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Abstract4

Degree-preserving rewiring is a widely used technique for generating unweighted networks
with given assortativity, but for weighted networks, it is unclear how an analog would pre-
serve the strengths and other critical network features such as sparsity level. This study
introduces a novel approach for rewiring weighted networks to achieve desired directed as-
sortativity. The method utilizes a mixed integer programming framework to establish a tar-
get network with predetermined assortativity coe�cients, followed by an e�cient rewiring
algorithm termed “strength and sparsity preserving rewiring” (SSPR). SSPR retains the
node strength distributions and network sparsity after rewiring. It is also possible to accom-
modate additional properties like edge weight distribution, albeit with extra computational
cost. The optimization scheme can be used to determine feasible assortativity ranges for an
initial network. The e↵ectiveness of the proposed SSPR algorithm is demonstrated through
its application to two classes of popular network models.
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1. Introduction8

Assortativity is an important measure characterizing the correlation structure of nodal9

features of networks. Generating random networks with predetermined assortativity is crit-10

ical for justifying network theories [1], exploring spectral properties [2], improving model11

fit [3], and optimizing network robustness [4]. Edge rewiring is a widely accepted technique12

for generating networks with given assortativity. The degree-preserving rewiring (DPR) al-13

gorithm proposed by Newman [1] ensures that the node degree distribution of an undirected14

network keeps unchanged throughout the course of rewiring so as to preserve the fundamen-15

tal topology of the rewired network. An extension of Newman’s algorithm, called DiDPR,16

was recently developed for generating directed networks with predetermined directed assor-17

tativity coe�cients [3]. More generally, rewiring techniques have found practical applications18

in many fields such as biological science [5], clinical trials [6], and social network analysis [7],19

among others.20

Despite the long availability of Newman’s algorithm for unweighted networks, rewiring a21

weighted network to achieve predetermined assortativity proves to be a challenging task that22

has not yet been studied in the literature. While directly extending Newman’s algorithm23
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to weighted networks may seem feasible for preserving node strengths, a naive extension24

fails to retain other important network properties, such as sparsity, simultaneously. When25

edge weights are represented as integer values, one potential approach involves a multi-26

edge scheme, where a weighted edge is divided into multiple unit-weight edges, and then27

Newman’s two-swap method or similar techniques are applied. However, this approach does28

not translate smoothly to networks with real-valued edge weights. Even for networks with29

integer-valued edge weights, this method lacks practical utility, as it results in a substantial30

increase in the number of edges [8] and alters the network’s sparsity, a typical feature observed31

in most real-world networks [9]. In the subsequent section, we will delve into more details32

about this approach and explore other potential possibilities for addressing the challenge of33

rewiring weighted networks to achieve predetermined assortativity.34

This paper introduces a novel rewiring algorithm for generating weighted, directed net-35

works with four predetermined directed assortativity coe�cients [10]. Notably, the proposed36

algorithm ensures that both out- and in-strength distributions, along with sparsity, are metic-37

ulously preserved upon the completion of the rewiring process. Newman’s approach involves38

searching for a target network structure characterized by a joint degree distribution that39

matches the desired assortativity values and represents the stationary status of the rewiring40

process [1, 3]. In contrast, the proposed algorithm directly produces a weighted, directed net-41

work with assortativity measures precisely equal to the given values, provided that they are42

attainable. The desired network structure is not unique and we formulate an optimization43

problem to provide one feasible solution. With carefully chosen objective function for the44

optimization, the algorithm can retain certain network topology and properties in addition45

to strength distributions and sparsity after rewiring. Further, the optimization scheme also46

helps to identify the attainability of each assortativity coe�cient by establishing its upper47

and lower bounds given the initial network configuration.48

The remainder of the paper is organized as follows. Section 2 introduces the notations and49

elucidates the challenges for the extension of Newman’s algorithm to weighted networks. Sec-50

tion 3 presents an e�cient strength and sparsity preserving reserving algorithm for weighted,51

directed networks with given assortativity coe�cients, followed by an approach to determin-52

ing assortativity coe�cient bounds and a generalization allowing to consider other network53

properties like edge weight distribution. Section 4 provides extensive simulations showing the54

applications of the proposed algorithm to the Erdös-Rényi model and the Barabási-Albert55

model. Lastly, some discussions and future works are addressed in Section 5.56

2. Preliminaries57

Starting with notations, we layout the challenges when extending Newman’s algorithm58

to weighted, directed networks.59

2.1. Notations60

Let G := G(V,E) be a weighted, directed network with node set V and edge set E.61

