

1 Effects of experimentally elevated virus abundance on soil carbon cycling across varying
2 ecosystem types

3

4 Ernest D Osburn^{1*}, Sara G Baer², Sarah E Evans³, Steven G McBride⁴, Michael S Strickland⁵

5 ¹ Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA

6 ²Kansas Biological Survey & Center for Ecological Research and Department of Ecology &
7 Evolutionary Biology, University of Kansas, KS, USA

8 ³W.K. Kellogg Biological Station, Department of Integrative Biology Ecology, Evolution and
9 Behavior Program, Michigan State University, Hickory Corners, MI US

10 ⁴Department of Biology, Radford University, Radford, VA, USA

11 ⁵Department of Soil and Water Systems, University of Idaho, Moscow, ID, USA

12

13 *Corresponding author: e.osburn@uky.edu

14

15 Keywords: microbial community, phage, carbon use efficiency, biogeochemistry, respiration, soil
16 organic matter

17

18 Competing Interests: The authors declare no competing interests.

19

20

21

22

23 Abstract

24 Viruses are abundant and diverse members of soil communities, but their influences on
25 soil biogeochemical cycling are poorly understood. To assess the potential for viruses to
26 influence soil carbon (C) cycling in varying environmental contexts, we sampled soils from four
27 contrasting ecosystem types across the continental United States: conifer forest, broadleaf
28 deciduous forest, tallgrass prairie, and agricultural cropland. We then experimentally increased
29 virus abundance in the soils by inoculating microcosms with virus concentrates isolated from the
30 same original soils and incubated the soils for 14 days. The virus-treated conifer forest and
31 prairie soils respired significantly less C (14 μ g and 10 μ g less C per gram of soil, respectively)
32 over the course of the 14-day incubation compared with control soils, though the effects were
33 proportionally small in magnitude (3% and 6% reductions in cumulative respiration,
34 respectively). Following the initial 14-day incubation, we conducted a ^{13}C -glucose tracer
35 incubation. In contrast to the initial incubation, after glucose addition we observed effects on
36 respiration only in the agricultural soil, where respiration of soil organic matter-derived C nearly
37 doubled in the virus-treated soils compared with control soils. We also observed overall reduced
38 incorporation of ^{13}C into microbial biomass (*i.e.*, lower growth yield) and lower carbon use
39 efficiency on average in all virus-treated soils. These results demonstrate that viruses can
40 influence overall microbial metabolism but with different aggregate effects on soil C balance
41 across soil types depending on soil physicochemical properties. Overall, our study demonstrates
42 that viral influences on soil microorganisms can manifest in altered fates of soil C, with either
43 increased or decreased respiratory C loss depending on ecosystem type.

44

45

46 1. Introduction

47 Viruses are ubiquitous inhabitants of all natural ecosystems and are the most abundant
48 biological entities on the planet (Kuzyakov and Mason-Jones, 2018). Natural virus populations
49 perform many ecological functions; they are obligate intracellular parasites and therefore
50 regulate the abundance and diversity of their hosts (Weinbauer and Rassoulzadegan, 2004;
51 Barnett and Buckley, 2023; Quirós et al., 2023) as well as rates of host-driven biogeochemical
52 cycles such as the carbon (C) cycle (Kuzyakov and Mason-Jones, 2018). The ecological role of
53 viruses is particularly well-resolved in marine ecosystems, where phages (viruses that infect
54 prokaryotes) kill 20 – 40% of bacteria daily, returning massive amounts of dissolved organic
55 matter (DOM) to the water column (Suttle, 2007). This phenomenon, known as the ‘viral shunt’,
56 is acknowledged as a major player in marine C and nutrient cycling. Similar mechanisms likely
57 exist in other environments like soils, though the extent to which viruses influence soil
58 biogeochemical cycling is unknown.

59 Though the influences of viruses on soil biogeochemistry are currently unclear, there is
60 growing interest in the potential ecological roles played by viruses in terrestrial ecosystems
61 (Williamson et al., 2017; Kuzyakov and Mason-Jones, 2018; Emerson, 2019; Sokol et al., 2022).
62 Indeed, many studies have emerged in recent years that investigate the abundance, diversity, and
63 composition of virus communities in various soil contexts. These studies have demonstrated that
64 both the abundance of viruses and the frequency of phage infection of bacterial cells are very
65 high in soil, often exceeding that observed in aquatic environments. For example, phages
66 typically outnumber prokaryotes more than 10-fold in soils (Cobián Güemes et al., 2016), while
67 30-100% of prokaryotic cells in soils are infected with phages at any given time, depending on
68 the environment (Bowatte et al., 2010; Takahashi et al., 2011). Other studies have demonstrated

69 that numerous environmental factors can influence the structure of soil virus communities,
70 including soil pH (Lee et al., 2022), soil depth (Liang et al., 2019, 2020), soil moisture (Wu et
71 al., 2021), vegetation cover (Narr et al., 2017; Roy et al., 2020), and agricultural management
72 regime (Duan et al., 2022). However, most of these existing studies are observational in nature
73 and focus on *responses* of virus communities to changing soils rather than the *effects* of viruses
74 on soil functions (e.g., Williamson et al., 2005; Emerson et al., 2018; Trubl et al., 2018; Santos-
75 Medellín et al., 2023). As our knowledge of the structure of soil virus communities increases
76 rapidly, we need more studies that quantify the implications of these changes for soil
77 biogeochemical fluxes.

78 The high abundance and infection rates of viruses commonly observed in soil highlight the
79 potential for viruses to influence microbial host populations in soil, with implications for host-
80 driven biogeochemical fluxes. However, the type and magnitude of the effects may depend upon
81 the proportion of soil viruses in different virus life cycles. For example many soil viruses have
82 been shown to be in the lysogenic cycle, where phages replicate by incorporating into the host's
83 genome (Williamson et al., 2007). Phages in the lysogenic cycle do not kill their host, but they
84 do induce stress responses upon infection and can alter host metabolism by incorporating phage-
85 encoded genes into their host's genome (*i.e.*, phage conversion) (Emerson et al., 2018; Trubl et
86 al., 2018). Viruses can also lyse hosts via lytic replication, preventing further host metabolism
87 and releasing the host's cytoplasmic contents into the soil matrix. Phages in the lysogenic cycle
88 can also produce this effect if changing environmental conditions (e.g., soil rewetting or resource
89 pulses) trigger them to enter the lytic cycle (Van Goethem et al., 2019). Studies using stable
90 isotope probing have demonstrated transfer of host-derived C into soil viral populations,
91 providing direct evidence that viral lysis occurs in soil communities (Starr et al., 2021; Barnett

92 and Buckley, 2023). These virus life cycles, in turn, represent specific mechanisms by which
93 viruses might influence soil biogeochemical cycling, though it remains unclear whether viruses
94 detectably impact pools and fluxes of soil C and nutrients.

95 Direct evidence of virus influences on soil biogeochemical cycling will require experimental
96 manipulation of rates of viral infection in soil. A few studies have attempted to do this, though
97 with contrasting results. These studies experimentally manipulated virus abundance via
98 inoculation of soils with concentrated natural virus communities and found that increased viral
99 abundance in soil can alter the structure of bacterial communities (Braga et al., 2020) and can
100 stimulate microbial respiration (Albright et al., 2022; Tong et al., 2023). In contrast, other studies
101 found that higher virus abundance can suppress microbial activity (Wei et al., 2021; Liang et al.,
102 2024), which has also been observed in studies where viral lysis was chemically induced in soils
103 (Heffner et al., 2023). These results demonstrate that virus effects can be qualitatively different
104 among studies, potentially related to the differences in soil properties or among experimental
105 conditions. Further, most of the prior experimental studies manipulate virus abundance using
106 sterilization-inoculation procedures (Braga et al., 2020; Albright et al., 2022; Tong et al., 2023),
107 and these highly artificial systems may not function comparably to natural soils. Thus, the
108 presence, direction, and magnitude of virus effects on biogeochemical cycling in natural soil
109 ecosystems all remain unresolved.

110 The goal of this study was to investigate the influences of viruses on C cycling in intact soils
111 from four contrasting ecosystem types: conifer forest, broadleaf deciduous forest, tallgrass
112 prairie, and agricultural cropland. We assessed the potential for viruses to influence C cycling in
113 those soils by increasing virus abundance in the soils via inoculation with virus concentrates
114 extracted from the same original soils. After adding the concentrates, we measured respiratory

115 loss of C from the soils for 14 days and then conducted a ^{13}C -glucose tracer addition and
116 incubation to assess microbial-mediated cycling of labile C. We hypothesized that 1) the virus
117 addition treatments would result in reduced microbial carbon use efficiency due to stress
118 responses induced in microbial hosts, 2) that reduced microbial carbon use efficiency would
119 increase respiratory losses of C from the soils, and 3) that changes in microbial C metabolism
120 would be accompanied by community-level changes in soil microbiota. Specifically, we
121 predicted that the virus additions would increase community evenness due to disproportionately
122 large effects of viruses on the most abundant microbial community members (Van Goethem et
123 al., 2019).

