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• Farmers' local knowledge about soil, 
crops, and weather is vital for precision 
agriculture development and 
implementation. 

• An interdisciplinary approach is essen
tial for responsible precision agriculture 
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• Collaborative design practices within 
living labs help make policy making 
processes more transparent.  
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Objective: We delve into the role of living labs as dynamic platforms for fostering responsible innovation in 
precision agriculture. We highlight our early experiences regarding processes and best practices by which an 
interdisciplinary research team uses living labs as a methodological approach to design and test trustworthy PA 
innovation. 
Methods: Our living labs methodology is composed of five interrelated activities: (a) face-to-face interviews and 
surveys with farmers, (b) multidimensional field data collection and analysis, (c) a quasi-field experiment and 
serious games to test the effectiveness of sensor-driven performance-based payment for improving ecosystem 
services, (d) design workshops, and (e) extension and outreach of PA tools and knowledge to farmers and rural 
communities. 
Results and conclusions: Our initial findings demonstrate how living labs can be leveraged to co-create sustainable 
solutions that are socially and economically responsive to the challenges of farmers and rural communities, and 
environmentally sustainable. Our research underscores the importance of including experts from various fields to 
collaborate and contribute to innovation development. 
Significance: We share the challenges and opportunities associated with implementing living labs in the context of 
precision agriculture technologies. By sharing our early experiences in establishing living labs in the United 
States, we aim to contribute to the promotion of inclusive and responsible innovation within the living lab 
community and offer valuable guidance to other researchers embarking on similar initiatives.   

1. Introduction 

Precision agriculture (PA) stands at the intersection of human- 
technology collaboration, harnessing data-driven agricultural tech
niques and localized farm data to provide farm-specific recommenda
tions (Klerkx et al., 2019; Rossel and Bouma, 2016). Driven by digital 
technologies such as artificial intelligence (AI) and machine learning 
(ML), PA innovations have the potential to revolutionize farming prac
tices, enhance crop yields, and mitigate environmental impacts. Yet, 
several challenges remain unresolved that also impede farmers' adoption 
of PA (Gardezi et al., 2023; Gardezi et al., 2022; Gardezi and Stock, 
2021). These include questions such as how to convert big data into 
improved farm management decisions (Lowenberg-DeBoer and Erick
son, 2019), how to use PA to help optimize resources to limit environ
mental impacts of farming (Tey and Brindal, 2012), and how best to 
train the future workforce and overcome barriers such as economic and 
opportunity costs (Gardezi and Bronson, 2020), and social- 
psychological barriers such as negative perceptions or attitudes associ
ated with these burgeoning technologies (Mizik, 2023). This paper 
represents our initial exploration of living laboratories or “living labs” 
(LLs) as a methodological approach to co-design PA tools that can 
enhance farmer trust, improve farm productivity, and promote envi
ronmental sustainability. 

Traditional policy interventions such as research and development 
(R&D) investments or subsidies are insufficient on their own for initi
ating and fostering sustainability transitions (Kuhlmann and Rip, 2018). 
Recently, LLs have gained attention as a specific type of intervention 
that enables stakeholders to co-design, test, and learn from socio- 
technical innovations in real-time and over the longer term (Dell'Era 
and Landoni, 2014). There is clear value in introducing LLs to the fore as 
means of inclusion and trust-building in responsible innovation (RI). 
Building trust with stakeholders across the food system value chain, such 
as farmers, requires sustained and continuous engagement efforts, 
where social and environmental sensing can help co-design and co- 
develop new technologies (Guzman et al., 2008; Zavratnik et al., 
2019). This comment submitted to the special issue on “Enabling Inclu
sive Innovation in Agriculture and Food Systems” highlights our early ex
periences regarding processes and best practices by which an 
interdisciplinary research team uses LLs as a methodological approach 
to design and test trustworthy PA innovation. By sharing these meth
odological experiences of setting up LLs in the US, we hope that these 
reflections will forward the LL agenda of RI and guide fellow researchers 
in their endeavors. 