Additionally, let (vi, vj, wij) 2 E denote a weighted, directed edge from source node vi 2 V62

to target node vj 2 V with weight wij > 0. For the special case of vi = vj, (vi, vj, wij) 2 E is63

a self-loop. Network G is characterized by its associated adjacency matrix W := (wij)n⇥n,64

where n = |V | is the number of nodes in G. If there is no edge from vi to vj, i.e., (vi, vj, wij) /265

2



E, then the corresponding wij in W is set to 0. Fundamental node-level properties of66

weighted, directed networks are s (1)
i :=

P
vj2V wij and s

(2)
i :=

P
vj2V wji, which respectively67

refer to the out- and in-strength of node vi. The superscripts “1” and “2” are respectively68

used to represent “out” and “in” throughout the rest of the manuscript for simplicity.69

The directed assortativity coe�cients considered in this paper are adopted from those70

proposed by Yuan et al. [10]. By considering the combinations of out- and in-strengths71

of source and target nodes, there are four types of assortativity coe�cients, denoted by72

r(a, b) = rW (a, b) with a, b 2 {1, 2}, where r(a, b) is the assortativity coe�cient based on the73

a-strength of source nodes and b-strength of target nodes. For example, r(1, 2) refers to the74

assortativity coe�cient based on the out-strength of source nodes and in-strength of target75

nodes. The rest three are interpreted in the similar manner.76

Mathematically, the directed assortativity coe�cients are expressed as77

r(a, b) =

P
vi,vj2V wij

h⇣
s
(a)
i � s̄

(a)
src

⌘⇣
s
(b)
j � s̄

(b)
trg

⌘i

⌧�
(a)
src�

(b)
trg

, a, b 2 {1, 2} , (1)

where ⌧ :=
P

vi,vj2V wij is the total weight of all edges,78

s̄
(a)
src :=

P
vi,vj2V wijs

(a)
i

⌧
=

P
vi2V s

(1)
i s

(a)
i

⌧

is the weighted mean of the a-type strength of source nodes and79

�
(a)
src :=

vuut
P

vi,vj2V wij

⇣
s
(a)
i � s̄

(a)
src

⌘2

⌧
=

vuut
P

vi2V s
(1)
i

⇣
s
(a)
i � s̄

(a)
src

⌘2

⌧

is the associated weighted standard deviation. The counterparts s̄
(b)
trg and �

(b)
trg are defined80

analogously for target nodes. For more properties about the directed, weighted assortativity81

coe�cients, see Yuan et al. [10].82

2.2. Challenges83

Newman’s algorithm for generating an unweighted, undirected network with a predeter-84

mined assortativity measure is based on a two-swap DPR algorithm [1]. It e↵ectively adjusts85

the assortativity while preserving the marginal node degree distribution. Recently, this idea86

was translated into a practical approach with concrete via a convex optimization framework,87

and further extended to unweighted, directed networks by Wang et al. [3]. The extension88

solely requires accounting for edge directions during the rewiring process, and since all edges89

possess unit weight, both node degrees and the total edge number remain unchanged. For a90

graphical illustration, refer to the top-left panel of Figure 1.91

An example that attempts to extend Newman’s algorithm to a weighted, directed net-92

work [8] is shown in the top-right panel of Figure 1. As depicted, however, when the sampled93

edges for swap have di↵erent weights, an additional edge with weight equal to their weight94

di↵erence needs to be added to preserve node strengths; the rightmost red edge (with weight95
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Figure 1: Left panel: An illustration of DPR in [1] and DiDPR in [3]; Dashed edges refer to the edges that
are removed in the rewiring; Each edge has weight 1. Middle panel: An illustration of DPR directly extended
to weighted, directed networks; Edge weights are given next to the corresponding edges. Right panel: An
illustration of three-swap rewiring for weighted, directed networks.