124 2. Materials and Methods

125 2.1 Soil sampling and characterization

126 Soils were collected from four locations across the continental United States at sites
127 representing wide variation in vegetation types and soil properties. Soil from a conifer forest
128 ecosystem dominated by Douglas fir (*Pseudotsuga menziesii*) and western red cedar (*Thuja*
129 *plicata*) was collected from the University of Idaho experimental forest in northern Idaho. Soil
130 from a tallgrass prairie ecosystem dominated by native, perennial warm-season grasses, e.g., big
131 bluestem (*Andropogon gerardii*) and Indiangrass (*Sorghastrum nutans*), was collected at the
132 Konza Prairie Biological Station near Manhattan, Kansas. Soil from a mixed deciduous forest
133 ecosystem dominated by red maple (*Acer rubrum*) and red oak (*Quercus rubra*) was collected in
134 southwest Virginia. Agricultural cropland soil was collected from experimental plots at the
135 Kellogg Biological Station in Michigan with a corn-soybean-wheat crop rotation and conventional
136 tillage and fertilizer inputs. All site and soil information are provided in Supplementary Table S1.
137 In the two forest sites, O-horizon material was removed from the soil surface prior to sampling.

138 In each site, soil was collected to 10 cm depth from three locations with representative vegetation
139 (three replicate plots in the case of the agricultural site) and then shipped on ice to the University
140 of Idaho. The soils from each site were combined into a single composite sample, sieved at 2
141 mm, homogenized, and stored at 4°C for 4 – 8 weeks prior to the start of the experiment. The use
142 of a single composite sample per site allowed us to apply a single virus inoculum to every
143 replicate experimental unit from each site as opposed to generating a unique virus inoculum for
144 each experimental unit, which would not have been feasible with our low-throughput virus
145 concentration method (see experimental design below).

146 Prior to the start of the experiment, we measured several physicochemical properties of the
147 four soils. We measured the moisture content by mass loss after drying at 105°C and determined
148 water-holding capacity (WHC) by wetting the soils to field capacity and then drying at 105°C.
149 Soil pH was determined from 10 g of soil in a 1:1 soil:deionized water slurry with a Mettler
150 Toledo sevencompact pH meter (Metter Toledo, Columbus, OH, USA). We determined the
151 extractable C and N content of the soils by extracting 6 g of soil with 0.05M K₂SO₄ (1:5
152 soil:solution ratio) while microbial biomass C was determined using a liquid chloroform
153 extraction (Fierer and Schimel, 2002). Extracts were analyzed for dissolved organic C and total
154 dissolved N using a Shimadzu TOC/TNM-L (Shimadzu Corporation, Kyoto, Japan).

155 2.2 Experimental Design

156 We experimentally increased viral abundance in the soil communities by inoculating them
157 with virus concentrates extracted from the same original soils. We extracted the viruses by
158 adding 500 mL of autoclaved and chilled (4°C) saline magnesium buffer (10 mM MgSO₄, 100
159 mM NaCl, and 50 mM Tris-Cl, pH 7.5) to 500 g fresh soil and shaking on a reciprocal shaker on
160 low speed for 30 minutes. We used a saline magnesium buffer because these solutions are

161 commonly used in culture-based virology studies for the purpose of maintaining the viability of
162 phage particles. We centrifuged the slurries for 20 min at 4,000 rpm in a 4°C centrifuge to pellet
163 soil particles and then decanted the supernatant containing microbial cells and virus particles. To
164 maximize recovery of virus particles from the soils, we re-extracted the soil pellets twice for a
165 total of three extractions (Williamson et al., 2005), resulting in a total of ~1.5 L of extract per
166 soil. To remove remaining particulates from the extracts, we poured them through a sterilized 53
167 μm sieve. We then isolated and concentrated the virus particles in the extracts using a two-step
168 tangential-flow filtration (TFF) method, similar to prior studies (Braga et al., 2020; Tong et al.,
169 2023). First, microbial cells were removed by circulating the extracts through a Pellicon® XL50
170 capsule with a 0.22 μm pore-size membrane (MilliporeSigma, Burlington, MA, USA). Then,
171 virus-sized particles were concentrated in the filtrate using a Pellicon® XL50 capsule with a PES
172 100 kDa membrane. We recirculated the extracts through the capsules until 100 mL remained in
173 the first retentate fraction (containing concentrated microbial cells) and 50 mL remained in the
174 second retentate fraction (containing concentrated virus-sized particles). The filtration apparatus
175 was maintained at < 10 psi for the duration of the process to maintain the integrity of the virus
176 particles. The TFF capsules were sanitized according to the manufacturer's instructions between
177 samples. The virion concentrates were stored at 4°C and applied to soil microcosms within 72 h
178 of the initial extraction. Prior to applying the concentrates to soil microcosms, we screened them
179 for bacterial contamination using two methods, both of which showed no evidence of
180 contamination in the concentrates. First, we visually examined the virus inocula using
181 epifluorescence microscopy (with the main purpose of quantifying the virus-like particles, see
182 below) and observed no evidence of intact cells. Second, we plated the inocula onto LB agar and
183 observed no microbial growth.

184 For the experiment, twelve microcosms of each soil type were established by adding 30 g dry
185 weight equivalent of soil to autoclaved 473 ml glass mason jars. We adjusted the soils to 65%
186 WHC with sterile water, loosely capped the jars, and pre-incubated the soils in the dark at 20°C
187 for one week prior to adding treatments. Approximately 48 hours prior to establishing the
188 experimental treatments, we removed the lids from the microcosms and allowed them to dry
189 down such that the added treatments would return the soils to 65% WHC. Microcosms were
190 randomly assigned to receive either the live virion concentrate treatment (hereafter, the ‘virus’
191 treatment) or the control treatment. To apply the virus treatment, we added 3 mL of the virion
192 concentrate originating from the same soil to the microcosms, which approximately doubled the
193 abundance of extractable virions in the 30 g of soil: the initial 1:3 soil:buffer extract was
194 concentrated 30-fold by TFF (1500 mL/50 mL = 30), therefore each 1 mL of concentrate
195 contained the extractable virion-equivalent of 10 g of soil ($1 \text{ g} : 3 \text{ mL} \times 30 = 10 \text{ g/mL}$). We used
196 epifluorescence microscopy to quantify the virus-like particle (VLP) concentration of the virion
197 inoculum from each soil (see section 2.4 below). VLP concentrations in the inocula varied
198 widely among the four soils and were as follows: $8.84 \times 10^7 \text{ VLPs mL}^{-1}$ (deciduous forest), 3.42
199 $\times 10^8 \text{ VLPs mL}^{-1}$ (agricultural soil), $7.44 \times 10^8 \text{ VLPs mL}^{-1}$ (prairie soil), and $6.24 \times 10^9 \text{ VLPs}$
200 mL^{-1} (conifer forest). This variation reflects differences in the abundance and/or extractability of
201 viruses among the different soil types (Williamson et al., 2013).

202 For control microcosms, we added 3 mL of virion concentrate that had been autoclaved twice
203 for 30 min at 121°C to destroy the viruses. In a preliminary trial, we also included soils that
204 received sterile saline magnesium buffer, which we found to be indistinguishable from soils that
205 received the autoclaved control inocula (Supplementary Fig. S1). Therefore, for the main
206 experiment reported here, we only included the autoclaved controls, which are more directly

207 comparable to the live virus-treated soils. All treatments were added dropwise to the surface of
208 the soil. Each treatment was replicated 6 times for a total of 48 microcosms (2 virus treatments \times
209 4 soil types \times 6 replicates = 48). Microcosms were incubated at 65% WHC at 20°C for 14 days.
210 This short time frame was intended to assess immediate effects of the virus additions. On days 1,
211 2, 3, 5, 7, 10, and 14, we measured respiration in each microcosm using a static incubation
212 technique (Bradford et al., 2008). Briefly, on each measurement day we capped the jars, flushed
213 CO₂ from the jars' headspace using CO₂-free air and then measured CO₂ concentration in the
214 headspace gas after incubating for 24 hours using a LI-7000 infrared gas analyzer (LI-COR
215 Biosciences, Lincoln, NE, USA). Cumulative respiration for each microcosm was calculated by
216 integrating under the time series curves.