2. Living labs for responsible innovation 

RI goes beyond viewing farmers and other stakeholders across the 

food system value chain as mere recipients of new technologies (Klerkx 
and Rose, 2020; Fielke et al., 2022; Prutzer et al., 2023). Instead, it 
acknowledges their pivotal role in actively shaping a collective future of 
science and technology. LLs offer a promising approach to bridge the 
science-policy-society gap (Bronson et al., 2021). It is worth mentioning 
that LLs are not entirely new and co-creating and testing solutions with 
active community engagement has a long history in social sciences, 
specifically in the field of participatory action research (PAR) (Lewin, 
1946). LLs can be understood to build upon and extend the traditions of 
PAR, specifically by leveraging community involvement and co-design 
processes to address complex social and technical challenges (Ahmadi 
et al., 2018; Logghe and Schuurman, 2017). In the case of our ongoing 
investigation, we are conceptualizing LLs as dynamic spaces where 
innovation is not confined to laboratories but tested and refined in the 
real-world, specifically at the farm-level. With the goal of pursuing user- 
centered designs of PA tools, LLs provided a collaborative platform to 
our project team to co-create with farmers and prototype digital agri
culture technologies while considering diverse perspectives and envi
ronmental sustainability. 

In this section, we outline our living lab methodology as an approach 
at this preliminary stage to learn and co-create knowledge and tools with 
farmers in South Dakota (SD), Vermont (VT), and Virginia (VA). Farms 
in these three US states represent different farming systems and work
force dynamics ranging from medium to large-scale farms in SD state 
(~500–10,000 acres) whereas VT and VA are dominated by small and 
medium scale farms (~15–150 acres). Furthermore, each of the three 
states produces a vast range of agricultural commodities. For instance, in 
SD, the most essential agricultural products are corn, soybeans, wheat, 
livestock, and ethanol (Joshi et al., 2019). VT farms typically specialize 
in niche products such as dairy, hay and maple syrup, whereas VA is one 
of the most diverse agricultural commodity producers in the country, 
producing commodities rated in the top 10 among all U.S. states, such as 
leaf tobacco (ranked third) and peanuts (ranked ninth) (VA Agriculture, 
2019). Regarding employment, the agriculture sector accounts for 30%, 
3.6% and 9% of all the jobs in SD, VA and VT respectively (USDA, 2022; 
NOFA Vermont, 2022; VA Agriculture, 2019; USDA, 2012). SD and VT 
are among the top 15 states in the US whose economies are “most 
dependent” on agriculture (Farm Bureau, 2019). 

In our initiative to harness LLs for RI in PA, we employ an iterative 
process of PA development that aims to inspire developers to create user- 
centered and socially acceptable products and tools. At this early stage, 
we have observed that incorporating perspectives of farmers who are 
affected by new technological development enhances perceptions of 
trustworthiness and improves attitudes. Moreover, technology de
velopers can use LLs to demonstrate a willingness to adopt technologies 
and policies, and thus take the interests of farmers into consideration 
(Eastwood et al., 2022; Ditzler et al., 2018). Our living lab methodology 
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aims to provide valuable insights into how iterative engagement with 
stakeholders can drive RI, sustainability, and trust in PA. As part of our 
preliminary investigation, Fig. 1 summarizes our living lab methodol
ogy, which is composed of five interrelated and ongoing activities: (a) 
face-to-face interviews and surveys with farmers, (b) multidimensional 
field data collection and analysis, (c) a quasi-field experiment and 
serious games to test the effectiveness of sensor-driven performance- 
based payment for improving ecosystem services, (d) design workshops, 
and (e) extension and outreach of PA tools and knowledge to farmers 
and rural communities. Prior to beginning this research, we obtained 
internal review board (IRB) approval to carry out the study. Our LLs 
methodology involves several key components. (See Fig. 2.) 