2) from v2 to v4 illustrates this necessity. Consequently, this attempt becomes impractical, as96

it leads to a significant increase in the number of edges during the rewiring process, thereby97

compromising network sparsity. For certain special cases, a potential remedy is to generalize98

the three-swap idea introduced by Uribe-Leon et al. [11]. The bottom panel of Figure 199

demonstrates an example of this approach, which is applicable only to simple edge weights100

(e.g., integer-valued) and demands additional e↵orts to search specific structures for rewiring101

to occur. In the provided example, it requires sampling a module of four nodes connected102

by three directed edges, where the out-strengths of the source nodes (i.e., v1 and v2) are103

identical. Candidate structures satisfying such restrictions may be scarce or non-existent,104

making methods based on three-swap impractical in real-world scenarios.105

Furthermore, an issue not investigated by Newman [1] is whether the predetermined106

assortativity level is achievable through rewiring. Newman’s algorithm requires the develop-107

ment of a transition matrix M to construct the joint edge degree distribution for the target108

network with predetermined assortativity. The existence of this matrix M is not guaranteed109

as it depends on both the structure of the initial network and the predetermined assortativity110

value. In other words, given an initial network, not every predetermined assortativity level111

is attainable through rewiring. Inspired by the work of Wang et al. [3], as a byproduct, this112

paper also delves into an investigation of assortativity attainability by determining upper113

and lower bounds for each of the four directed assortativity coe�cients, conditional on the114

structure of the initial network.115

3. Strength and Sparsity Preserving Rewiring116

We propose an e�cient strength and sparsity preserving rewiring (SSPR) algorithm de-117

signed for weighted, directed networks with predetermined assortativity coe�cients. The118

crux of the algorithm lies in the quest for a target network with the desired assortativity119
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coe�cients by solving a mixed integer linear programming problem. Subsequently, the al-120

gorithm employs a novel rewiring technique to ensure the preservation of critical network121

properties, such as marginal strength distributions and network sparsity.122

3.1. Finding a Target Network123

Given a fully observed network G := G(V (G), E(G)) with a weighted adjacency matrix124

W and predetermined assortativity measures r
⇤(a, b), a, b 2 {1, 2}, the primary goal is to125

generate a new network H (defined on the same node set V (H) = V (G) = V , but with a126

di↵erent edge set E(H) 6= E(G)) whose assortativity measures are equal to the given r
⇤(a, b)127

through rewiring G. Meanwhile, it is essential to retain crucial network properties like node128

out- and in-strength distributions and network sparsity after rewiring. Provided that such129

H exists, its adjacency matrix ⇤ := (�ij)n⇥n, which is referred to as the target adjacency130

matrix, must satisfy the following conditions:131

(1) The entries of ⇤ are non-negative, i.e., �ij � 0 for all vi, vj 2 V ;132

(2) The row and column sums of ⇤ are identical to the counterparts in W (preserving133

marginal strength distributions);134

(3) The number of non-zero elements in ⇤ is the same as that in W (preserving network135

sparsity);136

(4) The assortativity measures (of ⇤) computed from Equation (1) are equal to the given137

r
⇤(a, b) for all a, b 2 {1, 2}.138

Depending on the analytic objectives and computing resources, one may also include ad-139

ditional conditions that restrict the lower and upper bounds of the non-zero elements in140

⇤ in order to prevent the emergence of a large proportion of extremely small weights or141

unexpected outliers.142

Now the problem boils down to finding a suitable target adjacency matrix ⇤, which may143

not be unique, but any single solution would su�ce. To set it up, consider a latent, binary144

matrix Z := (zij)n⇥n associated with ⇤, where zij = 1 for �ij > 0; zij = 0 otherwise. The145

search for a solution to ⇤ involves solving a mixed integer linear programming problem as146

follows:147

min
⇤

f(⇤),

s.t. �ij = 0 if zij = 0, 8vi, vj 2 V,

L  �ij  U if zij = 1, 8vi, vj 2 V,
X

i,j

zij = |E(G)|,

X

i

�ij =
X

i

wij = s
(2)
j , 8vj 2 V,

X

j

�ij =
X

j

wij = s
(1)
i , 8vi 2 V,

r⇤(a, b) = r
⇤(a, b), a, b 2 {1, 2},

where U � L > 0 are the preset upper and lower bounds for edge weights, and f(·) is an148

arbitrary linear function.149
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In theory, the objective function f(·) can be any function of ⇤ and the constraints do150

