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ABSTRACT
Understanding the dynamics of polymers in confined environments is pivotal for diverse applications ranging from polymer upcycling to
bioseparations. In this study, we develop an entropic barrier model using self-consistent field theory that considers the effect of attractive
surface interactions, solvation, and confinement on polymer kinetics. In this model, we consider the translocation of a polymer from one
cavity into a second cavity through a single-segment-width nanopore. We find that, for a polymer in a good solvent (i.e., excluded vol-
ume, u0 > 0), there is a nonmonotonic dependence of mean translocation time (τ) on surface interaction strength, ε. At low ε, excluded
volume interactions lead to an energetic penalty and longer translocation times. As ε increases, the surface interactions counteract the ener-
getic penalty imposed by excluded volume and the polymer translocates faster through the nanopore. However, as ε continues to increase,
an adsorption transition occurs, which leads to significantly slower kinetics due to the penalty of desorption from the first cavity. The ε
at which this adsorption transition occurs is a function of the excluded volume, with higher u0 leading to an adsorption transition at
higher ε. Finally, we consider the effect of translocation across different size cavities. We find that the kinetics for translocation into a
smaller cavity speeds up while translocation to a larger cavity slows down with increasing ε due to higher surface contact under stronger
confinement.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0189057

I. INTRODUCTION

Macromolecular transport within confined spaces is funda-
mental to several biological, material, and environmental processes.
The translocation of nucleic acids through porous biomembranes
has major ramifications in DNA sequencing and processing,1
protein therapeutics, and drug delivery.2 It is essential to under-
stand polymer transport kinetics in porous media for various
applications, including heterogeneous catalyst development,3
membrane-based separations,4,5 and enhanced oil recovery with
polymeric flooding agents.6 Despite significant efforts to study
the mobility of macromolecules under confinement,7–16 the com-
bined influences of solvation, confinement, excluded volume and
surface-polymer interactions on the kinetics of translocation are
not well understood due to a complex interplay of thermodynamic
parameters.6,10,17–21

We recently developed a method to fabricate polymer
nanocomposite films with extremely high volume fractions of
nanoparticles by infiltrating polymer into solvent-filled nanoparti-
cle (NP) packings. This method not only facilitates the creation of
nanocomposite films but also provides insight into the behavior of
solvated polymers as they enter confined spaces, offering a deeper
understanding of both kinetic and thermodynamic effects. Solvent-
driven Infiltration of Polymer (SIP) into NP packings involves
solvent–vapor annealing of a bilayer composed of a densely packed
NP layer atop an underlying polymer layer. In this process, solvent
vapor undergoes capillary condensation within the NP packing and
diffuses into the polymer film, initiating the infiltration of the sol-
vated polymer into the interstitial voids of the NP packing.22 The
kinetics of the SIP process depend on the quality of solvent,22 and
the degree of confinement in the system.18 The effect of polymer–NP
interactions on infiltration during SIP has also been explored using
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molecular dynamics (MD) simulations.20 By changing the Lennard-
Jones (LJ) interaction energy between the polymer and the NP sur-
face, three infiltration regimes were identified: (i) solvent-mediated
infiltration in which polymer–NP interactions are very weak; (ii)
surface-mediated infiltration driven by strong polymer–NP interac-
tions; and (iii) an intermediate regime in which both solvation and
surface interactions play a role.20 This third regime emerges as a
“goldilocks” regime with the fastest infiltration kinetics. These prior
works motivate this current study, which aims to probe more deeply
the kinetics of polymer translocation under confinement. This study
is inspired by such previous work and seeks to extend our under-
standing of polymer translocation kinetics under confinement. Our
streamlined model enables a comprehensive exploration across a
wider spectrum of surface interaction strengths. Additionally, we
are able to investigate the nuanced effects of solvent quality and
confinement on translocation kinetics.