217 2.3 ¹³C-glucose tracing

218 After the initial 14-day incubation, we assessed microbial C cycling in the microcosms using
219 ¹³C-glucose tracing. We added a 99 atom% glucose-C tracer (Sigma-Aldrich product no. 660663)
220 to the microcosms at a rate of 5 μ g C per gram of soil, which was calculated to be less than 20%
221 of the microbial biomass C pool across all soils (Supplementary Table S1) and was intended to
222 minimize effects of the tracer on microbial activity. We added the ¹³C glucose in 2 mL of solution
223 and gently mixed the microcosms with a metal spatula. ¹³C glucose was added to five replicates
224 from each treatment, with one replicate designated as a natural abundance control, which
225 received 2 mL of sterile water. After adding the tracer, we immediately capped the jars, flushed
226 the headspace with CO₂-free air, and incubated the microcosms at 20°C for 24 h. After 24 h we
227 measured CO₂ concentration in the headspace of the jars (see above) and stored a sample of
228 headspace gas in pre-evacuated exetainer vials, which were later analyzed for ¹³CO₂-C on a

229 Thermo Scientific GasBench II coupled to a Thermo Finnigan Delta Plus XL isotope-ratio mass
230 spectrometer at the UC Davis stable isotope facility.

231 After gas sampling, we immediately froze a subsample of each microcosm soil at -80°C for
232 later microbial and viral analyses. With the remaining soil from each microcosm, we extracted
233 and analyzed extractable C and N and microbial biomass C as described in section 2.1 above. For
234 ^{13}C analysis of the extracts, we acidified the extracts with HCl to remove inorganic C,
235 concentrated the liquid down to 1 mL in glass vials in a 60°C oven, and then pipetted 500 μL of
236 the concentrated samples into an Ag capsule in four successive 125 μL aliquots, drying at 60°C
237 between aliquots. We then secondarily encapsulated the samples in Sn and measured them for
238 ^{13}C on an Elementar vario MICRO cube elemental analyzer (Elementar Analysensysteme
239 GmbH, Langenselbold, Germany) interfaced to a Sercon Europa 20-20 IRMS (Sercon Ltd.,
240 Cheshire, United Kingdom) at the UC Davis stable isotope facility. We used the $^{13}\text{CO}_2\text{-C}$ data to
241 partition respired C between the glucose tracer and native soil organic matter using a mass
242 balance equation (Morrissey et al., 2017). Isotope composition of the dried extracts was used to
243 calculate ^{13}C incorporation into microbial biomass (*i.e.*, microbial growth yield), carbon use
244 efficiency (CUE) of the glucose tracer and biomass turnover rates using previously published
245 methods (Hagerty et al., 2014; Geyer et al., 2019). All equations for the ^{13}C analyses are
246 provided in the Supplementary Information.

247 2.4 Microbial and viral analyses

248 DNA was extracted from 0.25 g soil using the Qiagen Powersoil Pro kit (Qiagen Company,
249 Hilden, Germany) and quantified using a Qubit fluorometer (Thermo Scientific Inc., Waltham,
250 MA, USA). We measured total prokaryote abundance in the soils by qPCR amplification of the
251 16S rRNA gene using the 338F/518R primer pair (Fierer et al., 2005) and characterized

252 prokaryotic communities by amplicon sequencing of the V4 region of the 16S rRNA gene using
253 the 515F/806R primer pair (Apprill et al., 2015; Parada et al., 2016). Complete information on
254 qPCR and PCR protocols is provided in the Supplementary Information. Amplicons were
255 sequenced on the Illumina MiSeq platform with 2×250 bp paired end reads. Raw sequences are
256 deposited under NCBI accession number PRJNA1077929. For all downstream analyses, we only
257 used the higher quality forward reads with no truncation of the reads. We processed the raw
258 sequences using the DADA2 pipeline (Callahan et al., 2016) using the default parameters except
259 that we increased the ‘maxEE’ parameter to 5 to increase the number of sequences that passed
260 through the initial quality filter. We assigned taxonomy to the resulting amplicon sequence
261 variants (ASVs) using the IDTAXA algorithm (Murali et al., 2018) trained on the SILVA
262 database (version 138.1) (Quast et al., 2013). We filtered out ASVs only occurring in one sample
263 and rarefied to 5722 sequences per sample to account for variation in sequence depth among
264 samples. While this sequence depth is lower than ideal, rarefaction curves indicated that species
265 accumulation in all samples had plateaued by that point, indicating that the communities were
266 reasonably well sampled (Supplementary Fig. S2). As metrics of prokaryotic alpha diversity, we
267 used the Shannon, Simpson, and Pielou’s evenness indices.

268 We enumerated the abundance of virus-like particles (VLPs) in the soils using
269 epifluorescence microscopy. We first weighed 0.5 g soil into 2 mL tubes, added 1.5 mL of sterile
270 4°C saline magnesium buffer, and vortexed the tubes on high speed for 20 minutes. Tubes were
271 then centrifuged at 5000 rpm for 20 minutes to pellet soil particles. We filtered the supernatants
272 through 0.22 μ M PES syringe filters to remove microbial cells and then 1:10 diluted the samples
273 with sterile water. 1 mL of diluted sample was then filtered through a 25 mm diameter 0.02 μ M
274 pore-size Whatman anodisc filter and stained in the dark for 15 minutes with 2 \times SYBR gold

275 (Invitrogen, Waltham, MA, USA). Stained filters were mounted onto glass slides with antifade
276 solution and visualized with a Nikon Ti-E confocal microscope at 1000 \times magnification using an
277 excitation wavelength of 488 nm. We captured 10 digital images of each filter and enumerated
278 VLPs in each image using FIJI (Schindelin et al., 2012). For enumeration of VLPs in the initial
279 virus concentrates, we 1:100 diluted the concentrates in sterile water and then 0.02 μ M-filtered,
280 stained, and visualized the samples as described above.

281 2.5 Statistical analyses

282 Statistical analyses were performed in R (R Core Development Team, 2019). To assess the
283 respiratory responses to the virus treatments among the soils we used linear mixed models in the
284 lme4 R package (Bates et al., 2019) with ‘virus treatment’, ‘soil type’, and ‘measurement day’ as
285 fixed effects and ‘jar’ as a random effect, which accounts for repeated measurement of the same
286 jars over time. To assess pairwise differences between virus treatments within each soil type on
287 each measurement day, we used the ‘contrast’ function (Tukey method) in the emmeans R
288 package (Lenth et al., 2019). We assessed assumptions of normality of the residuals of the
289 models using Shapiro-Wilk tests and when deviation from normality was observed, we used
290 generalized linear mixed models with gamma distribution and log-link function. For variables
291 measured at the end of the experiment, we used linear models with ‘virus treatment’ and ‘soil
292 type’ as factors. We assessed the normality of the residuals of the models and conducted pairwise
293 comparisons within soil types as described above. To determine effects of the treatments on
294 bacterial ASV composition, we used PERMANOVA in the vegan R package (Oksanen et al.,
295 2019) with Bray-Curtis dissimilarities. To identify specific bacterial ASVs within each soil type
296 that responded to the virus treatments, we conducted differential abundance analysis using

297 Deseq2 (Love et al., 2014). All data and analysis scripts are available on figshare:

298 <https://doi.org/10.6084/m9.figshare.25723785.v1>.

299 3. Results

300 3.1 Soil physicochemical properties

301 The four soils used for the microcosm experiment had dramatically different
302 physicochemical properties (Supplementary Table S1). For example, the deciduous forest soil
303 substantially more extractable organic C (49% – 374% higher) and total extractable N (46% –
304 149% higher) than any of the other soils. However, the deciduous forest soil was also highly
305 acidic (pH 3.76), while the other soils had pH values of 5.93 (agricultural soil), 6.2 (conifer
306 forest), and 7.34 (prairie soil). Another notable difference was that the agricultural soil had more
307 than 3-fold lower microbial biomass C than any of the other soils. All physicochemical data is
308 reported on Supplementary Table S1.

309 3.2 Effects on soil respiration and soil C and N pools

310 To determine the effects of the virus treatments on soil respiratory C loss, we measured
311 respiration for 14 days after adding the virus concentrates to the microcosms. Respiration
312 generally declined over the course of the incubation and was dramatically different among the
313 different soils, with the highest respiration rates observed in the two forest soils and the lowest in
314 the agricultural soil (Fig. 1). We also observed effects of the virus treatments on soil respiration
315 dynamics in some but not all soils, resulting in a significant soil type \times virus treatment
316 interaction ($\chi^2 = 7.9, p = 0.048$, Fig. 1). The agricultural and deciduous forest soils exhibited no
317 detectable respiratory responses to the virus treatments during the initial 14-day incubation,
318 while the virus-treated conifer forest and prairie soils had small but significant reductions in
319 respiration compared with controls during the middle and late stages of the incubation (Fig. 1).