not have to be linear in ⇤. For instance, one may set f(⇤) =
P

i,j |wij � �ij| if it is desired151

that the edge weight distribution changes as little as possible after rewiring. Nonetheless,152

the more complex the objective function is and the more additional constraints are, the more153

time is required for solving the optimization problem even with a possibility of unsolvable154

risks. Especially when there are non-linear constraints, the optimization problem becomes155

a mixed integer non-linear programming problem, which demands more solving time or156

even computationally intractable. Therefore, when there is no mandatory condition for157

f(·), we recommend setting it to zero for improving the optimization speed. Mathematical158

programming solvers like Gurobi [12] and CPLEX [13] can be used to e�ciently solve such159

problems.160

A byproduct of the optimization scheme is that it can be used to determine the bounds161

of feasible assortativity levels. Given an initial network G, not all the values in the natural162

bounds of assortativity coe�cient (i.e., [�1, 1]) are attainable through SSPR that will be163

elaborated in the next subsection. From Equation (1), the assortativity coe�cients are164

linear in edge weights, allowing us to find the assortativity bounds by adjusting the objective165

function. Specifically, we can set the objective function to be f(⇤) =
P

i,j �ijs
(a)
i s

(b)
j to find166

the lower bound of r⇤(a, b), and set f(⇤) = �
P

i,j �ijs
(a)
i s

(b)
j to find the upper bound of167

r
⇤(a, b). See detailed illustrations in Section 4.168

3.2. Rewiring towards Target Network169

Once the target adjacency matrix ⇤ is determined, the next crucial task is to establish a170

feasible rewiring scheme to move from givenW towards ⇤ while preserving node in- and out-171

strengths and network sparsity. Figure 2 shows a hypothetical example of rewiring a pair of172

edges (vi, vj, wij) and (vk, vl, wkl) among four nodes vi, vj, vk and vl. The underlying principle173

is to keep the out- and in-strengths of the four nodes identical by a meticulously redistributed174

weight of amount �w  min{wij, wkl}. It is worth noting that the directed edges (vk, vj, wkj)175

and (vi, vl, wil) may not exist before rewiring, and that the selected edges (vi, vj, wij) and176

(vk, vl, wkl) may be removed after rewiring, so represented by dotted lines. The corresponding177

changes in the adjacency matrix are illustrated in the lower panel of Figure 2. It is clear178

that the row and column sums in the adjacency matrix remain unchanged. An appropriate179

�w must be determined for each rewiring step.180

Before proceeding, however, it is crucial to show the existence of at least one rewiring181

path from W to ⇤. To achieve this, define  := ( ij)n⇥n = W �⇤, the di↵erence between182

the initial adjacency matrix W and the target adjacency matrix ⇤. A successful rewiring183

process means that, at the end of the rewiring,  ij = 0 for all i, j 2 {1, . . . , n}. We employ184

a sweeping procedure to adjust all  ij’s one by one in an order from the top to the bottom185

and the left to the right within each row. The existence of a path is shown by induction.186

Suppose that  ij is the next element in the sweeping procedure awaiting an adjustment via187

rewiring. That is, we already have  kl = 0 for all l if k < i and for l < j if k = i from188

previous sweeping steps. Proposition 3.1 shows the existence of a rewiring path leading to189

 ij = 0 with the associated proof given in Appendix Appendix A.190

Proposition 3.1. For any i, j < n, there always exists a path leading to  ij = 0 after191

rewiring.192
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Figure 2: A hypothetical example reflecting the principle of rewiring through a graphical representation and
the corresponding changes in the adjacency matrix.
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Figure 3: An example of rewiring scheme illustrating Proposition 3.1.

Figure 3 illustrates an example of a rewiring scheme corresponding to the principle behind193

Proposition 3.1. The objective is to transform  22 = 3 (shown in blue) to 0 through rewiring.194

