq. (2), represents the deformation resulting
from a given stress history while also satisfying the principle of material
frame-indifference. To show this, let F and � be linked to F and �,
respectively, by a rotation tensor Q (i.e., F = QF and � = Q�QT ).
Noting that J = det(F) = det(F) = J , then



,QWHUQDWLRQDO -RXUQDO RI 1RQ�/LQHDU 0HFKDQLFV ��� ������ ������

�

J. Dubik et al.

G[S(t * ⌧)ÿ⌧=0] = G[JF*1
�F

*T
(t * ⌧)ÿ⌧=0]

= G[JF*1Q*1Q�QTQ*TF*T (t * ⌧)ÿ⌧=0] =
G[JF*1�F*T (t * ⌧)ÿ⌧=0] = G[S(t * ⌧)ÿ⌧=0] = C(t) = C(t) .

(4)

It is worth noting here that G may be expressed as a function of both S
and the invariants of S [46].

Based on previous research on modeling the viscoelasticity of soft
tissues [43,47], we select the most general constitutive model to de-
scribe the creep behavior of vaginal tissue, that is the Pipkin and Rogers
integral representation [44]. According to this representation, Eq. (3)
can be expressed as the following integral series:

C(t) =
ÿ…
n=1

En(t) , (5)

where En is defined as follows:

En(t) =
1
n!  

t

*ÿ
... 

t

*ÿ
dS(⌧1)...dS(⌧n)Kn[S(⌧1), t * ⌧1; ...; S(⌧n), t * ⌧n] . (6)

In Eq. (6), Kn is the nth creep kernel and dS(⌧i) (i = 1,… , n) denotes the
operator defined as

dS(⌧i)f [S(⌧1), t * ⌧1; ...; S(⌧n), t * ⌧n] =
)f

)S(⌧i)
S®(⌧i)d⌧i (7)

at times ⌧i for which S is differentiable. K1 represents the single-step
creep function, which is the deformation arising from a single-step
stress history, in which the stress is instantaneously changed from zero
and then held constant. For n g 2, Kn is the correction function resulting
from error in predicting the strain for an n-step history from (n*1)-step
data. Further discussion about the properties of this error are presented
in the seminal paper by Pipkin and Rogers [44].

We approximate Eq. (5) with only the first term E1 of the integral
series so that C(t) = E1(t). Since the subscript 1 is now superfluous, we
have that the strain can be represented by

C(t) =  
t

*ÿ
dS(⌧)K[S(⌧), t * ⌧] , (8)

or, equivalently,

C(t) =  
t

*ÿ

)K
)S(⌧) [S(⌧), t * ⌧]S®(⌧)d⌧ . (9)

The single-integral representation provided in Eq. (9) is the extension
as n ô +ÿ corresponding to an arbitrary stress history S(⌧) resulting
from step increases in stress that is defined by S1, S2,…, Sn, with each
Si constant in the interval [ti, ti+1) when strain is represented only by
using the single step creep function K1[S, t] = K[S, t], leading to the
extrapolation rule:

E1(t) =
n…
i=1

K[Si, t * ti] *K[Si*1, t * ti] . (10)

As noted by Pipkin and Rogers [44], Eq. (10) corresponds to a modified
superposition rule.

We assume that K[0, s] = 1, where 1 is the identity tensor, for all
s and that S(s) = 0 for all s < 0. Moreover, we assume that a jump
discontinuity at t = 0 for the stress history may occur and we denote

S(0) = S(0+) * S(0*) = S(0+) .

Starting from Eq. (9), one has

C(t) =  
0

*ÿ

)K
)S(⌧) [S(⌧), t * ⌧]S®(⌧)d⌧ +K[S(0+), t] *K[S(0*), t]

+ 
t

0

)K
)S(⌧) [S(⌧), t * ⌧]S®(⌧)d⌧ = K[S(0), t] +  

t

0

)K
)S(⌧) [S(⌧), t * ⌧]S®(⌧)d⌧ .

(11)

From the following total derivative:

d
d⌧

K[S(⌧), t * ⌧] = )K
)S(⌧) [S(⌧), t * ⌧]S®(⌧) * )K

)(t * ⌧) [S(⌧), t * ⌧] , (12)

one obtains that
)K
)S(⌧) [S(⌧), t * ⌧]S®(⌧) = d

d⌧
K[S(⌧), t * ⌧] + )K

)(t * ⌧) [S(⌧), t * ⌧] . (13)

By substituting Eq. (13) into Eq. (11), one has the following:

C(t) = K[S(0), t] +  
t

0

d
d⌧

K[S(⌧), t * ⌧]d⌧ +  
t

0

)K
)(t * ⌧) [S(⌧), t * ⌧]d⌧ =

K[S(0), t] +K[S(t), 0] *K[S(0), t] +  
t

0

)K
)(t * ⌧) [S(⌧), t * ⌧]d⌧ =

K[S(t), 0] +  
t

0

)K
)(t * ⌧) [S(⌧), t * ⌧]d⌧ .

(14)

In summary, Eq. (9) can be rewritten as

C(t) = K[S(0), t] +  
t

0

)K
)S(⌧) [S(⌧), t * ⌧]S®(⌧)d⌧ , (15)

or, equivalently, as

C(t) = K[S(t), 0] +  
t

0

)K
)(t * ⌧) [S(⌧), t * ⌧]d⌧ . (16)

2.2. Orthotropic viscoelastic material

First, let us recall that the first, second, and third invariants of S(⌧)
are defined, respectively, as

I1 = tr (S) , (17)

I2 =
1
2 ((tr (S))

2 * tr (S2)) , (18)

I3 = det(S) , (19)

where we have omitted the dependence of S on ⌧ for convenience. The
first invariant is related to the mean normal stress, the second invariant
is related to the shear stress, and the third invariant does not appear
to have a direct physical meaning. For isotropic materials, the creep
kernel can be represented by

K[S(⌧), t * ⌧] = '11 + '2S(⌧) + '3S2(⌧) , (20)

where '1, '2, and '3 are scalar functions of the first, second, and third
invariants of S(⌧) reported in Eqs. (17)–(19) and t * ⌧. We explicitly
note that when S = 0, then K[0, t * ⌧] = '11. Since we are assuming
that K[0, s] = 1 for all s, it follows that '1 must be identically equal to
1 when S = 0.

