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A B S T R A C T   

Mucus is a biological hydrogel that coats and protects all non-keratinized wet epithelial surfaces. Mucins, the 
primary structural components of mucus, are critical components of the gel layer that protect against invading 
pathogens. For communicable diseases, pathogen-mucin interactions contribute to the pathogen’s fate and the 
potential for disease progression in-host, as well as the potential for onward transmission. We begin by reviewing 
in-host mucus filtering mechanisms, including size filtering and interaction filtering, which regulate the 
permeability of mucus barriers to all molecules including pathogens. Next, we discuss the role of mucins in 
communicable diseases at the point of transmission (i.e. how the encapsulation of pathogens in emitted mucosal 
droplets externally to hosts may modulate pathogen infectivity and viability). Overall, mucosal barriers modulate 
both host susceptibility as well as the dynamics of population-level disease transmission. The study of mucins and 
their use in models and experimental systems are therefore crucial for understanding the mechanistic biophysical 
principles underlying disease transmission and the early stages of host infection.   
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1. Introduction 

Mucus is a biological hydrogel that lubricates every wet epithelial 
surface of the body, including the respiratory tract, gastrointestinal tract 
(GI1), and reproductive tract. This lubricious characteristic is essential in 
protecting epithelia against mechanical damage from shear-induced 
forces involved in digestion, blinking, and exhalation [1–3]. Mucus 
serves as a dynamic physicochemical semipermeable barrier that per
mits the transport and exchange of select molecules (i.e., nutrients, 
water, gases, odorants, hormones) while trapping and immobilizing 
foreign and harmful substances (i.e., toxins, heavy metals, or biological 
substances such as pathogenic bacteria, viruses, or parasites) [4,5]. 

Humans continuously secrete mucus, amounting to approximately 
10 L per day [6]. Mucus layers are subsequently shed, discarded, or 
digested and renewed by the continued mucus secretion of underlying 
epithelial cells. The lifetime or “clearance time” of mucus is short, often 
observed between minutes and hours, with the fastest turnover typically 
observed in the thinnest mucus layers (i.e., nasal tract) [7]. Thus, bio
logical or synthetic particles must penetrate mucus faster than the nat
ural turnover to reach their target sites. 

The role of mucus and mucin, its primary structural component, in 
disease progression within individual hosts and in host-to-host trans
mission processes is increasingly being recognized. Mucins play a vital 
role in protective and defensive mechanisms against pathogens. Within 
hosts, the mesh network of mucin polymers in mucus acts as a size and 
biochemical filter to trap pathogens before they can reach target 
epithelial cells. However, some pathogens have adapted ways to avoid 
entrapment. Even large macromolecules are not always filtered by their 
size [8]; instead, a cascade of signals and interactions can alter the 
mucus environment and facilitate the transport of large molecules that 
would otherwise become immobilized and eventually cleared from the 
mucus layer. 

At the point of transmission of infectious diseases such as influenza, 
mucin interactions outside of the host are equally as important as those 
within the host for continued survival of the pathogen as it travels from 
individual to individual. The in-host and ambient environments are 
vastly different in terms of temperature, humidity, pH, sunlight expo
sure, and other factors. Mucosalivary droplets ejected from infected 
hosts transport the pathogen to surfaces or ventilation systems or keep 
them suspended in the air prior to being introduced to the mucosa of 
another susceptible host. In the ambient environment, subsequent dry
ing or evaporation of the water contents of these droplets leads to 
increased concentrations of other components such as salts, which may 
prove toxic to the pathogen and result in its inactivation [9,10]. 

Recently, pathogen–mucin interactions within hosts and at the point 
of transmission have been recognized as key research areas and have 
been integrated into models for within-host disease progression and 
population-level disease transmission [11–16]. While these two classes 
of models (i.e., within-host and population-level) are useful for simu
lating distinct phenomena, for a given disease the dynamics of both 
types of models are intimately related. It remains a challenge to bridge 
these models across different time and length scales; yet doing so is key 
for understanding the progression from within-host infection to host-to- 
host transmission [11]. Importantly, incorporating mucosal barriers will 
be critical for the development of first-principles and predictive models. 
Additionally, a better understanding of how mucins bind and sequester 
pathogens will be invaluable for guiding the development of mucin- 

mimetic biomaterials, including coatings that may prevent or immobi
lize the transfer of bacteria or viruses that elicit infection and disease. 

In this review, we explore the role of mucus and mucins in disease 
progression within hosts and transmission between hosts. In Section 2, 
we describe the detailed biochemistry of mucosal barriers. In Section 3, 
we cover experimental protocols for working with mucus in laboratory 
settings, particularly via the purification of native mucins. In Section 4, 
we discuss the within-host protective role of the mucin network in terms 
of selective permeability in the context of both viruses and bacteria. In 
Section 5, we explore the role of mucus and mucins during transmission 
events, particularly in the context of viruses. Finally, we offer 
concluding remarks in Section 6. 

2. Mucus biochemistry 

Native mucus is primarily water (95%), with the remaining 5% 
comprised of salts (0.5%–1%), lipids (1%–2%), and proteins [17]. Mu
cins are large glycoproteins that contribute primarily to the viscoelastic 
and gel-like properties of mucus. Mucin is present at varying concen
trations throughout the body: 1%–5% in the GI tract [8], up to 2% in the 
airways [18], and at lower concentrations in tear fluid (<0.02%) [19] 
and salivary fluid (~0.3%) [20]. 