The  i⇤j⇤ ’s to be adjusted are highlighted in red, with the corresponding �w values indicated195

above the arrows. Notably, the selection of �w values is not unique. To reduce subsequent196

rewiring steps, we prioritize making non-sweeped  ij’s zero whenever possible. Specifically,197

for each pair (k, l) with k > i and l > j, given  ij > 0, we set �w = min{ ij,max{ kl, 0}};198

given  ij < 0, we set �w = max{ ij,min{� kj, 0},min{� il, 0}}. These additional condi-199

tions for �w selection are essential to prevent the generation of negative edge weights during200

the rewiring process.201

The pseudo codes for the SSPR algorithm are summarized in Algorithm 1. Given the202

di↵erence matrix  , the Rewire function sweeps through its elements one at a time. Note203

that the sweep only needs to be done for the first n � 1 rows as the column sums are zero;204

similarly, within each row of  , we only need sweep the first n � 1 elements as all the row205

sums are zero. At the beginning of each row, an optional step is to reorder the rows and206

columns so that elements with larger magnitude get sweeped earlier. This would reduce the207

number of rewiring steps (about 45% in our experiments in Section 4), but the extra sorting208

step would increase the time complexity of the algorithm. The output of Algorithm 1 is209
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Figure 4: Average trace plots for 100 replicates of ER networks with n = 200, p = 0.1, target assortativity
coe�cients set to r⇤(1, 1) = r⇤(1, 2) = 0.3, r⇤(2, 1) = r⇤(2, 2) = �0.3, and objective function given by
f(⇤) = 0. The left panel shows the results with reordering, but the right panel shows those without
reordering.

the list of entire rewiring history of (i, j, k, l,�w) for each step, where i, j, k, and l are the210

indices of the selected nodes vi, vj, vk, and vl for rewiring, and �w is the associated rewiring211

weight.212

4. Simulations213

We validate the proposed SSPR algorithm through simulation studies using two widely214

used network models: the Erdös-Rényi (ER) model [14, 15] and the Barabási-Albert model,215

also known as the preferential attachment (PA) model [16]. Both models in their classic216

forms are unweighted, but, in our study, they are extended by incorporating edge directions217

and weights. The algorithm implementation is primarily based on the gurobipy module [12]218

in Python, and the program was run on AMD EPYC 7763 processors utilizing 4 threads and219

8 GB of memory.220

4.1. ER Network Model221

The classic ER model is governed by two parameters: the number of nodes n and the prob-222

ability of emergence of a directed edge p. We augment the classic ER model by allowing self-223

loops (from a node to itself) and edge weights. Specifically, three levels of n 2 {50, 100, 200}224

and three levels of p 2 {0.05, 0.1, 0.2} were considered. Edge weights were generated from a225

gamma distribution with shape 5 and scale 0.2. For each configuration, a total of 100 ER226

networks were generated. Isolated nodes, if any, were removed from the network prior to227

rewiring. Pertaining to the nature of the ER model, all of the four assortativity coe�cients228

are expected to converge to 0 for large n.229
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Figure 5: Average trace (left two panels) and edge weight violin plots (right panel) for 100 replicates of
ER networks with n = 200 and p = 0.1, target assortativity coe�cients set to r⇤(1, 1) = r⇤(1, 2) = 0.1 and
r⇤(2, 1) = r⇤(2, 2) = �0.1. Both algorithms can make the assortativity coe�cients reach the predetermined
targets, but the algorithm with f(⇤) =

P
i,j |wij � �ij | requires much fewer rewiring steps, and its edge

weight distribution is almost unchanged after rewiring.

Figure 4 shows the results for n = 200 and p = 0.1 as an example. The results for other230

settings of n and p present a similar pattern, so they are omitted. The target assortativity231

coe�cients were r
⇤(1, 1) = r

⇤(1, 2) = 0.3, r⇤(2, 1) = r
⇤(2, 2) = �0.3, and a simple objective232

function f(⇤) = 0 was used to determine the target adjacency matrix for the assortativity233

coe�cients. The left panel presents the results with the reordering procedure implemented,234

and the right panel presents the results without reordering. Each panel shows the average235

trace plots for the four assortativity coe�cients during rewiring. We observe that all of236

the assortativity coe�cients successfully reached their targets through the proposed SSPR237

algorithm, regardless of whether the reordering procedure was implemented. However, the238

right panel shows a significant increase in the number of rewiring steps when the reordering239

procedure was not executed into the SSPR algorithm.240

To illustrate the impact of the selection of objective function f(·), consider rewiring241

