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ABSTRACT

Electronic devices get smaller and smaller in every generation. In micro-/nano-electronic devices such as high electron mobility transistors,
heat dissipation has become a crucial design consideration due to the ultrahigh heat flux that has a negative effect on devices’ performance
and their lifetime. Therefore, thermal transport performance enhancement is required to adapt to the device size reduction. β-Ga2O3 has
recently gained significant scientific interest for future power devices because of its inherent material properties such as extremely wide
bandgap, outstanding Baliga’s figure of merit, large critical electric field, etc. This work aims to use a machine learning approach to search
promising substrates or heat sinks for cooling β-Ga2O3, in terms of high interfacial thermal conductance (ITC), from large-scale potential
structures taken from existing material databases. With the ITC dataset of 1633 various substrates for β-Ga2O3 calculated by full density
functional theory, we trained our recently developed convolutional neural network (CNN) model that utilizes the fused orbital field matrix
(OFM) and composition descriptors. Our model proved to be superior in performance to traditional machine learning algorithms such as
random forest and gradient boosting. We then deployed the CNN model to predict the ITC of 32 716 structures in contact with β-Ga2O3.
The CNN model predicted the top 20 cubic and noncubic substrates with ITC on the same level as density functional theory (DFT) results
on β-Ga2O3/YN and β-Ga2O3/MgO interfaces, which has the highest ITC of 1224 and 1211MW/m2K, respectively, among the DFT-ITC
datasets. Phonon density of states, group velocity, and scattering effect on high heat flux transport and consequently increased ITC are also
investigated. Moderate to high phonon density of states overlap, high group velocity, and low phonon scattering are required to achieve high
ITC. We also found three Magpie descriptors with strong Pearson correlation with ITC, namely, mean atomic number, mean atomic weight,
and mean ground state volume per atom. Calculations of such descriptors are computationally efficient, and therefore, these descriptors
provide a new route for quickly screening potential substrates from large-scale material pools for high-performance interfacial thermal man-
agement of high-electron mobility transistor devices.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0201699

I. INTRODUCTION

In the rapid development of nano- and micro-electronic
devices, thermal management is a crucial component to prevent
overheating, which might lead to failure, wearout, and the lifetime
shortening of the devices. Thermal transport across the interface is
a critical part of the thermal dissipation process in those devices.1–3

The performance of thermal transport between two materials in
contact can be measured by the interfacial thermal conductance

(ITC) through ITC =Q/ΔT, where Q and ΔT are heat flux and tem-
perature difference between the two materials at the interface,
respectively.1–4 As miniaturization continues, in particular, in
nanostructured devices, the characteristic length scales of devices
are much shorter than the intrinsic mean free path of phonons in
the counterpart bulk materials, and thus, ITC becomes the most
important factor for thermal transport. In reality, thermal transport
at the interface can be affected by several factors such as binding
energy, roughness, and the presence of defects and impurities that
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could occur by the mixture of atoms at intermediate layers at the
interface.5 Phonon reflections caused by the acoustic properties of
the adjacent materials take place across the interface even if the two
materials are in perfect contact. Therefore, various parameters
control ITC, which makes it even more difficult to predict or
approximate.1–6

Nevertheless, some empirical models have been developed to
quickly predict or estimate ITC. Acoustic mismatch model
(AMM)7 and disuse mismatch model (DMM)8 are the two com-
monly used ones, and the formulation was presented by
Khalatnikov in 1952 and Swartz and Pohl in 1989, respectively.
These two models do not take into account the nonequilibrium
phonons distribution, instead, they only consider the equilibrium
state of phonons,9,10 which is the case for most heat dissipation sit-
uations in electronic cooling. AMM makes a crude simplified
assumption about incident phonons undergoing specular transmis-
sion and continuum mechanics govern the process. In contrast,
DMM assumes that the interface is fully disordered, and therefore,
the incident phonons scatter elastically and lose memory after they
reach the interface, which might even cause them to scatter back to
the source material or transmit into another medium. Moreover,
the transmission probability depends on the phonon density of
states (DOS). The phonon will scatter into the same phonon
energy it once had before reaching the interface which is why some
phonons scatter back to the initial material after reaching the inter-
face.11 In the DMM framework, the phonons that possess fre-
quency ω at mode j and transmit from material A to material B
can have ITC as defined below:

ITC ¼
1
4

X
j

ðωv
A,j

0

DA,j(ω)
@n(ω, T)

@T
�hωvA,jαA!B (ω) dω, (1)

where D(ω) is the phonon DOS at a particular frequency ω,
n(ω, T) is the Bose–Einstein distribution of phonons, �h is reduced
Planck’s constant, ωv is the frequency cutoff, and finally αA!B is
the transmission coefficient from material A to B. The transmission
coefficient from material A to material B is further calculated as

αDMM,A!B ¼

P
j DB,jvB,jP

j DA,jvA,j þ
P

j DB,jvB,j
, (2)

where subscripts “A” and “B” mean the materials A and B, respec-
tively, v is the velocity of phonon modes, and the subscript “j”
denotes summation over all phonon modes. The DMM model has
been widely used in previous studies, and it provides reasonably
good results for ITC.