2.1. Conducting in-depth and face-to-face farmer interviews 

To gain insights into the specific needs, challenges, and aspirations of 
farmers, we conducted in-depth and in-person interviews and surveys. 
Qualitative techniques, including interviews, are valuable for under
standing local perspectives and contextual influences on farmer's deci
sion making. We recruited farmers using new as well as existing farmer 
collaboration networks. A balanced representation of farmers across 
various age groups, education and technological literacy, farm size, and 
state of adoption of PA tools was sought. Farmers that produced a va
riety of agricultural commodities such as corn, soybeans, dairy, live
stock, alfalfa, and hay were interviewed. These interviews aimed to 
gauge farmers' attitudes and perspectives on various issues, including 
their level of trust in various technologies such as sensors, AI-driven 
models, the efficacy of recommendations from existing hydrological 
models (such as the Agricultural Policy / Environmental eXtender 
(APEX) model), their approaches to modifying their farm production 
systems in response to economic and environmental pressures, and the 
effectiveness of relevant subsidies on farm productivity and environ
mental footprint. Region-specific questions focusing on issues pertaining 
to South Dakota, Vermont, and Virginia were also included in the 
interview. 

2.2. Converting data collected from multispectral sensors, satellite 
imagery, field monitors, and in-situ soil sensors into useable information 
for farmers 

Agriculture is a multidimensional field of study, and its proper un
derstanding requires diverse agroclimatic data. To enhance our 

understanding about agricultural systems and issues related to it, we 
identified fields that were of particular interest to farmers due to their 
agronomic properties, such as soil fertility and yield potential, as well as 
the challenges encountered by farmers in cultivating crops within those 
areas. After field identification, we have been using multidimensional 
field data collection including high-frequency satellite, UAV imageries, 
soil nutrient and water quality testing. Moreover, in a subset of farms 
where pre-existing water quality monitoring infrastructure and baseline 
nutrient export data were available, a robust water sampling program is 
also in progress. Following data collection using various sensors and 
monitoring systems, we have been developing novel deep learning and 
AI-based algorithms to convert these data into useful information, such 
as the prediction of farm-level nutrient flux, greenhouse gas (GHG) 
emissions or carbon footprint of agricultural systems, and crop yield. For 
example, we utilized a combination of AI algorithms and high-resolution 
satellite images to predict soybean yield at different growth stages (Joshi 
et al., 2023). Similarly, we deployed sensors and used ML models to 
predict daily CO2 and N2O emission from cover cropping systems by 
combining sensor collected data with meteorological information such 
as soil moisture/temperature, air temperature, and total rainfall (Joshi 
et al., 2022). ML model results can be used to help determine the total 
carbon budget of conservation agricultural management systems, and 
thus assist in management decisions such as planting cover crops. 
Additionally, our approach at this preliminary stage involves utilizing 
these multidimensional data to calibrate and validate the farm-scale 
Agricultural Policy/Environmental eXtender (APEX) model (Wang 
et al., 2012) across the LLs, and assess farmers' interest in these model 
forecasts. This work is currently in progress, but we expect these models 
to play a crucial role in predicting the dynamics of phosphorus (P), ni
trogen (N), water budgets and soil organic carbon (SOM), and crop yield 
on the farm. To address concerns regarding data security and privacy, 
we are employing standard information security techniques, including 
encrypted communication and data access control, ensuring the secure 
collection, storage, processing, and access of agricultural microdata. 

2.3. Using alternative sensor-driven “pay-for-performance” strategies to 
incentivize farmer innovation and behavioral change towards 
environmental sustainability 

While there is a long history of paying and/or subsidizing farmers for 
conservation practices, there have been limitations on monitoring the 
actual effects of these practices on the environment. For example, 