The fourth, fifth, sixth, seventh, and eighth pseudo-invariants of S(⌧)
are defined, respectively, as:

I4 = M � (SM) , (21)

I5 = M � (S2M) , (22)

I6 = N � (SN) , (23)

I7 = N � (S2N) , (24)

I8 = (M � N)M � (SN) , (25)

where ‘‘�’’ denotes the dot product between vectors, and M and N
represent two unit vectors in the reference configuration which define
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the axes of anisotropy. For orthotropic materials with two preferred
fiber directions, the creep kernel takes the following form [48]:

K[S(⌧), t * ⌧] = '11 + '2S + '3S2 + '4M‰M + '5(SM‰M +M‰ SM)
+'6N‰ N + '7(SN‰ N + N‰ SN) + '8(M‰ N + N‰M) ,

(26)

where '1, … , '8 are scalar functions of I1, 5, I8 and t * ⌧, and ‘‘‰’’
denotes the dyadic tensor product.

Since our experimental data indicate that the vaginal tissue is or-
thotropic with two (almost) orthogonal families of fibers in the loading
directions (M � N = 0) [25], we propose the use of an orthoropic creep
kernel function to describe the tissue’s creep behavior. To minimize
complexity, we select the following simplified kernel function [49]:

K[S(⌧), t * ⌧] = '11 + '2S + '4M‰M + '6N‰ N , (27)

where '1 = '1(I1(⌧), t * ⌧), '2 = '2(I1(⌧), t * ⌧), '4 = '4(I4(⌧), t *
⌧), '6 = '6(I6(⌧), t * ⌧) are scalar functions of the invariants and
pseudo-invariants of S(⌧) and t * ⌧, and M and N represent the two
primary physiological loading directions of the vagina, the LD and CD,
respectively.

Based on experimental data, the scalar functions are assumed to
have the following forms:

'1 = 1 + ↵I1(⌧) , (28)

'2 = � + �(t * ⌧) , (29)

'4 = bÿln(brI4(⌧) + 1) + [(b0 * bÿ)ln(brI4(⌧) + 1)]e*g0(t*⌧) , (30)

'6 = cÿln(crI6(⌧) + 1) + [(c0 * cÿ)ln(crI6(⌧) + 1)]e*h0(t*⌧) , (31)

where ↵ < 0, � > ↵ > 0, � > 0, bÿ > b0 > 0, br > 0, cÿ > c0 > 0,
cr > 0, g0 > 0, and h0 > 0 are scalar parameters, and ↵ denotes
the absolute value of ↵. The exact forms for these scalar functions
were selected through a process of trial and error during preliminary
modeling attempts. It is worth noting now that these scalar functions
are products of time-dependent and stress-dependent functions, result-
ing in a separable nonlinear viscoelastic model such as the quasi-linear
viscoelastic model proposed by Fung for soft tissues [50].

The constitutive relation in Eq. (16) can then be written as

C(t) = (1 + ↵I1(t))1 + �S + b0ln(brI4(t) + 1)M‰M + c0ln(crI6(t) + 1)N‰ N

+�  
t

0
S(⌧)d⌧ + �b 

t

0
ln(brI4(⌧) + 1)g0e*g0(t*⌧)M‰Md⌧

+�c  
t

0
ln(crI6(⌧) + 1)h0e*h0(t*⌧)N‰ Nd⌧ ,

(32)

with �b = bÿ * b0 and �c = cÿ * c0. Therefore, in order to describe
the creep behavior of vaginal tissues, eleven constitutive parameters
need to be determined by fitting the model represented in Eq. (32) to
experimental data. We explicitly note that when t = 0 and restricting
b0 = c0 = 0, after setting ↵ = *2⌫_E and � = 2(1+⌫)

E , where E is the
Young’s modulus and ⌫ is the Poisson’s ratio, we recover the Kirchhoff-
Saint Venant model E = 1

2 (C * 1) = ( 1+⌫E )S + ⌫
E (tr S)1, where E is

the Lagrangian strain. Furthermore, we note that the specific forms '4
and '6 are selected to reproduce the typical exponential relationship
between stress and strain of soft tissues [51].

3. Model validation

The model was tested using experimental data collected by perform-
ing ex vivo free-extension inflation creep tests on rat vaginal canals (n =
14) [25]. Briefly, the geometrical dimensions of the vaginal specimens
were measured under a microscope, then the specimens were mounted

onto concentric needles in a phosphate buffered saline bath and pres-
surized using a pressure pump. Twenty cycles of preconditioning were
applied to each specimen to mitigate subtle variations in tissue stress-
ing resulting from dissection and provide a consistent loading history
for each specimen. After preconditioning, each specimen was inflated
for three consecutive creep tests, at consecutively increasing constant
luminal pressures of 28, 55, and 83 kPa. Inflation during pre-creep,
when going from one pressure level to another, occurred at an infusion
rate of 0.7 mL/min, and each creep pressure was maintained for 3000 s
(50 min) by periodic infusion at a rate of 0.1 mL/min, without recovery
between creep tests. Throughout testing, two components of the right
Cauchy–Green deformation tensor C ( ÇCZZ (t) and ÇC⇥⇥(t) as defined
later), were measured via digital image correlation.