For more accurate ITC computations, more computationally
expensive calculations must be implemented such as nonequilib-
rium molecular dynamics (MD) simulations that naturally consider
both harmonic and anharmonic phonon scatterings12,13 and
Green’s function method where the phonon anharmonicity can
even be considered.14,15 Despite the shortcomings of DMM com-
pared to experimental results,16 computational results by DMM are
still useful to capture the tendencies in thermal transport across
interfaces.17 More importantly, the DMM offers a fast-screening

approach due to the less expensive computations before experimen-
tal synthesis and measurements. However, prediction using the
DMM model requires detailed information about the mode level
phonon properties such as phonon group velocity and phonon
DOS, both of which are not easy to obtain in a high-throughput
manner.

The advent of machine learning (ML) and artificial intelli-
gence (AI) has revolutionized many aspects of modern science and
technology and has sparked significant interest in the thermal
science community in recent years. As a means to make computa-
tions even faster, ML algorithms are utilized on data generated by
density functional theory (DFT) calculations since they can be uti-
lized to predict various material properties such as mechanical,18–20

thermal,21–23 magnetic,24 and optical25 properties. In this work, we
first performed high-throughput DFT calculations on comprehen-
sive phonon properties of 1633 heat sink materials and then calcu-
lated their ITC when being contacted with β-Ga2O3 as a heat
source by the DMM model. Here, the β-Ga2O3 was chosen as heat
source as a case study since it has recently gained significant scien-
tific interest for future power devices because of its inherent mate-
rial properties such as extremely wide bandgap, outstanding
Baliga’s figure of merit, large critical electric field, etc. β-Ga2O3 has
been widely used in high-electron mobility transistor (HEMT)
applications.26,27 Using DFT-ITC results as training data, we
trained our recently developed convolutional neural network
(CNN) model that utilizes the fused orbital field matrix (OFM) and
composition Magpie descriptors and then deployed the trained
CNN model to predict ITC of large-scale new heat sink materials
in contact with β-Ga2O3. This work can be helpful in inverse
designing new substrates for HEMT devices that utilize β-Ga2O3 as
a heat source.28,29

II. WORKFLOW, COMPUTATIONAL DETAILS, AND
MACHINE LEARNING MODEL TRAINING

A. Workflow

Figure 1 shows the schematic chart for the entire workflow
conducted in this study to accelerate the search for promising sub-
strates or heat sink materials for heat dissipation of β-Ga2O3. The
first step is to obtain the structures from the open quantum mate-
rial database (OQMD), and we re-optimized them with our own
DFT parameters (see computational details of DFT calculations
below). Then, the second- and third-order interatomic force con-
stants (IFCs) of the majority of structures were obtained from our
previous works21–23,30–32 with a small amount of additional DFT
calculations utilizing the same compression sensing lattice dynam-
ics (CSLD) method to calculate the phonon dispersions. The
second-order IFCs confirm the dynamic stability through the
absence of negative phonon frequencies in the Brillouin zone.
Then, almaBTE calculations using both second- and third-order
IFCs of materials as input are performed to create a dataset for
β-Ga2O3/X interfaces having ITC as target (here “X” denotes a sub-
strate or heat sink material in contact with β-Ga2O3). The dataset is
then used to train our developed fused OFM+Magpie CNN
model, and subsequently, the model is used to make ITC predic-
tions on new candidate substrates in contact with β-Ga2O3. For the
screening pool, we prepared 32 716 structures with non-zero
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bandgap as a special requirement for thermal management applica-
tions. All 32 716 structures were screened out from the OQMD
database and have been successfully re-optimized by DFT calcula-
tions with our own computational parameters. The structures that
were not successfully optimized were discarded.

