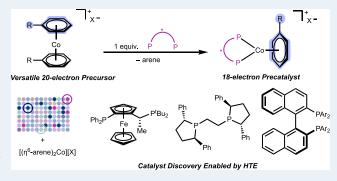


pubs.acs.org/acscatalysis Research Article

Cationic Bis(η^6 -arene) Cobalt(I) Complexes: Enabling Catalyst Discovery by High-Throughput Experimentation

Maya J. Lebowitz, Connor S. MacNeil, Lauren N. Mendelsohn, Michael Shevlin,* Matthew V. Pecoraro, Gabriele Hierlmeier, and Paul J. Chirik*

Cite This: ACS Catal. 2024, 14, 13260-13268


ACCESS I

III Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Cationic, 20-electron bis (η^6 -arene) Co(I) complexes have been synthesized and evaluated as precursors for the generation of bis(phosphine) cobalt(I) η^6 -arene precatalysts. The arenes and anions in the precursors were varied, with isolated examples, including $[Al(pftb)_4]^-$ ($pftb = (CF_3)_3CO$), $[BAr^F_4]^-$ (tetrakis [3,5-bis(trifluoromethyl) phenyl] borate), and $[SbF_6]^-$. Treatment of the isolated precursors with a series bis(phosphines) resulted in arene displacement and isolation of well-defined $[(bis(phosphine))Co(\eta^6$ -arene)][X] ($X = Al(pftb)_4^-$ and SbF_6^- ; arene = C_6H_6 , C_6H_5 Me, and C_6H_5 Et) complexes in 84–99% yield. This ligand substitution enabled unprecedented generation of catalyst libraries using high-throughput experimentation (HTE) for

asymmetric alkene hydrogenation, as well as formal [2 + 2] cycloaddition, hydroboration, and $C(sp^2)$ —H functionalization. These versatile precursors simplify increasingly complex chemical transformations by introducing single-component, well-defined precatalysts through general ligand substitution.

KEYWORDS: asymmetric catalysis, cobalt sandwich complex, high-throughput experimentation, hydrogenation

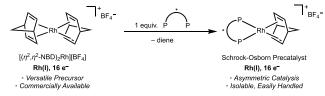
■ INTRODUCTION

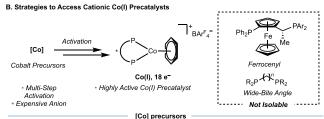
Bis(phosphine) cobalt complexes have emerged as a privileged class of earth-abundant transition metal catalysts with applications in asymmetric alkene hydrogenation, diene hydrovinylation, cycloadditions, and C-H functionalization. Distinct reactivity differences have been observed between well-defined neutral and cationic bis(phosphine) cobalt compounds, highlighting the importance of accessing precursors in discrete Co(0), Co(I), and Co(II) oxidation states. Effective in situ methods to access neutral Co(0)/Co(II) catalysts have been developed that rely on the addition of a bis(phosphine) ligand to a mixture of cobalt(II) dihalide and zinc, typically in methanol solvent. By contrast, a robust cationic cobalt(I) precursor, analogous to that of $[Rh(NBD)_2][BF_4]$, is lacking (Scheme 1A).

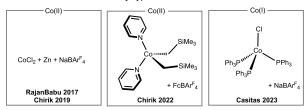
Cationic 18-electron bis(phosphine) cobalt(I) arene complexes are air-stable⁶ and earth abundant⁸ precatalysts that serve as Schrock—Osborn type catalyst analogs. Routes to well-defined cationic cobalt(I) complexes are limited to a select few bis(phosphines), complicated by multistep activation, and use of expensive anions. The synthesis of these compounds dates back to Jolly et al.'s seminal report of [(bis(phosphine))Co(η^6 -arene)][BF₄] through a multistep route involving strongly acidic HBF₄, a method incompatible with in situ activation. Reports invoking cationic cobalt(I) intermediates from the reduction and subsequent halide abstraction of (bis-

(phosphine))CoCl₂ with Zn and NaBAr^F₄ in the presence of dienes or arenes¹⁰ led to isolation of cobalt(I) precatalysts through halide abstraction from $[(R,R)-(^{\mathrm{iPr}}\mathrm{DuPhos})\mathrm{Co}(\mu-\mathrm{Cl})]_2$ (Scheme 1B). However, only bis(phosphines) capable of forming bridging cobalt(I) chloride dimers were effective for generating the precatalyst. $^{10-12}$

In 2022, our laboratory described a more general method to access $[(bis(phosphine))Co(\eta^6-C_6H_6)][BAr^F_4]$ complexes through oxidatively induced reductive elimination (OIRE) (Scheme 1B).⁶ This route relied on the addition of a bis(phosphine) ligand to $(py)_2Co(CH_2SiMe_3)_2$ and oxidation with $FcBAr^F_4$ ($Fc = (\eta^5-C_5H_5)_2Fe$) in the presence of benzene. While effective with a broader range of bis(phosphines), the multistep synthesis, semisolid $(py)_2Co(CH_2SiMe_3)_2$, and incompatibility with wide-bite angle $(P-Co-P > 90^\circ)$ and chiral ferrocenyl-based bis(phosphine) ligands, limited the method's adoption. Most recently, Casitas and coworkers reported a two-step synthesis to well-defined bis(phosphine) cobalt(I) cations beginning from $(PPh_3)_3CoCl$ (Scheme 1B).¹³


Received: July 2, 2024
Revised: August 2, 2024
Accepted: August 5, 2024
Published: August 20, 2024





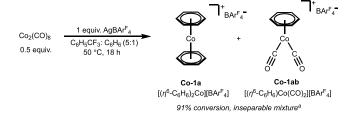
Scheme 1. (A) Well-Established Precious Metal Precatalyst Formation Through Ligand Substitution; (B) Strategies to Access Cationic Cobalt(I) Precatalysts; (C) This Work: Establishing Precatalyst Formation from $\operatorname{Bis}(\eta^6\text{-arene})$ Cobalt(I) Complexes

A. Well-Established Precious Metal Precatalyst Formation by Ligand Substitution

C. This Work: Establishing Precatalyst Formation from ${\sf Bis}(\eta^6\text{-arene})$ Cobalt(I) Complexes

However, minimal ligand compatibility motivated exploration of other cationic cobalt(I) precursors.