To model the time-dependent deformations arising from the three
consecutive creep tests of our experiments, we assume that the luminal
pressure history, P (t), is characterized by three linear increases in
pressure, each followed by a constant pressure so that

P (t) =

h
n
n
n
n
n
l
n
n
n
n
nj

P1
t
t1

t À [0, t1)

P1 t À [t1, t<1)
P1 + (P2 * P1)

t*t<1
t2*t<1

t À [t<1 , t2)

P2 t À [t2, t<2)
P2 + (P3 * P2)

t*t<2
t3*t<2

t À [t<2 , t3)

P3 t À [t3,ÿ),

(33)

where P1, P2, and P3 represent the three constant pressure values, 28,
55, and 83 kPa, held during the three consecutive creep tests. We
note that since the radius and thickness of our specimens changed
during creep testing, the Cauchy stress �(t) changed too throughout
a creep test. To estimate this Cauchy stress, we consider the loaded
vagina to be geometrically equivalent to a capped thin-walled cylin-
drical pressure vessel without axial forces and in absence of shear. As
described elsewhere [52], in an Eulerian cylindrical coordinate system
{er, e✓ , ez} with ez aligned with the longitudinal axis of the cylinder, �
is represented by

� = *P er ‰ er +
Pr
d

e✓ ‰ e✓ +
Pr
2d ez ‰ ez , (34)

where P is the value of the luminal pressure, r is the current radius of
the vaginal specimen and d is the current thickness. Note that the time
dependence is omitted to simplify the notation. As discussed in our ex-
perimental study, the average shear strains observed were much smaller
than the normal strains in the LD and CD, and thus any shear stresses
and strains were neglected for this study. Furthermore, we assume the
axial force exerted by the upper needle assembly to be negligible, as its
weight was quite small compared to the estimated axial normal forces
resulting from inflation [25]. Under these assumptions, we choose to
neglect the radial component of the stress, �rr = *P ˘ 0, since r ∏ d.
In the reference configuration, the average radius, Ñr0, and the average
thickness, Ñd0, were measured to be 2.55 mm and 0.39 mm, respectively.
Assuming incompressibility (i.e., det(F) = 1), the deformation gradient
F is taken to be
F = �rer ‰ ER + �✓e✓ ‰ E⇥ + �zez ‰ EZ

= (�✓�z)*1er ‰ ER + �✓e✓ ‰ E⇥ + �zez ‰ EZ ,
(35)

where �✓ and �z describe the stretches in the CD and LD, respec-
tively, and the unit vectors {ER,E⇥,EZ} define the Lagrangian cylin-
drical coordinate system, with EZ aligned with the longitudinal axis
of the vagina in the reference configuration. The right Cauchy–Green
deformation tensor C is then

C = (�✓�z)*2ER ‰ ER + �2✓E⇥ ‰ E⇥ + �2zEZ ‰ EZ . (36)

With this assumption on the right Cauchy–Green deformation tensor
C, r = �✓r0 and d = �rd0 = (�✓�z)*1d0 where r0 and d0 are the experi-
mentally measured radius and thickness of the vagina in the reference
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CZZ (t) = (�z(t))2 = 1 + ↵
0 (�✓(t))2

�z(t)
P (t)r0
2d0

+ �z(t)
P (t)r0
d0

1
+ �

(�✓(t))2

�z(t)
P (t)r0
2d0

+ b0ln
0
br
(�✓(t))2
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Box I.

configuration, respectively. Then, the Cauchy stress in Eq. (34) can be
re-written as

� = �2✓�z
P r0
d0

e✓ ‰ e✓ + �2✓�z
P r0
2d0

ez ‰ ez , (37)

and, since S = JF*1�F*T , the second Piola–Kirchhoff stress can be
expressed as

S = �z
P r0
d0

E⇥ ‰ E⇥ +
�2✓
�z

P r0
2d0

EZ ‰ EZ . (38)

After assuming that M = EZ and N = E⇥ and given the second
Piola–Kirchhoff stress in Eq. (38), the constitutive equation in Eq. (32)
is expressed as a set of nonlinear implicit equations in �z(t) and �✓(t).
Specifically, the components CZZ (t) and C⇥⇥(t) of the right Cauchy–
Green deformation tensor are (see Box I). We note that the dependence
of CZZ , C⇥⇥, P , �z, and �✓ on time is reintroduced in the given
equations.

This set of nonlinear equations can be solved numerically to find
�z(t) and �✓(t), and therefore CZZ (t) and C⇥⇥(t), at any time t over the
entire pressure history defined in Eq. (33) once the pressure values, P1,
P2, and P3, are given, assuming that �z(0) = 1 and �✓(0) = 1, and that
the constitutive parameters, ↵, �, �, b0, br, �b, c0, cr, �c, g0, h0, the
initial radius r0 and thickness d0 of each specimen are known.

For determining the best fit model parameters for each tested vagi-
nal specimen (n = 14), the square of the residual, � , defined as the
difference between the theoretically calculated right Cauchy–Green
deformation components, CZZ (t) and C⇥⇥(t), and the corresponding ex-
perimentally measured right Cauchy–Green deformation components,
ÇCZZ (t) and ÇC⇥⇥(t), was minimized. More specifically, the following
function:

�2 =
N…
t=1

( ÇCZZ (t) * CZZ (t))2 + ( ÇC⇥⇥(t) * C⇥⇥(t))2 , (41)

was minimized using the trust-region-reflective nonlinear least squares
regression algorithm of the MATLAB (R2023a, Mathworks, Natick, MA)
function lsqnonlin under the default settings. In Eq. (41), N is the
number of experimental data points collected from each specimen from
the first pre-creep test to the third creep test. The theoretical right
Cauchy–Green deformation components, CZZ (t) and C⇥⇥(t), were com-
puted by considering the loading history in Eq. (33). The pressures P1,
P2, and P3 in Eq. (33) were determined by averaging the experimentally
measured constant pressure throughout the duration of each creep test,
and the transition times t1, t<1, t2, t<2, and t3 were taken as the first
or last time points for which the experimental pressure fell within
certain bounds (< 5%) of the aforementioned mean creep pressures.

This approach was used, rather than directly using the experimental
pressure data, because of the periodic sawtooth pressure waves that
were inevitably generated when trying to maintain constant pressures
during creep tests [25].

