

¹ A Strength and Sparsity Preserving Algorithm for Generating
² Weighted, Directed Networks with Predetermined Assortativity

³ Yelie Yuan^a, Jun Yan^a, Panpan Zhang^b

^aDepartment of Statistics, University of Connecticut, Storrs, 06269, CT, USA

^bDepartment of Biostatistics, Vanderbilt University Medical Center, Nashville, 37203, TN, USA

⁴ **Abstract**

Degree-preserving rewiring is a widely used technique for generating unweighted networks with given assortativity, but for weighted networks, it is unclear how an analog would preserve the strengths and other critical network features such as sparsity level. This study introduces a novel approach for rewiring weighted networks to achieve desired directed assortativity. The method utilizes a mixed integer programming framework to establish a target network with predetermined assortativity coefficients, followed by an efficient rewiring algorithm termed “strength and sparsity preserving rewiring” (SSPR). SSPR retains the node strength distributions and network sparsity after rewiring. It is also possible to accommodate additional properties like edge weight distribution, albeit with extra computational cost. The optimization scheme can be used to determine feasible assortativity ranges for an initial network. The effectiveness of the proposed SSPR algorithm is demonstrated through its application to two classes of popular network models.

⁵ *Keywords:* attainable assortativity, directed assortativity, mixed integer programming,
⁶ weighted network rewiring

⁷ *2008 MSC:* 90C35, 62H20, 90C11

⁸ **1. Introduction**

⁹ Assortativity is an important measure characterizing the correlation structure of nodal
¹⁰ features of networks. Generating random networks with predetermined assortativity is criti-
¹¹ cal for justifying network theories [1], exploring spectral properties [2], improving model
¹² fit [3], and optimizing network robustness [4]. Edge rewiring is a widely accepted technique
¹³ for generating networks with given assortativity. The degree-preserving rewiring (DPR) al-
¹⁴ gorithm proposed by Newman [1] ensures that the node degree distribution of an undirected
¹⁵ network keeps unchanged throughout the course of rewiring so as to preserve the fundamen-
¹⁶ tal topology of the rewired network. An extension of Newman’s algorithm, called DiDPR,
¹⁷ was recently developed for generating directed networks with predetermined directed assor-
¹⁸ tativity coefficients [3]. More generally, rewiring techniques have found practical applications
¹⁹ in many fields such as biological science [5], clinical trials [6], and social network analysis [7],
²⁰ among others.

²¹ Despite the long availability of Newman’s algorithm for unweighted networks, rewiring a
²² weighted network to achieve predetermined assortativity proves to be a challenging task that
²³ has not yet been studied in the literature. While directly extending Newman’s algorithm

24 to weighted networks may seem feasible for preserving node strengths, a naive extension
25 fails to retain other important network properties, such as sparsity, simultaneously. When
26 edge weights are represented as integer values, one potential approach involves a multi-
27 edge scheme, where a weighted edge is divided into multiple unit-weight edges, and then
28 Newman’s two-swap method or similar techniques are applied. However, this approach does
29 not translate smoothly to networks with real-valued edge weights. Even for networks with
30 integer-valued edge weights, this method lacks practical utility, as it results in a substantial
31 increase in the number of edges [8] and alters the network’s sparsity, a typical feature observed
32 in most real-world networks [9]. In the subsequent section, we will delve into more details
33 about this approach and explore other potential possibilities for addressing the challenge of
34 rewiring weighted networks to achieve predetermined assortativity.

35 This paper introduces a novel rewiring algorithm for generating weighted, directed net-
36 works with four predetermined directed assortativity coefficients [10]. Notably, the proposed
37 algorithm ensures that both out- and in-strength distributions, along with sparsity, are metic-
38 ulously preserved upon the completion of the rewiring process. Newman’s approach involves
39 searching for a target network structure characterized by a joint degree distribution that
40 matches the desired assortativity values and represents the stationary status of the rewiring
41 process [1, 3]. In contrast, the proposed algorithm directly produces a weighted, directed net-
42 work with assortativity measures precisely equal to the given values, provided that they are
43 attainable. The desired network structure is not unique and we formulate an optimization
44 problem to provide one feasible solution. With carefully chosen objective function for the
45 optimization, the algorithm can retain certain network topology and properties in addition
46 to strength distributions and sparsity after rewiring. Further, the optimization scheme also
47 helps to identify the attainability of each assortativity coefficient by establishing its upper
48 and lower bounds given the initial network configuration.

49 The remainder of the paper is organized as follows. Section 2 introduces the notations and
50 elucidates the challenges for the extension of Newman’s algorithm to weighted networks. Sec-
51 tion 3 presents an efficient strength and sparsity preserving reserving algorithm for weighted,
52 directed networks with given assortativity coefficients, followed by an approach to determin-
53 ing assortativity coefficient bounds and a generalization allowing to consider other network
54 properties like edge weight distribution. Section 4 provides extensive simulations showing the
55 applications of the proposed algorithm to the Erdős-Rényi model and the Barabási-Albert
56 model. Lastly, some discussions and future works are addressed in Section 5.

57 2. Preliminaries

58 Starting with notations, we layout the challenges when extending Newman’s algorithm
59 to weighted, directed networks.