Fig. 1. Overall living lab methodology (Source: Authors' own).  
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environmental systems are influenced by numerous variables, including 
weather patterns, soil conditions, and vegetation patterns, which makes 
it challenging to isolate the specific impact of a single conservation 
practice on outcomes, such as nutrient runoff reduction. Alternative 
“pay-for-performance” strategies, which rely on innovative sensor/PA 
technologies and data modeling, have been promoted as approaches that 
permit more cost-effective decision-making and incentivize farmer 
innovation and behavioral change towards environmental sustainability 
(Lau, 2013; Sone et al., 2019; Wu et al., 2017; Zia et al., 2020). While 
formal results are pending, our initial interviews with farmers, we were 
able to identify the most appropriate fields/sites within their farms that 
will be monitored through aerial and ground-based soil sensors. Early 
findings identified varying interests among farmers that extend beyond 
simply maximizing crop yield, for example, emphasizing soil health and 
prioritizing water quality. Consequently, we organized our LLs into 
three distinct categories aligned with these preferences, facilitating a 
more precise and tailored co-design approach. Using the living lab 
methodology, our early experiences shed light on testing whether 
performance-based payment for ecosystem services (PES) mechanisms, 
compared with a control group of extant policy mechanisms, increase 
farmer productivity and enhance environmental sustainability. Farmers 
have multiple fields enrolled in the experiment and will receive either 
information, payments tied to performance or the combination of pay
ments and information on individual fields. 

For fields in the control group, farmers are provided information in 
the form of a traditional APEX model. They are given baseline monetary 
incentives to participate in the experiment. Farmers with fields in the 
first treatment group are provided information from an enhanced APEX 
model that uses AI to parameterize and calibrate the existing APEX 
model. For their fields in this group, farmers receive baseline payments 
only. Another group of fields were placed in the second treatment group, 
where the farmers are paid performance-based payments on a sliding 
scale, i.e. for reductions in P or N pollution compared with the baseline 
period. For the fields in this second treatment group, farmers receive 
information only in the form of the traditional APEX model. The third 
treatment group constitutes farmers who receive performance-based 
payments (as in the case of the second treatment group) and informa
tion to utilize the new enhanced APEX model (as in the case of the first 
treatment group). This is an example of a 2 × 2 factorial design, which in 
our case, comprises corn/soybean, pasture-based dairy and cattle, and 

alfalfa/hay farms in the three US states. This experiment (still in prog
ress) constitutes a rigorous and comprehensive approach to data 
collection, analysis, and algorithm development, enabling us to advance 
our understanding of PA and environmental monitoring while address
ing critical challenges in the field. 

We utilize a serious game, a form of simulation-based experiment, to 
recreate environments that demand critical decision-making dynamics. 
This approach enables us to gather data for testing the aspects of the 
real-world 2 × 2 factorial design quasi-experiment mentioned earlier. 
Our objective is to investigate farmer behavior within a simulated 
agricultural setting and identify factors influencing gameplay through 
post-game surveys. One significant advantage of simulation is our ability 
to control contextual and treatment variables. For instance, by com
pressing time compared to real-world conditions, we can simulate 
multiple growing seasons within a single experiment. This not only fa
cilitates iterative learning but also provides a platform for envisioning 
the future. Participants are rewarded with a portion of real-world cur
rency based on their in-game earnings, motivating them to optimize 
their perceived utility, such as maximizing profit, minimizing costs, or 
managing uncertainty. Through simulating agronomic dynamics in our 
game, we can uncover trade-offs between economic profitability and 
ecological costs while assessing socio-psychological determinants of PA 
adoption. Our simulation-based experiment specifically examines di
mensions of trust in PA, particularly in relation to the accuracy and 
precision of recommendations from three different information sources 
for agronomic decisions. By comparing (a) human-generated recom
mendations with those derived from (b) simple mathematical models 
and (c) AI-based recommendations for fertilizer application rates and 
projected net returns, we have begun to explore issues related to trust, 
attitudes towards AI and computer-generated forecasts, incentive 
structures, funding sources (public, private, and compliance markets), 
and willingness-to-pay. Through conclusive results are forthcoming, 
deploying this serious game to a diverse group of participants, including 
living lab participants, crop advisors, and the general public, will yield 
insights into generalizable preferences for trust in new and emerging 
technologies in agriculture. 