ER networks with n = 200 and p = 0.1 to achieve assortativity coe�cients r
⇤(1, 1) =242

r
⇤(1, 2) = 0.1 and r

⇤(2, 1) = r
⇤(2, 2) = �0.1. Two objective functions f(⇤) = 0 and243

f(⇤) =
P

i,j |wij � �ij| were used in setting up the mixed integer programming problem244

in Section 3.1. The average trace plots of the assortativity levels based on 100 simulated245

networks are displayed in the left two panels of Figure 5. Clearly, both algorithms can make246

the assortativity coe�cients reach the predetermined targets, but the algorithm with the247

more complex objective function f(⇤) =
P

i,j |wij � �ij| requires much fewer rewiring steps.248

The right panel of Figure 5 compares the density of the edge weights (i.e., Gamma(5, 0.2))249

of the initial networks and the rewired networks obtained under the two objective functions.250

The post-rewiring edge weight distribution with objective function f(⇤) = 0 is noticeably251

di↵erent from that of the initial networks. In contrast, the post-rewiring edge weight dis-252

tribution with objective function f(⇤) =
P

i,j |wij � �ij| is almost identical to that of the253

initial networks.254
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Figure 6: Side-by-side box plots for the upper and lower bounds of assortativity coe�cients based on 100
replicates of ER networks with n = 200 and p 2 {0.05, 0.1, 0.2}.

The comparisons in Figure 5 seems suggesting a preference of using f(⇤) =
P

i,j |wij��ij|255

as the objective function, but there are other factors to consider. Fewer rewiring steps do256

not necessarily mean less overall computation time. In fact, among the 100 replicates in257

the present example, the median computation time for f(⇤) = 0 was 5 seconds, but for258

f(⇤) =
P

i,j |wij � �ij| it was about 191 seconds. Further, there is no guarantee that259

optimization problem with the more complex objective function can be solved within a260

reasonable amount of time. For instance, for the experiment of ER networks with n = 100261

and p = 0.01, 48 out of the 100 simulations did not finish within 12 hours on a computer262

with AMD EPYC 7763 processors with 4 threads and 8 GB of RAM.263

Figure 6 shows the box plots of the attainable upper and lower bounds of assortativity264

coe�cients for the 100 ER networks generated under each combination of n = 200 and265

p 2 {0.05, 0.1, 0.2}. It appears that the bounds are very close to the nominal bounds of266

�1 and 1. That is, all the values between �1 and 1 appear to be attainable for all four267

assortativity coe�cients. Such observation is expected owing to the feature of ER networks.268

4.2. PA Network Model269

vj

vi

vi vj vi

vj

Figure 7: The ↵, � and � edge-creation scenarios (from left to right).
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Figure 8: Average trace and edge weight density plots for PA networks with m = 1000, ↵ = � = 0.15,
� = 0.7, and target assortativity coe�cients r⇤(1, 1) = r⇤(1, 2) = 0.1, r⇤(2, 1) = r⇤(2, 2) = �0.1. The left
two panels are average trace plots based on objective functions f(⇤) = 0 and f(⇤) =

P
i,j |wij � �ij |; The

algorithm with f(⇤) =
P

i,j |wij � �ij | requires much fewer rewiring steps. The right panel compares the
density of edge weights of the initial networks and the constructed target networks under the same two
objective functions; The post-rewiring edge weight density of the algorithm using f(⇤) =

P
i,j |wij � �ij |

remains almost the same.

The PA network model is an evolutionary model assuming that nodes with large degrees270

are more likely to be connected by new nodes [16]. We incorporate edge weights into a271

directed PA network model with five parameters (↵, �, �, �i, �2) [17, 18]. Specifically, the272

growth scheme of the extended PA network model is: (1) with probability 0  ↵  1,273

(vi, vj, wij) is added from a new node vi to an existing node vj; (2) with probability 0  �  1,274

(vi, vj, wij) is added between two existing nodes vi and vj; (3) with probability 0  �  1,275

(vi, vj, wij) is added from an existing node vi to a new node vj. The weight of each edge is276

independently drawn from a probability distribution h with support on R+ or its nonempty277

subset. Regardless of edge-creation scenario, the probability of sampling an existing node,278

vi for instance, as a source (or target) node is proportional to s
(1)
i + �1 (or s

(2)
i + �2). See279

Figure 7 for a graphical illustration.280

The seed network for all of the extended PA networks in our simulation study contained281

one weighted edge (1, 2, 1.0). The parameters were set to � 2 {0.6, 0.7, 0.8}, ↵ = � =282