The entropic barrier model is a simple yet powerful method-
ology to understand how polymers overcome entropic barriers to
move from one cavity to another.23,24 The mean translocation time
can be estimated by calculating the free energy of a polymer chain
distributed between two connected cavities, with the connection
being a single-segment width nanopore as illustrated in Fig. 1.
This kinetic information is inferred from the free energy profile
of the polymer as the number of segments between the two cav-
ities is varied from zero to the total number of segments N.24,25

Previously, this model has been used to study an ideal polymer
undergoing translocation through a pore in a planar membrane,25
out of a spherical vesicle,23 between two cavities of different sizes,
through an adsorbing hole,21 and through single-segment width
channels of varying lengths.26 This approach has also been used to
study the transport of charged biomacromolecules through crowded
environments27–29 and has successfully modeled the behavior of
polyelectrolytes translocating through a pore under an electric
field gradient.29 Polymer chains with excluded volume interactions
require numerical analysis to address many body interactions.19
One important factor that has yet to be addressed extensively is
the impact of surface-polymer interactions on the translocation
dynamics, specifically favorable interactions that can drive polymer
adsorption to the surface. This aspect is particularly important in
SIP because interactions between the polymer and the NP surface
influence not only the dynamics of polymers filling the interstices
of NP packings but also the mechanical properties of the resulting
nanocomposite films.

In this study, translocation of a self-avoiding walk polymer
between two circular cavities through a segment-width nanopore
(entropic barrier) is considered (Fig. 1). We introduce and vary
attractive interactions between the polymer chain and the inner
surface of the cavities. We probe the effect of surface-polymer inter-
actions on polymer translocation kinetics through the nanopore and
investigate how this effect changes with solvent quality (excluded
volume interactions) and confinement. The free energy landscape
within the cavities is obtained from self-consistent field theory
(SCFT) calculations, and these free energies are used to determine
the mean translocation time (τ) of the polymer from one cav-
ity to the other through the nanopore using the Fokker–Planck
equation. It is found that τ strongly depends on the strength
of the surface-polymer interactions and shows a non-monotonic
dependence with surface interaction strength which qualitatively
agrees with the MD simulations.20 Furthermore, the “goldilocks”
regime observed previously in the MD simulations is reproduced
using this simple 2D model, where the effect of surface interac-
tion and excluded volume complement each other, leading to fast
translocation kinetics. Enhanced solvent quality (excluded volume
interactions) extends this regime to higher surface interaction
strengths. Finally, in the presence of strong surface interactions,
higher confinement becomes more favorable, leading to faster
translocation into spaces with greater confinement. These findings
potentially provide guidelines on the fabrication of highly filled
nanocomposites using SIP, the separation of macromolecules, and
the design of catalytic supports for facilitating polymer upcycling
reactions.

II. METHODS
A. Entropic barrier model to obtain τ

In this model, a polymer chain escapes from cavity 1 to cavity
2 via a nanopore that is the width and length of a single poly-
mer segment. The free energy of a polymer chain of N segments
translocating can be calculated as a function of m, or the number
of segments translocated into cavity 2. This free energy F(m) is
found by

F(m) = F1(N −m) + F2(m), (1)

where F1(N −m) is the free energy of the portion of the chain of seg-
ment length (N −m) in cavity 1, and F2(m) is the free energy of the

FIG. 1. Schematic illustration of polymer translocation in the entropic barrier model. N is the chain length of the polymer and m is the number of segments, which have
translocated from the first cavity to the second cavity through a segment-width nanopore.
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portion of the chain of segment lengthm in cavity 2. To obtain F(m)
for anym = 1, 2, 3, . . . ,N, the free energy in each cavity as a function
of chain length of polymer within that cavity must be calculated for
chain lengths from 1 to N − 1.