B. DFT calculations

All the 1633 crystal structures used for training our developed
fused OFM +Magpie CNN model are downloaded from the
OQMD database in crystallographic information file (CIF)
format.33 All the structures were re-optimized by first-principles
DFT calculations utilizing Vienna Ab-Initio Simulation
package.34–36 For re-optimizing the structures, we use their primi-
tive cells with total energy and force convergence criteria of
10−8 eV and 10−4 eV/Å, respectively. The atomic positions, cell
shape, and sizes of the primitive cells are all allowed to change in
the re-optimization process to reach the minimum energy in each
structure. The Perdew–Burke–Ernzerhof (PBE)37 is selected from
the generalized gradient approximation (GGA) to characterize the
exchange-correlation effects of electrons within the linear projector
augmented wave (PAW) generalization of the pseudopotentials
method38 to allow DFT to perform calculations with higher effi-
ciency. The kinetic energy cutoff of 520 eV was selected to limit the
number of plane waves utilized as basis functions at each wavevec-
tor in the k-space. The Monkhorst–Pack k-mesh was applied to
sample the Brillouin zone.39 The number of k-points for electrons
was determined such that the multiplication between the lattice
vector and the number of k-points is at least 60 at each lattice
vector to ensure high-quality k-mesh. After primitive cells were
re-optimized, supercells were generated based on the optimized
primitive cells, in which each atom was randomly displaced by a
displacement of 0.03 Å. For each primitive cell, 16–30 supercells
were generated, with a detailed number of supercells depending on
the symmetry of the materials. The atomic forces of the supercells
were then evaluated by VASP calculation with energy and force
convergence criteria of 10−6 eV and 10−4 eV/Å, respectively. After
that, the second-order (harmonic) and third-order (anharmonic)
interatomic force constants (IFC) were generated using the com-
pressive sensing lattice dynamics (CSLD) method,40–42 and the
IFCs were output in Phonopy43 format. ShengBTE package was
then utilized to obtain the lattice thermal conductivity (LTC)44

through an iterative method. The LTC of β-Ga2O3 was calculated

by our DFT + BTE to be 11.6, 20, and 16.6W/mK in the [100],
[010], and [001] direction, respectively, which are in good agree-
ment with those reported in Ref. 45. With second- and third-order
IFCs, the almaBTE package46 was utilized to approximate the inter-
facial phonon transmission coefficient using the DMM model and
subsequently obtain ITC through Monte–Carlo simulations. In the
almaBTE calculations, two slabs composed of β-Ga2O3 as the heat
source and another substrate as the heat sink were set up, with each
slab of 100 nm thick. It should be noted that, since β-Ga2O3 is a
highly anisotropy material, the ITC would depend on the specific
axis or orientation chosen when running almaBTE. After testing all
three cartesian axes, we find that the heat transport along [010]
cartesian axis yields the highest ITC, which can be understood in
terms of the highest LTC in the same direction. Therefore, all ITC
results presented in this work refer to the orientation of [010] for
β-Ga2O3. For the phonon wavevector q in the almaBTE calcula-
tions, 50 q-point line density for each lattice vector was imple-
mented. The simulation temperature difference between the heat
source and heat sink is 5 K. The number of particles in the simula-
tion is 1 × 106, which is large enough after testing. The temperature
is output on 300 equally spaced bins sliced perpendicularly to the
heat flux direction in the two slabs. The ITC between β-Ga2O3 and
the substrate is calculated by the temperature difference at the
interface.

C. CNN model construction and training

Figure 2 shows the schematic chart for our recently developed
fused orbital field matrix (OFM) +Magpie CNN model. OFM47 is
based on the representation of the valence shell electrons of a local
chemical environment by considering the sum of the weighted
vector of all atoms in that environment. More details on the OFM
calculation method can be learned from Ref. 47. Magpie features48

are statistical results of maximum, minimum, mean range, and
mode of the elemental descriptors generated based on the composi-
tion of the material. OFM and magpie descriptors do not require
expensive computations to acquire them. Matminer49 can generate
such descriptors for thousands of materials in less than 1 s. The
layer numbers shown in red color are for both OFM47 and
Magpie48 descriptors. The OFM we used is a 32 × 32 matrix or
second-rank tensor. Such matrix can be used as an input for a 2D
CNN as seen in the conv2D in Fig. 2 layer 1 and layer 2(b) shown
in the texts in red color. The feature matrix from the two separate