The 21 mucin-type glycoproteins that belong to the MUC gene family 
and are found in humans (https://www.genenames.org) can be divided 
into two families: secreted and membrane-bound [21]. Membrane- 
bound mucins are relatively short compared with secreted mucins and 
are on the order of hundreds of nanometers in length, whereas secreted 
mucins can span several microns [7]. Within secreted mucins, there exist 
gel-forming mucins (MUC2, MUC5AC, MUC5B, MUC6, MUC19) as well 
as two nonpolymeric glycoproteins (MUC7 and MUC8) [22]. Moreover, 
in the airway, it has been suggested that membrane-spanning mucins 
form a brush-like structure within a periciliary layer immediately 
adjacent to epithelial cells, which is covered by a separate secreted 
mucus layer [23]. Indeed, different mucosal surfaces throughout the 
body produce different types of mucins [21]. For example, in the GI 
tract, MUC2 and MUC5AC are the most abundantly secreted mucins 
compared with the low amounts of MUC5B, MUC6, and MUC7 that are 
also present [8,22,24]. While MUC2 is almost entirely absent from other 
regions of the body, MUC5AC and MUC5B are more broadly expressed. 
MUC5AC is a major mucin component of gastric mucus [22], tear fluid 
[19], airways [25], and the female reproductive tract [26]. MUC5B 
features importantly in the airways and female reproductive tract 
[25,26], as well as in the salivary glands along with MUC7, which is 
exclusively found in salivary fluid [27]. 

Mucins typically have molecular weights in the range of 0.5–40 MDa, 
formed from the linking of a number of mucin monomers [28], each 
approximately 0.3–0.5 MDa [29]. Up to 80% of the mucin mass is 
attributed to its heavy glycosylation while the remaining mass repre
sents the protein backbone [17,30]. Mucins contain variable-number 
tandem repeats (VNTRs) that are rich in proline, threonine, and/or 
serine (PTS domains) along with cysteine-rich regions at the amino and 
carboxy terminals and distributed between the PTS domains [21]. Mu
cins contain a number of PTS sequences along their protein backbone, 
where oligosaccharide chains, or glycans, are anchored onto the serine 
and threonine residues via O-linked glycosylation [17]. The glycosyla
tion of serine and threonine residues results in a “bottle-brush” 
arrangement of glycans along the protein core [17,30]. Other carbohy
drates that can be glycosylated to mucin include fucose, mannose, sul
fate, and sialic acid [30]. The high sialic acid and sulfate content of 
mucins gives them an overall negative charge, which results in intra
molecular repulsion under aqueous conditions [31]. Although the 
different mucin types contain similar structures, individual mucins have 
specialized functions and roles in the regions where they are expressed. 
These different roles arise from variability in their PTS-repeated do
mains, particularly their unique glycosylation signatures, sequences, 
and VNTRs [8]. 

1 GI: gastrointestinal tract; HA: hemagglutinin; HIV: human immunodefi
ciency virus; IAV: influenza A virus; NA: neuraminidase; Neu5AC: N-glyco
lylneuraminic acid; Neu5Gc: N-glycolylneuraminic acid; PSM: porcine 
submaxillary mucin; PTS: proline, threonine, and/or serine; RH: relative hu
midity; RSV: respiratory syncytial virus; SARS-CoV-2: severe acute respiratory 
syndrome coronavirus 2; Sialic acids: Sias; SPT: single particle tracking; VNTR: 
variable-number tandem repeat. 
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Beyond biochemical differences between mucins, the thickness of 
mucus layers varies for different mucosal niches; in the gut, mucus 
layers are thick and adhere to the epithelium, but in the airway, mucus 
layers are thin and mobile. For example, salivary film has an estimated 
thickness of 70–100 µm [32], whereas the mucus layer along the res
piratory tract is relatively thin (nasal cavity: 5–15 µm [33]; trachea: 
10–30 µm [34]; bronchi: 2–5 µm [34]). In contrast, the thickness of the 
mucus layer in the GI tract varies along its length, being thinnest in the 
small intestine (150–300 µm), followed by the stomach (300 µm), and 
thickest in the large intestine (700 µm) [35,36]. Although natural pro
cesses such as digestion, violent exhalations, or blinking mechanically 
deform mucus, mucosal layers restore themselves through the regular 
secretion of mucus by epithelial cells and through rapid self-healing to 
retain their biophysical and viscoelastic properties [21]. 

In aqueous solutions, mucin molecules form polymeric networks 
maintained by physical entanglements and covalent and noncovalent 
interactions [8,37]. While noncovalent binding is relatively weaker than 
covalent binding, the cumulative effect of van der Waals, hydrophobic, 
ionic, hydrogen bonding, and other binding interactions can result in 
strong, long-lived mucin–mucin interactions [8,37]. Mucus gel struc
ture, the strength of interactions within its network, and its bulk prop
erties (e.g., macrorheological properties) can be regulated by various 
environmental modifications including the density of physical and 
chemical cross-links, changes to mucin conformation through variations 
in pH or ionic strength, and modifications to hydration via changes in 
mucin glycan density or identity [21]. 