This fitting procedure was repeated multiple times with random
sets of initial guesses for the initial constitutive parameters. Different
initial guesses led to different resulting values for the fitted constitutive
parameters, likely due to the presence of various local minima of the
squared residual in Eq. (41). The set of parameters which resulted in
the lowest value of the correlation coefficient, R2, defined as:

R2 = 1 * �2
≥N

t=1[( ÇC⇥⇥(t) * Ç�)2 + ( ÇCZZ (t) * Ç�)2]
, (42)

where Ç� = 1
2N

≥N
t=1( ÇCZZ (t) + ÇC⇥⇥(t)) represents the mean of the ex-

perimental right Cauchy–Green deformation components, was selected
to be the best fit model parameters. As an additional measure of fit
quality, the normalized root mean square error, ✏, defined as

✏ = �2
≥N

i=1( ÇCZZ (t)2 + ÇC⇥⇥(t)2)
, (43)

was calculated for each specimen.
For fitting, the possible values for ↵ and � were restricted such

that the corresponding values of E and ⌫, as per the aforementioned
simplification to the Kirchhoff-Saint Venant model following Eq. (32),
had values between 0 and 100 GPa and 0 and 0.5, respectively. The
other nine parameters were set to be: 0 f b0 f 0.1, 0 f br f 3 [kPa*1],
0 f �b f 0.05, 0 f g0 f 0.4 [s*1], 0 f c0 f 0.2, 0 f cr f 0.4 [kPa*1],
0 f �c f 0.05, 0 f h0 f 0.4 [s*1], 0 f � f 0.02 [(kPa s)*1].

Once the parameters were obtained for each specimen, paired t-
tests were used to compare the differences between parameters that
describe the pre-creep and creep behavior in the LD and CD via CZZ
and C⇥⇥ in Eqs. (39)–(40). Specifically, a paired t-test was used to
compare parameters b0 and c0, br and cr, �b and �c, and g0 and h0. The
values for b0 and c0 were normally distributed under Ryan-Joiner test
with no outliers. The values for br and cr were not normally distributed
under Ryan-Joiner test, each with a single outlier under Grubb’s test.
A log10(x) transformation was performed to normalize the data. While
the values for �b were not normally distributed, the values for �c
were, with both data sets having no outliers. Likewise, the values for
g0 were not normally distributed while the values for h0 were, both
with no outliers. For both parameter pairs (�b and �c, g0 and h0),
a log10(x) transformation was performed to normalize the data. All
statistical comparisons were performed in Minitab 21 (Minitab, Inc.,
Version 20.3, State College, PA), with statistical significance for t-tests
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Fig. 1. Components CZZ and C⇥⇥ of the right Cauchy–Green deformation tensor C over time t during three pre-creep and creep tests at 27.23 kPa, 54.74 kPa, and 82.37 kPa
for one representative specimen. The dimensions of the representative specimen were r0 = 2.996 mm and d0 = 0.40 mm, and the transition times were t1 = 11.5 s, t<1 = 3049 s,
t2 = 3055 s, t<2 = 6064.7 s, and t3 = 6070.2 s. Model fit (continuous lines) and experimental data (+ symbols) are shown in blue for CZZ and in orange for C⇥⇥ . The value of the
best fit parameters for this specimen, specimen f, are reported in Table 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

set to p < 0.05. Any data sets with a p < 0.1 under Ryan-Joiner
test were considered to be violating assumptions of normality for the
sake of statistical comparisons. When relevant, statistical comparisons
were performed on both original and transformed data sets, and all
transformed data were confirmed to be normalized under Ryan-Joiner
test with no outliers. Not all comparisons which indicated statistical sig-
nificance in transformed data sets also indicated statistical significance
in the corresponding original data sets, and results for both statistical
comparisons are reported for such cases. Otherwise, results are reported
for statistical comparisons as performed on the transformed data only.

The means of the fitting parameters, denoted by Ñ↵, Ñ�, Ñ�, Ñb0, Ñbr, Ñ�b,
Ñg0, Ñc0, Ñcr, Ñ�c, or Ñh0, were used in combination with physical dimensions
(r0 = 2.984 mm, d0 = 0.41 mm), transition times (t1 = 8 s, t<1 = 3040.9 s,
t2 = 3045.4 s, t<2 = 6075.1 s, and t3 = 6079.1 s), and pressure values
(P1 = 27.59 kPa, P2 = 55.39 kPa, and P3 = 83.37 kPa) associated with
one representative specimen to determine the effect of each constitutive
parameters on the components CZZ (t) and C⇥⇥(t) of the right Cauchy–
Green deformation tensor. Toward this end, Eqs. (39)–(40) were solved
using the default trust-region-dogleg algorithm of MATLAB’s fsolve
function several times, with a function tolerance of 1 ù 10*12, varying
one of the eleven constitutive parameters around its mean value while
keeping all the other constitutive parameters fixed at their mean values.
The varied parameter was multiplied by a set of four scalar values, with
the exact scalar values selected to generate differences in the curves
representing CZZ (t) and C⇥⇥(t).

4. Results

Fig. 1 displays the results of fitting the constitutive model to exper-
imental data for one representative specimen, subjected to consecutive
luminal pressures of 27.23 kPa, 54.74 kPa, and 82.37 kPa for the
three consecutive creep tests. The dimensions of the representative
specimen were r0 = 2.996 mm and d0 = 0.40 mm, and the transition
times were t1 = 11.5 s, t<1 = 3049 s, t2 = 3055 s, t<2 = 6064.7 s,
and t3 = 6070.2 s. The model accurately captured the overall vaginal
tissue response to three consecutive creep tests, with the theoretically
predicted components of the right Cauchy–Green deformation tensor
close to the experimental values across the full loading history. Fig. 2
presents magnified views of the same fit which better show the effec-
tiveness of the model in capturing the pre-creep and creep behavior for
the representative specimen. The greatest deviations of the model from
the experimental data generally occurred during the first pre-creep
(Fig. 2(A)), as the predicted tissue’s compliance was more nonlinear
than what was observed experimentally. These differences between the
model fit and the experimental data were not present during the second
and third pre-creep tests (Fig. 2(C) and (E)).

Table 1 reports the values of the model parameters that provided
the best fit to the experimental data for three consecutive tests. The
normalized root mean square error, ✏, and correlation coefficient, R2,
for the set of data collected from each specimen, as well as the mean
and standard error of the mean (S.E.M.) for each parameter across all
specimens (n = 14) are also reported. Each fit had ✏ values below 0.06,
and R2 values close to one for each specimen.