60 2.1. Notations

61 Let $G := G(V, E)$ be a weighted, directed network with node set V and edge set E .
62 Additionally, let $(v_i, v_j, w_{ij}) \in E$ denote a weighted, directed edge from source node $v_i \in V$
63 to target node $v_j \in V$ with weight $w_{ij} > 0$. For the special case of $v_i = v_j$, $(v_i, v_j, w_{ij}) \in E$ is
64 a self-loop. Network G is characterized by its associated adjacency matrix $\mathbf{W} := (w_{ij})_{n \times n}$,
65 where $n = |V|$ is the number of nodes in G . If there is no edge from v_i to v_j , i.e., $(v_i, v_j, w_{ij}) \notin$

66 E , then the corresponding w_{ij} in \mathbf{W} is set to 0. Fundamental node-level properties of
 67 weighted, directed networks are $s_i^{(1)} := \sum_{v_j \in V} w_{ij}$ and $s_i^{(2)} := \sum_{v_j \in V} w_{ji}$, which respectively
 68 refer to the out- and in-strength of node v_i . The superscripts “1” and “2” are respectively
 69 used to represent “out” and “in” throughout the rest of the manuscript for simplicity.

70 The directed assortativity coefficients considered in this paper are adopted from those
 71 proposed by Yuan et al. [10]. By considering the combinations of out- and in-strengths
 72 of source and target nodes, there are four types of assortativity coefficients, denoted by
 73 $r(a, b) = r_{\mathbf{W}}(a, b)$ with $a, b \in \{1, 2\}$, where $r(a, b)$ is the assortativity coefficient based on the
 74 a -strength of source nodes and b -strength of target nodes. For example, $r(1, 2)$ refers to the
 75 assortativity coefficient based on the out-strength of source nodes and in-strength of target
 76 nodes. The rest three are interpreted in the similar manner.

77 Mathematically, the directed assortativity coefficients are expressed as

$$r(a, b) = \frac{\sum_{v_i, v_j \in V} w_{ij} \left[\left(s_i^{(a)} - \bar{s}_{\text{src}}^{(a)} \right) \left(s_j^{(b)} - \bar{s}_{\text{trg}}^{(b)} \right) \right]}{\tau \sigma_{\text{src}}^{(a)} \sigma_{\text{trg}}^{(b)}}, \quad a, b \in \{1, 2\}, \quad (1)$$

78 where $\tau := \sum_{v_i, v_j \in V} w_{ij}$ is the total weight of all edges,

$$\bar{s}_{\text{src}}^{(a)} := \frac{\sum_{v_i, v_j \in V} w_{ij} s_i^{(a)}}{\tau} = \frac{\sum_{v_i \in V} s_i^{(1)} s_i^{(a)}}{\tau}$$

79 is the weighted mean of the a -type strength of source nodes and

$$\sigma_{\text{src}}^{(a)} := \sqrt{\frac{\sum_{v_i, v_j \in V} w_{ij} \left(s_i^{(a)} - \bar{s}_{\text{src}}^{(a)} \right)^2}{\tau}} = \sqrt{\frac{\sum_{v_i \in V} s_i^{(1)} \left(s_i^{(a)} - \bar{s}_{\text{src}}^{(a)} \right)^2}{\tau}}$$

80 is the associated weighted standard deviation. The counterparts $\bar{s}_{\text{trg}}^{(b)}$ and $\sigma_{\text{trg}}^{(b)}$ are defined
 81 analogously for target nodes. For more properties about the directed, weighted assortativity
 82 coefficients, see Yuan et al. [10].

83 2.2. Challenges

84 Newman’s algorithm for generating an unweighted, undirected network with a predeter-
 85 mined assortativity measure is based on a two-swap DPR algorithm [1]. It effectively adjusts
 86 the assortativity while preserving the marginal node degree distribution. Recently, this idea
 87 was translated into a practical approach with concrete via a convex optimization framework,
 88 and further extended to unweighted, directed networks by Wang et al. [3]. The extension
 89 solely requires accounting for edge directions during the rewiring process, and since all edges
 90 possess unit weight, both node degrees and the total edge number remain unchanged. For a
 91 graphical illustration, refer to the top-left panel of Figure 1.

92 An example that attempts to extend Newman’s algorithm to a weighted, directed net-
 93 work [8] is shown in the top-right panel of Figure 1. As depicted, however, when the sampled
 94 edges for swap have different weights, an additional edge with weight equal to their weight
 95 difference needs to be added to preserve node strengths; the rightmost red edge (with weight

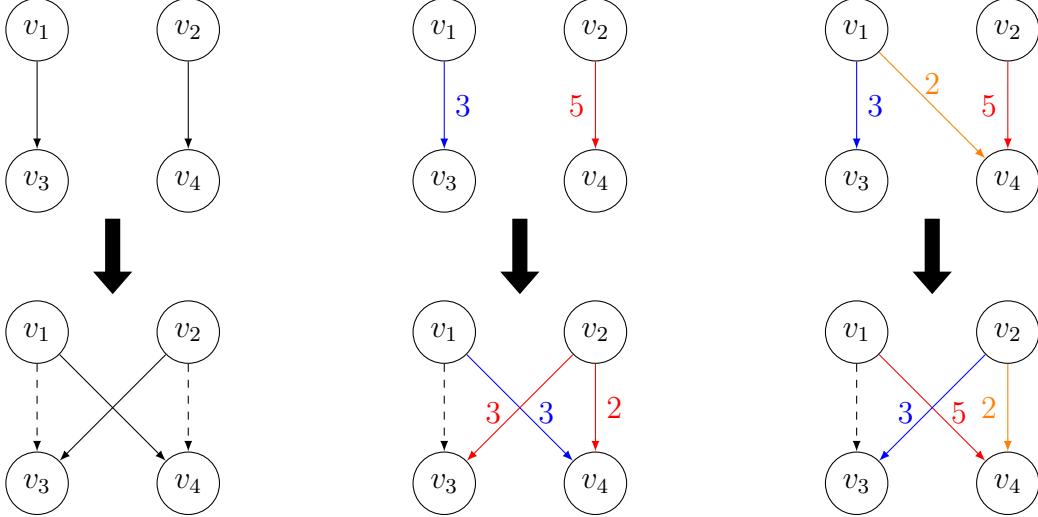


Figure 1: Left panel: An illustration of DPR in [1] and DiDPR in [3]; Dashed edges refer to the edges that are removed in the rewiring; Each edge has weight 1. Middle panel: An illustration of DPR directly extended to weighted, directed networks; Edge weights are given next to the corresponding edges. Right panel: An illustration of three-swap rewiring for weighted, directed networks.