The mean translocation time (τ) is defined as the average time
for diffusion from a single segment translocated (m = 1) to all-but-
one segment translocated (m = N − 1). This value is obtained by
applying the adjoint Fokker–Planck operator to τ and using the
reflecting boundary condition at m = 0 and absorbing boundary
condition atm = N,24,30

τ = 1
k0∫

N−1

1
dm eβF(m)∫

m

1
dm′ e−βF(m

′
). (2)

Here, k0 is a rate constant associated with the translocation pro-
cess.26 While our study provides important kinetic insights, a direct
translation of these findings into physical timeframes for the SIP
system is not feasible due to the distinct methodological and geomet-
rical differences. There is also significant complexity in translating
the mean translocation time obtained from the Fokker–Planck for-
malism, reported in this paper in units of 1/k0. This rate constant
may be dependent on several factors, including but not limited to
the frictional forces between the polymer segment and nanopore,
the diffusivity of the polymer, as well as the surface interaction
strength.25,26 To gain insights on the important trends, we normal-
ize themean translocation time by the translocation time for an ideal
chain with no surface interactions.

B. SCFT simulations
To find F(m) for the translocating polymer, a canonical model

A (implicit solvent) homopolymer field theory in two dimensions
is developed to obtain the partition function.31 The effective poten-
tial between two polymer monomers in an implicit solvent can be
expressed as the following simple delta function model:31

u(r) = kBT u0δ(r), (3)

where u0 is the excluded volume interaction parameter.32
The Hubbard–Stratonovich particle-to-field transformation is

employed to circumvent the many-body problem in the calculation
of the partition function for a polymer system with excluded volume
interactions, which transforms the partition function for the system
into the field-theoretic form

Z = Z0 ∫ Dω exp (−H[ω(r)]). (4)

In this equation, the partition function is shown as a functional
integral over a chemical potential field ω(r), where H[ω] is the
effective Hamiltonian for a given field configuration. The prefactor,
Z0 ≡ (z0V)n/n! is the partition function of an ideal gas of non-
interacting polymers. The effective Hamiltonian for this system can
be written as

H[ω] = 1
2u0 ∫

dr[ω(r)]2 − n ln Q[iω], (5a)

Q[ω] = 1
V ∫ dr q(r,N; [ω]). (5b)

In this expression,Q is the normalized partition function, which can
be calculated from the chain propagator q(r, j; [ω]), which is a func-
tional for integer j = 0, 1, 2, . . . ,N − 1, and represents the likelihood
that the end of a chain with j + 1 segments is located at r. The initial
condition for j + 1 = 0 is defined as

q(r, 0; [ω]) = exp [−ω(r)] (6a)

and for j + 1 ≠ 0,

q(r, j + 1; [w]) = exp [−ω(r)]∫ dr′Φ(r − r′)q(r′, j; [ω]), (6b)

whereΦ(r) is the normalized bond transition probability for a Gaus-
sian chain. The initial condition of the chain propagator is modified
to reflect being trapped in the entropic barrier at the inner surface of
the cavity.

We take the mean-field approximation to calculate the effective
Hamiltonian, where it is assumed that a single field configuration
ω∗(r) dominates. This field configuration can be obtained by impos-
ing a stationary condition on the Hamiltonian to find saddle points,
which for Model A can be written as

δH[ω]
δω(r) ∣ω=ω∗

= 1
u0

ω∗(r) + iρ̃(r, [iω∗]) = 0, (7)

where ρ̃(r, [iω∗]) is the segment density operator. The total number
of statistical segments is equal to the volume integral of the seg-
ment density function. To find the saddle point, we use a continuous
steepest descent relaxation method

∂

∂t
μ(r, t) = λ δH[μ]

δμ(r, t) = λ(−
1
u0

μ(r, t) + ρ̃(r; [μ(t)])), (8)

where λ > 0 is a real relaxation parameter, and μ(r, t) ≡ iω(r, t) is
the real potential field. In Eq. (8), the time variable t represents a
fictitious time corresponding to the update scheme for the fields and
changes in the density as the field μ(r, t) evolves do not correspond
to physical dynamics.