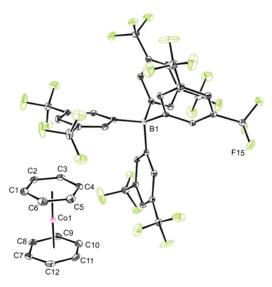
Development of well-defined precursors to broadly access cationic bis(phosphine) cobalt(I) precatalysts would be enabling for catalyst discovery and optimization (Scheme 1C). The formally 20-electron, cationic bis(η^6 -arene) cobalt compounds, [(η^6 -arene)₂Co][PF₆] with an S=1 ground state, were first reported by Lindner and Fischer. Examples were limited to arenes bearing sterically encumbering, electrondonating substituents, such as hexamethylbenzene and mesitylene (1,3,5-(Me)₃-C₆H₃). In 2018, Krossing and coworkers reported isolation of the first sterically attenuated cationic bis(η^6 -benzene) cobalt(I) complex from one electron oxidation of $\text{Co}_2(\text{CO})_8$ in a mixture of 1,2-difluorobenzene and benzene. ¹⁵


Here, we describe the synthesis and characterization of cationic cobalt(I) bis(η^6 -arene) sandwich complexes with sterically attenuated arenes— C_6H_6 , C_6H_5Me , and C_6H_5Et —stabilized by $[SbF_6]^-$ and $[Al(pftb)_4]^-$ anions (Scheme 1C). The $[SbF_6]^-$ variants were preferred due to their anion availability, comparatively low cost, and lower molecular weight. The substitution of one arene by a host of bis(phosphine) ligands enabled the synthesis of often air-

stable, 18-electron cobalt(I) precatalysts. Notably, wide bite-angle bis(phosphine) cobalt complexes of dppp, dppf, and SL-J002-1 that were not isolable using the previously reported methods $^{6,10-13}$ were isolated in high yields, demonstrating the ability of the sandwich complexes to expand well-defined cobalt precatalyst space. This method was applied to catalyst discovery and evaluation in asymmetric alkene hydrogenation using high throughput experimentation (HTE), previously incompatible with other cationic Co(I) precursors. Precatalyst reactivity was extended to formal [2 + 2] cycloaddition, hydroboration, and $C(sp^2)$ -H functionalization. Examples with high activity and enantioselectivity were demonstrated with minimal influence of arene or anion, encouraging further development of precatalysts stabilized by a commercially available $[SbF_6]$ - anion.

RESULTS AND DISCUSSION

Synthesis of Cationic Bis(η^6 -arene) **Cobalt Sandwich Complexes.** Studies commenced with the exploration of cationic bis(η^6 -arene) cobalt complexes where the identities of the arene and anion were varied to access stable yet substitutionally labile precursors. Using a modified procedure reported by Krossing and coworkers¹⁵ the synthesis of $[(\eta^6-C_6H_6)_2Co][BAr^F_4]$ (**Co-1a**) was pursued. A solution of $Co_2(CO)_8$ in a mixture of C_6H_6 and $C_6H_5CF_3$ was treated with AgBAr^F $_4$ and heated to 50 °C for 18 h, followed by three freeze–pump–thaw cycles (Scheme 2). This procedure


Scheme 2. Synthesis of Co-1a

^aRatio varied between syntheses.

furnished a mixture of the desired Co-1a sandwich complex along with $[(\eta^6\text{-}C_6H_6)\text{Co}(\text{CO})_2][\text{BAr}^F_4](\text{Co-1ab})$, an intermediate arising from incomplete substitution of the carbonyl ligands by a second equivalent of arene. Variations in temperature, equivalents of AgBAr F_4 , solvent ratios, time, and resubmission to the reaction conditions did not cleanly generate Co-1a. Single crystals of Co-1a suitable for X-ray diffraction were obtained from the crude mixture in a $C_6H_5CF_3$ solution layered with pentane at -35 °C (Figure 1). In the solid state, Co-1a had Co(1)—centroid distances of 1.758 Å (C(1)-C(6)) and 1.750 Å (C(7)-C(12)), in agreement with published values. ¹⁵

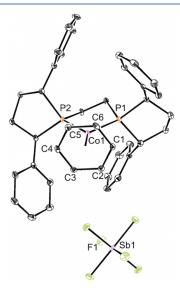
Because of the challenges associated with separating Co-1ab and Co-1a, coupled with the expense and sourcing of the [BAr^F₄] anion, the synthesis and isolation of cobalt sandwiches with other commercially available anions were explored. The oxidations of Co₂(CO)₈ with AgPF₆, AgOTf, AgBF₄, and AgSbF₆ were conducted in C₆H₅CF₃:C₆H₆ (5:1) mixtures and independent of solvent, reaction time, or temperature, none of the desired products were isolated. In many cases, the products were insoluble or reactive toward common organic solvents, such as diethyl ether, THF, dichloromethane, acetonitrile, nitroethane, or benzene. Anal-

Figure 1. Solid-state structure of **Co-1a** at 30% probability; ellipsoids and hydrogen atoms are omitted for clarity. Co-centroid(C1,C6): 1.758 Å, Co-centroid(C7,C12): 1.750 Å.

ysis by either EPR or NMR spectroscopy provided little information. The characterization was therefore limited to infrared spectroscopy, X-ray diffraction, and derivatization by the addition of a bis(phosphine) ligand.

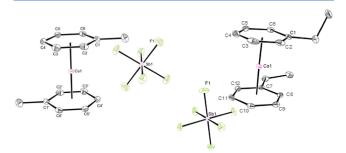
Introduction of alkyl substituents on the arene was explored with the goal of increasing the solubility and enabling the isolation of the resulting cobalt compound. The oxidation of $Co_2(CO)_8$ with $AgSbF_6$ in a $C_6H_5CF_3$: C_6H_5Me (5:1) mixture followed by recrystallization from the crude mixture furnished a yellow-brown solid identified as $[(\eta^6-C_6H_5Me)_2Co][SbF_6]$ (Co-1c) in 34% isolated yield (Scheme 3A). Isolation of the

Scheme 3. (A) Synthesis of $[(\eta^6-C_6H_5R)_2Co][SbF_6]$ (R=H, Me, Et) Complexes; (B) Confirmation of $[(\eta^6-C_6H_6)_2Co][SbF_6]$ Formation Through Benzene Displacement by (R,R)-PhBPE


A. Synthesis of $[(\eta^6 - C_6H_5R)_2Co][SbF_6](R = H, Me, Et)$ Complexes $Co_2(CO)_8 + AgSbF_6 - C_6H_5CF_3: arene (5:1) - C_6H_5CF_3: arene (5:1) - C_6H_5CF_6: arene)_2Co][SbF_6]$ 0.5 equiv. 1 equiv. $[(\eta^6 - arene)_2Co][SbF_6] - C_6H_5(C_6H_5)_2Co][SbF_6] - C_6H_5(C_6H_5E)_2Co][SbF_6]$ $Co-1b - C_6H_6(C_6H_6)_2Co][SbF_6] - C_6H_5Me)_2Co][SbF_6] - C_6H_5El)_2Co][SbF_6] - C_6H_5El]_2Co][SbF_6] - C_6H_$

B. Confirmation of [$(\eta^6-C_6H_6)_2Co]$ [SbF $_6$] Formation Through Benzene Displacement by (R,R)-PhBPE

$$\begin{array}{c|c} & & & & & & \\ & & & & \\ & & & & \\ & & & & \\$$


pure cobalt sandwich was enabled by the distinct solubility difference between Co-1c and $[(\eta^6-C_6H_5Me)Co(CO)_2][SbF_6]$ in the C₆H₅CF₃:C₆H₅Me (5:1) mixture. Repeating the procedure using a C₆H₅CF₃:C₆H₅Et (5:1) mixture resulted in a 51% isolated yield of $[(\eta^6-C_6H_5Et)_2Co][SbF_6]$ (Co-1d), consistent with a longer alkyl chain improving solubility (Scheme 3A). Solution effective magnetic moments of 2.7(4) and 2.5(2) $\mu_{\rm B}$ respectively, were measured at 23 °C (Evans method), ¹⁶ consistent with S = 1 ground states. ¹⁵ The ¹H NMR spectra for Co-1c and Co-1d in C₆H₅CF₃ with a C₆D₆:TMS (1:1) capillary exhibited downfield signals at 37.4 and 47.3 ppm, respectively, corresponding to a single alkyl peak, which indicates both symmetry and rotation about the arene rings. Both Co-1c and Co-1d were stored for several months under an inert atmosphere at -35 °C without detectable degradation.