Fig. 3 compares four pairs of calculated direction-specific param-
eters of the model: b0 and c0, br and cr, �b and �c, and g0 and h0.
Paired t-tests revealed statistically significant differences between three
of the four pairs. The parameters b0, and c0, which dictate the elastic
response of the tissue in the LD and CD, respectively, were found to be
statistically different. Specifically, the parameter c0 was significantly
greater than b0 (p = 0.001), indicating that the tissue in the CD is
overall more compliant than in the LD. The average value for br was
greater than the average value for cr, and this difference suggests that
the elastic behavior in the LD is more nonlinear than in the CD. These
results were statistically significant for the normalized data (p < 0.001)
under paired t-tests, but they were not significant under paired t-test
for the original data set (p = 0.054). The parameters, �c and �b, which
define the short-term creep magnitude, were not significantly different
(p = 0.913). The short-term creep rate parameters relative to the LD, g0,
were significantly higher (p = 0.004) than the corresponding parameters
relative to the CD, h0.

Figs. 4–5 demonstrate the effect of each constitutive parameter on
C⇥⇥(t) in Eq. (40). As mentioned earlier, the values for all parameters
are fixed to be equal to the mean values reported in Table 1, except
for the individual parameter being varied, as noted in the legends of
the figures. For the sake of brevity, only the effects of ↵, �, c0, cr,
�, �c, and h0 on C⇥⇥(t) are shown. Parameters such as ↵, �, and �,
which appeared in both Eqs. (39) and (40) had very similar effects on
CZZ (t) and C⇥⇥(t), while parameters that only appeared in CZZ (t) in
Eq. (39) such as b0, br, �b, and g0 had correspondingly identical effects
as parameters that appeared only in C⇥⇥(t) (e.g., g0 affected CZZ (t)
in a similar way as h0 affected C⇥⇥(t)). Moreover, the parameters that
appeared only in CZZ (t) had minimal effects on the deformations in
the CD, and vice versa. As such, figures presenting the effects of the
constitutive parameters on CZZ (t), and figures presenting the effects of
b0, br, �b, and g0 on C⇥⇥(t) are not shown here.

In our model, the elastic portions of the scalar functions '1 and
'2 describe isotropic linear increase stretch-stress behavior (Eqs. (28)–
(29)). The elastic parameter � within '2 (Eq. (28)) affects only the
directions in which stresses are applied (Eq. (32)). Since � is restricted
to be positive, this results in linear increases in normal strains with
applied normal stresses. Conversely, the elastic parameter ↵ within
'1 is multiplied by the first stress invariant (Eq. (28)), which is the
trace of the stress (Eq. (17)). Since ↵ is restricted to be negative by
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Fig. 2. Zoomed in view of the components CZZ and C⇥⇥ of the right Cauchy–Green deformation tensor C over time t during (A), (C), (E) pre-creep tests and (B), (D), (F) creep
tests at 27.23 kPa, 54.74 kPa, and 82.37 kPa luminal pressures for the representative specimen shown in Fig. 1. The dimensions of the representative specimen were r0 = 2.996 mm
and d0 = 0.40 mm, and the transition times were t1 = 11.5 s, t<1 = 3049 s, t2 = 3055 s, t<2 = 6064.7 s, and t3 = 6070.2 s. Model fit (continuous lines) and experimental data (+ symbols)
are shown in blue for CZZ and in orange for C⇥⇥ . The value of the best fit parameters for this specimen, specimen f, are reported in Table 1. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

our constitutive assumptions, any positive normal stress applied in any
direction results in some compressive normal strain in all directions.
This represents a degree of strain coupling, or what may otherwise
be referred to as Poisson effects. However, since � is restricted to be
greater than the absolute value of ↵, positive strains will always result
in the directions of an applied normal stress, assuming the normal
stresses applied in other loading directions do not greatly exceed it.

Fig. 4(A)–(B), (E)–(F), and (I)–(J) demonstrate the effect of varying
parameters ↵ and � on the resulting stretch in the CD during pre-
creep (elastic) portion of one representative experiment. Increasing ↵
(Fig. 4(A), (E), and (I)) decreases the amount of deformation observed
in the CD, while increasing � (Fig. 4(B), (F), and (J)) increases the
amount of deformation observed in a complementary manner. How-
ever, the magnitude for the obtained values for ↵ and � were small
compared to the other direction-specific elastic parameters (b0, br, c0,
cr, Table 1), and as such, the parameters’ values must be increased
by several orders of magnitude in order to induce variations in the
deformation vs. time curves which are comparable to the effects of
varying the other elastic parameters by much smaller amounts.

Conversely to the linear elastic relationships of '1 and '2, the elastic
portions of '4 and '6 describe direction-specific logarithmic increases
in stretch with normal stress (Eqs. (30)–(31)). In particular, '4 scales
only with normal stresses in the LD and results in normal strains in
the LD, and '6 likewise scales with normal stresses and results in

normal strains in the CD (Eq. (32)). Within '4 and '6, the elastic
parameters b0 and c0 control the magnitude of these scalar functions
to the stretch. Since the elastic parameters br and cr lie inside of
the natural logarithms, they control the relative rate of logarithmic
growth of stretch with applied normal stress. Fig. 4(C)–(D), (G)–(H),
and (K)–(L) demonstrate the effect of varying the parameters c0 and
cr on the resulting stretch in the CD during pre-creep (elastic) portion
of a representative experiment. Increasing c0 (Fig. 4(C), (G), and (K))
increases the total deformation seen without radically altering the
relative shape of the overall deformation vs. time curves. Conversely,
increasing cr (Fig. 4(D), (H), and (L)) both increases the total stretch
seen and alters the shape of the pre-creep curve, with higher cr values
resulting in a more nonlinear deformation vs. time curve.