To solve the above equation numerically, we discretize μ(r, t)
using a collocationmethod; μ(r, t) and ρ̃(r; [μ(t)]) atM collocation
points can be represented as vectors μ(t) and ρ(μ(t)), respectively,
leading to a set of M nonlinear equations

d
dt
μ(t) = − 1

u0
μ(t) + ρ(μ(t)). (9)

We use a semi-implicit relaxation algorithm to solve this equa-
tion set following the method developed by Ceniceros and Freder-
ickson.33 The equation set can then be solved using a finite Fourier
transform—inverse finite Fourier transform pair. The convergence
criterion is set by calculating the error in the effective Hamilto-
nian between iterations, with a tolerance for convergence set at 10−8.
To calculate the chain propagator, a pseudo-spectral scheme31 for a
bead–spring chain is propagated from the initial condition of j = 0
to the chain end N − 1. From here, the normalized partition func-
tion Q can be calculated and the free energy F obtained, as shown as
follows:

F = F
kBT
≅ − ln (Q). (10)
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The free energy calculated for a tethered chain (Ft) is differenti-
ated from the free energy of an untethered chain (F free) by adjusting
the initial condition of the chain propagator to reflect the tethering
condition [Eq. (6)].

C. Integrated Lennard-Jones potential for surface
interactions

To introduce surface interactions to the model, a wall density
term is introduced. This term is applied when calculating the fields
in each iteration of the SCFT code. To find the appropriate form of
this term, a 12-6 Lennard-Jones (L-J) potential for a monomer or
segment that is distance ρ from the center of the cavity, and r from
the cavity wall (of radius R), is integrated over every point in the
circular wall [Fig. S1(a)],

εshell = ∫
2π

0
dθ ne(4ϵ[(

σ
r
)
12
− (σ

r
)
6
])R. (11)

Using the law of cosines to replace r with ρ and with a = ρ/R, the
resulting form is given by

εshell,2D = 8πneεR{(
σ
R
)
12
[ a

10 + 25a8 + 100a6 + 100a4 + 25a2 + 1
(a − 1)11(a + 1)11

]

− ( σ
R
)
6
[ a4 + 4a2 + 1
(a − 1)5(a + 1)5

]}. (12)

This potential is then integrated out over all possible wall radii to
determine the interaction potential of the polymer with the particles
in the wall beyond those on the wall surface

εwall = ∫
∞

Rw

dR εshell, (13a)

εwall,2D = 4πneεR2{( σ
R
)
12
[5a

8 + 40a6 + 60a4 + 20a2 + 1
5(1 − a)10(1 + a)10

]

− ( σ
R
)
6
[ 2a2 + 1
2(1 − a)4(1 + a)4

]}. (13b)

This equation is the final form of the cavity wall density and is imple-
mented in the SCFT model by adding it to the field that is used to
calculate the chain propagator.34

The resulting interactions with the cavity walls depend on the
value of the surface interaction potential, defined here as ε ≡ neε,
where ε is the L-J depth of the potential well. The surface interac-
tion potential ε is varied from 0.001 to 0.05 to explore a full range
of surface-polymer interactions. In our system, the L-J interaction
length scale, σ, is equivalent to the length scale of the polymer
segment (b), and both are taken to be unity. The cavity radius is
therefore reported relative to the polymer segment length. In this
system, a cavity radiusR = 5 represents a cavity with radius five times
the length of a polymer segment.