To determine whether the desired cobalt sandwich $[(\eta^6$ $(C_6H_6)_2C_0$ [SbF₆] (**Co-1b**) formed within the nearly insoluble crude mixture, one equivalent of bis(phosphine) ligand was added to intercept bis(η^6 -arene) sandwich with the goal of isolating an 18-electron bis(phosphine) cobalt arene complex. Oxidation of Co₂(CO)₈ with AgSbF₆ in a C₆H₅CF₃:C₆H₆ (5:1) mixture followed by the addition of (R,R)-PhBPE resulted in isolation of $[(R,R)-({}^{Ph}BPE)Co(\eta^6-C_6H_6)][SbF_6]$ (Co-2aa) in 38% yield (Scheme 3B). A diagnostic singlet was observed at 110.1 ppm in the 31 P NMR spectrum recorded in THF- d_8 at ambient temperature, as well as a resonance at 5.01 ppm in the ¹H NMR spectrum assigned to the coordinated benzene, identical to the reported spectra for the $[(R,R)-({}^{Ph}BPE)Co(\eta^6 (C_6H_6)$ [BAr $_4$]. The identity of the **Co-2aa** was confirmed by independent synthesis by OIRE whereby (R,R)-(PhBPE)Co-(CH₂SiMe₃)₂ was treated with AgSbF₆, furnishing the desired product in 38% yield. The cobalt cation was recrystallized from a saturated solution of THF at -35 °C to unambiguously assign the solid-state structure by X-ray crystallography (Figure 2). Co-2aa Co-centroid (C1,C6) distances of 1.581 and 1.593 Å, respectively, and the Co1-P1 and Co1-P2 distances were consistent with the cationic cobalt(I) complexes were reported previously.

Figure 2. Solid-state structure of **Co-2aa** at 30% probability; ellipsoids and hydrogen atoms omitted for clarity. Co-centroid (C1,C6): 1.581 Å; Co-P1: 2.147(1) Å; Co-P2: 2.148(1) Å.

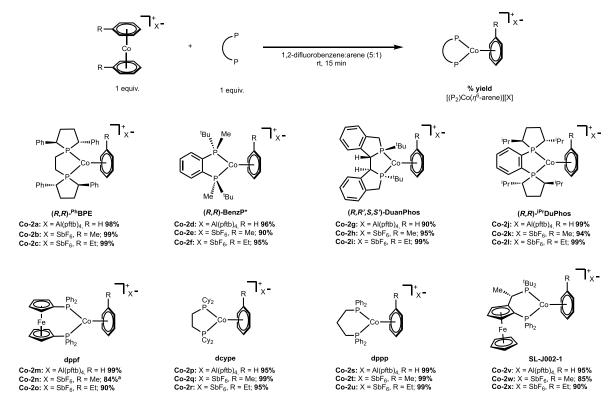
The solid-state structures of both Co-1c and Co-1d were determined by X-ray diffraction and exhibited distinct confirmations of the bound arene (Figure 3). For Co-1c, a

Figure 3. Solid-state structures of **Co-1c** (left) and **Co-1d** (right). Molecular structures at 30% probability; ellipsoids and hydrogen atoms omitted for clarity. **Co-1c**: Co-centroid (C1,C6): 1.745 Å, Co-centroid (C7,C12): 1.745 Å; **Co-1d**: Co-centroid (C1,C6): 1.743 Å, Co-centroid (C7,C12): 1.752 Å.

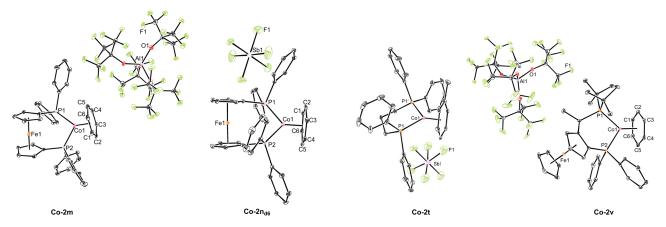
highly symmetric structure was observed with the toluene methyl groups oriented 180° from each other. A Co–centroid (C1,C6; C7,C12) distance of 1.745 Å was observed for both rings that are related by symmetry. The solid-state molecular geometry of Co-1d showed alkyl groups in an staggered conformation. Cobalt—centroid (C1,C6; C7,C12) distances of 1.743 and 1.752 Å were measured. Both Co-1d and Co-1c distances correspond to previously reported values. The isolation of Co-1c and Co-1d accomplished with sterically attenuated arenes provides a unique platform for precatalyst generation given the use of an accessible, low molecular weight anion, paired with the relative ease of handling and reproducibility of the syntheses.

Synthesis of Cationic Bis(phosphine) Co(I) Precatalysts. The substitutional lability of Co-1c and Co-1d in the presence of bis(phosphines) was investigated and compared with previously reported $[(\eta^6-C_6H_6)_2C_0][Al(pftb)_4]$ (Co-1e). 15 Bis(phosphine) cobalt(I) precatalysts are desirable due to their extended stability at room temperature^{6,17} and versatility in numerous catalytic transformations. ^{6,7,11,13,17,21} A general ligand substitution procedure was developed for both wide and narrow bite-angle bis(phosphines). Precatalysts were initially synthesized by using a 5:1 mixture of C₆H₅CF₃ and C₆H₆. However, decomposition to bis(phosphine)CoCl₂ was observed, arising from adventitious C₆H₅CCl₃ in commercial sources of C₆H₅CF₃ that had an exaggerated effect on precatalyst formation using wide bite-angle ligands. The use of 1,2-difluorobenzene suppressed this deleterious reactivity. A solution of the desired cobalt(I) bis(η^6 -arene) complex in a mixture of 1,2-difluorobenzene: arene (5:1) was added to the bis(phosphine) and stirred for 15 min. This procedure furnished the targeted bis(phosphine) cobalt(I) arene products in 84-99% yield (Scheme 4A). Co-1c, Co-1d, and Co-1e were compatible with substitution by rigid and flexible C_2 -bridged bis(phosphines) including: (R,R)-PhBPE, (R,R)- iPr DuPhos, (R,R)-BenzP*, (R,R',S,S')-DuanPhos, and dycpe (Scheme 4A). Confirmation of precatalyst formation was based on ¹H and ³¹P NMR spectroscopy by comparison to literature values. ^{6,11,17} Wide-bite angle bis(phosphine) precatalysts dppp, dppf, and JosiPhos ligand, SL-J002-1, were also isolated in high yields.