Just as the elastic portions of the scalar functions '1 and '2 describe
an isotropic behavior for pre-creep which scales linearly with stress,
the viscoelastic portion of the scalar function '2 describes an isotropic
behavior for creep (Eq. (29)) which scales linearly with applied stress
and with time (Eq. (32)). Conversely, the viscoelastic contributions
of '4 and '6 define the nonlinear direction-specific creep behaviors
(Eqs. (30)–(31)), with '4 scaling with normal stresses and causing
normal strains in the LD, and '6 scaling with normal stresses and
causing normal strains in the CD (Eq. (32)). The scalar functions '4 and
'6 introduce a logarithmic dependence on stress and an exponential
dependence on time. As such, they define the short-term stretching
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Fig. 3. Comparisons between the four pairs of direction-specific parameters (A) b0 and c0, (B) br and cr, (C) �b and �c, and (D) g0 and h0. Parameters that affect the mechanical
response in the LD are in blue, while those that affect the mechanical response in the CD are in orange. Under paired t-test, there were statistically significant differences (**p < 0.01,
***p < 0.001) between three of the four sets of parameters after normalizing transformations. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

rate during creep, which we have previously termed as primary creep,
while '2 defines the stretching rate after primary creep, which we have
described as secondary creep (Eq. (32)). The viscoelastic parameter �
within '2 (Eq. (29)) is multiplied by the applied stress (Eq. (32)), and
thus defines the secondary creep rate in both loading directions. The
viscoelastic parameters �b and �c from '4 and '6 (Eqs. (30)–(31))
lie outside the time integrals (Eq. (32)), and thus directly define the
magnitude of primary creep in the LD and CD, respectively. The param-
eters g0 and h0 (Eqs. (30)–(31)) appear in the exponent of exponential
functions, and thus define the rates at which primary creep occurs in
the LD and CD.

The effects of �, �c, and h0 on the resulting deformation in the CD
can be seen in Fig. 5. Increasing � (Fig. 5(A), (E), and (I)) increases
the secondary creep rate, and thus the amount of stretch which occurs
during each creep test. Increasing �c (Fig. 5(B), (F), and (J)) increases
the amount of stretch seen during primary creep, without affecting
the relative shape of the overall stretch vs. time curve during creep.
Conversely, increasing h0 (Fig. 5(C), (G), and (K)) does not notably
affect the overall amount of stretch during creep, but more importantly
changes the shape of the stretch vs. time curve. This effect is most
noticeable in the first few hundred seconds of each creep test, as can
be seen in Fig. 5(D), (H), and (L), which provides a magnified view of
the first part of each creep test.

5. Discussion

This study presents the first constitutive model that describes the
creep behavior of vaginal tissue under a state of plane stress. The pro-
posed viscoelastic model, which accounts for the nonlinearity,
anisotropy, and finite deformations of the tissue, was validated against
experimental data previously collected from free-extension inflation
tests on rat vaginal specimens [25]. For the duration of three consec-
utive creep tests, including the pre-creep tests, the constitutive model
closely captured the overall experimental behavior of vaginal tissue in
both the LD and CD (Figs. 1 and 2), with high correlation coefficient
values and low normalized root mean square error values ( Table 1).

In the proposed model, we assumed that the vaginal tissue behaves
as a separable nonlinear viscoelastic material. This assumption was
made when selecting the scalar functions '1, '2, '4, and '6 in Eq. (27)
to be the products of functions of time alone and functions of stress

alone. This assumption was also made in a published study by Peña
et al. [21] on the stress relaxation of prolapsed human vaginal tissue.
However, our experiments, as well as the experiments conducted by
Peña et al. were not optimally designed for discerning nonlinearities
in the viscoelasticity of vaginal tissue. In particular, our free-extension
inflation experiments did not include a recovery period between con-
secutive creep tests at various pressure values, while Pena et al. only
compared normalized stress relaxation data at stretches of 1.3 and 1.4.
Further creep (and stress relaxation) experiments that incorporate re-
covery periods and are conducted at largely different values of applied
stress (and strain) should be performed to fully characterize and model
the viscoelastic behavior of vaginal tissue.

The anisotropic behavior of vaginal tissue was determined by
direction-specific constitutive parameters, notably those denoted as
b0, br, �b, and g0 in the LD and c0, cr, �c, and h0 in the CD (refer
to Eqs. (39)–(40)). Statistical analyses on the (normalized) data sets
revealed that three of the four direction-specific parameters exhibited
significant differences (Fig. 3). Each vaginal specimen was more com-
pliant in the CD, as indicated by the greater values of c0 compared to b0
(Fig. 3(A)). The elastic behavior of most specimens was more nonlinear
in the LD than the CD, reflected by the greater values of br compared
to cr (Fig. 3(B)). While the values of br were not significantly greater
than the values of cr for the original data under paired t-test, this was
likely a result of the statistical distribution of the data, as the difference
was significant for the normalized data set. There were no significant
differences between �b and �c, the parameters that control the initial
increases in strain during each creep test (Fig. 3(C)). While our previous
experimental study did note that more primary creep occurred in the
CD than the LD through all three creep tests [25], the amount of
primary creep which occurs is not flatly determined by the constitutive
parameters �b and �c. Rather, the amount of primary creep in each
direction is a byproduct of the relevant parameter (�b or �c) and the
magnitude of applied stress in that direction. Thus, our theoretical
findings do not contradict our experimental findings, but rather suggest
that the amount of primary creep in the two directions may be similar
if equibiaxial stress were to be applied. Finally, the primary creep
rate parameter in the LD, g0, was far greater than the corresponding
parameter in the CD, h0, indicating that primary creep occurred more
quickly in the LD than in the CD (Fig. 3(D)). The higher primary creep
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Fig. 4. Effect of ↵, �, c0, and cr on the component C⇥⇥ of the right Cauchy–Green deformation tensor during (A)–(D) first pre-creep, (E)–(H) second pre-creep, and (I)–(L) third
pre-creep. The parameters Ñ↵, Ñ�, Ñc0, and Ñcr are the mean values of ↵, �, c0, and cr reported in Table 1. Changes in ↵ for (A), (E), and (I) are reported in (A), changes in � for
(B), (F), and (J) are reported in (B), changes in c0 for (C), (G), and (K) are reported in (C), and changes in c0 for (D), (H), and (L) are reported in (D). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

rate in the LD may result from a greater amount of collagen fibers in the
LD [53], which may also be the cause of significant differences between
br and cr.