FIG. 1. Step-by-step schematic chart for the workflow used in this work to accelerate searching potential substrates for cooling β-Ga2O3. The entire workflow is composed
of (1) re-optimization of 1633 structures taken from OQMD database; (2) full DFT calculations of second- and third-order interatomic force constants (IFCs) and interfacial
thermal conductance (ITC) between the 1633 structures and β-Ga2O3; (3) fused OFM + Magpie convolutional neural network (CNN) model training by using the 1633
DFT-ITC datasets; (4) deployment of the trained CNN model to predict ITCs of 32 716 structures with non-zero bandgap in contact with β-Ga2O3; (5) finally top 20 promis-
ing substrates for interfacial thermal management of β-Ga2O3 are suggested.
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path conv2D in layer 2(a) and layer 2(b) is combined and proceeds
to go to conv2D in layer 3 and then max pooled before going
through another conv2D shown indicated by the red number 4.
The number of kernels in OFM forward propagation conv2d layers
is as follows from the red numbers in the “ResidualLikeBlock”: 1–5,
2a–3, 2b–3, 3, 4–3. The number of filters in OFM forward propaga-
tion Conv2d layers is as follows: 1–32, 2a–32, 2b–32, 3–64, 4–64.
In the magpie forward propagation Conv2D layers, the number of
kernels is as follows: 1–3, 2a–3, 2b–3, 3–3, 4–3, and the number of
filters is as follows: 1–32, 2a–48, 2b–48, 3–64, 4–64. The ReLU acti-
vation function is used in all the conv2d layers and dense layers
except for the last dense layer that has no activation function. The
padding is the “same” in all the conv2D layers. The pool size is (2,
2) in the MaxPooling2D layer. The 2D feature matrix is then flat-
tened to become a feature vector that has the shape of 16 384. The
Magpie descriptors can be represented as a 132-feature vector and
can be shaped into a 12 × 11 matrix to be used as an input to a
conv2D. The Magpie matrix follows a similar path of layers before
flattening and becomes a feature vector that has the shape of 2304.

The flattened feature vector from the OFM path and flattened
feature vector from the Magpie path are then concatenated before
progressing to three dense layers to make a prediction on ITC of
substrates in contact with β-Ga2O3. The model is to train the 1633
materials dataset. The 1633 materials dataset is split into 80%/10%/
10% for training, validation, and testing sets, respectively. The
learning rate used in the AdamW optimizer is 0.001. A similar
model was used in this work.50 However, the model was used for
classification not regression as in this work. The entire model flow-
chart is built on Tensorflow.51

III. RESULTS AND DISCUSSION

Figure 3(a) shows the training and validation losses with
respect to the number of training epochs. The loss function in each
epoch is the mean absolute error (MAE) loss function as imple-
mented from Tensorflow. The maximum number of epochs is 60
epochs, which is more than enough to reach the lowest loss. As a
matter of fact, the model plateaus do not significantly reduce the

FIG. 2. Schematic chart of the regression architecture of the fused OFM + Magpie CNN model to predict ITC. The orbital field matrix (OFM) input matrix is 32 × 32 as
seen from label (1) OFM input, and the output features from OFM are 16 384 as seen from label (3) OFM output. The number of kernels in OFM “ResidualLikeBlock” from
the Conv2D layers numbered in red: 1–5, 2a–3, 2b–3, 3, 4–3, and the number of filters is 1–32, 2a–32, 2b–32, 3–64, 4–64 with the MaxPooling2D size of (2, 2). The input
matrix for Magpie is 12 × 11 as seen from the label (2) Magpie input step, and the output features for Magpie are 2304 as seen from label (4) Magpie output step. The
number of kernels in magpie “ResidualLikeBlock” from the Conv2D layers numbered in red: 1–3, 2a–3, 2b–3, 3–3, 4–3, and the number of filters is 1–32, 2a–48, 2b–48,
3–64, 4–64 with the MaxPooling2D size of (2, 2). OFM and Magpie output features (i.e., 18 688 features in total) are both fused or merged and used as input into the first
dense layer with 48 features before passing to the other dense layer of 32 output features then to the last dense layer that makes the prediction.
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loss after the tenth epoch, which means the model training con-
verges very fast. In Fig. 3(b), we compare the ITC in base 10 loga-
rithm values between full DFT calculations and prediction by the
fused OFM +Magpie CNN model with R2 score labeled. Generally
speaking, the R2 score of an ML model prediction should be as
high as possible (e.g., close to unity) since the metric denotes the
consistency of the results from testing or the model’s previously
unseen dataset of ITC values compared to the predictions by the
model. The R2 score of our trained fused OFM +Magpie CNN
model is as high as 0.874, which confirms that our fused
OFM +Magpie CNN model is well trained with high quality and
can, thus, be utilized to predict ITCs for new or previously unseen
substrates in contact with β-Ga2O3.

Since there are many previously widely used ML models avail-
able, then it is worth comparing our fused OFM +Magpie CNN
model with those models to affirm its superiority in ITC predic-
tions. To this end, our regression results from the fused
OFM +Magpie CNN model are compared with two well-known
and traditional ML models: (1) gradient boosting (GB)52 and (2)
random forest (RF).53 Both ML models used the Magpie

descriptors to train their respective models. These two ML algo-
rithms are imported from sci-kit learn library.54 The comparison
among the three models is implemented by comparing the metrics
among the models, i.e., R2 score and MAE. Table I shows the com-
parison results of the metrics among the three trained models. The
R2 score of our developed fused OFM +Magpie CNN model is the
highest among three ML models. MAE should be as low as possible
to substantiate that model’s prediction (i.e., predicted ITC) is not
far off from the true value (i.e., “true” ITC). We find that the MAE
of our developed CNN model is the lowest among the three
models. From these two metrics, we can conclude and affirm that
our developed CNN model has superior performance and tremen-
dous capability compared to the other two traditional ML algo-
rithms in predicting ITC of substrates in contact with β-Ga2O3.