Hydration is attributed not only to the high capacity of glycan chains 
to retain water [38] but also to variations in ionic composition and 
concentration. For example, hydrogen ions can shield glycosylated re
gions of mucin, affecting their electrostatic charge [39]. Other ions 
common to most mucus secretions include sodium chloride, potassium 
chloride, sodium bicarbonate, phosphate, magnesium, and calcium ions 
[6,22]. Highly acidic environments are believed to promote mucin ag
gregation (or phase separation), which increases mucus bulk viscoelas
ticity. This increased mucus viscoelasticity results in a stiffer mucin gel 
lining in the stomach, serving as a protective barrier for the epithelial 
lining against acidic gastric juices. While increased viscoelasticity may 
have a protective effect in certain areas, such as the GI tract, it can have 
negative effects in the respiratory tract, where increased viscosity re
duces effective mucociliary clearance. Generally, lung mucus, nasal 
mucus, and saliva have a neutral pH while eye mucus is slightly basic 
(pH ~ 7.8) [7]. In contrast, gastric mucus has a wide pH range across the 
layer’s thickness; the pH increases from acidic (pH ~ 1–2) to neutral 
between the luminal and epithelial surfaces [7]. 

The maintenance of mucus layers relies on a tight regulation of 
mucins, water, and ions [40] to produce different mechanical and 
biochemical properties needed for physiological function in different 
regions of the body. Dysregulation of any of these components can alter 
the mechanical properties of mucus and can provide ripe conditions for 
the proliferation of microbes and the progressive infiltration of 
pathogens. 

3. Mucus harvesting and mucin purification 

Although the in vivo composition and structure of mucus are pre
served in native harvested mucus, the heterogeneity of mucus and the 
extensive variation in composition between individuals, and even within 
an individual, can make it difficult to interpret and compare experi
ments with native mucus [21]. As such, gels reconstituted from purified 
mucin molecules are an accepted experimental model for mucus that 
mimics selected properties of mucus and is relatively more homogenous 
than native samples because of the removal of other mucus components. 
Reconstituted mucin gels not only have a well-defined composition, but 
produce well-controlled, reproducible environments for assessing the 
influence of select factors. 

Researchers can isolate mucins from mucosal tissues by either 

extracting mucus layers [41] or homogenizing whole tissues [42]. Pigs 
and cows have served as the primary sources of mucus due to their wide 
availability and the large amounts of mucus they contain relative to 
other sources. Depending on the source, researchers apply different 
techniques to animal tissues, such as mucus scraping, to extract mucin- 
containing material [43]. Purification is achieved by making use of 
mucin’s unique physical and chemical characteristics, including their 
solubility, large size, and strong negative charge. Importantly, mucins 
are not completely resistant to degradation: the glycosylated fractions of 
mucins are relatively better protected against proteolytic degradation, 
while the unglycosylated portions are more vulnerable. Hence, re
searchers must take care both during mucin purification and when 
working with native mucus samples to mitigate mucin degradation or 
they must account for such processes in any physicochemical readouts of 
mucin gel properties [44]. 

Human mucin sources [43] may be more difficult to access and less 
abundant than animal tissue sources. Because of the limited availability 
of human mucins, research has relied heavily on commercial sources of 
mucins, specifically the porcine gastric mucin MUC5AC and the bovine 
submaxillary mucin MUC5B, which are the most relevant mucin models 
to humans. The two most widely used commercial purified mucins come 
in powdered form and are produced by Sigma Aldrich: “mucin from 
porcine stomach, Type II” and “mucin from porcine stomach, Type III” 
[45]. 

The harsh treatment processes during commercial mucin purification 
have been associated with altered mucin structures [21], causing 
changes to the physicochemical properties of gels reconstituted from 
these materials [46,47]. In fact, industrially purified mucins have been 
found to have a lower capacity for forming gels [45,48], and the 
resulting gels are less lubricious [45,49] than native mucin purified in- 
lab. A growing number of studies have used gels reconstituted from lab- 
purified mucins, which retain physicochemical properties relative to 
native mucus, enabling researchers to interrogate structure–function 
relationships of mucin glycoproteins [50–54]. Thus, the development of 
protocols to purify commercial mucins both at scale and while preser
ving their native structure is an essential area for future work. 

4. Mucin networks as within-host semipermeable barriers 

4.1. Overview of biopolymer network filtering methods 

4.1.1. Size filtering 
Mucins form a selectively permeable physical barrier capable of 

restricting or permitting the passage of certain molecules. The polymer 
mesh formed by mucin molecules can be characterized by the distance 
between junctions in the network, known as the pore size (or mesh size). 
The pore size of mucin gels spans tens of nanometers to thousands of 
nanometers (~20–1800 nm) [8]. This pore size varies with respect to 
not only its location in the body, but health status as well. For instance, 
the typical pore size for respiratory mucus is approximately 500 nm; 
however, the pore size decreases to approximately 150 nm in patients 
with cystic fibrosis, a chronic lung condition distinguished by mucus 
dehydration and ion-channel dysregulation [55]. 