A quirk of our model is that, theoretically, the terms that describe
the isotropic elastic response, which are the ↵-term and the �-term in
Eq. (32), could dominate as the stress draws closer to infinity since the
contributions from direction-specific terms, the b0-term and the c0-term,
which contain natural logarithms, would increase at a much slower
rate. This contradicts experimental evidence that seems to suggest that
the vaginal tissue behaves more as an isotropic material at low stresses
and strains while it becomes more anisotropic at higher stresses and
strains [54]. However, the numerical values of ↵ and � were determined
to be several order of magnitude smaller than the numerical values of
the direction-specific parameters when curve-fitting our experimental
data ( Table 1). Thus, the ↵-term and �-term had a negligible effect
on the overall mechanical behavior of the vaginal tissue (Fig. 4(A)–
(B), (E)–(F), (I)–(J)) compared to the direction-specific parameters
(Fig. 4(C)–(D), (G)–(H), (K)–(L)). Since rat vaginal tissue ruptures at
stresses not much higher than the applied stresses of our creep exper-
imental study [55], we expect that our model would still be able to
capture the anisotropic response of the tissues at these higher stresses.

Our constitutive model has a viscoelastic term, the �-term in
Eq. (32) that contributes to the mechanical response in both the LD and
CD, and two viscoelastic terms, the �b-term and the �c-term, which are

specific to the loading directions. These terms improved the fidelity of
our model with regards to the experimental results since they captured
the differences between primary and secondary creep in vaginal tissue.
Specifically, in our previous experimental study [25], we observed that
strain increased logarithmically over time during primary creep and
linearly over time during secondary creep, with the primary creep
rates decreasing and the secondary creep rates increasing with the
applied pressure from the first to the third creep test. In the proposed
model, the �-term described the shared steady-state linear secondary
creep behavior (Fig. 5(A), (E), (I)) while the direction-specific viscoelas-
tic terms were introduced to reproduce the primary creep behavior
(Fig. 5(B)–(D), (F)–(H), (J)–(L)). The use of multiple viscoelastic terms
in constitutive models of soft tissues is very common. For example, Peña
et al. proposed the use of four viscoelastic terms for describing the stress
relaxation of vaginal tissue with a transversely isotropic model, two
each for the matrix and fibers [21]. The need for multiple viscoelastic
terms in constitutive models for vaginal tissue possibly suggests that
there may be multiple micro-structural mechanisms which dictate the
overall viscoelastic behavior of this tissue.

To the best of our knowledge, this study represents the first effort at
modeling the time-dependent strain response of vaginal tissue subjected
to biaxial loading instead of uniaxial loading. For simplicity, due to the
lack of experimental data to model the response of the tissue along
the radial direction (RD), we assumed that C(t) reduced to a linear
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Fig. 5. Effect of �, �c, and h0 on the component C⇥⇥ of the right Cauchy–Green deformation tensor during (A)–(D) first creep, (E)–(H) second creep, and (I)–(L) third creep. The
parameters Ñ�, Ñ�c, and Ñh0 are the mean values of �, �b, and h0 reported in Table 1. Changes in � for (A), (E), and (I) are reported in (A), changes in �c for (B), (F), and (J) are
reported in (B), and changes in h0 for (C)–(D), (G)–(H), and (K)–(J) are reported in (C). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

function solely dependent on S(t) in the RD, without the inclusion of
additional viscoelastic terms (Eq. (32)). It is conceivable that other
elastic or viscoelastic terms might be necessary to ensure the accurate
representation of the mechanical response of the tissue in the RD
within our constitutive model. Notably, in estimating the thickness d of
each specimen in the current configuration from their measured value
d0 in the reference configuration, we also assumed incompressibility
(Eq. (35)). However, this assumption was not strictly enforced on the
right Cauchy–Green deformation tensor during our curve fitting, posing
a significant limitation to our study. It could potentially be enforced
by requiring that the component CRR(t) of the right Cauchy–Green
deformation tensor, expressed as

CRR(t) = 1 + ↵
0 (�✓(t))2

�z(t)
P (t)r0
2d0

+ �z(t)
P (t)r0
d0

1
, (44)

satisfies det(C) = 1. This would place restrictions on the values of ↵,
the only parameter directly appearing in Eq. (44). In this study, we
neglected Eq. (44) since we had no information on the compressibility
of vaginal tissue or pre-creep and creep data in the RD. Variations
in thickness of vaginal tissue during biaxial testing will need to be
experimentally monitored in future using techniques such as optical
coherence tomography, as done in our recent study on uterosacral

ligaments [56]. Alternatively, measuring the overall volume of the
organ during pre-creep and creep could provide insights into whether
the vagina is incompressible and allow for estimates of CRR(t) following
Treloar’s approach for rubbers [57].

We agree with the sentiment expressed by the famous quote at-
tributed to John von Neumann (1903–1957): ‘‘With four parameters
I can fit an elephant, and with five I can make him wiggle his trunk’’.
Hence, we tried our very best to maintain simplicity in our constitutive
model and minimize the number of parameters. Despite our efforts,
our final constitutive relation required the determination of eleven
constitutive parameters to fit experimental data of vaginal tissue in two
directions at three pre-creep and creep tests (Eq. (32)). We do not rule
out the possibility that a constitutive model with a reduced number
of parameters may also viable. For example, as we discussed above,
the contributions of the parameters ↵ and � to the overall mechanical
behavior were almost negligible. Thus, one could fit our experimental
data with a constitutive model that does not include the ↵*term in
Eq. (28) and �*term in Eq. (29). However, the omission of these terms
would prevent us from recovering the Kirchhoff-Saint Venant model.