320 Specifically, on days 5 and 10, the virus-treated prairie soils resired 1 – 1.3 µg less C per gram
321 of soil compared with control soils (~10% reduction in respiration, Fig. 1) while on days 7 and
322 10 of the incubation, the virus-treated conifer forest soils resired 1.7 – 2 µg less C per gram of
323 soil compared with control soils (~5% reduction in respiration, Fig. 1). The results for
324 cumulative respiration were similar, with an average of 10 µg and 14 µg less respired C per gram
325 of soil for the virus-treated prairie and conifer forest soils, respectively (Supplementary Fig. S3).
326 In contrast to the respiration results, we did not observe significant effects of the virus treatments
327 on soil microbial biomass C, extractable organic C, or total extractable N pools measured at the
328 end of the experiment in any of the soils (Supplementary Table S2).

329 3.3 ^{13}C tracer incubation

330 To assess the effects of the virus treatments on the cycling of labile C, we conducted a ^{13}C
331 glucose tracing incubation. Addition of the tracer stimulated microbial activity in all soils (Fig.
332 1), possibly due to the added glucose and/or to the added moisture and physical mixing. In the
333 prairie, conifer forest, and deciduous forest soils, respiration was not affected by the virus
334 treatments following addition of the glucose tracer (Fig. 1). In contrast, in the agricultural soil,
335 we observed 1.8-fold higher total respiration in the virus-treated soils compared with the control
336 soils after adding the tracer (Fig. 1). Analysis of the $^{13}\text{CO}_2$ -C data indicated that >90% of the
337 additional respired C in those soils originated from native soil organic matter (SOM) (Fig. 2),
338 though respiration of glucose-C was also significantly higher in those soils (Supplementary Fig.
339 S4). This indicates that priming of SOM decomposition was accelerated in the virus-treated
340 agricultural soils after the glucose addition.

341 Analysis of ^{13}C in the soil extracts showed no differences in ^{13}C in the extractable organic C
342 pool (Supplementary Fig. S5) but showed a clear main effect of virus treatment on ^{13}C

343 accumulation in microbial biomass, *i.e.*, microbial growth yield (Fig. 3). Specifically, microbial
344 growth yield was 20% lower on average in the virus-treated soils ($\chi^2 = 11.7, p < 0.001$), though
345 pairwise differences were only significant for the conifer forest soil (Fig. 3). Similarly, CUE
346 exhibited a clear main effect of virus treatment, where CUE was ~6% lower in the virus-treated
347 soils on average ($F = 17.4, p < 0.001$), with significant pairwise differences in both the conifer
348 forest and agricultural soils (Fig. 4). CUE was generally very high in our experiment (though
349 notably different among soil types, Fig. 4), which reflects the easily assimilable nature of glucose
350 and the small quantity of tracer we added (Islam et al., 2023). We used the respiration, CUE, and
351 microbial biomass C values to estimate microbial biomass turnover rates and observed a
352 significant soil type \times virus treatment interaction ($\chi^2 = 20.4, p < 0.001$), where the virus-treated
353 agricultural soils had ~2.3-fold higher estimated biomass turnover and no significant differences
354 for any of the other soils (Supplementary Fig. S6).

355 3.4 Viral and microbial analyses

356 To identify effects of the virus treatments on soil bacterial communities we conducted qPCR
357 and amplicon sequencing. We did not detect effects of the virus treatments on 16S rRNA gene
358 abundance in any of the soils (Supplementary Fig. S7). The 16S rRNA gene amplicon
359 sequencing data revealed that prokaryotic ASV community composition was dramatically
360 different among the four soils (Fig. 5), as were the relative abundances of the dominant
361 prokaryotic phyla (Supplementary Fig. S8), though all communities were generally dominated
362 by Proteobacteria (30% of all sequences), Actinobacteriota (26% of all sequences),
363 Acidobacteriota (8% of all sequences), Verrucomicrobiota (7% of all sequences) and Firmicutes
364 (6% of all sequences). However, there were no effects of the virus treatments on prokaryotic
365 ASV community composition (Fig. 5). This held true when analyzing all samples from all soil

366 types together (Fig. 5) and when analyzing the four soils separately (Supplementary Fig. S9). In
367 line with the community-wide analyses, Deseq2 did not reveal any 16S rRNA gene ASVs that
368 were differentially abundant between the virus treatments in any of the soils. We also did not
369 observe effects of the viruses on alpha diversity metrics (Shannon, Simpson, Pielou's evenness)
370 in any of the soils (Supplementary Table 3).

371 In contrast to the bacterial community results, we did observe effects of the virus treatments
372 on VLP abundance. Specifically, we detected a significant main effect of virus treatment ($\chi^2 =$
373 5.5, $p = 0.019$, Fig. 6), with microcosms receiving the virus concentrates having \sim 18% higher
374 VLP abundance on average across all soils. However, we did not detect pairwise differences in
375 VLP abundance between the virus treatments within any individual soils (all $p > 0.05$, Fig. 6).
376 Treatment effects were stronger when considering virus:prokaryote abundance ratios, i.e., ratios
377 of VLP abundance to 16S rRNA gene abundance. While these ratios cannot be interpreted as true
378 virus:prokaryote ratios due to the different enumeration methods (microscopy vs. qPCR), they do
379 provide a relative metric of the responses of viral vs. microbial abundance to our treatments. We
380 detected a significant main effect of the virus treatments on VLP:16S ratios ($\chi^2 = 8.3$, $p = 0.003$,
381 Supplementary Fig. S10), with virus-treated microcosms having 24% higher VLP:16S ratios
382 across all soils. Further, we detected significant pairwise differences in VLP:16S between virus
383 treatments in both the agricultural soil (25% higher VLP:16S in the virus-treated microcosms)
384 and in the conifer forest soil (31% higher VLP:16S in the virus-treated microcosms)
385 (Supplementary Fig. S10). The same trend was evident in the prairie soils, though the difference
386 was not statistically significant (Supplementary Fig. S10).

387 4. Discussion

388 Given the spectacularly high abundance of soil viruses, the dearth of knowledge regarding
389 their ecological roles represents a fundamental gap in our understanding of soil ecology
390 (Kuzyakov and Mason-Jones, 2018). Though our knowledge of soil virus ecology is limited,
391 attention being paid to soil viruses is growing (Williamson et al., 2017; Emerson, 2019) and
392 emerging research demonstrates the potential for viruses to have ecosystem-scale effects on soils
393 (Braga et al., 2020; Albright et al., 2022; Tong et al., 2023; Liang et al., 2024). Our study
394 contributes to this growing body of research by providing experimental evidence that viruses can
395 alter soil microbial community metabolism, including reductions in both microbial growth yield
396 and carbon use efficiency. Further, we show that those virus-mediated changes in microbial
397 metabolism can manifest in changes to the aggregate C balance of soils, though the respiratory
398 responses to increased viral loads were sometimes small in magnitude and the direction of the
399 responses varied among soil types.

400 Here, we increased virus abundance in intact soils above background levels by adding natural
401 virion concentrates to the soils. After entering the soil, there are multiple possible fates of the
402 added virions. Added virions may simply decompose if they do not encounter a host or if they
403 were damaged in the extraction/filtration process. Alternatively, virions might infect a new host,
404 which will likely result in increased physiological stress in soil microorganisms (Flores-Kim and
405 Darwin, 2016). We hypothesized that increased stress, in turn, would manifest in reduced CUE
406 of the microbial communities. Supporting this hypothesis, we observed a consistent reduction in
407 microbial growth yield and CUE in the virus-treated soils. The reduced microbial growth yield
408 and CUE we observed is consistent with work from marine ecosystems, which has demonstrated
409 reduced bacterial growth efficiency and growth yield in association with the marine viral shunt
410 (Bonilla-Findji et al., 2008; Motegi et al., 2009). However, our results are notably different from

411 another study in soils that also investigated microbial CUE following virus additions, which
412 found that virus additions increased CUE (Tong et al., 2023). That study, however, measured
413 CUE using an extracellular enzyme stoichiometry method, which is not comparable to the
414 isotope tracing method used in this study (Schimel et al., 2022). Because of this difference, the
415 studies might be difficult to compare directly, though this does highlight an important
416 inconsistency that should be addressed by future research. One possible reason for the
417 discrepancy is that, unlike Tong et al., our study measured CUE following addition of a labile
418 resource (glucose), which might have triggered viral processes that do not occur as frequently
419 under baseline conditions, *e.g.*, lytic replication. Alternatively, it is possible that viral lysis could,
420 in fact, increase CUE in some situations, potentially due to the increased availability of high-
421 quality C from newly lysed microbial necromass. Studies that use ^{18}O isotope tracing to measure
422 microbial efficiency both with and without labile C additions could potentially resolve this
423 discrepancy (Geyer et al., 2019).