III. RESULTS AND DISCUSSION
In Fig. 2, we calculate the change in free energy upon tethering

the polymer chain end to the nanopore connecting cavity 1 to cavity
2, ΔFt . The free energy change, taken as

ΔFt = Ft(N) − Ffree(N), (14)

FIG. 2. (a) Free energy change upon tethering the chain end to nanopore as a function of chain length (N) for three values of the surface interaction parameter
(ε = 0.0001, 0.005, 0.015) in good solvent conditions (u0 = 0.1) in a confining cavity of size R = 5. (b) A schematic representation of the manner in which the chain length
and surface interaction potential impact the free energy change upon tethering.
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is plotted as a function of chain length, N, and is analyzed for
low (ε = 0.0001), intermediate (ε = 0.005), and high (ε = 0.015) val-
ues of the surface interaction parameter between the polymer and
the internal cavity surface; all energy scales are reported in units
of kBT.

The tethering-induced change in free energy (ΔFt) captures
the impact of anchoring the chain end to the nanopore on the
free energy of a polymer for a given N [Fig. S1(b)]. In the weak
surface interaction case [Fig. 2(a), short blue dashed curve], ΔFt
initially increases with increasing chain length, N, reflecting a loss
in conformational entropy upon tethering. This effect is more pro-
nounced in the cases of intermediate (purple long dashed curve) and
strong (red solid curve) surface interaction and can be attributed
primarily to polymer adsorption on the cavity surface. As N con-
tinues to increase, ΔFt goes through a maximum. The subsequent
reduction in ΔFt for increasing N is attributed to increased pressure
from excluded volume interactions, which lead the self-avoiding
walk polymer to organize closer to the cavity surface, thereby facil-
itating the polymer chain ends’ ability to more readily access the
nanopore. This behavior is consistent with prior studies on entropic
barriers that account for excluded volume effects.19 However, in the
case of strong surface interaction [Fig. 2(a), red solid], this decrease
in ΔFt reverses at higher values of N. This trend is attributed
to a steep loss of conformational entropy upon polymer adsorp-
tion on the cavity surface, which is especially significant for longer
chains. As the surface-polymer interaction becomes stronger, the
radially averaged segment density profiles shift from being pri-
marily located in the cavity’s center and away from the surface
to clustering near the surface (Fig. S2). This shift indicates strong
polymer affinity to the cavity surface, which becomes more entropi-
cally challenging to satisfy with increasing N when one chain end is
tethered.

These competing effects influence the kinetics of polymer
translocation through the nanopore by altering the free energy land-
scape. In Fig. 3(a), the free energy profile of the polymer chain, F(m),
as it translocates through the nanopore from cavity 1 (R1 = 5) to
cavity 2 (R2 = 5) is shown for the three surface interaction cases [cal-
culated using Eq. (1)]. For the case with weak interaction strength
ε = 0.0001 (Fig. 3, blue), there is a free energy minimum at m = 50.
This minimum can be attributed to the excluded volume effect;19 the
polymer chain is able to occupy the largest volume by spreading itself
equally between the volume of two cavities. This free energy mini-
mum slows the second half of the translocation process since each
additional translocated segment for m > 50 increases the crowding
of the self-avoiding walk polymer in the second cavity. In contrast,
the free energy profile for the strongly interacting case ε = 0.015
(Fig. 3, red) exhibits a maximum atm = 50. In this case, highly favor-
able surface contact is maximized when the longest possible chain
length is present within a single cavity, leading to very low free ener-
gies at the beginning and end of the translocation profile (m = 0
or m = 100). This implies that spreading of the self-avoiding poly-
mer between the surfaces of the two cavities induces a free energy
penalty. This maximum in the free energy represents a significant
energy barrier to polymer translocation, leading to longer transloca-
tion kinetics. Interestingly, the intermediate interaction case with ε
= 0.005 (Fig. 3, purple) has a relatively featureless free energy pro-
file with no significant energy barrier as the excluded volume effect
is offset by the adsorption effect, essentially creating a “goldilocks”
regime where translocation is not impeded by either mechanism and
therefore translocation occurs the fastest.