On a macroscopic level, this polymer network increases the bulk 
viscosity of mucin gels by several orders of magnitude (1,000–10,000 
times greater than the viscosity of water) [7]. In these networks, clas
sical application of the Stokes–Einstein equation would predict dis
placements much smaller than the typical thickness of mucus layers over 
timescales relevant for mucus clearance for viruses or hydrophilic 
macromolecules. Yet, various studies have observed a decrease in par
ticle mobility through mucus with increasing particle size that is 
inconsistent with the theoretical prediction arising from the background 
viscosity and Stokes–Einstein relationship [56–59]. This discrepancy 
suggests that particles smaller than the average pore size of mucus are 
capable of diffusing (assuming no biochemical interaction with mucin 
components) through low-viscosity pores within the mucus viscoelastic 
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matrix. This behavior indicates a size filtering mechanism that allows 
molecules and particles that are smaller than the pore size to cross be
tween mucin molecules, while larger particles are trapped and confined 
(illustrated in Fig. 1) [8]. However, evidence has shown that certain 
macromolecules larger than the mucin network pores are capable of 
rapidly diffusing through mucus [60,61], suggesting that other methods 
of filtration apart from size filtration control mucus permeability. 

4.1.2. Interaction filtering 
Particles are not strictly prevented from penetrating through mucus 

by their size, but also by the classes of network interactions discussed in 
Section 2 with mucin molecules (illustrated in Fig. 1). These interactions 
allow for particle filtration on the basis of particle surface properties. 
Some particles, even those smaller than the characteristic mucus pore 
size, may interact frequently or strongly with mucus components and 
become confined or completely immobile, while others can exhibit a 
combination of weak, lower-frequency interactions, allowing them to 
diffuse freely. Moreover, particles or certain mucus treatments can alter 
the pore size, enabling larger particles to penetrate. For example, the 
diffusion of nanoparticles [62] and influenza virus [57] in mucus treated 
with mucolytic agents was greater than that observed in untreated 
mucus. In contrast, in the presence of emulsifiers (i.e., carboxyl meth
ylcellulose), researchers observed a lower mucus pore size and lower 
diffusion rates of Escherichia coli [63]. Similarly, modified nanoparticles 
coated with mucolytic proteases show enhanced transport through 
mucus as a result of their ability to degrade mucin polymers [64]. 

Apart from the particle’s surface chemistry, the number of particle 
binding sites with an affinity for mucus can impact its degree of inter
action with mucins. For instance, small, relatively hydrophobic mole
cules show enhanced diffusivity through mucus relative to larger, 
biochemically similar molecules because they form only a few low- 
affinity, short-lived bonds with mucin polymers. In contrast, the nega
tively charged glycan domains on mucins are sites where small cationic 
molecules and polyvalent cations can attach strongly [65]. Although a 
higher positive charge is associated with stronger binding between 
particles and mucus, overall surface charge is not an exact predictor for 
the strength of binding and resulting transport. This finding is supported 
by work demonstrating that the geometric arrangement of positive and 
negative charges for an equivalent overall surface charge can influence 
transport [66]. 

The dense carbohydrate chains on mucins serve as binding sites for 
nanoparticles and various pathogens. Although mucin’s sugar chains 
provide anti-proteolytic properties, mucins are not completely resistant 
to degradation by bacterial species or other changes to their structure by 
factors such as pH, ionic strength, and exposure to ambient air, 

temperature, or light. Bacterial enzymes can degrade mucins through 
proteolytic or polysaccharide cleavage, which enhances bacterial 
permeability through mucus and accommodates microbial growth [67]. 
Microbial degradation of mucin is also influenced by glycosylation 
patterns which are unique to each mucin protein [68] as bacteria can 
have glycan-binding specificity [69,70]. It has been hypothesized that 
colonic mucus is less susceptible than gastric mucus to degradation by 
Clostridium and Bacteriodes species, potentially due to the different 
amounts of sulfated and fucosylated sugars in these mucus types 
[68,71]. For example, MUC2, which is found in the intestine, has a high 
degree of sialylation and sulfation [72] while nearly half of the O-gly
cans of MUC5AC, which is secreted in the stomach [22], have low sia
lylation and fucosylation [72]. 

Mucin can protect underlying epithelial cells by presenting “decoy” 
glycans for bacteria to bind, thus preventing the bacteria from reaching 
their target cells [73]. It is believed that the diversity of glycans on 
mucins allows mucins to bind and trap a broad spectrum of bacteria that 
can eventually be removed by the natural turnover of mucus [73]. Thus, 
the diverse glycan signatures expressed on the mucins of an individual 
play a significant role in determining an individual’s susceptibility to 
infection [73]. 

4.2. Within-host mucin/virus interactions 

The host-to-host transmission patterns of viral respiratory infectious 
diseases such as severe acute respiratory syndrome coronavirus 2 (SARS- 
CoV-2), influenza, and respiratory syncytial virus (RSV) are closely tied 
to the biophysical processes that occur within hosts and external to hosts 
at the point of transmission. Mucosal barriers are key components that 
influence disease pathogenesis and transmission via physiochemical 
interactions with viruses, which can alter infection dynamics within 
hosts and the viability of viruses emitted from an infected individual in 
the form of mucosalivary droplets. 