2) from v_2 to v_4 illustrates this necessity. Consequently, this attempt becomes impractical, as it leads to a significant increase in the number of edges during the rewiring process, thereby compromising network sparsity. For certain special cases, a potential remedy is to generalize the three-swap idea introduced by Uribe-Leon et al. [11]. The bottom panel of Figure 1 demonstrates an example of this approach, which is applicable only to simple edge weights (e.g., integer-valued) and demands additional efforts to search specific structures for rewiring to occur. In the provided example, it requires sampling a module of four nodes connected by three directed edges, where the out-strengths of the source nodes (i.e., v_1 and v_2) are identical. Candidate structures satisfying such restrictions may be scarce or non-existent, making methods based on three-swap impractical in real-world scenarios.

Furthermore, an issue not investigated by Newman [1] is whether the predetermined assortativity level is achievable through rewiring. Newman's algorithm requires the development of a transition matrix \mathbf{M} to construct the joint edge degree distribution for the target network with predetermined assortativity. The existence of this matrix \mathbf{M} is not guaranteed as it depends on both the structure of the initial network and the predetermined assortativity value. In other words, given an initial network, not every predetermined assortativity level is attainable through rewiring. Inspired by the work of Wang et al. [3], as a byproduct, this paper also delves into an investigation of assortativity attainability by determining upper and lower bounds for each of the four directed assortativity coefficients, conditional on the structure of the initial network.

3. Strength and Sparsity Preserving Rewiring

We propose an efficient strength and sparsity preserving rewiring (SSPR) algorithm designed for weighted, directed networks with predetermined assortativity coefficients. The crux of the algorithm lies in the quest for a target network with the desired assortativity

coefficients by solving a mixed integer linear programming problem. Subsequently, the algorithm employs a novel rewiring technique to ensure the preservation of critical network properties, such as marginal strength distributions and network sparsity.

3.1. Finding a Target Network

Given a fully observed network $G := G(V(G), E(G))$ with a weighted adjacency matrix \mathbf{W} and predetermined assortativity measures $r^*(a, b), a, b \in \{1, 2\}$, the primary goal is to generate a new network H (defined on the same node set $V(H) = V(G) = V$, but with a different edge set $E(H) \neq E(G)$) whose assortativity measures are equal to the given $r^*(a, b)$ through rewiring G . Meanwhile, it is essential to retain crucial network properties like node out- and in-strength distributions and network sparsity after rewiring. Provided that such H exists, its adjacency matrix $\mathbf{\Lambda} := (\lambda_{ij})_{n \times n}$, which is referred to as the target adjacency matrix, must satisfy the following conditions:

- (1) The entries of $\mathbf{\Lambda}$ are non-negative, i.e., $\lambda_{ij} \geq 0$ for all $v_i, v_j \in V$;
- (2) The row and column sums of $\mathbf{\Lambda}$ are identical to the counterparts in \mathbf{W} (preserving marginal strength distributions);
- (3) The number of non-zero elements in $\mathbf{\Lambda}$ is the same as that in \mathbf{W} (preserving network sparsity);
- (4) The assortativity measures (of $\mathbf{\Lambda}$) computed from Equation (1) are equal to the given $r^*(a, b)$ for all $a, b \in \{1, 2\}$.

Depending on the analytic objectives and computing resources, one may also include additional conditions that restrict the lower and upper bounds of the non-zero elements in $\mathbf{\Lambda}$ in order to prevent the emergence of a large proportion of extremely small weights or unexpected outliers.

Now the problem boils down to finding a suitable target adjacency matrix $\mathbf{\Lambda}$, which may not be unique, but any single solution would suffice. To set it up, consider a latent, binary matrix $\mathbf{Z} := (z_{ij})_{n \times n}$ associated with $\mathbf{\Lambda}$, where $z_{ij} = 1$ for $\lambda_{ij} > 0$; $z_{ij} = 0$ otherwise. The search for a solution to $\mathbf{\Lambda}$ involves solving a mixed integer linear programming problem as follows:

$$\begin{aligned}
 & \min_{\mathbf{\Lambda}} f(\mathbf{\Lambda}), \\
 & \text{s.t. } \lambda_{ij} = 0 \text{ if } z_{ij} = 0, \quad \forall v_i, v_j \in V, \\
 & \quad \kappa_L \leq \lambda_{ij} \leq \kappa_U \text{ if } z_{ij} = 1, \quad \forall v_i, v_j \in V, \\
 & \quad \sum_{i,j} z_{ij} = |E(G)|, \\
 & \quad \sum_i \lambda_{ij} = \sum_i w_{ij} = s_j^{(2)}, \quad \forall v_j \in V, \\
 & \quad \sum_j \lambda_{ij} = \sum_j w_{ij} = s_i^{(1)}, \quad \forall v_i \in V, \\
 & \quad r_{\mathbf{\Lambda}}(a, b) = r^*(a, b), \quad a, b \in \{1, 2\},
 \end{aligned}$$

where $\kappa_U \geq \kappa_L > 0$ are the preset upper and lower bounds for edge weights, and $f(\cdot)$ is an arbitrary linear function.