These results demonstrate the generality and versatility of the cobalt sandwich complexes as a means to generate diverse precatalysts in a single step and are comparable with HTE. The redox neutral substitution enabled single-crystal isolation of compounds not-otherwise isolable with previously reported methods, $^{10-13}$ including [(dppf)Co(η^6 -C₆H₆)][Al(pftb)₄] (Co-2m), [(dppf)Co(η^6 -C₆D₆)][SbF₆] (Co-2n), a [(dppp)Co-(η^6 -C₆H₅Me)][SbF₆] (Co-2t), and [(SL-J002-1)Co(η^6 -C₆H₆)][Al(pftb)₄] (Co-2v) (Scheme 4B).


Applications in Cobalt-Catalyzed Reactions. The access to well-defined cationic cobalt(I) precatalysts from a single-component precursor is advantageous insofar as it eliminates the requirement for activators and other additives. With arene substitution for bis(phosphines) established, a selection of cationic cobalt(I)-mediated reactions was evaluated, including asymmetric hydrogenation, formal [2 + 2] cycloaddition, hydroboration, and $C(sp^2)$ —H functionalization.

Bis(phosphine) cobalt complexes have emerged as highly effective precatalysts for asymmetric alkene hydrogenation and have been applied to the enantioselective synthesis of active pharmaceutical ingredients (API). To date, cobalt catalyst discovery using HTE for these reactions has been limited to CoCl₂ activated with zinc. These methods typically generate neutral, open shell bis(phosphine)cobalt(0) or (II) intermediates that operate by an unsaturated mechanism. This approach has been applied to the asymmetric synthesis of a phenylalanine derivative (MAC)¹⁸ and Levetiracetam, the chiral product used in the treatment of epilepsy (Scheme 5). Recognizing the recent developments in cationic cobalt(I) catalyzed asymmetric alkene hydrogenations, 6,7,11 HTE precursors capable of accessing comparable ligand space to that of CoCl₂/Zn were sought.


To establish the utility of cationic bis(η^6 -arene) cobalt(I) complexes as HTE compatible precursors, eight representative chiral bis(phosphine) ligands were selected for the asymmetric hydrogenations of dehydro-MAC and dehydro-Levetiracetam. The three precursors were first plated with ligands to form the precatalyst in C₆H₅Me or C₆H₅CF₃, similar to the approach used in precious metal catalyst discovery. 19 The hydrogenations were conducted in MeOH or THF with 500 psi of H₂ at 50 °C (Scheme 5). With 10 mol % catalyst loading, minimal deviation in the yield and selectivity between Co-1e, Co-1c, and Co-1d was observed (Scheme 5). Gratifyingly, SL-J002-1 and SL-J004-1 were both active and selective (>65% ee) in the hydrogenation of dehydro-Levetiracetam. At 1 mol % catalyst loading, Co-1e, Co-1c, and Co-1d maintained high activity as well as enantioselectivity with narrow bite-angle bis(phosphines), including (R,R)-iPrDuPhos and (S,S)-PhBPE. Yields for both MAC and Levetiracetam were comparable to literature values (Scheme 5). 5,12 The evaluation of Co-1e, Co-1c, and Co-1d as precursors in catalyst discovery by HTE has demonstrated consistent reactivity regardless of the arene or anion. From these findings, additional studies were pursued with Co-1d given the commercial availability of the anion, the relative ease of handling, and the low molecular weight. Having identified Co-1d as the preferred precursor, 192 chiral bis(phosphines) were evaluated in the asymmetric hydrogenation of dehydro-Levetiracetam to compare cationic cobalt(I) catalysts with state-of-the-art cobalt(0) analogs. To the best of our knowledge, this represents the first comparative evaluation of single-electron-differentiated cobalt catalysts by HTE.7 Co-1d was first added to chiral ligands in C₆H₅Me to form the precatalyst followed by removal of excess solvent. Substrate was then added in MeOH followed by the

Scheme 4. (A) Synthesis of $[(Bis(phosphine))Co((\eta^6-arene))][X]$; (B) Solid-State Structures of Co-2m, Co-2n_{d6}, Co-2t, and Co-2v at 30% Probability; Ellipsoids and Hydrogen Atoms are Omitted for Clarity^a

A. Synthesis of [(bis(phosphine))Co(η^6 -arene)][X] (X = Al(pftb)₄, SbF₆; arene = C₆H₆, C₆H₅Me, C₆H₅Et)

B. Solid-state structure of Co-2m, Co-2n_{d6}, a Co-2t, and Co-2v

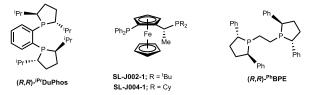
^aCo-2n_{d6} was isolated from the solution of C₆H₅CF₃:C₆D₆ (1:1)

addition of 500 psi H_2 (Scheme 6). The optimal ligands were (R,R)-PhBPE, (R,R)-RDuPhos $(R = Me, Et, {}^{i}Pr)$, (R,R',S,S')-DuanPhos, (S,S)-ChiraPhos, and (S,S,S,S)-Me-KetalPhos, all producing synthetically useful enantiomeric excesses above 88% (Scheme 6). These results represent a new method for single component cobalt(I) precursors to comprehensively evaluate the chiral ligands in the asymmetric hydrogenation of pharmaceutically relevant intermediates. The phosphines for cationic cobalt(I) catalysis were consistent with the collection of ligands best suited for cobalt(0). However, cobalt(0) and cationic cobalt(I) catalysts should both be evaluated in parallel as distinct reactivity differences have been observed. 6,7

The asymmetric hydrogenation of dehydro-Sitagliptin with cobalt is unique to bis(phosphine)Co(I) cations, where both bis(phosphine)CoCl $_2$ /Zn and bis(phosphine)Co(COD) showed no reactivity. However, the minimal ligand compatibility of (py) $_2$ Co(CH $_2$ SiMe $_3$) $_2$ (Co-3) in combination with FcBAr $_4$ remains a challenge with HTE adoption. Using HTE, Co-1d was plated alongside Co-1e for comparison of anion performance in parallel to Co-3 to benchmark catalyst formation using the OIRE. Eight representative chiral ligands were first complexed to Co(I) precursors (Scheme 7). A solution of dehydro-Sitagliptin in THF was added to the plates containing 10 mol % [Co] followed by addition of 500 psi H $_2$ and heating to 50 °C over 18 h. Precatalysts generated by

Scheme 5. HTE Evaluation of (A) Asymmetric Hydrogenation of Methyl (E)-2-acetamido-3-phenylacrylate (MAC); (B) Dehydro-Levetiracetam Using Co-1e, Co-1c, and Co-1d as Precursors

A. Asymmetric Hydrogenation of Dehydro-MAC

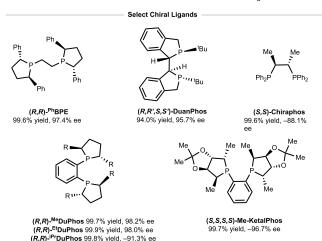

Literature Precursor: $[(R,R)-(i^{Pr}DuPhos)Co(\eta^6-arene)][BAr^F_4]^{b,ref.\ 11} > 99\%$ yield, > 99% ee