424 We also hypothesized that the physiological responses of microbial communities would be
425 accompanied by shifts in microbial communities, but we did not observe any changes in 16S
426 rRNA gene amplicon profiles of the soils. No evident community response could be due to relic
427 DNA in the soil, which can obscure detection of microbial responses over short time scales
428 (Carini et al., 2020), especially if effect sizes are small (Kittredge et al., 2021). This suggests that
429 any effects of our virus treatments on microbial community composition, if present, may have
430 been small in magnitude. If true, this would also indicate that the changes in soil C cycling we
431 observed are probably attributed to changes in the physiological state of the soil microorganisms
432 rather than large changes in the composition of the communities. Alternatively, because rates of
433 microbial mortality may have been high in our experiment (with proportionally high

434 accumulations of relic DNA), it is also possible that our treatments could have obscured larger-
435 magnitude changes in community composition compared with other studies. Indeed, prior studies
436 have linked increased phage abundance to higher proportions of relic DNA in soil (Wei et al.,
437 2021). Future studies that use relic DNA removal methods prior to characterizing communities
438 could assess these possibilities. We also note that our study only would have detected responses
439 of abundant taxa, given the somewhat limited sequence depth in our analysis. While our dataset
440 is likely missing many rare taxa, we reasoned that since our study was focused on broad C cycle
441 processes, any effects that were related to changes in microbial community composition would
442 be attributed to taxa that are abundant and would probably have been detected.

443 Our other hypothesis was that reductions in microbial CUE would result in increased
444 respiratory loss of C from the soils. We observed support for this hypothesis only in the
445 agricultural soil, and, intriguingly, the increase in respiration only occurred after addition of the
446 glucose tracer. Though we initially designed the tracer addition to minimize effects on microbial
447 activity, we hypothesize that the response of this soil was, in fact, related to the pulse of C. It is
448 possible, for example, that microbial growth responses to the pulse of labile C triggered lytic
449 replication in some of the new viral infections, delivering new substrate to nearby unaffected
450 populations, *i.e.*, a viral shunt. This may have occurred in the agricultural soil and not the others
451 because the glucose addition represented a proportionally much larger resource input to that soil,
452 as agricultural soils are generally more C-limited than other soils. Indeed, the glucose C addition
453 represented ~12% of the standing microbial biomass C in that soil versus 1 – 4 % in the others.
454 Future studies could evaluate this by performing similar experiments but with varying rates and
455 timings of C addition to soils with varying C pool sizes. Overall, the reduced growth yield,
456 reduced CUE, and increased respiration we observed in the agricultural soil is very similar to

457 what occurs in the marine viral shunt (Suttle, 2007; Bonilla-Findji et al., 2008; Motegi et al.,
458 2009) and suggests that a similar mechanism may operate in some soils. Viral mechanisms might
459 be involved in other key soil processes that involve resource pulses such as rhizosphere priming.
460 Indeed, most of the additional respired C in the agricultural soil was the result of priming, with
461 the virus additions approximately doubling the priming effect in those soils. In line with this
462 result, we also observed greater microbial biomass turnover rates in the agricultural soil, which
463 suggests the possibility that viral shunts in soil could contribute to mineral stabilization of C
464 (Cotrufo et al., 2013), despite the greater respiratory C loss.

465 It is interesting that the other three soils (conifer forest, deciduous forest, and prairie) also
466 exhibited generally lower growth yield and CUE despite there being no increases in respiration
467 in those soils. The reduced accrual of ^{13}C in microbial biomass in those soils cannot be accounted
468 for by ^{13}C in the extractable organic C pools, which were not different between the control and
469 virus-treated soils. The reduced ^{13}C in microbial biomass without an increase in respiration
470 suggests that there must be non-respiratory fates of the unaccounted for ^{13}C in those soils that
471 would explain the reduced growth yield and CUE. One possibility is that the C became mineral-
472 bound following microbial death, which may have occurred at higher rates in the virus-treated
473 soils. This speculation is supported by the fact that the non-agricultural soils were finer-textured
474 (Supplementary Table S1), which might have provided more surface area for mineral
475 associations to occur. It is also interesting that during the initial 14-day incubation the virus
476 treatments either had no effect on respiration or slightly reduced respiration, in contrast to the
477 glucose tracer incubation. Taken together, the range of respiratory responses we observed
478 represents the varying and potentially countervailing influences that viral infection might have
479 on overall microbial activity and soil C balance. For example, while increased availability of

480 lysed biomass C could increase overall respiration (as in a viral shunt), reduced respiration could
481 occur if stressed microbes redirect resources away from energy metabolism or if rates of host
482 lysis are high enough to offset the increased activity of non-infected populations. These
483 alternative respiratory responses, in turn, reflect different experimental/environmental contexts,
484 *e.g.*, constant environmental conditions (our initial incubation) vs. resource pulse scenarios. This
485 range of possible responses is also evident in prior studies, where respiration has been observed
486 to both increase (Albright et al., 2022; Tong et al., 2023) or decrease (Wei et al., 2021; Liang et
487 al., 2024) with higher virus abundance.

488 It should also be noted that the differences in responses we observed among the different
489 soils are probably related to the large differences in the concentrations of virus particles in the
490 inocula across the soils. For example, the two soils that exhibited respiratory responses in the
491 initial incubation were also the two with the highest VLP concentration in the inocula (prairie
492 and conifer forest). In contrast, the deciduous forest soil had the lowest VLP abundance in the
493 inoculum and never exhibited respiratory responses to the virus treatment. This reflects
494 limitations to our virus extraction procedure, as the salt buffer we used is likely not effective for
495 extracting viruses from soils with high organic matter, *e.g.*, our deciduous forest soil (Trubl et al.,
496 2016; Göller et al., 2020). In preliminary trials, we did attempt to address this by using an
497 organic (protein-supplemented) buffer (Göller et al., 2020), but the extracts proved to be
498 unfilterable with our TFF system. On the other hand, it could be argued that the variation in the
499 extractability of viruses among our soils could reflect meaningful differences in the mobility of
500 viruses in the differing soil matrices. For example, VLPs might be more abundant in the
501 deciduous forest soils than we were able to detect but might also be tightly bound to organic
502 matter or mineral surfaces and thus less likely to infect hosts. In contrast, while VLP

503 concentration was also relatively low in the agricultural soil inoculum, that soil was low in
504 organic matter and coarser-textured (sandy loam), and thus mobility of the added viruses might
505 have been high due to less immobilization of the particles on mineral surfaces or on organic
506 matter. Regardless, poor and varying extractability of viruses across different soil types
507 represents a challenging limitation of this type of experimental approach. Yet another
508 consideration is the potential for variation in the viability of the phages in the different extracts.
509 While it is probably not feasible to directly assess the viability of highly diverse phage
510 communities with mostly unknown and potentially unculturable microbial hosts, it is conceivable
511 that phage particles were differentially viable among the extracts from the four soils, which could
512 have contributed to the variable responses to virus addition.

513 In addition to variable virus abundance/extractability/viability, another factor that might
514 underlie the diversity of responses among the soils is variation in the background rates and types
515 of viral infection. For example, prior work has demonstrated that in some soils, most prokaryotic
516 cells are already infected with lytic phages and that phage lysis is the primary cause of
517 prokaryotic mortality in those soils (Bowatte et al., 2010). Therefore, if phages are already
518 maximally influencing host populations in the control soils, there may be no effect of adding
519 more virus particles. High background effects of viruses might also explain the generally small
520 effect sizes of the virus treatments that we observed. If background rates of infection are high,
521 the soils may be nearly or completely “saturated” with viruses. Because of the technical
522 challenge of directly observing phage infections, we do not have information for our soils on
523 background rates of infection, though it would be valuable for future studies to include this when
524 conducting virus manipulations experiments like ours. Ideally, future work would also attempt to
525 identify and quantify the biogeochemical implications of background rates of viral infection, *e.g.*,

526 by virus removal from soil, similar to what has been done in marine studies (Bonilla-Findji et al.,
527 2008; Motegi et al., 2009). However, this represents a substantial methodological challenge since
528 there is no simple way of removing viruses from soil that does not also remove cellular
529 microorganisms and alter soil physiochemical properties (*e.g.*, gamma irradiation, autoclaving).