150 In theory, the objective function $f(\cdot)$ can be any function of Λ and the constraints do
 151 not have to be linear in Λ . For instance, one may set $f(\Lambda) = \sum_{i,j} |w_{ij} - \lambda_{ij}|$ if it is desired
 152 that the edge weight distribution changes as little as possible after rewiring. Nonetheless,
 153 the more complex the objective function is and the more additional constraints are, the more
 154 time is required for solving the optimization problem even with a possibility of unsolvable
 155 risks. Especially when there are non-linear constraints, the optimization problem becomes
 156 a mixed integer non-linear programming problem, which demands more solving time or
 157 even computationally intractable. Therefore, when there is no mandatory condition for
 158 $f(\cdot)$, we recommend setting it to zero for improving the optimization speed. Mathematical
 159 programming solvers like Gurobi [12] and CPLEX [13] can be used to efficiently solve such
 160 problems.

161 A byproduct of the optimization scheme is that it can be used to determine the bounds
 162 of feasible assortativity levels. Given an initial network G , not all the values in the natural
 163 bounds of assortativity coefficient (i.e., $[-1, 1]$) are attainable through SSPR that will be
 164 elaborated in the next subsection. From Equation (1), the assortativity coefficients are
 165 linear in edge weights, allowing us to find the assortativity bounds by adjusting the objective
 166 function. Specifically, we can set the objective function to be $f(\Lambda) = \sum_{i,j} \lambda_{ij} s_i^{(a)} s_j^{(b)}$ to find
 167 the lower bound of $r^*(a, b)$, and set $f(\Lambda) = -\sum_{i,j} \lambda_{ij} s_i^{(a)} s_j^{(b)}$ to find the upper bound of
 168 $r^*(a, b)$. See detailed illustrations in Section 4.

169 3.2. Rewiring towards Target Network

170 Once the target adjacency matrix Λ is determined, the next crucial task is to establish a
 171 feasible rewiring scheme to move from given \mathbf{W} towards Λ while preserving node in- and out-
 172 strengths and network sparsity. Figure 2 shows a hypothetical example of rewiring a pair of
 173 edges (v_i, v_j, w_{ij}) and (v_k, v_l, w_{kl}) among four nodes v_i, v_j, v_k and v_l . The underlying principle
 174 is to keep the out- and in-strengths of the four nodes identical by a meticulously redistributed
 175 weight of amount $\Delta w \leq \min\{w_{ij}, w_{kl}\}$. It is worth noting that the directed edges (v_k, v_j, w_{kj})
 176 and (v_i, v_l, w_{il}) may not exist before rewiring, and that the selected edges (v_i, v_j, w_{ij}) and
 177 (v_k, v_l, w_{kl}) may be removed after rewiring, so represented by dotted lines. The corresponding
 178 changes in the adjacency matrix are illustrated in the lower panel of Figure 2. It is clear
 179 that the row and column sums in the adjacency matrix remain unchanged. An appropriate
 180 Δw must be determined for each rewiring step.

181 Before proceeding, however, it is crucial to show the existence of at least one rewiring
 182 path from \mathbf{W} to Λ . To achieve this, define $\Psi := (\psi_{ij})_{n \times n} = \mathbf{W} - \Lambda$, the difference between
 183 the initial adjacency matrix \mathbf{W} and the target adjacency matrix Λ . A successful rewiring
 184 process means that, at the end of the rewiring, $\psi_{ij} = 0$ for all $i, j \in \{1, \dots, n\}$. We employ
 185 a sweeping procedure to adjust all ψ_{ij} 's one by one in an order from the top to the bottom
 186 and the left to the right within each row. The existence of a path is shown by induction.
 187 Suppose that ψ_{ij} is the next element in the sweeping procedure awaiting an adjustment via
 188 rewiring. That is, we already have $\psi_{kl} = 0$ for all l if $k < i$ and for $l < j$ if $k = i$ from
 189 previous sweeping steps. Proposition 3.1 shows the existence of a rewiring path leading to
 190 $\psi_{ij} = 0$ with the associated proof given in Appendix A.

191 **Proposition 3.1.** *For any $i, j < n$, there always exists a path leading to $\psi_{ij} = 0$ after
 192 rewiring.*

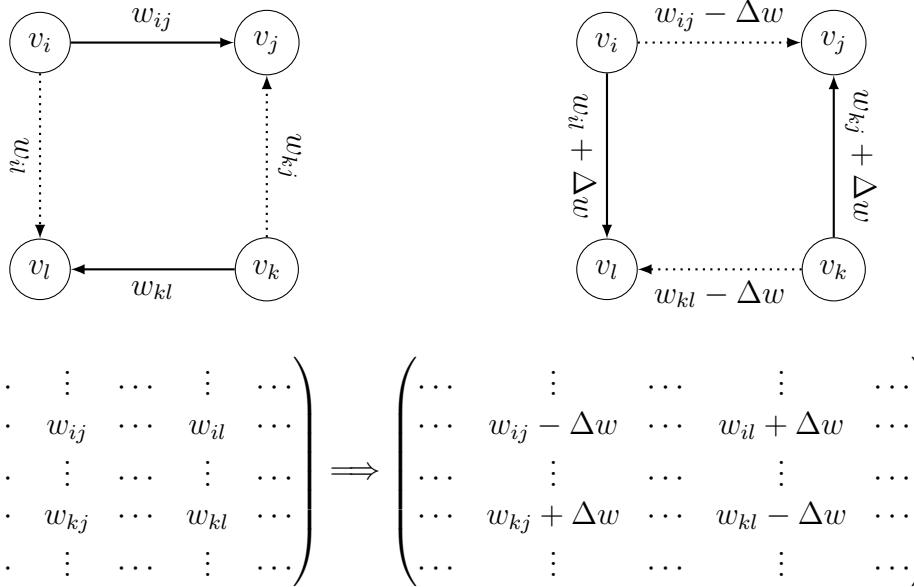


Figure 2: A hypothetical example reflecting the principle of rewiring through a graphical representation and the corresponding changes in the adjacency matrix.