The proposed model effectively characterized the ex vivomechanical
response of vaginal tissue to three consecutive pre-creep and creep
tests (Figs. 1–2). However, the predictive capabilities of the model,
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Table 1
Best-fit model parameters, correlation coefficients R2, and normalized root mean square errors ✏ for each vaginal specimen (a to n), as well as
their mean values and standard error of the mean (S.E.M.) values across all specimens (n = 14).
Specimen b0 br [kPa*1] �b g0 [s*1] ↵ [kPa*1] � [kPa*1] � [(kPa�s)*1]

a 0.01909 0.1152 0.00579 0.0203 *1.443E*05 6.970E*05 2.799E*09
b 0.00496 0.6858 0.01493 0.2936 *2.963E*05 8.895E*05 2.761E*09
c 0.01538 0.1144 0.00521 0.0261 *2.597E*05 1.022E*04 3.969E*09
d 0.00128 1.6372 0.00904 0.2805 *4.124E*06 1.513E*05 2.158E*09
e 0.00844 0.0823 0.00431 0.1812 *3.054E*07 3.289E*05 1.412E*09
f 0.01844 0.0447 0.00562 0.0609 *7.599E*05 2.280E*04 4.325E*09
g 0.02688 0.0307 0.00413 0.0126 *2.608E*08 8.195E*08 2.527E*09
h 0.01742 0.0932 0.00336 0.0038 *4.339E*07 3.899E*05 1.275E*09
i 0.01185 0.0715 0.00178 0.0328 *8.813E*07 4.065E*05 2.3364E*09
j 0.00713 0.3394 0.00591 0.1772 *3.529E*05 1.062E*04 2.248E*09
k 0.00275 0.4221 0.00893 0.2027 *4.811E*05 1.443E*04 2.815E*09
l 0.00024 2.7907 0.01107 0.3760 *6.014E*08 2.498E*07 4.272E*09
m 0.01109 0.1652 0.00374 0.0853 *1.463E*05 8.632E*05 2.628E*09
n 0.01219 0.1075 0.00197 0.0149 *4.553E*08 7.612E*05 6.728E*10

Mean 0.01122 0.4786 0.00612 0.1263 *1.785E*05 7.355E*05 2.586E*09
S.E.M. 0.00198 0.2035 0.00095 0.0321 5.919E*06 1.586E*05 2.769E*10

Specimen c0 cr [kPa*1] �c h0 [s*1] R2 ✏

a 0.02637 0.0207 0.00930 0.00679 0.9974 0.05101
b 0.02962 0.1020 0.00508 0.00589 0.9990 0.03205
c 0.02785 0.0662 0.00802 0.00765 0.9991 0.02989
d 0.05718 0.0086 0.00668 0.01577 0.9982 0.04190
e 0.03999 0.0137 0.00365 0.02464 0.9989 0.03242
f 0.01833 0.0336 0.00486 0.01932 0.9994 0.02446
g 0.04914 0.0086 0.00592 0.01948 0.9968 0.05582
h 0.02385 0.0149 0.00265 0.01576 0.9973 0.05360
i 0.02407 0.0181 0.00436 0.01537 0.9995 0.02347
j 0.03587 0.0164 0.00489 0.00875 0.9992 0.02801
k 0.02917 0.0187 0.00834 0.01222 0.9995 0.02176
l 0.06190 0.0119 0.01160 0.00502 0.9985 0.03920
m 0.01708 0.0266 0.00474 0.02990 0.9987 0.03594
n 0.01191 0.0525 0.00182 0.02136 0.9982 0.04345

Mean 0.03231 0.0295 0.00585 0.01485 0.9986 0.03664
S.E.M. 0.00385 0.0069 0.00069 0.00195 0.0002 0.00290

against ex vivo pre-creep and creep data not used for curve-fitting,
were not evaluated. Ideally, our model should be capable of predicting
the in vivo pre-creep and creep of vaginal tissue at higher stresses
while being validated using data collected in vivo at much lower
stresses, since conducting creep testing at high stresses on live animals
would be unethical. We acknowledge that significant adjustments to
our constitutive model will be necessary to accurately represent the
in vivo mechanical properties of vaginal tissue. We acknowledge that
significant adjustments to our constitutive model will be necessary to
accurately represent and predict the in vivo mechanical properties of
vaginal tissue. For example, the active mechanical properties, partic-
ularly influenced by smooth muscle contraction, were ignored in our
model formulation, but these properties have profound implications
for the overall constitutive behavior of vaginal tissue. Huntington
et al. [58] demonstrated that smooth muscle contraction has the ability
to induce large strains in rat vaginal tissue. Similarly, a recent study
by Clark-Patterson et al. [24] found that spontaneous contractions
occur during creep testing of murine vaginal tissue, and that the creep
behavior depends on smooth muscle tone. Despite these findings, the
effects of smooth muscle tone on the viscoelastic behavior of vaginal
tissue remain experimentally under-characterized. Notably, there have
been no attempts to model the impact of active smooth muscle contrac-
tion on the constitutive behavior of vaginal tissue, signaling a critical
research gap that warrants attention moving forward.

Several studies have suggested that the impact of pregnancy on
the murine vagina goes beyond the visible changes, influencing both
its microstructure and mechanical properties [12,59,60]. Since the
viscoelasticity of pregnant tissue remains largely unexplored, the nec-
essary modifications that need to be made to our constitutive equa-
tion for modeling the effects of pregnancy on the creep behavior of
vaginal tissue are uncertain. Together with novel experimental tech-
niques, advanced constitutive models that comprehensively describe

the pregnancy-induced remodeling of vaginal tissue must be devel-
oped to create new computational tools for predicting the safest mode
of delivery and improving maternal care. Indeed, current computa-
tional models of rat vaginal tissue deformations only reproduce the
elastic behavior of the organ [61,62], lacking any consideration of
time-dependent deformations that are crucial with pregnancy.

6. Conclusions

This study presents a general single integral constitutive model for
describing the creep behavior of vaginal tissue by considering the char-
acteristic anisotropy and finite deformations of this tissue. Previously
published experimental data obtained by performing consecutive free-
extension inflation tests at three increasing luminal pressures were
used to evaluate the constitutive model. Toward this goal, the tensorial
creep function was assumed to be nonlinear and separable into the
product of a time-dependent function and a stress-dependent function.
Moreover, the vagina was assumed to be incompressible and subjected
to normal stresses along two anatomical directions, the LD and CD. The
results of the model predictions were very close to the experimental
strain versus time data, demonstrating that the model can accurately
illustrate the pre-creep and creep behavior of vaginal tissue in both the
LD and CD. With further refinements and validation, this constitutive
framework has the potential to provide insights on the time-dependent
deformations of vaginal tissue. Accurate predictions of vaginal tissue
deformations can inform clinical decisions related to vaginal delivery
and Caesarean section procedures, fostering advancements that directly
benefit the well-being of women during the critical stages of childbirth.
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