530 We also note that while we observed clear statistical effects of the virus treatments on several
531 aspects of microbial C cycling, it remains difficult to directly attribute these effects to specific
532 viral mechanisms. One mechanism that could underlie the effects we observed is viral lysis of
533 hosts. We attempted to identify that mechanism by enumeration of VLP abundance in the soils at
534 the end of the experiment, since lytic replication should release additional virus particles into the
535 soil matrix. While we observed an overall increase in VLP abundance in the virus-treated soils,
536 the differences were within the amount initially added, so we do not know whether those
537 particles were remnants of the inoculation, were generated through viral replication, or some
538 combination of the two. Future studies could resolve this issue by combining virus addition
539 experiments like the one used here with DNA-stable isotope probing to trace isotopically
540 labelled C substrates into specific viral taxa (Starr et al., 2021; Barnett and Buckley, 2023). This
541 would allow for the pairing of quantitative estimates of the effects of viruses on soil C fluxes
542 with identification of specific viral taxa involved. Those studies could be conducted with isotope
543 tracing at higher temporal resolution and under different resource scenarios (*e.g.*, with and
544 without C additions). Studies such as this could potentially shed light on specific viral
545 mechanisms at play, *e.g.*, stress due to infection, lysis of microbial cells, etc.

546 Considering the range of possible mechanisms that underlie the statistical effects is
547 particularly relevant for experimental approaches such as ours where controls are imperfect. For
548 example, both our live virion inocula and the autoclaved control inocula contain organic matter

549 extracted from the soils, but in the autoclaved control inocula the organic matter is heat-treated
550 and the destroyed viruses in those inocula could represent additional C or nutrient sources for
551 microorganisms. That said, in preliminary trials, soils that received the autoclaved inocula were
552 indistinguishable from soils that received sterile buffer (Supplementary Fig. S1). Therefore, we
553 do not think that extracted organic matter in the inocula is likely to have played a significant role
554 in our experiment. Another possible experimental artifact is the potential for bacterial
555 contamination in the virus inocula, though we observed no evidence of contamination in our
556 inocula. A prior experiment with a similar TFF procedure also observed minimal bacterial
557 contamination in the virus inocula (Braga et al., 2020). Thus, while we cannot completely rule
558 out the potential role of bacterial contaminants or other experimental artifacts, we did not see
559 evidence of this in our experiment. Overall, we attribute treatment effects in this study to viral
560 influences, but the mechanisms remain elusive. To elucidate those mechanisms, it is critical to
561 continue using and improving these and other experimental approaches so that the key roles of
562 viruses in the functioning of soil ecosystems can be identified and quantified.

563 5. Conclusions

564 Our study provides experimental evidence that viruses can influence soil carbon cycling
565 across varying ecosystem types by reducing the growth yield and efficiency of microbial
566 communities. These effects may be attributed to increased microbial stress upon infection or
567 increased rates of host lysis and can manifest in altered respiratory loss of C from soil.
568 Respiratory responses to increased viral loads, however, appear to vary among different soil
569 types and are sometimes small in magnitude. In addition, this study examined microbial
570 functioning under elevated virus abundance scenarios, which might not be entirely representative
571 of the effects of viruses under baseline conditions. Additional research is required to elucidate

572 those influences, along with the specific viral mechanisms concerned. In particular, future studies
573 should compare biogeochemical effects of viruses across soils with different degrees of phage
574 “saturation” and/or different degrees of microbial adaptation to phages rather than simply
575 considering influences of soil physicochemical properties and ecosystem type. Regardless, our
576 results demonstrate that the effects of viruses on soil microorganisms resemble the phenomenon
577 of viral shunting observed in better-characterized marine environments and shed light on the
578 potential for viruses to alter the cycling and fate of carbon in terrestrial ecosystems.

579 Acknowledgements

580 This work was supported by National Science Foundation award 1845417 (to M.S.S.). Work at
581 Kellogg Biological Station was supported by the NSF Long-term Ecological Research Program
582 (DEB 2224712), with sampling help from Holly Vander Stel.

583 References

584 Albright, M.B.N., Gallegos-Graves, L.V., Feeser, K.L., Montoya, K., Emerson, J.B., Shakya, M.,
585 Dunbar, J., 2022. Experimental evidence for the impact of soil viruses on carbon cycling during
586 surface plant litter decomposition. ISME Communications 2, 1–8. doi:10.1038/s43705-022-
587 00109-4

588 Apprill, A., McNally, S., Parsons, R., Weber, L., 2015. Minor revision to V4 region SSU rRNA
589 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquatic Microbial
590 Ecology 75, 129–137. doi:10.3354/ame01753

591 Barnett, S.E., Buckley, D.H., 2023. Metagenomic stable isotope probing reveals bacteriophage
592 participation in soil carbon cycling. Environmental Microbiology 25, 1785–1795.
593 doi:10.1111/1462-2920.16395

594 Bates, D., Maechler, M., Bolker [aut, B., cre, Walker, S., Christensen, R.H.B., Singmann, H.,
595 Dai, B., Scheipl, F., Grothendieck, G., Green, P., Fox, J., 2019. lme4: Linear Mixed-Effects
596 Models using “Eigen” and S4.

597 Bonilla-Findji, O., Malits, A., Lefèvre, D., Rochelle-Newall, E., Lemée, R., Weinbauer, M.G.,
598 Gattuso, J.-P., 2008. Viral effects on bacterial respiration, production and growth efficiency:
599 Consistent trends in the Southern Ocean and the Mediterranean Sea. Deep Sea Research Part II:

600 Topical Studies in Oceanography, KEOPS: Kerguelen Ocean and Plateau compared Study 55,
601 790–800. doi:10.1016/j.dsr2.2007.12.004

602 Bowatte, S., Newton, P.C.D., Takahashi, R., Kimura, M., 2010. High frequency of virus-infected
603 bacterial cells in a sheep grazed pasture soil in New Zealand. *Soil Biology and Biochemistry* 42,
604 708–712. doi:10.1016/j.soilbio.2009.12.013

605 Bradford, M.A., Fierer, N., Reynolds, J.F., 2008. Soil carbon stocks in experimental mesocosms
606 are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils. *Functional
607 Ecology* 22, 964–974. doi:10.1111/j.1365-2435.2008.01404.x

608 Braga, L.P.P., Spor, A., Kot, W., Breuil, M.-C., Hansen, L.H., Setubal, J.C., Philippot, L., 2020.
609 Impact of phages on soil bacterial communities and nitrogen availability under different
610 assembly scenarios. *Microbiome* 8, 52. doi:10.1186/s40168-020-00822-z

611 Carini, P., Delgado-Baquerizo, M., Hinckley, E.-L.S., Holland-Moritz, H., Brewer, T.E., Rue, G.,
612 Vanderburgh, C., McKnight, D., Fierer, N., 2020. Effects of Spatial Variability and Relic DNA
613 Removal on the Detection of Temporal Dynamics in Soil Microbial Communities. *mBio* 11,
614 e02776-19. doi:10.1128/mBio.02776-19

615 Cobián Güemes, A.G., Youle, M., Cantú, V.A., Felts, B., Nulton, J., Rohwer, F., 2016. Viruses as
616 Winners in the Game of Life. *Annual Review of Virology* 3, 197–214. doi:10.1146/annurev-
617 virology-100114-054952

618 Cotrufo, M.F., Wallenstein, M.D., Boot, C.M., Denef, K., Paul, E., 2013. The Microbial
619 Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with
620 soil organic matter stabilization: do labile plant inputs form stable soil organic matter? *Global
621 Change Biology* 19, 988–995. doi:10.1111/gcb.12113

622 Duan, N., Li, L., Liang, X., McDearis, R., Fine, A.K., Cheng, Z., Zhuang, J., Radosevich, M.,
623 Schaeffer, S.M., 2022. Composition of soil viral and bacterial communities after long-term
624 tillage, fertilization, and cover cropping management. *Applied Soil Ecology* 177, 104510.
625 doi:10.1016/j.apsoil.2022.104510

626 Emerson, J.B., 2019. Soil Viruses: A New Hope. *mSystems* 4, e00120-19.
627 doi:10.1128/mSystems.00120-19

628 Emerson, J.B., Roux, S., Brum, J.R., Bolduc, B., Woodcroft, B.J., Jang, H.B., Singleton, C.M.,
629 Selden, L.M., Naas, A.E., Boyd, J.A., Hodgkins, S.B., Wilson, R.M., Trubl, G., Li, C., Frolking,
630 S., Pope, P.B., Wrighton, K.C., Crill, P.M., Chanton, J.P., Saleska, S.R., Tyson, G.W., Rich, V.I.,
631 Sullivan, M.B., 2018. Host-linked soil viral ecology along a permafrost thaw gradient. *Nature
632 Microbiology* 3, 870–880. doi:10.1038/s41564-018-0190-y

633 Fierer, N., Jackson, J.A., Vilgalys, R., Jackson, R.B., 2005. Assessment of Soil Microbial
634 Community Structure by Use of Taxon-Specific Quantitative PCR Assays. *Applied and*
635 *Environmental Microbiology* 71, 4117–4120. doi:10.1128/AEM.71.7.4117-4120.2005

636 Fierer, N., Schimel, J.P., 2002. Effects of drying–rewetting frequency on soil carbon and nitrogen
637 transformations. *Soil Biology and Biochemistry* 34, 777–787.