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 3 & -2 & -1 \\ 1 & -1 & 2 & -2 \\ -1 & -2 & 0 & 3 \end{pmatrix} \xrightarrow{\Delta w=2} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & 1 & 0 & -2 \\ -1 & -2 & 0 & 3 \end{pmatrix} \xrightarrow{\Delta w=1} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & -2 \\ -1 & -1 & 0 & 2 \end{pmatrix}.$$

Figure 3: An example of rewiring scheme illustrating Proposition 3.1.

193 Figure 3 illustrates an example of a rewiring scheme corresponding to the principle behind
 194 Proposition 3.1. The objective is to transform $\psi_{22} = 3$ (shown in blue) to 0 through rewiring.
 195 The $\psi_{i^*j^*}$'s to be adjusted are highlighted in red, with the corresponding Δw values indicated
 196 above the arrows. Notably, the selection of Δw values is not unique. To reduce subsequent
 197 rewiring steps, we prioritize making non-swepted ψ_{ij} 's zero whenever possible. Specifically,
 198 for each pair (k, l) with $k > i$ and $l > j$, given $\psi_{ij} > 0$, we set $\Delta w = \min\{\psi_{ij}, \max\{\psi_{kl}, 0\}\}$;
 199 given $\psi_{ij} < 0$, we set $\Delta w = \max\{\psi_{ij}, \min\{-\psi_{kj}, 0\}, \min\{-\psi_{il}, 0\}\}$. These additional
 200 conditions for Δw selection are essential to prevent the generation of negative edge weights during
 201 the rewiring process.

202 The pseudo codes for the SSPR algorithm are summarized in Algorithm 1. Given the
 203 difference matrix Ψ , the `Rewire` function sweeps through its elements one at a time. Note
 204 that the sweep only needs to be done for the first $n - 1$ rows as the column sums are zero;
 205 similarly, within each row of Ψ , we only need sweep the first $n - 1$ elements as all the row
 206 sums are zero. At the beginning of each row, an optional step is to reorder the rows and
 207 columns so that elements with larger magnitude get swept earlier. This would reduce the
 208 number of rewiring steps (about 45% in our experiments in Section 4), but the extra sorting
 209 step would increase the time complexity of the algorithm. The output of Algorithm 1 is

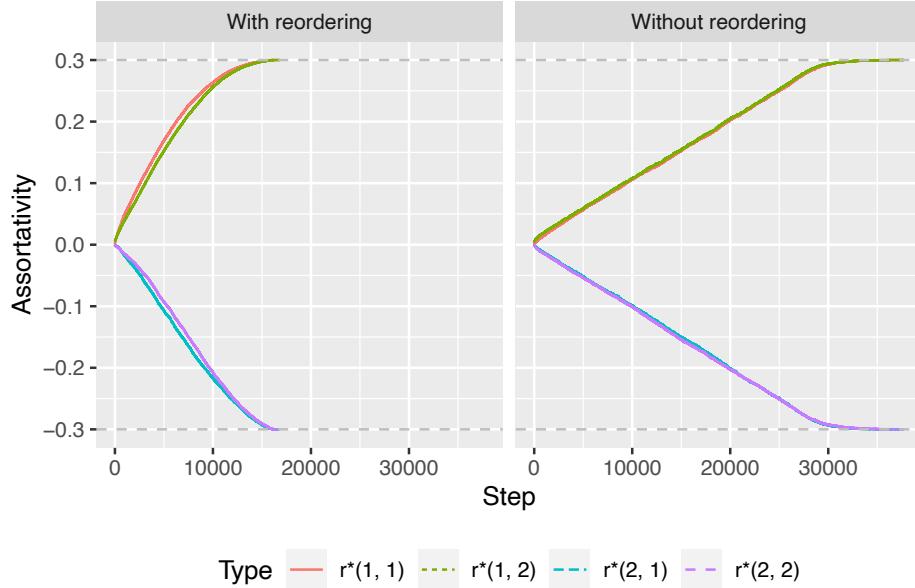


Figure 4: Average trace plots for 100 replicates of ER networks with $n = 200$, $p = 0.1$, target assortativity coefficients set to $r^*(1,1) = r^*(1,2) = 0.3$, $r^*(2,1) = r^*(2,2) = -0.3$, and objective function given by $f(\mathbf{\Lambda}) = 0$. The left panel shows the results with reordering, but the right panel shows those without reordering.

210 the list of entire rewiring history of $(i, j, k, l, \Delta w)$ for each step, where i , j , k , and l are the
 211 indices of the selected nodes v_i , v_j , v_k , and v_l for rewiring, and Δw is the associated rewiring
 212 weight.

213 **4. Simulations**

214 We validate the proposed SSPR algorithm through simulation studies using two widely
 215 used network models: the Erdős-Rényi (ER) model [14, 15] and the Barabási-Albert model,
 216 also known as the preferential attachment (PA) model [16]. Both models in their classic
 217 forms are unweighted, but, in our study, they are extended by incorporating edge directions
 218 and weights. The algorithm implementation is primarily based on the *gurobipy* module [12]
 219 in Python, and the program was run on AMD EPYC 7763 processors utilizing 4 threads and
 220 8 GB of memory.