(1 � �)/2 and �1 = �2 = 1. Again, h was set to be a gamma distribution with shape 5 and283

scale 0.2. We considered PA networks of di↵erent sizes determined by number of evolutionary284

steps m 2 {200, 400, 600, 800, 1000}. The number of replicates for each combination of m285

and � was 100. The target assortativity coe�cients for this series of simulation studies were286

also r
⇤(1, 1) = r

⇤(1, 2) = 0.1 and r
⇤(2, 1) = r

⇤(2, 2) = �0.1.287

The PA network simulation study yielded conclusions similar to those from the ER net-288

work simulation study, despite that the evolutionary processes of the two models are tremen-289

dously di↵erent. Since the results across di↵erent m and � combinations for PA networks290

are similar, we only report those for m = 1000 and � = 0.7 in Figure 8. The left two panels291

present the average trace plots obtained under di↵erent objective functions f(⇤) = 0 and292
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Figure 9: Side-by-side box plots of the upper and lower bounds of the assortativity coe�cients of PA networks
with m = 1000, � 2 {0.6, 0.7, 0.8} and ↵ = � = (1� �)/2.

f(⇤) =
P

i,j |wij � �ij|, where the reordering procedure was implemented to both. All the293

assortativity coe�cients reach target values. More rewiring steps were needed for objective294

function f(⇤) = 0, but less computing time was needed. Precisely, the median runtime295

was 43 seconds with f(⇤) = 0 and 142 seconds for f(⇤) =
P

i,j |wij � �ij|. The mid-296

dle panel shows that more rewiring steps were required for r
⇤(1, 2) and r

⇤(2, 1). This was297

intuitively expected as their initial values were further away from the targets. The right298

panel shows again that the post-rewiring edge weight distribution (i.e., Gamma(5, 0.2)) us-299

ing f(⇤) =
P

i,j |wij � �ij| is much closer than that using f(⇤) = 0 to the edge weight300

distribution of the initial networks.301

Finally, the box plots of the lower and upper bounds of the attainable assortativity coe�-302

cients based on 100 replicates for the simulated PA networks with the number of evolutionary303

steps m = 1000 are shown in Figure 9. With the same value of m, the number of edges was304

fixed, and a larger � resulted in a denser network. The range of assortativity coe�cients for305

large � was found wider than that for small �, as larger � caused greater variances for node306

in- and out-strengths.307

5. Discussions308

The SSRP algorithm tackles the rewiring problem of Newman [1] towards predetermined309

assortativity levels in the context of weighted, directed networks. The rewiring retains the310

certain critical network properties such as the marginal node out- and in-strength distri-311

butions and the sparsity. The essential idea of the proposed approach is determining the312

adjacency matrix of a target network by solving a mixed integer programming problem,313

followed by a sweeping procedure to transform the initial network to the target by using314

rewiring. More complex objective functions could be used in setting up the mixed integer315

programming problem at additional computational costs to minimize the change in the edge316
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weight distribution. The proposed algorithm is also applicable to unweighted or undirected317

networks with minor modifications.318

There is a major di↵erence between the SSRP algorithm and other rewiring methods319

like Newman’s algorithm [1] and the DiDPR algorithm [3]. The SSPR algorithm derives a320

deterministic solution of target network with predetermined assortativity measures, but the321

others aim to find an stochastic solution, that is, they search a target network with assorta-322

tivity measures whose expectations equal to the given values. Accordingly, the determination323

of target networks di↵ers between SSPR and other methods, too. SSRP directly works on324

adjacency matrix calculation, whereas the other methods determine target adjacency matrix325

through joint node-degree distributions governed by given assortativity measures. This dif-326

ference means an advantage for the SSRP algorithm in some applications and a limitation327

in other applications. Extending the DiDPR algorithm in Newman’s sense to generating328

weighted, directed networks remains an open question, yet challenging for preserving net-329

work sparsity or other critical network properties in addition to marginal node degree or330

strength distributions.331

Appendix A. Proof of Proposition 3.1332

Proof. Without loss of generality, assume  ij > 0. Since we have
Pn

j=1  ij = 0 according333

to the rewiring setup, there exists a nonempty set Sj ✓ {j + 1, j + 2, . . . , n} such that334