Fig. 2. Living labs for responsible innovation in precision agriculture. (Source: Authors' own).  
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2.4. Administering design workshops to envision future scenarios and 
develop low-fidelity prototypes 

Collaborative design workshops play a critical role in involving 
farmer perspectives, values and interests in envisioning (and ultimately 
shaping) the diverse future scenarios of farms, as well as the broader 
agricultural landscape. Design workshops and materials create a liminal 
space for creative thinking, open dialogue, inviting critical and 
thoughtful consideration for how AI and ML might practically impact 
farmers, farms and rural communities. In concert with the RI principles, 
“designerly” approaches (Cross, 1982), particularly those oriented to
wards participation (Brandt et al., 2012) and speculation (Auger, 2013; 
Dunne and Raby, 2013; Sterling, 2005), provide farmers with a sandbox 
to explore alternative realities; mapping out the political, material, and 
infrastructural implications and trajectories of using possibly disruptive 
emerging technologies in agriculture. Our design workshops were 
informed by preliminary data collection of farmers over the period of 
one year in the form of interviews and surveys. The design workshop 
aimed to investigate how can we collaboratively design decision support 
tools (DSTs) with farmers, for use in climate smart agriculture. This 
involved three key stages (1) Decision Mapping (2) Scenario Building, 
and (3) Requirements Gathering. 

2.4.1. Decision mapping 
The decision mapping exercise involved understanding the process 

of nutrient-related decision-making by the farmers (e.g., how much 
fertilizer to use). We were interested in exploring how farmers identify 
and organize their decisions across a temporal scale, as well as high
lighting the dimension of importance. We used a graphical 2-x-2 matrix 
tool (Hasso Plattner Institute of Design at Stanford, n.d.) to graph 
different dimensions of key decisions across a temporal scale in a one- 
on-one activity. Farmers first listed key decisions important for 
nutrient management using sticky notes, and then placed them in order 
of priority to reveal key areas of importance. Thereafter farmers engaged 
in a focused discussion with facilitators (a transdisciplinary team of 
researchers) — to deep dive into the process of decision making in the 
farming landscape, identifying regional and crop-specific problems 
associated with farmers' decision making. 

2.4.2. Scenario building 
After the mapping exercise, farmers were involved in speculating 

over different scenarios of farming technologies in near future settings. 
This involved introducing farmers to visions of future farms, as well as a 
design fiction prototype — The New Farm Times, a newspaper styled 
photovisual article (presented using Figma) with headlines of articles, 
serving as provocations illustrating possible futures. The photo essay 
comprised of sixteen carefully crafted images, that drew upon farmer 
insights during the pre-work (i.e., interviews, surveys, desk research) — 
depicting possible speculative futures of digitally enabled farming 
technologies and systems. These images were hand drawn illustrations 
(using Procreate), coupled with a caption describing the image. The 
images were used as a hybrid photo elicitation-card sorting technique, 
using a preconfigured Q-methodology analytical approach towards the 
card sort. Farmers were asked to sort images in order of likelihood on a 
Q-methodology template board discussing their rationale with the 
research team. Farmers were also asked to react and discuss their re
sponses to the newspaper headlines where we shared hypothetical news 
reports from the future of farming in the US, in which farmers were able 
to achieve their nutrient management goals in a sustainable way. 
Farmers were asked how the realization of these goals could have been 
made possible in the future. 

2.4.3. Requirements gathering 
The final exercise of the workshop involved farmers being given a 

short presentation on two existing models of DSTs, an AI-based model 
and a process-based model (APEX). Farmers were asked to comment on 

their experiences of using these models in the past. They were then asked 
to suggest what features of these tools they like or dislike the most, and 
how they would like to improve or completely replace the existing in
terfaces portraying the results of these models. This exercise was fol
lowed by a focus group between the project team members and the 
farmers. 