221 *4.1. ER Network Model*

222 The classic ER model is governed by two parameters: the number of nodes n and the prob-
 223 ability of emergence of a directed edge p . We augment the classic ER model by allowing self-
 224 loops (from a node to itself) and edge weights. Specifically, three levels of $n \in \{50, 100, 200\}$
 225 and three levels of $p \in \{0.05, 0.1, 0.2\}$ were considered. Edge weights were generated from a
 226 gamma distribution with shape 5 and scale 0.2. For each configuration, a total of 100 ER
 227 networks were generated. Isolated nodes, if any, were removed from the network prior to
 228 rewiring. Pertaining to the nature of the ER model, all of the four assortativity coefficients
 229 are expected to converge to 0 for large n .

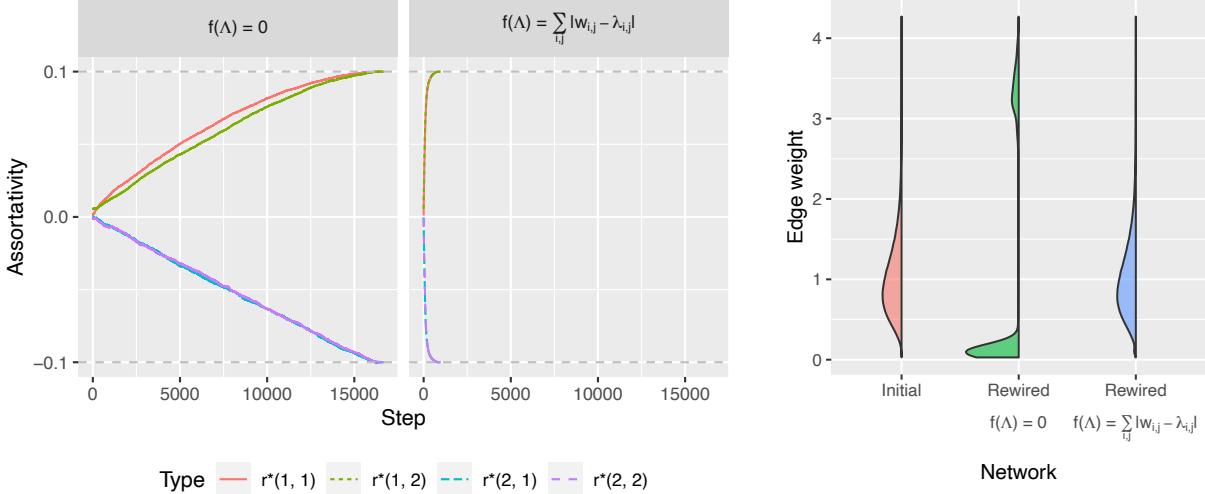


Figure 5: Average trace (left two panels) and edge weight violin plots (right panel) for 100 replicates of ER networks with $n = 200$ and $p = 0.1$, target assortativity coefficients set to $r^*(1,1) = r^*(1,2) = 0.1$ and $r^*(2,1) = r^*(2,2) = -0.1$. Both algorithms can make the assortativity coefficients reach the predetermined targets, but the algorithm with $f(\Lambda) = \sum_{i,j} |w_{ij} - \lambda_{ij}|$ requires much fewer rewiring steps, and its edge weight distribution is almost unchanged after rewiring.

Figure 4 shows the results for $n = 200$ and $p = 0.1$ as an example. The results for other settings of n and p present a similar pattern, so they are omitted. The target assortativity coefficients were $r^*(1,1) = r^*(1,2) = 0.3$, $r^*(2,1) = r^*(2,2) = -0.3$, and a simple objective function $f(\Lambda) = 0$ was used to determine the target adjacency matrix for the assortativity coefficients. The left panel presents the results with the reordering procedure implemented, and the right panel presents the results without reordering. Each panel shows the average trace plots for the four assortativity coefficients during rewiring. We observe that all of the assortativity coefficients successfully reached their targets through the proposed SSPR algorithm, regardless of whether the reordering procedure was implemented. However, the right panel shows a significant increase in the number of rewiring steps when the reordering procedure was not executed into the SSPR algorithm.

To illustrate the impact of the selection of objective function $f(\cdot)$, consider rewiring ER networks with $n = 200$ and $p = 0.1$ to achieve assortativity coefficients $r^*(1,1) = r^*(1,2) = 0.1$ and $r^*(2,1) = r^*(2,2) = -0.1$. Two objective functions $f(\Lambda) = 0$ and $f(\Lambda) = \sum_{i,j} |w_{ij} - \lambda_{ij}|$ were used in setting up the mixed integer programming problem in Section 3.1. The average trace plots of the assortativity levels based on 100 simulated networks are displayed in the left two panels of Figure 5. Clearly, both algorithms can make the assortativity coefficients reach the predetermined targets, but the algorithm with the more complex objective function $f(\Lambda) = \sum_{i,j} |w_{ij} - \lambda_{ij}|$ requires much fewer rewiring steps. The right panel of Figure 5 compares the density of the edge weights (i.e., $\text{Gamma}(5, 0.2)$) of the initial networks and the rewired networks obtained under the two objective functions. The post-rewiring edge weight distribution with objective function $f(\Lambda) = 0$ is noticeably different from that of the initial networks. In contrast, the post-rewiring edge weight distribution with objective function $f(\Lambda) = \sum_{i,j} |w_{ij} - \lambda_{ij}|$ is almost identical to that of the initial networks.