In a host, the mucus layer lining the respiratory tract serves as the 
“first line of defense” against inhaled pathogens [74]. Viruses are 
generally 20–200 nm in diameter, which allows them to penetrate the 
pores of mucin gels [6]. However, adhesive interactions with mucus may 
slow this diffusion depending on the surface properties of the virus [74]. 
Instead of secreting mucin-degrading enzymes as bacterial species do, 
viruses have evolved surface chemistries that favor minimal biochemical 
interactions with the components of mucus barriers [75,76]. Non- 
enveloped viruses, such as human papilloma virus and norovirus, are 
believed to be minimally adhesive to mucin due to the mixture of pos
itive and negative surface charges that result in an overall neutral sur
face charge [77]. In addition to their net charge, non-enveloped viruses 

Fig. 1. Filtering mechanisms regulating mucus 
permeability: size filtering and interaction filtering. 
Size filtering allows molecules and particles smaller 
than the mucin network mesh size to cross, while 
larger molecules are rejected. Interaction filtering al
lows particles to be selected according to their surface 
properties and binding interactions with the mucin 
network. Some particles interact strongly with mucus 
and are trapped (particles with thick yellow–orange 
edges), whereas other particles exhibit only weak in
teractions and pass through the network (particles 
with thin back edges).   
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may not interact with mucin via hydrophobic interactions because they 
have few hydrophobic regions [68]. 

Recent evidence suggests that viruses may more effectively spread 
and infect target cells as an aggregate of infectious units [78]. Variations 
in pH and salt concentration have been shown to produce viral aggre
gates in saliva [79]. However, the benefits of forming these larger virion 
aggregates in terms of greater infection potential can be expected to be 
offset by enhanced steric or adhesive interactions with the mucin 
network, illustrating a mechanism by which mucus may display anti- 
viral properties. 

Early researchers determined that influenza A viruses (IAVs) have an 
affinity for mucus [80]. During transmission, the virus initially en
counters respiratory tract mucus in the nasal cavity or oral cavity and 
must overcome this barrier to reach its target epithelial cells. Among 
other purified salivary proteins, MUC5B from human whole saliva has 
been show to inhibit IAVs at physiologically relevant concentrations 
[81]. It has been long hypothesized that mucus may act as a barrier 
against IAV infection by imitating cell surface receptors [82]. Mucins are 
rich in terminal sialic acids (Sias), which are thought to act as “decoy 
receptors” that can trap IAVs in the mucus layer and then clear viruses 
by the natural turnover of mucus [29,82,83]. In the human respiratory 
tract, the distribution of terminal Sias alpha2,6 and alpha2,3, which are 
also expressed in the porcine respiratory tract [74], varies along the 
respiratory tract and with aging [84]. Specific sialic acid types are more 
abundant in certain hosts and in particular physiological locations. For 
example, alpha2,3-linked Sias are more abundant in the GI tract of avian 
hosts, while alpha2,6-linked Sias are more abundant in the human upper 
respiratory tract [74,84]. Viruses also have a Sias binding preference: 
human influenza viruses preferentially bind alpha2,6-linked Sias, while 
avian and equine influenza viruses preferentially bind to alpha2,3- 
linked Sias[85,86]. Thus, host restriction (i.e., virus receptor speci
ficity vs. host receptor) and susceptibility may be significantly influ
enced by factors such as structural variations in sialic acid linkages, 
spatial distribution of linkages in hosts, and Sias binding preferences 
[87]. 

Two surface proteins of IAVs, hemagglutinin (HA) and neuramini
dase (NA), have specialized functions that initiate infection. HA binds to 
sialic acid receptors on the surface of cells and induces membrane fusion 
[88]. NA is responsible for releasing the virus into cells by cleaving the 
receptors [89]. While mucus is protective against IAVs, NA potentially 
circumvents entrapment of the virus by cleaving mucin’s “decoy re
ceptor” and enabling the virus to transport across the mucus barrier to 
infect the epithelium. In an in vitro investigation in which influenza vi
ruses were added to a layer of porcine respiratory mucus [83], the de
gree of penetration of the viruses in the mucus layer was shown to be 
enhanced by the addition of NA, while the addition of oseltamivir, an NA 
inhibitor, demonstrated reduced penetration of the viruses [83]. Simi
larly, in another in vitro study with swine- and human-origin viruses, 
purified sialylated human salivary mucins competitively inhibited NA 
cleavage in a dose-dependent manner, whereas porcine submaxillary 
mucin (PSM) could not prevent infection of underlying Madin–Darby 
canine kidney cells [82]. Although PSM also contains sialic acids, the 
presentation of sialic acid differs between PSM and human salivary 
mucin. Human influenza viruses bind alpha2,6-linked N-glycolylneur
aminic acid (Neu5Ac), while PSM and many other animal models ex
press N-glycolylneuraminic acid (Neu5Gc) [90]. This aspect is especially 
important to note in the selection of animal mucus models because the 
studied virus may not interact with receptors encountered in the native 
mucus environment. 

The importance of the mucosal barriers in determining the fate of 
pathogens in hosts is becoming increasingly recognized. Recently, 
theoretical and computational models of within-host disease spread 
have incorporated physiological characteristics of mucosal layers and 
biophysical properties of viruses [12–16]. In particular, two studies 
investigated the spread of infection by SARS-CoV-2 [12] and influenza 
[13] virions throughout the respiratory tract. These studies incorporated 

not only the thickness of the mucosal layer but the advection of the layer 
by underlying cilia, along with pathogen diffusion and cell infection. In 
brief, mucus can be characterized by rheological measurements to 
obtain information about bulk gel properties and the mucin network; 
this is done by either rheometers (macroscopic measurements) or by 
single particle tracking methods (SPT, microscopic measurements) [91]. 
In SPT methods, charged fluorescent micrometer-sized probes are 
dispersed in the gel, imaged with a microscope, and tracked using SPT 
software. The same method is often used to measure the transport 
behavior of biological or synthetic particles. 