		Co-1c		Co-1c	Co-1d		•
mol %	L	% yield	% ee	% yield	% ee	% yield	% ee
10	(R,R)-iPrDuPhos	99.9	- 91.0	99.9	- 90.2	99.9	- 89
1	(R,R) - iPr DuPhos	99.9	-88.4	95.2	-88.9	99.9	-86.5

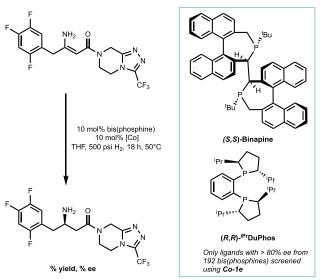
B. Asymmetric Hydrogenation of Dehydro-Levetiraceta

Literature Precursor: (R,R)-(PhBPE)CoCl₂c,ref 5 99.8% yield, -98.3% ee

		Co-1c		Co-1	Co-1d		Co-1e	
mol %	L	% yield	% ee	% yield	% ee	% yield	% ee	
10	SL-J002-1	37.1	-89.9	36.4	-90.7	45.6	-81.5	
10	SL-J004-1	82.9	68.4	88.5	67.3	76.1	65.9	
1	(R,R)-PhBPE	99.9	-97.7	99.9	-98.7	99.9	-97.7	
1	(R,R) - $^{\mathrm{iPr}}$ DuPhos	99.9	87.9	99.8	85.3	99.9	85.7	



^a500 psi = 34 atm. ^b1 mol% [($R_{2}R$)-(1Pr DuPhos)Co(η^{6} -C₆H₆)][BAr^F₄] at 60 psi H₂ in THF. c0.2 mol% (R,R)-(PhBPE)CoCl₂ with 100 mol% Zn dust.


ligation of (R,R)-^{iPr}DuPhos to Co-1d furnished the product in only 16% yield, while both (R,R)-iPrDuPhos and (S,S)-Binapine precatalysts derived from Co-1e and Co-3 precursors provided the chiral product in >99% yield (Scheme 7). (R,R)-iPrDuPhos precatalysts from Co-1d and Co-1e were independently synthesized in identical yields (Scheme 4), suggesting anion dependent reactivity for the asymmetric hydrogenation of dehydro-Sitagliptin. Enantiomeric excess >85% were obtained regardless of catalyst precursor. Co-1e was then further evaluated using the 192 bis(phosphine) ligand library, but no further reactivity with other bis(phosphines) was observed (Scheme 7). Additional catalyst formation studies with Co-1d were conducted to probe precatalyst formation and potential substrate-mediated deactivation. Co-1d was stirred with (R,R)-iPrDuPhos, (R,R)-BenzP*, and (S,S)-PhBPE for 5 or 60 min in different solvents, followed by incubation with dehydro-Sitagliptin for an additional 5 or 60 min. Low activity and high enantioselectivity was observed for all conditions evaluated (Tables S13,S14). These results support anion effects likely due to the increased degree of coordination associated with $[SbF_6]^{-20}$

Scheme 6. HTE Evaluation of Chiral Ligand Libraries for the Asymmetric Hydrogenation of Dehydro-Levetiracetam Using Co-1d

CoCl₂· 6H₂Oref.5 15 ligands ee > 80% **Co-1d** 9 ligands ee > 80%

Scheme 7. HTE Evaluation of Asymmetric Hydrogenation of Dehydro-Sitagliptin^a

 $[(R,R)-({}^{iPr}DuPhos)Co(\eta^6-C_6H_6)][BArF_4]^{ref 6.,a} >99\%$ yield, 92% ee

L	Co-1d		Co	Co-1e		Co-3	
	% yield	% ee	% yield	% ee	% yield	% ee	
(S,S)-Binapine	16.0	-86.9	99.7	-89.0	99.7	-88.5	
(R.R)-iPrDuPhos	16.4	86.7	99.8	89.2	99.3	85.1	

 a 1000 psi H₂ = 68 atm H₂.

Beyond asymmetric hydrogenation, a number of C-C and C-B bond-forming reactions have been reported using cationic cobalt(I) complexes as catalysts. Rajanbabu and coworkers have described the synthesis of chiral cyclobutanes and cyclobutenes through the formal [2 + 2] cycloaddition of commodity olefins and alkynes from in situ generated dppf cobalt(I) cations stabilized by the [BArF₄] anion. 21 Our

laboratory subsequently reported the synthesis of well-defined $[(dppf)Co(\eta^6\text{-arene})][BAr^F_4]$ complexes that are effective for the formal [2+2] cycloaddition of minimally functionalized alkynes with ethylene. ²² Of particular interest is whether the reactivity of this type can be promoted by cationic cobalt(I) catalysts bearing more cost effective, low molecular weight anions, such as $[SbF_6]^-$.

To evaluate the role of cobalt sandwich complexes as catalytic precursors for C–C bond formation, the formal [2 + 2] cycloaddition between diphenylacetylene and ethylene was probed using cobalt precursors stabilized by both $[SbF_6]^-$ and $[Al(pftb)_4]^-$ anions. $[(dppf)Co(\eta^6-C_6H_6)][Al(pftb)_4]$ (Co-2m), $[(dppf)Co(\eta^6-C_6H_5Me)][SbF_6]$ (Co-2n), and $[(dppf)Co(\eta^6-C_6H_5Et)][SbF_6]$ (Co-2o) were generated through the treatment of Co-1e, Co-1c, and Co-1d with phosphine prior to addition to the reaction mixture (Scheme 8A). Seven

Scheme 8. C-C and C-B Bond-Forming Reactions Promoted by Co-1e, Co-1c, and Co-1d Precursors for In Situ Catalyst Generation^a

A. Formal [2+2] Cycloaddtion of Diphenyl Acetylene and Ethylene

B. Hydroboration of (E)-Buta-1,3-dien-1-ylbenzene Using HBpir

C. Three-Component Coupling of N-Methylbenzamide, 4-Octyne, and Ethylene

Entry	Co-1c (% yield)	Co-1d (% yield)	Co-1e (% yield)	
[2+2] Cycloaddition	42	57	65	
Hydroboration	41	60	48	
Three-Component Coupling	17(73) ^b	29	56	

^aSolvent = THF except Et₂O for Co-1e. ^bReaction time = 48 h.

equivalents of ethylene were added to a CH_2Cl_2 solution containing diphenyl acetylene and 5 mol % of [Co]. After stirring the reaction mixture for 5 h, cyclized products from Co-2m, Co-2n, and Co-2o precatalysts were obtained in 65%, 42%, and 57% yield, respectively. Consistent reactivity was observed regardless of anion or arene, similar to observations made in asymmetric hydrogenation, highlighting generality across two distinct catalytic transformations.

The regio- and enantioselective hydroboration of minimally functionalized alkenes has also been reported in high yields using cationic cobalt(I) catalysis.²³ The regioselectivity of the transformation was tuned based on the bis(phosphine)¹⁰ or the phosphino oxazoline²⁴ ligand used. However, it is unclear from the in situ catalyst generation procedure how additives such as Zn and NaBAr^F₄, ^{10,23,24} influence catalyst performance.