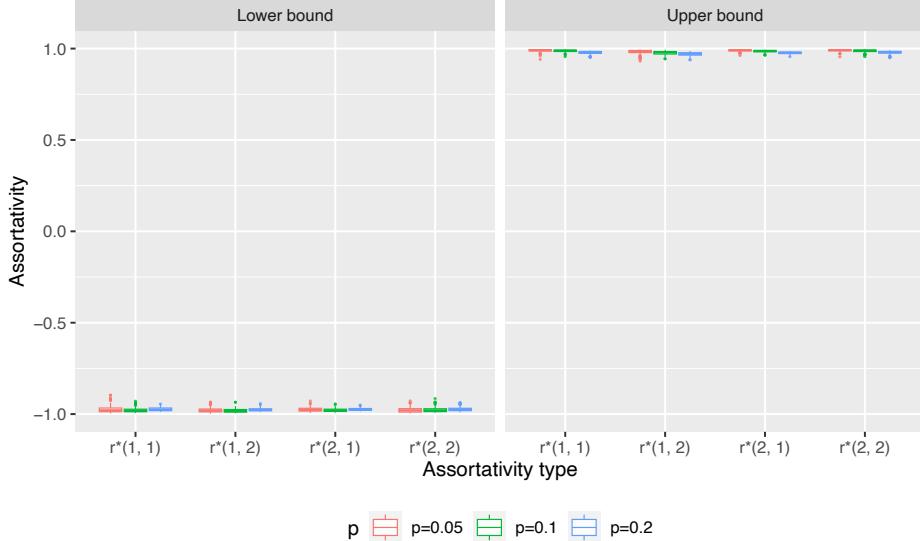


Figure 6: Side-by-side box plots for the upper and lower bounds of assortativity coefficients based on 100 replicates of ER networks with $n = 200$ and $p \in \{0.05, 0.1, 0.2\}$.

255 The comparisons in Figure 5 seems suggesting a preference of using $f(\Lambda) = \sum_{i,j} |w_{ij} - \lambda_{ij}|$
 256 as the objective function, but there are other factors to consider. Fewer rewiring steps do
 257 not necessarily mean less overall computation time. In fact, among the 100 replicates in
 258 the present example, the median computation time for $f(\Lambda) = 0$ was 5 seconds, but for
 259 $f(\Lambda) = \sum_{i,j} |w_{ij} - \lambda_{ij}|$ it was about 191 seconds. Further, there is no guarantee that
 260 optimization problem with the more complex objective function can be solved within a
 261 reasonable amount of time. For instance, for the experiment of ER networks with $n = 100$
 262 and $p = 0.01$, 48 out of the 100 simulations did not finish within 12 hours on a computer
 263 with AMD EPYC 7763 processors with 4 threads and 8 GB of RAM.

264 Figure 6 shows the box plots of the attainable upper and lower bounds of assortativity
 265 coefficients for the 100 ER networks generated under each combination of $n = 200$ and
 266 $p \in \{0.05, 0.1, 0.2\}$. It appears that the bounds are very close to the nominal bounds of
 267 -1 and 1 . That is, all the values between -1 and 1 appear to be attainable for all four
 268 assortativity coefficients. Such observation is expected owing to the feature of ER networks.

269 4.2. PA Network Model

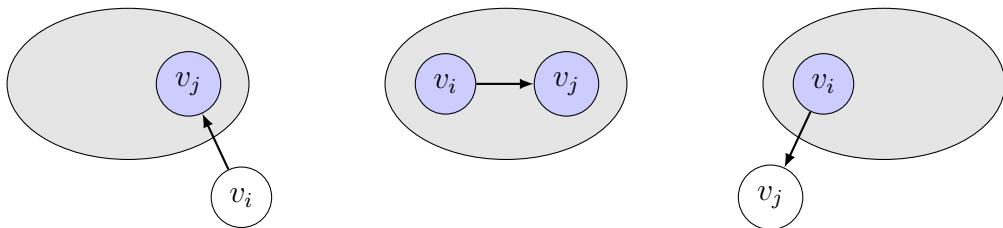


Figure 7: The α , β and γ edge-creation scenarios (from left to right).