As models further develop and distinct properties of mucosal barriers 
can be incorporated, it will be crucial to determine which factors are the 
key drivers of different phases of disease transmission (i.e., clearance, 
infection, progression). Presently, the viral diffusivities used in models 
are the combined effect of steric and binding interactions; more work is 
needed to separate these two effects to not only understand the mech
anisms by which pathogens move through mucus but also to more 
effectively target pathogens. These models serve as platforms for 
exploring disease outcomes and can also be leveraged to identify 
effective treatments against viral infection, develop methods to 
strengthen the mucus barrier (e.g. tighten mucus pores, increase 
strength/frequency of pathogen-mucin binding), and understand 
mechanisms by which viruses become immobilized and inactivated in 
mucus. For example, earlier modeling explored the capacity of virus- 
specific antibodies for blocking human immunodeficiency virus (HIV) 
infections in vivo [15,16] and investigated antibody characteristics to 
maximize their pathogen-trapping capabilities [14,92]. 

It is important to note that models often rely on properties that have 
been measured in experiments either in vivo or in vitro. Recent work has 
demonstrated varying levels of agreement in the transport of synthetic 
particles in native mucus and experimental model systems simulating 
native mucus (e.g., gels reconstituted from mucin, commercial mucins, 
or other commercial polymers) [93]. Therefore, it will be important to 
consider how environmental conditions (e.g. pH, temperature, ion and 
polymer type/ concentration) and instrumental methods (refer to 
[21,94] for experimental techniques for characterizing transport 
through mucus) affect predictions for estimates of drug or virion 
mobility in mucosal layers. 

4.3. Within-host mucin/bacteria interactions 

While one of mucus’ primary roles is to serve as a selective and 
protective barrier to underlying epithelial cells, it also serves as a 
nutrient source on which bacteria can proliferate and thrive. Indeed, a 
number of diverse bacterial communities thrive in the mucus environ
ment [95], even with its high resistance to microbial proteases. The 
degradation of mucin can indirectly benefit certain bacteria, including 
pathogenic bacteria, that lack specific enzymes by providing a nutrient 
source of mucus-derived sugars [96]. At the same time, mucus- 
degrading species can promote the selection of commensal microbes 
and support a beneficial microbiota. Apart from mucins serving as a 
nutrient source, the molecules harbored in the network of mucins or 
mucins themselves may trigger changes in the expression of bacterial 
species [97]. This behavior emphasizes the crucial role of mucus in cases 
where certain bacterial species would otherwise compete [52] or where 
a bacterial species (i.e., opportunistic pathogen) would otherwise pre
sent with virulence features (i.e., biofilm growth) [98,99]. In addition, 
mucins, similarly to their interactions with certain viruses, can behave 
as non-productive decoys that prevent the interaction of bacterial 
adhesins with epithelial surfaces [100]. 

While viruses such as RSV can change the composition of mucus by 
increasing the production of mucus-secreting cells [101], their effect on 
mucus rheology has not yet been studied for common infectious viral 
diseases. During infection with certain viruses such as SARS-CoV-2 
[102] and in chronic diseases such as cystic fibrosis, asthma, and 
chronic obstructive pulmonary disease [55], the dysregulation of water 
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and ion concentrations in mucus layers can strongly impact mucus hy
dration. Dysregulated hydration can result in a thickened mucus layer 
that is less easily cleared, which can further impact disease progression. 
Interestingly, in the case of viral infections, these effects generally 
appear to initiate after the onset of infection. In contrast, other patho
gens can alter the properties of mucus to enhance their transport. Studies 
have shown that the pathogenic bacterium Helicobacter pylori, which is 
responsible for gastric ulcers, achieves motility in the mucus layer by 
modifying the layer’s rheological properties [50,103]. H. pylori is able to 
colonize in the harsh acidic environment of the human stomach by 
producing urease, which catalyzes urea hydrolysis to yield ammonia, 
resulting in an elevated pH [50]. This increased environmental pH re
duces the mucus viscoelasticity and increases motility across the GI 
mucus layer [50]. 

It is possible that viruses and bacteria may be mutually beneficial to 
one another. Bacteria may aid viruses in overcoming the mucus barrier. 
In particular, mucin-degrading species may break down mucin sugars, 
facilitating a path for viruses to penetrate. Once viruses reach their 
target cells and shut down the body’s immune defenses, bacteria have 
the potential to initiate their own infection. This behavior can be seen in 
viral infections that result in secondary bacterial infections due to 
altered immune function or altered dynamics of inter-microbial in
teractions [104]. 