2.5. Outreach and engagement 

Communication is vital in facilitating RI. We actively engage with 
broader farmer audiences to convey the challenges and opportunities 
presented by AI and ML in agriculture. This dialogue encourages 
knowledge sharing and empowers farmers to participate actively in 
shaping the future of farming. As part of our dissemination workshops, 
living lab farmers were presented with site-specific, spatial improved 
images of soil parameters (i.e., improved maps using observed data on 
pH, soil phosphorus, and soil organic matter from individual farms) in 
addition to the field averaged values currently used as input to the APEX 
models. We are also leading several PA hackathons to simultaneously 
educate youth on agricultural management by developing a serious 
game. This application of practical knowledge enabled middle and high 
school aged children to immerse themselves in the challenges of farm 
management while learning both to write and execute computer code 
and bolster communication skills around the complex topic. The over
arching goal of the hackathon was to educate and demonstrate the risks 
and benefits of PA technologies. Students learned to code in the Unity 
gaming platform to communicate the benefits and challenges associated 
with PA applications in farming. 

3. Opportunities for living labs to drive inclusive and 
responsible innovation 

3.1. Empowering farmer-centered innovation through LLs in PA 

Participatory action research (PAR) has significantly influenced the 
development of LLs, with its focus on active community engagement, 
collaboration, and iterative learning and implementation (Reason and 
Bradbury, 2008). PAR principles have provided a foundational frame
work for LLs to co-create and test innovative solutions with real-world 
contexts (Bergvall-Kareborn and Stahlbrost, 2009) and evolve as a dy
namic space for inclusive and responsible innovation (Almirall and 
Wareham, 2008). Although our work is currently ongoing, we have 
found LLs to be a useful approach emphasizing participation, experi
mentation, and learning while also recognizing the significance of 
farmers' situated knowledge in addressing sustainability challenges and 
facilitating inclusive and responsible innovation. While LLs can influ
ence the development of new practices and reshape relationships be
tween individuals and their local and place-specific environments 
(Toffolini et al., 2021; Gamache et al., 2020), inclusive innovation un
derscores the significance of social organization, representation, and 
incentives in fostering a genuine participatory innovation process that is 
rooted in local demand and context (Swaans et al., 2014). Inclusive 
innovation provides guiding principles and heuristics that specially 
attend to the characteristics of innovation, including how actors and 
organizations come to engage in learning, and the institutional rules that 
shape their actions (Opola et al., 2021; Foster and Heeks, 2013). Our 
research takes its inspiration from LLs and current work on inclusive 
innovation to move beyond imagining and prescribing users, user needs, 
and use cases in more bounded settings, and instead open up the 
development process to users themselves in everyday contexts of use. 
Therefore, we postulate—based on our initial observations—that LLs 
can assist in sustainability transitions as farmers and other stakeholders 
seek innovative and inclusive solutions for agricultural, food, environ
mental, and social concerns through the facilitation of new organiza
tional models that formalize the provision of goods and services 
(Chataway et al., 2014). 
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Our early experiences underscore meaningful and diverse user 
participation in LLs. However, we recognize that these opportunities for 
participation can be challenging, as it requires overcoming geograph
ical, cultural, and technological barriers. There is an immediate imper
ative to adopt a fundamentally different approach to innovating in PA, 
one that is community-centered and integrates diverse forms of knowl
edge alongside local assessments of socio-environmental risks and ben
efits. Historically, the development of agricultural technologies has 
often overlooked or superficially engaged farmers as active participants 
in the design, implementation, and education processes. When knowl
edge and technologies are exclusively crafted by accredited experts such 
as engineers and scientists, they tend to disregard critical contextual 
considerations that can result in adverse impacts on technology adop
tion and its socio-environmental consequences. Recent design thinking 
approaches in agriculture have supported farmers, farm advisors, 
research scientists, application developers, and policy makers in artic
ulating and involvement in the creation of agricultural technology (e.g., 
geotagging photo application) that allow technology developers to 
leverage diverse forms of knowledge and expertise, and thereby 
increasing the social acceptance of new tools (Kenny et al., 2021). We 
draw inspiration from this design research and emphasize that agricul
ture is inherently site-specific, intertwined with the specific cultural and 
ecological contexts of the regions it serves. 