 ij⇤ < 0 for all j⇤ 2 Sj and  ij +
P

j⇤2Sj
 ij⇤  0, where the equality holds if  ij is the335

only positive element in the i-th row. Similarly, due to
Pn

i=1  ij = 0, for each  ij⇤ with336

j
⇤ 2 Sj, there exists Ti(j⇤) ✓ {i + 1, i + 2, . . . , n} such that  i⇤j⇤ > 0 for all i⇤ 2 Ti(j⇤) and337

 ij⇤ +
P

i⇤2Ti(j⇤)
 i⇤j⇤ � 0.338

It follows that339 X

j⇤2Sj

X

i⇤2Ti(j⇤)

 i⇤j⇤ �  ij,

which suggests that, for each pair of (i⇤, j⇤), there exists 0  ui⇤j⇤   i⇤j⇤ giving rise to340

X

j⇤2Sj

X

i⇤2Ti(j⇤)

ui⇤j⇤ =  ij.

Therefore, there exists a path continuously rewiring (vi, vj, wij) and (vi⇤ , vj⇤ , wi⇤j⇤) with341

�w = ui⇤j⇤ for all i⇤ and j
⇤ leading to  ij = 0.342

The proof for  ij < 0 can be done mutatis mutandis.343

For illustration, consider a generic example  matrix as shown in Figure A.10. Suppose344

that  ij > 0 is our rewiring target. Without loss of generality, suppose that  i(j+1) (in blue)345

and  i(j+2) (in blue) are the only two negative values in the i-th row. In this example, we346

have j
⇤ 2 Sj = {j + 1, j + 2}. We then only focus on the (j + 1)-th and (j + 2)-th columns.347

For j⇤ = j+1, suppose that  (i+1)(j+1) (in red) and  n(j+1) (in red) are the only two entries348

greater than 0, then the associated Ti(j⇤) is {i + 1, n}. On the other hand, for j⇤ = j + 2,349

suppose that there is only one  (i+2)(j+2) > 0 (in red), then the associated Ti(j⇤) becomes350

{i+ 2}. Note that all of the row sums and column sums are equal to 0. By the transitivity351
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Figure A.10: Example stage of a  during the rewiring.

property of inequalities, we have352

 ij +  i(j+1) +  i(j+2)  0

 i(j+1) +  (i+1)(j+1) +  n(j+1) � 0

 i(j+2) +  (i+2)(j+2) � 0

9
>=

>;
=)  ij   (i+1)(j+1) +  (i+2)(j+2) +  n(j+1). (A.1)

Recall that in this example, all  ij,  (i+1)(j+1),  n(j+1), and  (i+2)(j+2) are greater than 0.353

Next, we rewire (vi, vj, wij) and (vi+1, vj+1, w(i+1)(j+1)) with �w = min{ ij, (i+1)(j+1)}. If354

 ij becomes 0, the rewiring is completed; Otherwise, we will rewire (vi, vj, wij � �w) and355

(vi+2, vj+2, w(i+2)(j+2)) and continue in this fashion until  ij reaches 0, which is guaranteed356

pertaining to Equation (A.1).357
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Algorithm 1: Pseudo codes of the SSRP algorithm.
Input: Initial adjacency matrix W ;

target adjacency matrix ⇤.
Output: Rewiring record R.
Algorithm:

n number of rows (or columns) of W ;
Initialize an empty list of rewiring steps R;
  W �⇤;
for i = 1 to n� 1 do

/* Possibly insert a reorder step here to put elements with
larger magnitude earlier */

for j = 1 to n� 1 do

 , R Rewire( , R, i, j, n);
end

end

return R;

Function Rewire:
Input: Matrix  ;

rewiring record R;
row and column indices i and j;
number of rows n.

Output: Updated  and R.
for k = i+ 1 to n do

for l = j + 1 to n do

if  ij > 0 then

�w  min( ij,max(0, k,l));
else if  ij < 0 then

�w  max( ij,min(0,� i,l),min(0,� k,j));
if  ij == 0 or �w == 0 then

Continue to the next l;
 ij   ij ��w ; /* Update  */
 kl   kl ��w;
 il   il +�w;
 kj   kj +�w;
if �w > 0 then /* Record rewiring step */

Append (i, j, k, l,�w) to R;
else

Append (i, l, k, j,��w) to R;
end

end

return  , R;
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