5. Role of mucus in infectious disease transmission 

When a virus is emitted, whether through coughing, sneezing, talk
ing, or breathing, it is enveloped in respiratory tract fluid, and its suc
cessful onward transmission depends on it remaining viable until its 
transfer to a new host. Real-time reverse transcription PCR detection 
results for throat, nasal, saliva, and sputum specimens from individuals 
with respiratory infections (i.e., influenza and SARS-CoV-2) have shown 
that exhalation emissions originating from different regions of the res
piratory tract can exhibit a range of viral loads. Air samples in areas with 
nearby infected individuals not only contain viral RNA but also live, 
culturable viruses, supporting the route of aerosol transmission. Respi
ratory droplets traveling in the air will be entrained and advected in 
ambient air flows or the cloud of moist buoyant air emitted by the in
dividual [105,106]. Larger droplets may settle quickly to the ground and 
contribute to infection via fomites, whereas smaller aerosolized droplets 
may remain suspended in the air [13,113]. As previously discussed, 
mucin polymers contribute to the viscoelastic and biochemical proper
ties of mucosal sources within the body. Additionally, the presence of 
polymers shifts the size distributions of droplets generated when solu
tions are sprayed, as occurs during sneezing and coughing [107,108]. 
Under different ambient temperature and humidity conditions, droplets 
will undergo differential degrees of evaporation, which induce a variety 
of physicochemical transformations to the droplet, thus determining the 
duration of pathogen viability. Finally, we note that there may be 
important differences in the “quality” of the exhaled aerosol (e.g. droplet 
size and spatial dispersion) between individuals [109]. 

Researchers have extensively studied the effect of external climate 
factors or ambient conditions, such as temperature and humidity 
(particularly relative humidity [RH]), on virus viability [10,110–115]. 
Among two early studies on this subject, only one found increased virus 
viability at lower temperatures [111], but both concluded varied effects 
of RH for the types of viruses tested [110,111]. More recent studies have 
found IAV viability in droplets to be highest at low RH [114], or highest 
at low and high RH and lowest in intermediate RH ranges [116]. The 
latter finding, including decreased viability with increasing tempera
ture, was also observed in work combining experimental data for SARS- 
CoV-2 and other human coronaviruses [113]. The interplay among ionic 
strength, pH, and RH in the droplet complicates the identification of 
physical mechanisms for pathogen inactivation and survival. As the 
droplet evaporates and shrinks, the concentrations of salts, proteins, and 
other components increase by nearly an order of magnitude due to water 

loss by evaporation [9], which can alter the pH of the droplet environ
ment [10]. Moreover, apart from evolving concentrations, the presence 
of solutes in the water broadly alters evaporation parameters, including 
droplet lifetime, evolution of the droplet morphology, and final residue 
or nucleus size. 

The effect of the presence of proteins, particularly mucins, on the 
viability of viruses in droplets remains unresolved. Early work found 
that the addition of bovine serum albumin to Langat virus droplets 
increased survival across a range of RH values [117]. A more recent 
study showed that the presence of bovine serum albumin protected both 
bacteriophage MS2, a non-enveloped virus, and bacteriophage φ6, an 
enveloped virus, from inactivation in droplets [112]. At intermediate 
RHs, the viability of IAV decreased in saline solutions, yet increased 
dramatically in the presence of salt and mucus [10]. However, protein- 
rich media alone with salt did not significantly alter the viability, 
highlighting a potentially unique effect of mucins in mitigating adverse 
effects of elevated salt concentrations on virus survival [10]. In recent 
work, the remains or dried residue of saline droplets versus salt–mucin 
droplets evaporating on superhydrophobic substrates emulating the 
drying of aerosol droplets were found to be distinct [118]. In the saline 
droplets, a single crystal shape remained while in the salt-mucin drop
lets, a “bone-like” structure remained, indicating a disruption in crys
tallization by the presence of the proteins (Fig. 2) [118]. Similarly, on 
more wetting surfaces, modified crystallization patterns arose in the 
presence of mucins (Fig. 2) [119]. 

During evaporation, droplets with solutes including viruses, bacteria, 
proteins, and salts form dried precipitates with patterns resulting from 
the agglomeration of salt, proteins, and other materials. Generally, these 
patterns arise from capillary or Marangoni flows inside the droplets. 
Capillary flows within droplets lead to the deposition of solute particles 
near the pinned contact line, causing the formation of a so-called “coffee 
ring” pattern upon drying. In contrast, Marangoni flows in droplets arise 
from variations or gradients in surface tension, temperature, or solute 
concentration at the liquid interface of the droplet. This gradient will 
determine whether solutes are directed toward or away from the drop
let’s contact line [119]. The evaporation-induced solute concentration 
gradient near the droplet surface not only rearranges the deposition of 
solutes but also slows the drying or evaporation process and leads to the 
formation of a crust or shell. Depending on the type of solute, the 
resulting crust may be dry (i.e., salty droplets) or a “gel-like wet skin” 
composed of a combination of polymers, proteins, and other suspended 
particles [120]. As evaporation continues, the crust becomes thicker, 
which further reduces the evaporation rate. In the case of a wet gel-like 
crust, water will continue to evaporate through its pores via diffusion. 
This behavior is corroborated by recent work demonstrating changes in 
the transparency of droplets with porcine gastric mucin and salt (RH <
80%), suggesting the onset of gelation [9]. Higher ionic strength may 
promote gelation by screening electrostatic attractions within and be
tween mucins, which may also promote the aggregation of mucin mol
ecules into a more concentrated layer [46,121,122]. 