These trends in the free energy profile result in a nonmono-
tonic dependence of normalized mean translocation time, τ/τ0, with
increasing surface interaction strength, as shown in Fig. 4. The mean
translocation time is normalized by τ0, which is defined as the

FIG. 3. Free energy profile for translocation of a polymer chain with N = 100 between cavities of radius R = 5. (a) For excluded volume interaction u0 = 0.1, translocating
from cavity 1 to cavity 2 with weak (ε = 0.0001, blue), intermediate (ε = 0.005, purple), and strong (ε = 0.015, red) surface interactions between the polymer and cavity
surface. (b) Schematic illustration of three surface-interaction cases.
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FIG. 4. The normalized mean translocation time, τ/τ0, of a polymer chain of
length N = 100 with excluded volume parameter u0 = 0.1 as a function of surface
interaction potential, ε.

time for an ideal chain (u0 = 0) with very weak surface interaction
(ε = 0.0001) to translocate from cavity 1 to cavity 2. For weak sur-
face interaction strengths (ε < 0.005), τ/τ0 decreases with increasing
ε since the magnitude of the free energy barrier decreases (Fig. 4)
with increasing interaction strength.

However, for higher surface interactions (ε > 0.005), τ/τ0
increases significantly as polymer adsorbs on the cavity surface.
The magnitude of the free energy maximum at m = 50 increases
with increasing ε, leading to significantly slower translocation of the
polymer from cavity 1 to cavity 2.

The effect of excluded volume on this phenomenon is further
explored by considering a range of u0 values (Table I), which cover
the range from a theta (poor) solvent (u0 = 0, χ = 0.5) to a very good
solvent (u0 = 0.5, χ = 0.25). Here, the Flory–Hugging χ parameter
is obtained from the excluded volume using the following relation,
where v0 is the monomer volume:

u0 = v0(1 − 2χ). (15)

When the excluded volume parameter is increased and the
quality of the implicit solvent improves, the polymer expands and
occupies the space within the cavity more uniformly, as is evident
in the expansion of the density curves in Figs. S3 and S4. We find

TABLE I. The values of the Flory–Huggins χ parameter and the radius of gyration
(Rg) for a polymer chain with N = 100 in a cavity of radius R = 5 at five values of the
excluded volume parameter.

Excluded volume,
u0 (b3)

Flory–Huggins
χ parameter

Radius of gyration,
Rg (b)

0a 0.50 4.08
0.03 0.49 4.08
0.1 0.45 4.08
0.3 0.35 5.09
0.5 0.25 5.63
aRg for u0 < 0.1 calculated using ideal scaling; for u0 ≥ 0.1 calculated using good solvent
scaling (see the supplementary material).

that these density shifts are comparable to those reported by Kong
and Muthukumar19 upon increasing excluded volume interactions
in their three-dimensional entropic barrier model, which did not
have any surface interactions between the polymer and cavity sur-
face (Fig. S4). This behavior is attributed to the penalty imposed by
the excluded volume on crowding of polymer in the center of the
cavity or at the inner surface of the cavity, effectively dampening the
effect of surface interactions on polymer density.

This competition between excluded volume and surface inter-
action strength is also apparent in the behavior of τ/τ0 with respect
to the surface interaction parameter, ε (Fig. 5). With no excluded
volume (u0 = 0), there is monotonic dependence of τ/τ0 with ε
(Fig. 5, black solid curve); the surface interaction causes τ/τ0 to
increase with ε as the increasing energy barrier for polymer desorp-
tion from the walls of the first cavity impedes the rate of transloca-
tion into the second cavity. Even at the smallest excluded volume
parameter (u0 = 0.03, dark grey long dashed curve in Fig. 5), how-
ever, we observe nonmonotonic behavior. By introducing excluded
volume effects, a local minimum appears in the translocation free
energy profile, leading to elevated τ/τ0 values even for weak ε. As the
excluded volume parameter increases (Fig. 5, grey curves), a specific
ε value emerges for which the free energy profile flattens, indicat-
ing that adsorption effects counteract the excluded volume effects, as
shown in Fig. 3. For this value of u0 and ε, τ/τ0 = 1 and the translo-
cation rate is at its most rapid, occurring at the same speed as that
for an ideal chain with very low surface-polymer interactions. This
phenomenon indicates that increasing excluded volume effects shift
the adsorption transition for which polymer crowds close to the pore
walls to progressively higher ε values where the better solvent (larger
u0) requires stronger adsorption for the polymer to give up its favor-
able polymer-solvent contacts and adopt a compact shape near the
wall.