638 Flores-Kim, J., Darwin, A.J., 2016. The Phage Shock Protein Response. *Annual Review of*
639 *Microbiology* 70, 83–101. doi:10.1146/annurev-micro-102215-095359

640 Geyer, K.M., Dijkstra, P., Sinsabaugh, R., Frey, S.D., 2019. Clarifying the interpretation of
641 carbon use efficiency in soil through methods comparison. *Soil Biology and Biochemistry* 128,
642 79–88. doi:10.1016/j.soilbio.2018.09.036

643 Göller, P.C., Haro-Moreno, J.M., Rodriguez-Valera, F., Loessner, M.J., Gómez-Sanz, E., 2020.
644 Uncovering a hidden diversity: optimized protocols for the extraction of dsDNA bacteriophages
645 from soil. *Microbiome* 8, 17. doi:10.1186/s40168-020-0795-2

646 Hagerty, S.B., van Groenigen, K.J., Allison, S.D., Hungate, B.A., Schwartz, E., Koch, G.W.,
647 Kolka, R.K., Dijkstra, P., 2014. Accelerated microbial turnover but constant growth efficiency
648 with warming in soil. *Nature Climate Change* 4, 903–906. doi:10.1038/nclimate2361

649 Heffner, T., Kaupper, T., Heinrichs, M., Lee, H.J., Rüppel, N., Horn, M.A., Ho, A., 2023.
650 Mitomycin C-induced effects on aerobic methanotrophs in a landfill cover soil; implications of a
651 viral shunt? *FEMS Microbiology Ecology* 99, fiad047. doi:10.1093/femsec/fiad047

652 Islam, Md.R., Singh, B., Dijkstra, F.A., 2023. Microbial carbon use efficiency of glucose varies
653 with soil clay content: A meta-analysis. *Applied Soil Ecology* 181, 104636.
654 doi:10.1016/j.apsoil.2022.104636

655 Kittredge, H.A., Dougherty, K.M., Glanville, K., Evans, S.E., 2021. Does extracellular DNA
656 mask microbial responses to a pulse disturbance? doi:10.1101/2021.12.04.471228

657 Kuzyakov, Y., Mason-Jones, K., 2018. Viruses in soil: Nano-scale undead drivers of microbial
658 life, biogeochemical turnover and ecosystem functions. *Soil Biology and Biochemistry* 127,
659 305–317. doi:10.1016/j.soilbio.2018.09.032

660 Lee, S., Sorensen, J.W., Walker, R.L., Emerson, J.B., Nicol, G.W., Hazard, C., 2022. Soil pH
661 influences the structure of virus communities at local and global scales. *Soil Biology and*
662 *Biochemistry* 166, 108569. doi:10.1016/j.soilbio.2022.108569

663 Lenth, R., Singmann, H., Love, J., Buerkner, P., Herve, M., 2019. emmeans: Estimated Marginal
664 Means, aka Least-Squares Means.

665 Liang, X., Sun, S., Zhong, Y., Zhang, Y., Wang, S., Wang, Y., Xie, N., Yang, L., Radosevich, M.,
666 2024. Soil viruses reduce greenhouse gas emissions and promote microbial necromass accrual.
667 doi:10.1101/2024.03.13.584929

668 Liang, X., Wagner, R.E., Zhuang, J., DeBruyn, J.M., Wilhelm, S.W., Liu, F., Yang, L., Staton,
669 M.E., Sherfy, A.C., Radosevich, M., 2019. Viral abundance and diversity vary with depth in a
670 southeastern United States agricultural ultisol. *Soil Biology and Biochemistry* 137, 107546.
671 doi:10.1016/j.soilbio.2019.107546

672 Liang, X., Zhang, Y., Wommack, K.E., Wilhelm, S.W., DeBruyn, J.M., Sherfy, A.C., Zhuang, J.,
673 Radosevich, M., 2020. Lysogenic reproductive strategies of viral communities vary with soil
674 depth and are correlated with bacterial diversity. *Soil Biology and Biochemistry* 144, 107767.
675 doi:10.1016/j.soilbio.2020.107767

676 Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for
677 RNA-seq data with DESeq2. *Genome Biology* 15, 550. doi:10.1186/s13059-014-0550-8

678 Morrissey, E.M., Mau, R.L., Schwartz, E., McHugh, T.A., Dijkstra, P., Koch, B.J., Marks, J.C.,
679 Hungate, B.A., 2017. Bacterial carbon use plasticity, phylogenetic diversity and the priming of
680 soil organic matter. *The ISME Journal* 11, 1890–1899. doi:10.1038/ismej.2017.43

681 Motegi, C., Nagata, T., Miki, T., Weinbauer, M.G., Legendre, L., Rassoulzadegand, F., 2009.
682 Viral control of bacterial growth efficiency in marine pelagic environments. *Limnology and
683 Oceanography* 54, 1901–1910. doi:10.4319/lo.2009.54.6.1901

684 Narr, A., Nawaz, A., Wick, L.Y., Harms, H., Chatzinotas, A., 2017. Soil Viral Communities Vary
685 Temporally and along a Land Use Transect as Revealed by Virus-Like Particle Counting and a
686 Modified Community Fingerprinting Approach (fRAPD). *Frontiers in Microbiology* 8.

687 Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R.,
688 O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2019.
689 vegan: Community Ecology Package.

690 Parada, A.E., Needham, D.M., Fuhrman, J.A., 2016. Every base matters: assessing small subunit
691 rRNA primers for marine microbiomes with mock communities, time series and global field
692 samples. *Environmental Microbiology* 18, 1403–1414. doi:10.1111/1462-2920.13023

693 Quirós, P., Sala-Comorera, L., Gómez-Gómez, C., Ramos-Barbero, M.D., Rodríguez-Rubio, L.,
694 Vique, G., Yance-Chávez, T., Atarés, S., García-Gutierrez, S., García-Marco, S., Vallejo, A.,
695 Salaet, I., Muniesa, M., 2023. Identification of a virulent phage infecting species of
696 Nitrosomonas. *The ISME Journal* 17, 645–648. doi:10.1038/s41396-023-01380-6

697 R Core Development Team, 2019. R: A Language and Environment for Statistical Computing.

698 Roy, K., Ghosh, D., DeBruyn, J.M., Dasgupta, T., Wommack, K.E., Liang, X., Wagner, R.E.,
699 Radosevich, M., 2020. Temporal Dynamics of Soil Virus and Bacterial Populations in

700 Agricultural and Early Plant Successional Soils. *Frontiers in Microbiology* 11, 1494.
701 doi:10.3389/fmicb.2020.01494

702 Santos-Medellín, C., Blazewicz, S.J., Pett-Ridge, J., Firestone, M.K., Emerson, J.B., 2023. Viral
703 but not bacterial community successional patterns reflect extreme turnover shortly after
704 rewetting dry soils. *Nature Ecology & Evolution* 7, 1809–1822. doi:10.1038/s41559-023-02207-
705 5

706 Schimel, J., Weintraub, M.N., Moorhead, D., 2022. Estimating microbial carbon use efficiency in
707 soil: Isotope-based and enzyme-based methods measure fundamentally different aspects of
708 microbial resource use. *Soil Biology and Biochemistry* 169, 108677.
709 doi:10.1016/j.soilbio.2022.108677

710 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S.,
711 Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri, K.,
712 Tomancak, P., Cardona, A., 2012. Fiji: an open-source platform for biological-image analysis.
713 *Nature Methods* 9, 676–682. doi:10.1038/nmeth.2019

714 Sokol, N.W., Slessarev, E., Marschmann, G.L., Nicolas, A., Blazewicz, S.J., Brodie, E.L.,
715 Firestone, M.K., Foley, M.M., Hestrin, R., Hungate, B.A., Koch, B.J., Stone, B.W., Sullivan,
716 M.B., Zablocki, O., Pett-Ridge, J., 2022. Life and death in the soil microbiome: how ecological
717 processes influence biogeochemistry. *Nature Reviews Microbiology* 1–16. doi:10.1038/s41579-
718 022-00695-z

719 Starr, E.P., Shi, S., Blazewicz, S.J., Koch, B.J., Probst, A.J., Hungate, B.A., Pett-Ridge, J.,
720 Firestone, M.K., Banfield, J.F., 2021. Stable-Isotope-Informed, Genome-Resolved
721 Metagenomics Uncovers Potential Cross-Kingdom Interactions in Rhizosphere Soil. *mSphere* 6,
722 e00085-21. doi:10.1128/mSphere.00085-21