Co-1e, Co-1c, and Co-1d were used to generate single component cobalt precatalysts. The anti-Markovnikov hydroboration of (E)-buta-1,3-dien-1-ylbenzene using HBPin was selected as a representative reaction using dppp (Scheme 8B). A solution of (E)-buta-1,3-dien-1-ylbenzene in either THF or Et₂O was added to 5 mol % of $[(dppp)Co(\eta^6-C_6H_6)][Al (pftb)_4$ (Co-2s), $[(dppp)Co(\eta^6-C_6H_5Me)][SbF_6]$ (Co-2t), and $[(dppp)Co(\eta^6-C_6H_5Et)][SbF_6]$ (Co-2u) following ligation of dppp to Co-1e, Co-1c, and Co-1d in 1,2difluorobenzene. 1.05 equiv of HBPin were added and the reaction stirred for 30 min. The functionalized product was obtained from Co-2s, Co-2t, and Co-2u precatalysts in 48%, 41%, and 60% yields, respectively (Scheme 8B). In the absence of Zn, single component dppp precatalysts achieved greater yields than previously reported methods.²³ Again, comparable performance was consistently observed independent of the anion or arene used in the cobalt precatalyst.

Cobalt(III) metallacycles accessed from cationic bis-(phosphine) cobalt(I) complexes have been shown to promote directed $C(sp^2)$ -H functionalization.²⁵ Our group has generated the well-defined cobalt(I) precatalyst, [(dcype)Co- $(\eta^6-C_6H_5Me)][BAr_4^F]$ and demonstrated its role in the threecomponent coupling of arenes, alkynes, and ethylene that proceeds through the same metallacycle intermediate. 17 Similar to the other transformations described, developing a more accessible, low molecular weight, single component precatalyst is desirable. Precatalyst evaluation was conducted in a representative three-component coupling of N-methyl benzamide, 4-octyne, and ethylene (Scheme 8C). The cobalt(I) sandwich precursors, $[(dcype)Co(\eta^6-C_6H_6)][Al(pftb)_4]$ (Co-**2p**), $[(\text{dcype})\text{Co}(\eta^6-\text{C}_6\text{H}_5\text{Me})][\text{SbF}_6]$ (Co-2q), and [(dcype)-Co] $Co(\eta^6-C_6H_5Et)][SbF_6]$ (Co-2r), were treated with dcype in 1,2-difluorobenzene prior to the addition of 1 equiv N-methyl benzamide and 1.2 equiv of 4-octyne in THF, followed by addition of 5 equiv of ethylene. After 24 h at 40 °C, the Co-2q and Co-2r precatalysts furnished the C-H functionalization product in 17% and 29% yield, respectively (Scheme 8C). The use of Co-2p as the cobalt precursor furnished the product in 56% yield after 24 h. While the $[SbF_6]^-$ containing cobalt catalysts reacted more slowly than their $[Al(pftb)_4]^-$ counterparts, their yield could be improved to 73% by stirring the reaction in a sealed vessel for 48 h.

CONCLUSION

Cationic bis(η^6 -arene) cobalt sandwich complexes, Co-1c and Co-1d stabilized by the commercially available anion [SbF₆]⁻, have been synthesized and characterized by multinuclear NMR spectroscopy and X-ray diffraction. Their resulting substitution chemistry with bis(phosphine) ligands was applied to the synthesis of a host of cationic cobalt(I) precatalysts. Three examples, Co-1c, Co-1d, and Co-1e were compatible with both narrow- and wide-bite angle bis(phosphines), an advance over existing methods of precatalyst generation. This method was applied in asymmetric hydrogenation, C-C, C-B bondformation, and C-H functionalization chemistry, highlighting the extent of catalyst discovery enabled by well-defined organometallic precursors coupled with HTE.

METHODS

General Procedures for In Situ Precatalyst Formation. A 3.85 mL scintillation vial was charged with an o- $C_6H_4F_2$ solution of bis(phosphine) (1 equiv). In a separate 20 mL

scintillation vial, a solution of crystalline yellow-brown bis(η^6 -arene) Co(I) cation (1 equiv) in o-C₆H₄F₂ was prepared and added dropwise to the vial containing the bis(phosphine). The solution was stirred for 15 min at ambient temperature, followed by concentration under reduced pressure.

General Microscale High-Throughput Experimentation Procedure. Microscale reactions were carried out in 8×30 mm glass vial inserts in aluminum 96-well microliter plates. Solutions of the ligand (0.1 M THF) were added and concentrated on the plate. Metal precursor solutions were then added, and the mixture was stirred at room temperature for 10 min. Volatiles were removed by a vacuum centrifuge, with subsequent addition of substrate solutions. The plates were sealed in pressure vessels, removed from the glovebox, and connected to a gas manifold. The supply line and vessel headspace were purged ten times with N_2 , followed by three purges with H_2 . The desired hydrogen pressure and temperature were added to the vessel with 500 rpm shaking. After the desired reaction time, the vessel was vented, and the reactions were sampled for analysis.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acscatal.4c03843.

Preparation of cobalt complexes; spectroscopic data; general procedure for catalytic transformations; references (PDF)

Solid-state structure of [(SL-J002-1)Co(η^6 -C₆H₆)][Al-(pftb)₄] (CIF)

Solid-state structure of $[(dppf)Co(\eta^6-C_6H_6)][SbF_6]$ (CIF)

Solid-state structure of $[(dppf)Co(\eta^6-C_6H_6)][Al(pftb)_4]$ (CIF)

Solid-state structure of $[(dppp)Co(\eta^6-C_6H_5Me)][SbF_6]$ (CIF)

Solid-state structure of $[dppf][Al(pftb)_4]$ (CIF)

Solid-state structure of $[((R,R)-DuanPhos)Co(\eta^6-C_6H_5Et)][SbF_6]$ (CIF)

Solid-state structure of $[((R,R)-BenzP^*)Co(CO)_3]$ - $[SbF_6]$ (CIF)

Solid-state structure of $[(\eta^6-C_6H_5Et)_2Co][SbF_6]$ (CIF) Solid-state structure of $[((R,R)-PhBPE)Co(\eta^6-C_6H_6)]-[SbF_6]$ (CIF)

Solid-state structure of $[(\eta^6-C_6H_5Me)_2Co][SbF_6]$ (CIF) Solid-state structure of $[((R,R)-BenzP^*)Co(\eta^6-C_6H_5Me)][SbF_6]$ (CIF)

Solid-state structure of $[(\eta^6-C_6H_6)_2Co][BAr_4^F]$ (CIF)

Accession Codes

CCDC deposition numbers 2348017—2348028 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.ca-m.ac.uk, or by contacting The Cambridge Crystallographic Data Centre,12 Union Road, Cambridge CB21EZ, UK; fax:+441223336033.

AUTHOR INFORMATION

Corresponding Authors

Michael Shevlin — Merck & Co., Inc., Rahway, New Jersey 07065, United States; orcid.org/0000-0003-2566-5095; Email: michael_shevlin@merck.com

Paul J. Chirik — Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States; orcid.org/0000-0001-8473-2898; Email: pchirik@Princeton.edu

Authors

Maya J. Lebowitz — Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States; orcid.org/0000-0003-2692-7149

Connor S. MacNeil – Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States; orcid.org/0000-0001-6434-8397

Lauren N. Mendelsohn – Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States; orcid.org/0000-0002-0596-6838

Matthew V. Pecoraro — Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States; orcid.org/0000-0003-2583-5314

Gabriele Hierlmeier − Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States; orcid.org/0000-0002-4029-3712

Complete contact information is available at: https://pubs.acs.org/10.1021/acscatal.4c03843

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge the financial support from the National Science Foundation (NSF) Grant Opportunities for Academic Liaison with Industry (GOALI) grant (CHE-2247478).