With the well-trained fused OFM +Magpie CNN model, we
continue to deploy the model to predict the ITC of 32 716 struc-
tures in contact with β-Ga2O3. Figure 4 shows the statistical distri-
bution of the ML dataset of 1633 DFT materials and 32 716
materials in the prediction dataset in terms of the number of
atoms, mass density, and volume of primitive cells. The prediction
pool is much larger and contains a wider range of structures com-
pared to the ML dataset that was used to train, validate, and test
the ML model. Here, we need to emphasize that the ITCs in base
10 logarithm values were first predicted, and then they were con-
verted back to the normal values in units of MW/m2K. The top 10
structures with the highest predicted ITCs as promising substrates
for cooling β-Ga2O3 are presented in Tables II and III, respectively.
Relevant structure information such as formula, bandgap, forma-
tion energy, etc., are also provided. Interestingly, all top 10 cubic
substrates happen to have the same space group number of 227
and the same prototype AB2C4, although our screening pool
includes lots of materials with other space group numbers such as

FIG. 3. (a) Training and validation losses of fused OFM + Magpie CNN model on the DFT calculated 1633 ITC data. (b) Comparison of ITC between DFT-ITC results and
the fused OFM + Magpie CNN predictions. The ITCs are base 10 logarithm values in unit of log(MW/m2K). The red dashed line shows R2 line as guidance.

TABLE I. Comparison of the performance among the three trained machine learn-
ing models. The MAE is measured based on ITCs in base 10 logarithm values.

Metrics

Fused OFM+
Magpie CNN

model

Gradient
boosting
model

Random
forest model

R2 0.874 0.801 0.689
Mean absolute
error (MAE) 0.0872 0.0943 0.1198
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FIG. 4. Statistical distribution of number of atoms, mass density, and volume of primitive cells for ML dataset and prediction pool.

TABLE II. Top 10 cubic structures with highest ITC in contact with β-Ga2O3 predicted by our developed Fused OFM + Magpie CNN model. Relevant material information are
also provided. The bandgap values are taken from original OQMD database.

OQMD ID Formula Bandgap (eV) Formation energy (eV/atom) Prototype Space group no. Predicted ITC (MW/m2K)

1 283 850 MnAl2O4 2.87 −2.958 AB2C4 227 1207.6
4643 Al2ZnO4 4.16 −2.864 AB2C4 227 1124.3
6015 MgAl2O4 5.53 −3.230 AB2C4 227 1090.7
432 196 Sc2CdO4 3.17 −3.085 AB2C4 227 1041.0
675 547 Mn(GaO2)2 1.79 −2.134 AB2C4 227 999.8
1 283 764 Mg2SiO4 5.22 −3.013 AB2C4 227 987.5
30 721 Mg(RhO2)2 1.17 −1.501 AB2C4 227 968.1
1 284 057 Y2CoO4 2.90 −2.914 AB2C4 227 921.8
19 125 Co(RhO2)2 0.84 −1.060 AB2C4 227 897.7
432 150 CaY2O4 4.43 −3.593 AB2C4 227 891.1

TABLE III. Top 10 noncubic structures with highest ITC in contact with β-Ga2O3 predicted by our developed Fused OFM + Magpie CNN model. Relevant material information
are also provided. The bandgap values are taken from original OQMD database.

OQMD ID Formula Bandgap (eV) Formation energy (eV/atom) Prototype Space group no. Predicted ITC (MW/m2K)

6270 Al2PbO4 4.03 −2.736 AB2C4 9 1436.5
1 385 886 LiScO2 4.29 −3.178 ABC2 62 1335.6
1 386 734 NaIrO2 1.53 −1.191 ABC2 166 1329.8
5699 LiRhO2 1.55 −1.426 ABC2 166 1328.2
31 809 LiCoO2 2.50 −1.693 ABC2 166 1295.0
3724 LiGaO2 3.53 −2.241 ABC2 33 1289.4
711 441 NaGaO2 3.17 −2.112 ABC2 33 1283.5
1 347 988 RbAlO2 4.23 −2.741 ABC2 92 1282.5
1 234 774 Al2O3 6.31 −3.265 A2B3 167 1274.5
1 278 107 Si2O3 1.28 −2.247 A2B3 148 1274.5
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225, 221, and 216, and other prototypes as well such as AB, ABC,
ABC2, ABCD, etc. This means similar atomic structure and other
similar structural features will likely lead to similar ITC, as we will
see shortly from the analysis of DFT-ITC data. In contrast, the top
10 noncubic substrates have slightly diverse space groups and pro-
totypes, primarily because there are many more space groups and
prototypes in the screening pool. Again, similar material families in

TABLE IV. Pearson correlation results of elemental features with ITC.