723 Suttle, C.A., 2007. Marine viruses — major players in the global ecosystem. *Nature Reviews
724 Microbiology* 5, 801–812. doi:10.1038/nrmicro1750

725 Takahashi, R., Bowatte, S., Taki, K., Ohashi, Y., Asakawa, S., Kimura, M., 2011. High frequency
726 of phage-infected bacterial cells in a rice field soil in Japan. *Soil Science and Plant Nutrition* 57,
727 35–39. doi:10.1080/00380768.2010.550864

728 Tong, D., Wang, Y., Yu, H., Shen, H., Dahlgren, R.A., Xu, J., 2023. Viral lysing can alleviate
729 microbial nutrient limitations and accumulate recalcitrant dissolved organic matter components
730 in soil. *The ISME Journal* 1–10. doi:10.1038/s41396-023-01438-5

731 Trubl, G., Jang, H.B., Roux, S., Emerson, J.B., Solonenko, N., Vik, D.R., Soden, L., Ellenbogen,
732 J., Runyon, A.T., Bolduc, B., Woodcroft, B.J., Saleska, S.R., Tyson, G.W., Wrighton, K.C.,
733 Sullivan, M.B., Rich, V.I., 2018. Soil Viruses Are Underexplored Players in Ecosystem Carbon
734 Processing. *mSystems* 3. doi:10.1128/mSystems.00076-18

735 Trubl, G., Solonenko, N., Chittick, L., Solonenko, S.A., Rich, V.I., Sullivan, M.B., 2016.
736 Optimization of viral resuspension methods for carbon-rich soils along a permafrost thaw
737 gradient. *PeerJ* 4, e1999. doi:10.7717/peerj.1999

738 Van Goethem, M.W., Swenson, T.L., Trubl, G., Roux, S., Northen, T.R., 2019. Characteristics of
739 Wetting-Induced Bacteriophage Blooms in Biological Soil Crust. *mBio* 10, e02287-19.
740 doi:10.1128/mBio.02287-19

741 Wei, X., Ge, T., Wu, C., Wang, S., Mason-Jones, K., Li, Y., Zhu, Z., Hu, Y., Liang, C., Shen, J.,
742 Wu, J., Kuzyakov, Y., 2021. T4-like Phages Reveal the Potential Role of Viruses in Soil Organic
743 Matter Mineralization. *Environmental Science & Technology* 55, 6440–6448.
744 doi:10.1021/acs.est.0c06014

745 Weinbauer, M.G., Rassoulzadegan, F., 2004. Are viruses driving microbial diversification and
746 diversity? *Environmental Microbiology* 6, 1–11. doi:10.1046/j.1462-2920.2003.00539.x

747 Williamson, K.E., Corzo, K.A., Drissi, C.L., Buckingham, J.M., Thompson, C.P., Helton, R.R.,
748 2013. Estimates of viral abundance in soils are strongly influenced by extraction and
749 enumeration methods. *Biology and Fertility of Soils* 49, 857–869. doi:10.1007/s00374-013-
750 0780-z

751 Williamson, K.E., Fuhrmann, J.J., Wommack, K.E., Radosevich, M., 2017. Viruses in Soil
752 Ecosystems: An Unknown Quantity Within an Unexplored Territory. *Annual Review of Virology*
753 4, 201–219. doi:10.1146/annurev-virology-101416-041639

754 Williamson, K.E., Radosevich, M., Smith, D.W., Wommack, K.E., 2007. Incidence of lysogeny
755 within temperate and extreme soil environments. *Environmental Microbiology* 9, 2563–2574.
756 doi:10.1111/j.1462-2920.2007.01374.x

757 Williamson, K.E., Radosevich, M., Wommack, K.E., 2005. Abundance and Diversity of Viruses
758 in Six Delaware Soils. *Applied and Environmental Microbiology* 71, 3119–3125.
759 doi:10.1128/AEM.71.6.3119-3125.2005

760 Wu, R., Davison, M.R., Nelson, W.C., Graham, E.B., Fansler, S.J., Farris, Y., Bell, S.L.,
761 Godinez, I., Mcdermott, J.E., Hofmockel, K.S., Jansson, J.K., 2021. DNA Viral Diversity,
762 Abundance, and Functional Potential Vary across Grassland Soils with a Range of Historical
763 Moisture Regimes. *mBio* 12, e02595-21. doi:10.1128/mBio.02595-21

764

765 Figure Legends

766 Figure 1: Respiration during the initial 14-day incubation and following the addition of the ¹³C-
767 glucose tracer. Note the different y-axis scales among soils. Symbols are treatment means while

768 error bars represent one standard error of the mean. The dotted vertical lines indicate the day of
769 glucose tracer addition. For the initial 14-day incubation, respiration data were analyzed using a
770 mixed model with ‘virus treatment’, ‘soil type’, and ‘day’ as fixed effects and ‘jar’ as a random
771 effect. For respiration following tracer addition, data were analyzed using a linear model with
772 ‘virus treatment’ and ‘soil type’ as factors. We detected significant virus treatment \times soil type
773 interactions for both the 14-day incubation ($\chi^2 = 7.9, p = 0.048$) and for the tracer incubation ($F =$
774 4.4, $p < 0.001$). Pairwise comparisons were performed within soil types (Tukey method) and
775 symbols indicate significant differences between virus treatments at the following levels: ** $p <$
776 0.01, *** $p < 0.001$.

777 Figure 2: Effects of the virus treatments on respiration of soil organic matter (SOM) derived C
778 during the ^{13}C -glucose incubation. We partitioned respired CO_2 between SOM and the added
779 glucose tracer using a mass balance equation (see Supplementary Methods). Data were analyzed
780 using a linear model with ‘virus treatment’ and ‘soil type’ as factors. There was a significant
781 virus treatment \times soil type interaction for SOM respiration ($F = 4.47, p = 0.009$). Pairwise
782 comparisons were performed within soil types (Tukey method) and symbols indicate significant
783 differences between virus treatments at the following levels: *** $p < 0.001$. Respiration of the
784 glucose-C was much lower but exhibited similar patterns and is shown on Supplementary Fig.
785 S4. On all panels, blue boxes indicate soils that received autoclaved control inocula while yellow
786 boxes indicate soils that received the live virus inocula.

787 Figure 3: Effects of the virus treatments on ^{13}C incorporation into microbial biomass, *i.e.*,
788 microbial growth yield. All ^{13}C equations are provided in the Supplementary Methods section.
789 Data were analyzed using a generalized linear model with ‘virus treatment’ and ‘soil type’ as
790 factors. There was a significant main effect of virus treatment on microbial growth ($\chi^2 = 11.7, p <$

791 0.001). Pairwise comparisons were performed within soil types (Tukey method) and symbols
792 indicate significant differences between virus treatments at the following levels: *** $p < 0.001$.
793 On all panels, blue boxes indicate soils that received autoclaved control inocula while yellow
794 boxes indicate soils that received the live virus inocula.

795 Figure 4: Effects of the virus treatments on carbon use efficiency (CUE) of the glucose substrate.
796 CUE calculations are provided in the Supplementary Information. Data were analyzed with a
797 linear model with ‘virus treatment’ and ‘soil type’ as factors. There was a significant main effect
798 of virus treatment on CUE ($F = 17.4, p < 0.001$). Pairwise comparisons were performed within
799 soil types (Tukey method) and symbols indicate significant differences between virus treatments
800 at the following levels: * $p < 0.05$, *** $p < 0.001$. On all panels, blue boxes indicate soils that
801 received autoclaved control inocula while yellow boxes indicate soils that received the live virus
802 inocula.

803 Figure 5: Principal coordinates analysis (Bray-Curtis dissimilarities) showing responses of 16S
804 rRNA gene ASV composition. Presented p values are from PERMANOVA with Bray-Curtis
805 dissimilarities and with ‘soil type’ and ‘virus treatment’ as factors. Analysis of the four soils
806 separately is shown on Supplementary Fig. S8.

807 Figure 6: Virus-like particle (VLP) abundance in the microcosm soils at the end of the
808 experiment. Data were analyzed using a generalized linear model with ‘virus treatment’ and ‘soil
809 type’ as fixed effects. We detected a significant main effect of virus treatment ($\chi^2 = 5.5, p =$
810 0.019). Pairwise comparisons were performed within soil types (Tukey method), none of which
811 were statistically significant (all $p > 0.05$). Results for VLP:16S ratios are provided on
812 Supplementary Fig. S9. On all panels, blue boxes indicate soils that received autoclaved control
813 inocula while yellow boxes indicate soils that received the live virus inocula.