Our preliminary work highlights the significance of local contexts, a 
multitude of perspectives, and the influence of social power dynamics in 
comprehending and responding to the repercussions of climate change 
at the community level. Farmers and other stakeholders (e.g., crop ad
visors) possess a wealth of knowledge about their environment. This 
knowledge encompasses various aspects, including local insights into 
soil, crops, livestock, weather, and climate. This valuable knowledge has 
been honed and refined over generations. Harnessing this local knowl
edge and expertise is of particular importance when developing and 
implementing PA. Our focus on RI vis-à-vis early engagement with 
farmers to co-develop solutions tailored to their specific challenges helps 
us initiate discussions about robust and equitable governance structures 
to ensure sustainability and continued impact. 

3.2. Promoting interdisciplinary collaboration in LLs for PA 

Our team perceives PA as a socio-technical system, comprising 
interconnected human actors, institutions (such as knowledge, user 
practices, cultural values, markets, and policies), as well as non-human 
elements, encompassing living entities (e.g., crops, livestock), and ma
terial objects (e.g., machine learning, AI, the Internet of Things, and 
robotics) (Geels, 2005; Pigford et al., 2018). This systemic approach 
underscores the interrelatedness of social, ecological, and technological 
components, emphasizing that they cannot be examined in isolation but 
must be comprehended as interconnected systems. We found that a 
living lab methodology that actively seeks to inclusively and responsibly 
integrate PA technologies with future agricultural practices and workers 
by fostering synergy in knowledge, approaches, and viewpoints across 
various disciplines and sectors can be truly participatory and convergent 
in its approach. We achieved this integration through several means. 
Firstly, our team represents a diverse array of disciplines, including 
Agronomy, Agriculture and Biosystem Engineering, Computer Science, 
Electrical Engineering, Environmental Engineering, Economics, Plant 
and Soil Sciences, Public Policy, Sociology, Spatial Sciences, and Sta
tistics. Among the team, there is a shared research focus on investigating 
the human and social dimensions of agricultural technology and inno
vation. This shared research interest, spanning multiple disciplines, 
provides a valuable foundation for leveraging diverse approaches and 
perspectives to enhance technology research and workforce training. 

Effective collaboration across various disciplines is paramount for 
the success of LLs. Bridging the gap among technology developers, social 
scientists, and farmers can be a complex endeavor. This is particularly 
challenging in the context of monitoring and evaluating effectiveness of 

LLs across different context (Potters et al., 2022). Existing literature on 
team science and knowledge integration in various research programs 
and interdisciplinary collaborations provides valuable insights into the 
integration of expertise across social and natural sciences disciplines (e. 
g., Stokols et al., 2008). Social sciences, in particular, serve as a crucial 
bridge connecting the natural sciences, science communication, and 
policy development. For instance, our design workshop provides op
portunities for experts from diverse disciplines to collaborate and 
contribute to the development of innovations. Engaging multiple 
stakeholder viewpoints and perspectives, co-creation in design helps in 
not only bringing objectivity into the design concepts, but also reduces 
asymmetry of knowledge, by allowing different experts to share their 
diverse views, and negotiate their way to a consensus (Rittel, 1984) to 
create collective value (Khan, 2022) by democratizing innovation 
(Björgvinsson et al., 2010). This democratization of the innovation 
process turn adds rigor to the ‘process’ of design (Cross, 2001), and 
enables participants to better communicate ideas and concerns, criti
cally assess the concepts, and reduces the likelihood of rejection when 
innovations are eventually rolled out (Björgvinsson et al., 2010). Within 
farming, collaborative design practices can be used to redesign farming 
systems by involving farmers in the knowledge production and design- 
creation processes, reducing the gap between ideation and execution 
(Lacombe et al., 2018). This work-in-progress highlights the need for 
further investigation into how LLs can foster collaboration, data-driven 
decision-making, and open dialogue among stakeholders. While chal
lenges exist, the potential for inclusive, sustainable, and farmer-centric 
innovation makes LLs a valuable tool in shaping the future of 
agriculture. 
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