Features Pearson correlation

Mean atomic number −0.4995
Mean atomic weight −0.4987
Mean GS volume PA −0.4637

FIG. 5. Dependence of ITC on elemental descriptors: (top) mean atomic number, (middle) mean atomic weight, and (bottom) mean atomic ground state (GS) volume per atom
(PA) color mapped with LTC (left panel) and phonon DOS overlap (right panel) of 1633 DFT materials dataset that was used for training, validation, and testing of ML models.
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particular with the same prototype and close average atomic mass
tend to have similar ITCs.

Since we have prepared many Magpie atomic descriptors
for all structures in our training dataset during traditional ML
training, it is then intuitive to calculate the Pearson correlation
coefficients55 of ITC with those Magpie atomic descriptors.
Pearson correlation values range from −1 to +1. Positive (nega-
tive) values denote a directly proportional (inverse) correlation
between two variables. The high value of Pearson correlation
regardless of the sign (i.e., close to +1 or −1) indicates a strong
correlation between the two variables, while the Pearson correla-
tion coefficient close to zero, regardless of the sign, denotes a
weak or no correlation between two parameters. The three
Magpie descriptors selected to show in Table IV are the mean
atomic number, mean atomic weight, and mean ground state
(GS) volume per atom (PA), which have the highest Pearson
correlation coefficients of −0.4995, −0.4987, and −0.4637,
respectively, among the total 132 Magpie descriptors we have
studied. The coefficients are represented in absolute value
because the strength of the correlation coefficient is one of the
crucial factors to correlate with ITC regardless of the sign. The
reason why these descriptors have high Pearson correlation coef-
ficients is because the constituent species in β-Ga2O3 all have
medium to low atomic weights, which means the material pos-
sesses phonon states at high frequencies in its phonon disper-
sion in the reciprocal space.56,57 As implied in Eqs. (1) and (2),
similar vibrational frequencies between the heat source and sub-
strate are one of the crucial factors in acquiring high ITC.
Therefore, materials with medium to low atomic weight or
atomic number should have high frequencies and possibly high
phonon DOS overlap with β-Ga2O3. Regarding the high Pearson
correlation coefficient for the mean GS volume per atom, it is
due to the light elements having low GS volume per atom, and
those light elements also tend to have high frequencies in their
phonon dispersions. Therefore, the mean GS volume per atom
descriptor happens to have the same trend in the periodic table
as the atomic weight, which made its correlation high with ITC.
The same analysis for the mean GS volume per atom can be
applied to other descriptors such as covalent radius because it
follows the same periodic table trend.

According to Table IV, the mean atomic number, mean
atomic weight, and mean atomic GS volume PA are highly and
negatively correlated with ITC according to their high negative
Pearson correlation coefficients. Those descriptors can visually
explain and give insights on ITC in Fig. 5 by adding LTC and
phonon DOS overlap as comparison parameters because phonon
DOS overlap is directly correlated with ITC according to
Eqs. (1) and (2). Furthermore, the phonon DOS overlap
between the heat source and heat sink is crucial for DMM as
stated in Refs. 8 and 11. Regarding LTC, even if LTC is not
directly correlated with ITC, phonon group velocity and three
phonon scatterings are necessary factors to consider in comput-
ing LTC. As group velocity becomes high and phonon scatter-
ings become low, LTC should be high, and vice versa. Therefore,
if LTC is high in the substrate, ITC should go up consequently.
Inspired by Eqs. (1) and (2), the phonon DOS overlap in this
study is quantitatively characterized as

Phonon DOS Overlap ¼
2
Ð
1

0 Doverlap(ω)dωÐ
1

0 Dheat source(ω)dωþ
Ð
1

0 Dsubstrate(ω)dω
,

(3)

where Doverlap is the phonon DOS in the overlap region between
the substrate and heat source. In practice, the integral was con-
ducted up to the higher cutoff frequency of the substrate and
heat source (β-Ga2O3). The initial visual take on all panels from
the three descriptors in Fig. 5 without even considering LTC
and phonon DOS overlap is that as mean mass, mean atomic
number, and mean GS volume PA decrease, the ITC increases.
That further substantiates the negative correlation results found
from Table IV. The explanation is essentially due to the similar
phonon density of states between β-Ga2O3 and other substrates
with low to average mean atomic number or weight. It can be
seen from Fig. 5 panels (a), (c), (e) that generally speaking the
higher LTC is commensurate with higher ITC because blue-
colored data points with low LTC exist at the bottom where ITC
is low. On the other hand, colors with higher LTC in the color
bars exist at higher ITC in general. Regarding phonon DOS
overlap in Fig. 5 panels (b), (d), and (f ), substrates with higher
phonon DOS overlap with β-Ga2O3 tend to have higher ITC.
Comparing left and right panels in Fig. 5, the phonon DOS
overlap trend from right panels is more obvious. That implies if
a substrate with extremely high LTC but not vibrationally
similar to β-Ga2O3, the ITC is highly expected to be low. The
previous results confirm the theory that ITC requires higher
phonon DOS overlap between the heat source and its substrate
along with higher group velocity and less phonon scatterings.