REFERENCES

(1) (a) Friedfeld, M. R.; Shevlin, M.; Hoyt, J. M.; Krska, S. W.; Tudge, M. T.; Chirik, P. J. Cobalt Precursors for High-Throughput Discovery of Base Metal Asymmetric Alkene Hydrogenation Catalysts. *Science* **2013**, 342, 1076–1080. (b) Du, X.; Xiao, Y.; Huang, J.-M.; Zhang, Y.; Duan, Y.-N.; Wang, H.; Shi, C.; Chen, G.-Q.; Zhang, X. Cobalt-Catalyzed Highly Enantioselective Hydrogenation of α,β -Unsaturated Carboxylic Acids. *Nat. Commun.* **2020**, 11, 3239. (c) Du, X.; Xiao, Y.; Yang, Y.; Duan, Y.-N.; Li, F.; Hu, Q.; Chung, L. W.; Chen, G.-Q.; Zhang, X. Enantioselective Hydrogenation of Tetrasubstituted α,β -Unsaturated Carboxylic Acids Enabled by Cobalt(II) Catalysis: Scope and Mechanistic Insights. *Angew. Chem., Int. Ed.* **2021**, 60 (20), 11384–11390. (d) Yang, X.; Ge, S. Recent Progress in Cobalt-Catalyzed Enantioselective Hydrogenation and Hydroboration Reactions of Alkenes. *Curr. Opin. Green Sustainable Chem.* **2021**, 31, 100542.

(2) (a) Sharma, R. K.; RajanBabu, T. V. Asymmetric Hydrovinylation of Unactivated Linear 1,3-Dienes. *J. Am. Chem. Soc* **2010**, 132, 3295–3297. (b) Timsina, Y. N.; Sharma, R. K.; RajanBabu, T. V. Cobalt-Catalysed Asymmetric Hydrovinylation of 1,3-Dienes. *Chem. Sci.* **2015**, *6*, 3994–4008. (c) Biswas, S.; Dewese, K. R.; Raya, B.; RajanBabu, T. V. Catalytic Enantioselective Hydrovinylation of Trialkylsilyloxy and Acetoxy-1,3-Dienes: Cationic Co(I) Complexes for the Synthesis of Chiral Enolate Surrogates and Their Applications for Synthesis of Ketones and Cross-Coupling Reagents in High Enantiomeric Purity. *ACS Catal.* **2022**, 12, 5094–5111.

(3) (a) Kim, D. K.; Riedel, J.; Kim, R. S.; Dong, V. M. Cobalt Catalysis for Enantioselective Cyclobutanone Construction. *J. Am. Chem. Soc.* **2017**, *139*, 10208–10211. (b) Da Concepción, E.; Fernández, I.; Mascareñas, J. L.; López, F. Highly Enantioselective Cobalt-Catalyzed (3 + 2) Cycloadditions of Alkynylidene cyclopropanes. *Angew. Chem., Int. Ed.* **2021**, *60*, 8182–8188. (c) Singh, D.;

- RajanBabu, T. V. Chemodivergent, Regio- and Enantioselective Cycloaddition Reactions between 1,3-Dienes and Alkynes. *Angew. Chem., Int. Ed.* **2022**, 62 (8), No. e202216000.
- (4) (a) Moselage, M.; Li, J.; Ackermann, L. Cobalt-Catalyzed C-H Activation. ACS Catal. 2016, 6, 498–525. (b) Whitehurst, W. G.; Kim, J.; Koenig, S. G.; Chirik, P. J. C-H Activation by Isolable Cationic Bis(Phosphine) Cobalt(III) Metallacycles. J. Am. Chem. Soc. 2022, 144, 19186–19195. (c) Cui, K.; Li, Y.-L.; Li, G.; Xia, J.-B. Regio- and Stereoselective Reductive Coupling of Alkynes and Crotononitrile. J. Am. Chem. Soc. 2022, 144, 23001–23009. (d) Gu, Z.-Y.; Li, W.-D.; Li, Y.-L.; Cui, K.; Xia, J.-B. Selective Reductive Coupling of Vinyl Azaarenes and Alkynes via Photoredox Cobalt Dual Catalysis. Angew. Chem., Int. Ed. 2023, 62, No. e202213281.
- (5) Friedfeld, M. R.; Zhong, H.; Ruck, R. T.; Shevlin, M.; Chirik, P. J. Cobalt-Catalyzed Asymmetric Hydrogenation of Enamides Enabled by Single-Electron Reduction. *Science* **2018**, *360*, 888–893.
- (6) MacNeil, C. S.; Zhong, H.; Pabst, T. P.; Shevlin, M.; Chirik, P. J. Cationic Bis(Phosphine) Cobalt(I) Arene Complexes as Precatalysts for the Asymmetric Synthesis of Sitagliptin. ACS Catal. 2022, 12, 4680–4687.
- (7) Mendelsohn, L. N.; MacNeil, C. S.; Esposito, M. R.; Pabst, T. P.; Leahy, D. K.; Davies, I. W.; Chirik, P. J. Asymmetric Hydrogenation of Indazole-Containing Enamides Relevant to the Synthesis of Zavegepant Using Neutral and Cationic Cobalt Precatalysts. *Org. Lett.* **2024**, *26*, 2718–2723.
- (8) (a) Rudnick, R. L.; Gao, S. 3.01 Composition of the Continental Crust. In *Treatise on Geochemistry*, Holland, H. D.; Turekian, K. K., Eds.; Pergamon: Oxford, 2003; pp. 164. (b) Hunt, A. *Element Recovery and Sustainability*; Royal Society of Chemistry, 2013. (c) Chirik, P. J.; Engle, K. M.; Simmons, E. M.; Wisniewski, S. R. Collaboration as a Key to Advance Capabilities for Earth-Abundant Metal Catalysis. *Org. Process Res. Dev.* 2023, 27, 1160–1184.
- (9) Großheimann, G.; Holle, S.; Jolly, P. W. η^6 -Arene-Cobalt(I) Complexes. J. Organomet. Chem. 1998, 568, 205–211.
- (10) (a) Jing, S. M.; Balasanthiran, V.; Pagar, V.; Gallucci, J. C.; RajanBabu, T. V. Catalytic Enantioselective Hetero-Dimerization of Acrylates and 1,3-Dienes. *J. Am. Chem. Soc.* **2017**, 139, 18034–18043. (b) Parsutkar, M. M.; Bhunia, S.; Majumder, M.; Lalisse, R. F.; Hadad, C. M.; RajanBabu, T. V. Ligand Control in Co-Catalyzed Regio- and Enantioselective Hydroboration: Homoallyl Secondary Boronates via Uncommon 4,3-Hydroboration of 1,3-Dienes. *J. Am. Chem. Soc.* **2023**, 145, 7462–7481.
- (11) Zhong, H.; Friedfeld, M. R.; Chirik, P. J. Syntheses and catalytic hydrogenation performance of cationic bis (phosphine) cobalt (I) diene and arene compounds. *Angew. Chem., Int. Ed.* **2019**, *58*, 9194–9198.
- (12) Parsutkar, M. M.; Moore, C. E.; RajanBabu, T. V. Activator-Free Single-Component Co(I)-Catalysts for Regio- and Enantiose-lective Heterodimerization and Hydroacylation Reactions of 1,3-Dienes. New Reduction Procedures for Synthesis of [L]Co(I)-Complexes and Comparison to in Situ Generated Catalysts. *Dalton Trans.* 2022, 51, 10148–10159.
- (13) Andreetta, P.; Martin, R. T.; Souilah, C.; Rentería-Gómez, A.:, Song, Z.; Bayat, Y. K.; Ivlev, S.; Gutierrez, O.; Casitas, A. Experimental and Computational Studies on Cobalt(I)-Catalyzed Regioselective Allylic Alkylation Reactions. *Angew. Chem., Int. Ed.* **2023**, *135* (46), No. e202310129.
- (14) (a) Fischer, E. O.; Lindner, H. H. Über Aromatenkomplexe von Metallen. LXXVI. Di-Hexamethylbenzol-Metall-π-Komplexe Des Ein-Und Zweiwertigen Kobalts Und Rhodiums. *J. Organomet. Chem.* **1964**, *1*, 307–317. (b) Thompson, M. R.; Day, C. S.; Day, V. W.; Mink, R. I.; Muetterties, E. L. Transition Metal Arene Chemistry. 4. Structural Studies of Cobalt Group Complexes. *J. Am. Chem. Soc.* **1980**, *102*, 2979–2986.
- (15) Meier, S. C.; Holz, A.; Kulenkampff, J.; Schmidt, A.; Kratzert, D.; Himmel, D.; Schmitz, D.; Scheidt, E.-W.; Scherer, W.; Bülow, C.; et al. Access to the Bis-Benzene Cobalt(I) Sandwich Cation and Its Derivatives: Synthons for a "Naked" Cobalt(I) Source? *Angew. Chem., Int. Ed.* **2018**, *57*, 9310–9314.