To validate this observation, we calculate the adsorption transi-
tion using density profiles. Figure 6(a) shows the average distance
of the polymer from the center of the cavity, calculated from the
tethered polymer density profiles, plotted against ε. By fitting a

FIG. 5. The normalized mean translocation time, τ/τ0, of a polymer chain of length
N = 100 as a function of surface interaction potential, ε, for various values of the
excluded volume parameter u0.
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FIG. 6. (a) The average radial distance from the center of the cavity of a tethered polymer (N = 100) as a function of surface interaction potential for five values of excluded
volume (markers) along with a fitted curve (grayscale lines). (b) The adsorption transition calculated from the fitted inflection points from the average polymer densities (open
diamonds, dotted line) and the surface interaction potential at which the minimum in mean translocation time occurs (solid squares, dashed line) as a function of the excluded
volume parameter. Lines are to guide the eye.

hyperbolic tangent curve to the data, the interaction strength corre-
sponding to the adsorption transition can be identified through the
inflection point. In Fig. 6(b), this inflection point from the hyper-
bolic tangent fit is plotted against u0 to examine the influence of
excluded volume on the adsorption transition (open diamond) and
is compared against the ε value at which the mean translocation time
reaches its minimum where τ/τ0 = 1 (solid square). The two curves
have similar values for the adsorption transition; however, the values
based on the minima in the τ/τ0 curves have a steeper slope, indicat-
ing a stronger dependence on the excluded volume parameter. This
difference in slope could imply that certain excluded volume effects
are not fully captured by the density profiles, or it may stem from the
fitting methodology used in Fig. 6(a).

Next, we explore the kinetics when the two confining cavi-
ties differ in size, focusing on how increasing surface interactions
alter translocation kinetics. Absent surface interactions or excluded
volume effects (i.e., an ideal chain), the polymer translocates more
quickly into larger and more slowly into smaller cavities, consistent
with prior studies.23,26 Entering a smaller cavity requires the poly-
mer to sacrifice conformational entropy, manifesting as a higher free
energy barrier for the process. The introduction of excluded volume
effects amplifies this trend, resulting in slower entry into smaller cav-
ities and faster entry into larger cavities compared to the behavior of
an ideal chain.19

We now consider how surface interactions influence this pro-
cess. The kinetics of infiltration from a small cavity (R1 = 5) to a
larger cavity (R2 = 10) for an excluded volume of u0 = 0.1 is shown
in Fig. 7(a) (yellow triangles). We find that τ/τ0 increases mono-
tonically with increasing ε. At low ε, translocation from a small to
a large cavity occurs more rapidly than ideal chain translocation
between identical cavities, i.e., τ < τ0. This behavior differs from
the symmetric case [R1 = R2 = 5, Fig. 7(a), black circles], repro-
duced from Fig. 5, for which the kinetics is nonmonotonic with

respect to ε and bounded below by the ideal chain translation
time.

This accelerated translocation from small to large cavity is
attributed to the significant entropic gain as the polymer enters the
larger cavity. This reduced confinement results in a negative slope
in the free energy profile, which is distinct from the symmetric case
which cannot have an asymmetric free energy profile (Fig. S5). At
higher surface interaction strengths (ε > 0.007), this rapid translo-
cation regime ends, and τ becomes larger than τ0 as adsorption in
cavity 1 becomes the dominant factor. At these higher interaction
strengths, the polymer can adsorb more readily in the smaller cav-
ity 1 than in the larger cavity 2, reversing the slope of the free energy
profile and significantly slowing down the translocation kinetics into
the larger cavity.