From Table IV and Fig. 5, it is confirmed that ITC is inversely
proportional to the similarity in atomic number or atomic mass,
which comes from the vibrational similarity or phonon DOS

FIG. 6. Dependence of ITC on phonon DOS overlap between β-Ga2O3 and
1633 substrates by high throughput DFT calculations. The color is mapped by
the LTC values of substrates in base 10 logarithm.
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overlap between β-Ga2O3 and the substrate. Therefore, we continue
to quantitatively investigate the relationship between ITC and
phonon DOS overlap. Figure 6 manifests ITC values of β-Ga2O3

with other substrates along with phonon DOS between β-Ga2O3

and those substrates. LTC of the substrates is added as a color map
to the analysis since it adds a measure for the phonon group veloc-
ity of the substrate, which is also another crucial parameter for
ITC. The clear and obvious trend that can be seen from Fig. 6 is
that ITC is equal to zero if phonon DOS overlap between β-Ga2O3

and another substrate is also equal to zero, which is well expected
under the assumption of the DMM model used by the almaBTE
package. This analysis and results are completely understandable
since Eqs. (1) and (2) reveal that zero phonon DOS overlap should

have zero ITC as well. In other words, phonon DOS overlap must
not be zero in order to make a nonzero or finite ITC. It is also
shown from the bottom-right region in Fig. 6 that, although
phonon DOS overlap is a bit high between 0.3 and 0.6, the ITC is
relatively low. This is because the LTCs of most substrates are low
(the corresponding LTC color is dark blue). That could also convey
that those substrates have low group velocity and as a result low
ITC. In that same range (i.e., phonon DOS overlap from 0.3 to
0.6), the data higher than the bottom-right (i.e., higher ITC) have
higher LTC as indicated by the color in the LTC color bar. This
indicates that higher LTC leads to higher ITC for the same phonon
DOS overlap, which can be explained by the fact that the higher
LTC usually has high group velocity and consequently higher ITC.

FIG. 7. Phonon DOS overlap between substrate (a) MgO, (b) YN, and heat source β-Ga2O3. The purple and yellow color represents phonon DOS of β-Ga2O3 and sub-
strate, respectively. The gray area portrays the phonon DOS overlap between β-Ga2O3 and substrate. Panels (c) and (d) illustrate the phonon frequency dependent group
velocity of MgO and YN, respectively.
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However, this trend is not always true. In Fig. 6, we find that there
are lots of substrate materials with very high ITC when being con-
tacted with β-Ga2O3, but those materials do not necessarily have
high LTC. Specifically, for ITC above 800MW/m2K, many sub-
strates only have moderate to low LTC values, roughly in the range
from 10 to 30W/mK. The high ITC is then primarily resulted from
the high phonon DOS overlap. Overall, the results in Fig. 6 demon-
strate that for heat sources with low LTC like the case of β-Ga2O3

(the LTCs in three directions are between 10 and 20W/mK
obtained by our DFT calculations), the phonon DOS overlap
between two neighboring materials is much more important than
the LTCs of substrates themselves in terms of achieving high ITC at
the interfaces.

Since the high phonon DOS overlap is a necessary condition
to obtain high ITC between a heat source and substrate as under-
stood from Eqs. (1) and (2) and visually portrayed in Fig. 6, partic-
ularly for two contacting materials with low LTC, in Fig. 7, we
show two representative examples, (a) namely, MgO and (b) YN, of
the phonon DOS overlap with β-Ga2O3. These two substrates were
chosen because their ITCs are the highest among all 1633
DFT-ITC datasets. Specifically, the ITC for β-Ga2O3/MgO and
β-Ga2O3/YN interface is as high as 1211 and 1224MW/m2K,
respectively. It can be seen from Fig. 7 that high phonon DOS
overlap exists between β-Ga2O3 and the two substrates, with the
calculated values of 0.56 and 0.63 for β-Ga2O3/MgO and β-Ga2O3/
YN interface, respectively. The phonon DOS overlap spans acoustic
and optical phonon branches. Moreover, the phonon group velocity
seems to be high in MgO in the acoustic branch and most of the
phonon modes in the optical branch except for those from 15 to
17.5 THz, as shown in Fig. 7(c). A similar phenomenon is observed
in YN where high phonon group velocity is observed in Fig. 7(d)
for all phonon modes, particularly for some optical phonon modes
with frequency above 7.5 THz.