- (16) Evans, D. F. 400. The Determination of the Paramagnetic Susceptibility of Substances in Solution by Nuclear Magnetic Resonance. *J. Chem. Soc.* **1959**, 2003–2005.
- (17) Whitehurst, W. G.; Kim, J.; Koenig, S. G.; Chirik, P. J. Three-Component Coupling of Arenes, Ethylene, and Alkynes Catalyzed by a Cationic Bis(Phosphine) Cobalt Complex: Intercepting Metallacyclopentenes for C–H Functionalization. *J. Am. Chem. Soc.* **2022**, 144, 4530–4540.
- (18) Mendelsohn, L. N.; Pavlovic, L.; Zhong, H.; Friedfeld, M. R.; Shevlin, M.; Hopmann, K. H.; Chirik, P. J. Mechanistic Investigations of the Asymmetric Hydrogenation of Enamides with Neutral Bis(Phosphine) Cobalt Precatalysts. *J. Am. Chem. Soc.* **2022**, 144, 15764–15778.
- (19) (a) Schlummer, B.; Scholz, U. Palladium-Catalyzed C-N and C-O Coupling-A Practical Guide from an Industrial Vantage Point. Adv. Synth. Catal. 2004, 346, 1599–1626. (b) Front Matter. In Applications of Transition Metal Catalysis in Drug Discovery and Development; Crawley, M. L.; Trost, B. M., Eds. Wiley, 2012. (c) Shevlin, M. Practical High-Throughput Experimentation for Chemists. ACS Med. Chem. Lett. 2017, 8, 601–607. (d) Shevlin, M. High-Throughput Experimentation-Enabled Asymmetric Hydrogenation. In The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis (Volume 1). ACS Symp. Ser.; Am. Chem. Soc. 2022, 1419, 107–130. (e) Cabré, A.; Verdaguer, X.; Riera, A. Recent Advances in the Enantioselective Synthesis of Chiral Amines via Transition Metal-Catalyzed Asymmetric Hydrogenation. Chem. Rev. 2022, 122, 269–339
- (20) Krossing, I.; Raabe, I. Noncoordinating Anions—Fact or Fiction? A Survey of Likely Candidates. *Angew. Chem., Int. Ed.* **2004**, 43, 2066–2090.
- (21) Pagar, V. V.; RajanBabu, T. V. Tandem Catalysis for Asymmetric Coupling of Ethylene and Enynes to Functionalized Cyclobutanes. *Science* **2018**, *361*, 68–72.
- (22) Farmer, M. E.; Ehehalt, L. E.; Pabst, T. P.; Tudge, M. T.; Chirik, P. J. Well-Defined Cationic Cobalt(I) Precatalyst for Olefin-Alkyne [2 + 2] Cycloaddition and Olefin-Diene Hydrovinylation Reactions: Experimental Evidence for Metallacycle Intermediates. Organometallics 2021, 40, 3599—3607.
- (23) Duvvuri, K.; Dewese, K. R.; Parsutkar, M. M.; Jing, S. M.; Mehta, M. M.; Gallucci, J. C.; RajanBabu, T. V. Cationic Co(I)-Intermediates for Hydrofunctionalization Reactions: Regio- and Enantioselective Cobalt-Catalyzed 1,2-Hydroboration of 1,3-Dienes. *J. Am. Chem. Soc.* **2019**, *141*, 7365–7375.
- (24) Patil, M. D.; Ghosh, K. K.; RajanBabu, T. V. Cobalt-Catalyzed Enantioselective Hydroboration of α -Substituted Acrylates. *J. Am. Chem. Soc.* **2024**, *146*, 6604–6617.
- (25) (a) Santhoshkumar, R.; Mannathan, S.; Cheng, C.-H. Cobalt-Catalyzed Hydroarylative Cyclization of 1,6-Enynes with Aromatic Ketones and Esters via C—H Activation. *Org. Lett* **2014**, *16*, 4208–4211. (b) Santhoshkumar, R.; Mannathan, S.; Cheng, C.-H. Ligand-Controlled Divergent C—H Functionalization of Aldehydes with Enynes by Cobalt Catalysts. *J. Am. Chem. Soc.* **2015**, *137*, 16116–16120. (c) Whyte, A.; Torelli, A.; Mirabi, B.; Prieto, L.; Rodríguez, J. F.; Lautens, M. Cobalt-Catalyzed Enantioselective Hydroarylation of 1,6-Enynes. *J. Am. Chem. Soc.* **2020**, *142*, 9510–9517. (d) Herbort, J. H.; Lalisse, R. F.; Hadad, C. M.; RajanBabu, T. V. Cationic Co(I) Catalysts for Regiodivergent Hydroalkenylation of 1,6-Enynes: An Uncommon Cis- β -C—H Activation Leads to Z-Selective Coupling of Acrylates. *ACS Catal.* **2021**, *11*, 9605–9617.