Separate from salt effects, the pH of droplets varies during evapo
ration. This process is sensitive to the surrounding environmental tem
perature and RH [123,124]. Due to the loss of water during evaporation, 
the concentration of free H+ ions in a droplet increases, reducing the 
droplet pH. Similarly, the enrichment of ions such as H3O+ and OH− at 
the droplet interface may create pH gradients inside the droplets 
[10,125]. Both non-enveloped and enveloped viruses are generally more 
susceptible to inactivation in acidic and basic solutions than in pH- 
neutral solutions [126]. At extreme pH values, virus structures are 
destroyed, and the virus is inactivated [127,128]. Mucins also undergo 
conformational changes in response to pH changes in their environ
ments. At near neutral pH levels, mucins exist as random coils [30], 
while under acidic conditions near pH = 2, carboxylate salt bridges on 
the mucins break. The breaking of carboxylate bridges causes the mucins 
to unfold and expose hydrophobic regions, which then cross-link to form 
a gel [30,129,130]. Thus, pathogens may become embedded within the 
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gel-like residue crust. Pathogens may benefit from being blanketed by 
this crust by obtaining protection from the harsh non-native conditions 
of the surrounding environment. 

The presence of salts and their elevated levels in evaporating droplets 
can have deleterious effects on enveloped viruses. Researchers have 
studied various effects of salts on viruses, including osmotic damage and 
ion-induced structural changes to lipid bilayers. Salts in solution, such as 
sodium chloride, challenge the survival of enveloped viruses such as φ6, 
influenza, or coronaviruses, due to the osmotic pressure difference 
across the lipid membrane. While most microorganisms, as well as 
human/animal/plant cells, can maintain an osmotic pressure balance, 
the enveloped virus experiences increased osmotic stress during the 
drying process of a droplet. Without the ability to transport water across 
the virus lipid membrane due to a lack of water regulatory channels, 
enveloped viruses are vulnerable to osmotic damage [118]. A previous 
study evidenced enhanced inactivation of viruses by salts at specific pH 
levels [128], leading to alterations in membrane structure; however, the 
exact mechanism has not been identified [10]. While salts appear to be 
toxic to enveloped viruses, salts improve the viability of non-enveloped 
viruses, possibly because they are less susceptible to structural damage 
than enveloped viruses. Ultimately, once the exterior of an enveloped 
virus is damaged, the virus is compromised and loses its infectivity, in 
part due to a loss of critical envelope proteins needed for binding to host 
cell receptors. Yet, non-enveloped viruses contain these proteins 
responsible for cell attachment on their capsids and are reportedly more 
resistant to inactivation [131]. Studies have demonstrated that viruses 
tend to aggregate in solutions with high salt, which may increase their 
stability in such environments [132]. Virus aggregation may be 
enhanced in evaporating droplets as salt concentrations increase 
concurrently with droplet shrinkage, and hence, aggregation may 
enhance the viability of non-enveloped viruses even under conditions of 
complete desiccation. 

While mucins in the body function as potential site receptor decoys 
to pathogens or as physical barriers to pathogen entry, outside of the 
body, they are potentially advantageous to pathogens in terms of pro
moting viability. Often, models and experiments on the transport and 
viability of airborne viruses assume that the projected fluid can be 
modeled as water. However, this oversimplification ignores the complex 
composition and interactions that occur between respiratory tract fluids 

and pathogens. Even experimental studies that do incorporate the effect 
of mucins largely use commercial porcine gastric mucins in mixtures to 
model mucosalivary droplets. As discussed in Section 3, commercial, 
industrially purified mucins such as porcine gastric mucin do not form 
gels and exhibit dramatically lower anti-viral and anti-bacterial activity 
[47,133], as well as inferior lubricity [134]. Hence, to further explore 
the effects of mucin in pathogen transmission, the use of lab-purified 
mucins will be crucial to preserve these complex physicochemical 
interactions. 

6. Conclusion 

A vast array of research has demonstrated unique characteristics of 
mucins that can be potentially advantageous or deleterious to pathogens 
by promoting binding and sequestration within hosts. Yet, many ques
tions remain in our understanding of the mechanistic details by which 
mucus, particularly mucins, interacts with pathogens and modulates 
disease progression and transmission both within and external to hosts. 
Careful experimental studies assessing pathogen transport through 
mucin gels and viability external to hosts are necessary to begin to 
answer these questions. We note that the model systems chosen to study 
these problems, in terms of both mucins and pathogens, will be critical. 
Indeed, while the limited availability of native mucus and physiologi
cally intact lab-purified mucins has prompted the use of commercial 
mucin molecules, significant work remains to demonstrate whether 
these polymers are physicochemically comparable to native products. 
Insight from such studies will enable the effect of mucosal barriers to be 
incorporated into models for disease transmission from first-principles, 
improving their mechanistic basis and predictive ability, with impor
tant implications for designing disease mitigation strategies and guiding 
public health policy. 
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Fig. 2. The surrounding environment (sunlight, tem
perature, moisture) and composition of respiratory 
droplets affect their evaporation behavior, as well as 
the ionic concentration/strength, and pH of the 
droplet environment over time. The evaporation of 
droplets on superhydrophobic surfaces (to simulate 
evaporation in the air) of saline and mucin–saline 
results in distinct final residues upon drying (image 
reproduced with permission from [118] in the top 
right panel). Similarly, evaporation on surfaces results 
in flat residues with distinctive morphologies 
depending on the surface properties and droplet 
contents (image reproduced from [119] in the bottom 
right panel). Altogether, the temporal evolution of 
droplet composition and resulting deposition patterns 
modulate the infectivity and viability of pathogens 
encapsulated in mucosal droplets.   
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