Although Fig. 7 shows the phonon modes that possibly con-
tribute to transporting heat from the phonon DOS overlap and
the high group velocity phonon region that might transport more
heat across the interface, it does not quantitatively tell us which
phonon modes can actually transport how much heat across the
interface, since transmission coefficient is another very important
factor to interfacial thermal transport according to Eqs. (1)
and (2). Besides, almaBTE considers several scattering mecha-
nisms such as intrinsic phonons scattering, interface scattering,
and absorption scattering. Therefore, even with phonon DOS
overlap and high group velocity, the scattering mechanisms
implemented in almaBTE might hinder transporting higher heat
fluxes. To this end, Fig. 8 shows which phonon modes and fre-
quencies transport how much heat. For the β-Ga2O3/MgO inter-
face shown in Fig. 8(a), phonon frequencies from around 0.5 THz
to roughly 8 THz transport the highest amount of heat compared
to other phonon modes that overlap between 8 and 17 THz. That
can be explained by the high group velocity in the acoustic
branches and less phonon scattering compared to the higher fre-
quency phonon modes in the optical branches, which might have
high phonon group velocity in most of the states but high phonon
scatterings as well. For β-Ga2O3/MgO interface shown in
Fig. 8(b), high heat flux is transported by the phonons with fre-
quency between 0 and 9 THz, which indicates the higher group
velocities at those frequencies and less phonon scattering. Similar
to the β-Ga2O3/MgO interface, although there is a large overlap
between those two materials for phonon states from 9 to 17 THz,
these phonon modes do not contribute much to transporting a
significant amount of heat flux, which is mainly due to high
phonon scattering at those phonon states. Overall, the spectral
heat flux analysis in Fig. 8 demonstrates that the high phonon
DOS overlap and high phonon group velocity along with low scat-
tering rates are required for achieving high ITC.

FIG. 8. Phonon frequency resolved spectral heat flux of (a) MgO and (b) YN in contact with β-Ga2O3. The left 100 nm region corresponds to β-Ga2O3 (heat source) while
the right 100 nm region is the substrate (heat sink), i.e., (a) MgO and (b) YN.
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IV. CONCLUSION

In summary, the objective of this work is to accelerate screen-
ing suitable substrates for cooling β-Ga2O3, a common material
used in HEMT devices. The potential substrate candidates should
have high ITC in contact with β-Ga2O3 to dissipate as much heat
as possible to prevent the devices from wearing out and to prolong
their lifetime. To this end, the ITC of 1633 substrates in contact
with β-Ga2O3 is calculated using almaBTE with the required
second- and third-order IFCs computed directly from high-
accuracy DFT calculations. DFT-ITC results reveal that the phonon
DOS overlap plays an important effect on the ITC, and the phonon
DOS overlap of about 0.3 or higher is a necessary condition to
achieve high ITC. Group velocity plays another crucial role in
attaining high ITC. For phonons in the finite (non-zero) DOS
overlap region, the phonon group velocity becomes one of the
dominant factors for ITC. The third factor affecting ITC is the scat-
tering at the interface. Even for the phonon modes at various fre-
quencies that overlap between β-Ga2O3 and a specific substrate, it
is not guaranteed that high heat flux can be transported across the
interface by those modes since they might have strong scatterings.
The β-Ga2O3/YN and β-Ga2O3/MgO interfaces possess the highest
ITC of 1224 and 1211MW/m2K, respectively, among the 1633
DFT-ITC datasets. Both substrates fulfill the three governing
factors or requirements mentioned above, namely, high phonon
DOS overlap, high group velocity, and weak scatterings. With 1633
DFT-ITC datasets, we trained our recently developed convolutional
neural network model that utilizes the fused orbital field matrix
and composition descriptors. Our model proved to be superior in
performance to traditional machine learning algorithms such as
random forest and gradient boosting. We further deployed the
CNN model to predict the ITC of 32 716 structures with non-zero
bandgap in contact with β-Ga2O3. The CNN model predicted the
top 20 cubic and noncubic substrates with ITC on the same level
(around 1000MW/m2K) as Ga2O3/YN and β-Ga2O3/MgO inter-
face. We also performed Pearson correlation analysis and found
three Magpie descriptors that have a strong correlation with ITC,
namely, mean atomic number, mean atomic weight, and mean
ground state volume per atom. These descriptors based on the
primitive cells of substrates are easy to calculate as soon as the
structures are optimized, which provide a new route for quickly
screening potential substrates from large-scale material pools for
high-performance interfacial thermal management of HEMT
devices.
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