We also consider the case of increasing confinement, for which
the polymer translocates from a larger cavity (R1 = 10) into a smaller
one (R2 = 5), as shown in the bottom schematic in Fig. 7(b). Here,
τ/τ0 also changes monotonically with surface interaction strength
[Fig. 7(a), green squares]. However, the trend is reversed; the kinet-
ics accelerate with increasing ε. At low surface interaction strengths,
τ/τ0 is significantly higher than the cases for equal sized cavities of
reduced confinement upon translocation; the increased confinement
in cavity 2 incurs a substantial entropic penalty upon translocation.
However, τ/τ0 sharply decreases with increasing ε because the larger
cavity 1 offers fewer opportunities for polymer adsorption, whereas
the smaller cavity 2 facilitates polymer adsorption. Uniquely in this
case, increasing surface interaction does not eventually result in a
steep rise in τ/τ0. Rather, τ falls below τ0 at the highest ε values con-
sidered. The observed behavior can again be attributed to a negative
slope of the translocation free energy profile, as high surface inter-
action strengths make it energetically favorable for the polymer to
reside in the smaller cavity. This finding has intriguing implications
for polymer infiltration in highly confined systems and suggests that
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FIG. 7. (a) The normalized mean translocation time, τ/τ0, of a polymer chain of length N = 100 with excluded volume parameter u0 = 0.1 as a function of surface interaction
potential, ε, for translocation from a cavity of radius R1 = 5 to another of R2 = 5 (black circles), translocation from a cavity of R1 = 5 to one of R2 = 10 (yellow triangles) and
translocation from a cavity of R1 = 10 to one of R2 = 5 (green squares). (b) Schematic representation of each translocation case.

by designing a system with strong interactions between the polymer
and the confining surface, polymer infiltration into even extremely
confined geometries can be facilitated.

IV. CONCLUSIONS
In this work, we have studied the effect of surface–polymer

interactions, solvent quality, and confinement on the kinetics of
polymer translocation between two circular cavities through a sin-
gle segment-width nanopore. Using the entropic barrier model, we
have identified a “goldilocks” regime where surface interactions and
excluded volume effects synergize for the fastest translocation kinet-
ics. As the quality of the solvent improves, the optimal strength of
surface-polymer interactions for the fastest translocation kinetics
increases since better solvent quality shifts the adsorption transition
to higher surface-polymer interaction strengths. Additionally, our
results reveal how varying cavity sizes impact translocation kinet-
ics. Translocation from a smaller to a larger cavity is facilitated by
weakening surface-polymer interaction due to entropic gains. Con-
versely, a polymer that moves from a larger to a smaller cavity
has faster translocation kinetics for stronger surface interactions,
a counterintuitive result that could facilitate polymer infiltration
into highly confined systems. We note that the results presented
herein assume that the friction between the monomers will not
appreciably change during adsorption to the pore wall; it is well-
known that strong adsorption can lead to a significant reduction
in the dynamics of polymers near a wall,35,36 which may further
increase the translocation time at large ε. Our results provide impor-
tant insights and guidance in fabricating nanocomposite films via
SIP and designing catalytic supports or separation membranes to

facilitate polymer transport and thus eliminate possible transport
limitations.

SUPPLEMENTARY MATERIAL

See the supplementary material for the following: details
regarding the radius of gyration (Rg) calculations; schematics of
the coordinate system used to analyze bead interactions within the
cavity; schematics of tethered vs free chains; details concerning the
untethered chain-surface interactions; untethered chain response to
solvent quality and tethered chain response to excluded volume;
and details regarding free energy profiles for chains translocating
between different sized cavities.
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