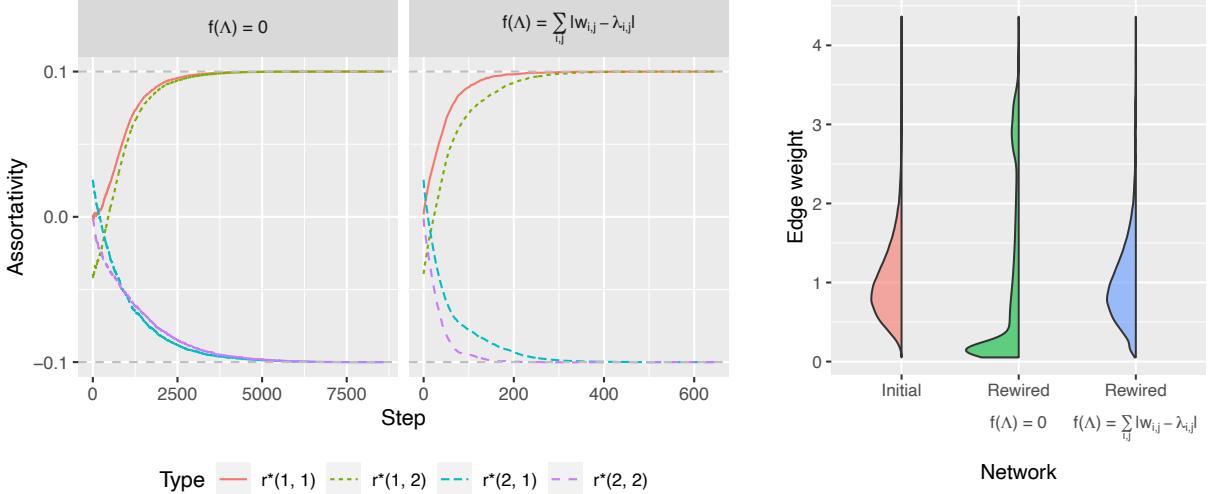


Figure 8: Average trace and edge weight density plots for PA networks with $m = 1000$, $\alpha = \gamma = 0.15$, $\beta = 0.7$, and target assortativity coefficients $r^*(1,1) = r^*(1,2) = 0.1$, $r^*(2,1) = r^*(2,2) = -0.1$. The left two panels are average trace plots based on objective functions $f(\Lambda) = 0$ and $f(\Lambda) = \sum_{i,j} |w_{ij} - \lambda_{ij}|$; The algorithm with $f(\Lambda) = \sum_{i,j} |w_{ij} - \lambda_{ij}|$ requires much fewer rewiring steps. The right panel compares the density of edge weights of the initial networks and the constructed target networks under the same two objective functions; The post-rewiring edge weight density of the algorithm using $f(\Lambda) = \sum_{i,j} |w_{ij} - \lambda_{ij}|$ remains almost the same.

The PA network model is an evolutionary model assuming that nodes with large degrees are more likely to be connected by new nodes [16]. We incorporate edge weights into a directed PA network model with five parameters $(\alpha, \beta, \gamma, \delta_1, \delta_2)$ [17, 18]. Specifically, the growth scheme of the extended PA network model is: (1) with probability $0 \leq \alpha \leq 1$, (v_i, v_j, w_{ij}) is added from a new node v_i to an existing node v_j ; (2) with probability $0 \leq \beta \leq 1$, (v_i, v_j, w_{ij}) is added between two existing nodes v_i and v_j ; (3) with probability $0 \leq \gamma \leq 1$, (v_i, v_j, w_{ij}) is added from an existing node v_i to a new node v_j . The weight of each edge is independently drawn from a probability distribution h with support on \mathbb{R}^+ or its nonempty subset. Regardless of edge-creation scenario, the probability of sampling an existing node, v_i for instance, as a source (or target) node is proportional to $s_i^{(1)} + \delta_1$ (or $s_i^{(2)} + \delta_2$). See Figure 7 for a graphical illustration.

The seed network for all of the extended PA networks in our simulation study contained one weighted edge $(1, 2, 1.0)$. The parameters were set to $\beta \in \{0.6, 0.7, 0.8\}$, $\alpha = \gamma = (1 - \beta)/2$ and $\delta_1 = \delta_2 = 1$. Again, h was set to be a gamma distribution with shape 5 and scale 0.2. We considered PA networks of different sizes determined by number of evolutionary steps $m \in \{200, 400, 600, 800, 1000\}$. The number of replicates for each combination of m and β was 100. The target assortativity coefficients for this series of simulation studies were also $r^*(1,1) = r^*(1,2) = 0.1$ and $r^*(2,1) = r^*(2,2) = -0.1$.

The PA network simulation study yielded conclusions similar to those from the ER network simulation study, despite that the evolutionary processes of the two models are tremendously different. Since the results across different m and β combinations for PA networks are similar, we only report those for $m = 1000$ and $\beta = 0.7$ in Figure 8. The left two panels present the average trace plots obtained under different objective functions $f(\Lambda) = 0$ and

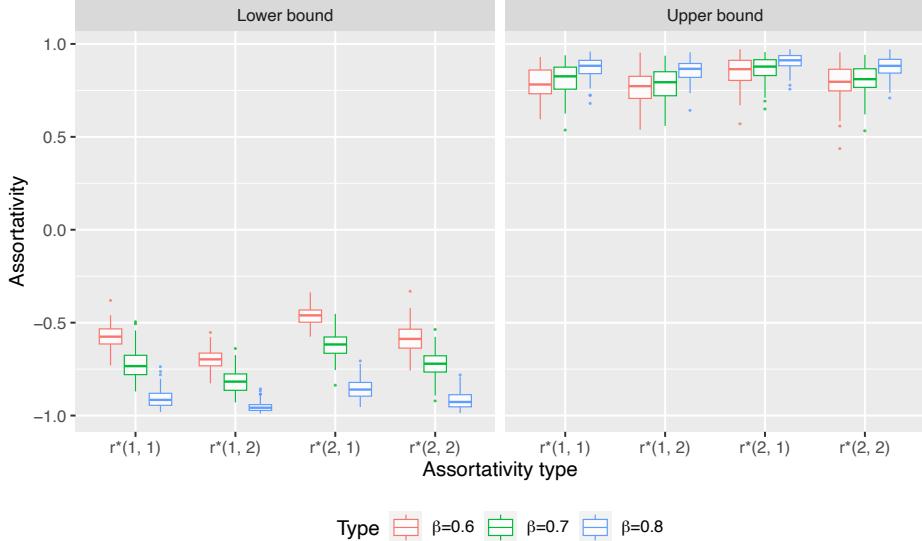


Figure 9: Side-by-side box plots of the upper and lower bounds of the assortativity coefficients of PA networks with $m = 1000$, $\beta \in \{0.6, 0.7, 0.8\}$ and $\alpha = \gamma = (1 - \beta)/2$.

293 $f(\Lambda) = \sum_{i,j} |w_{ij} - \lambda_{ij}|$, where the reordering procedure was implemented to both. All the
294 assortativity coefficients reach target values. More rewiring steps were needed for objective
295 function $f(\Lambda) = 0$, but less computing time was needed. Precisely, the median runtime
296 was 43 seconds with $f(\Lambda) = 0$ and 142 seconds for $f(\Lambda) = \sum_{i,j} |w_{ij} - \lambda_{ij}|$. The mid-
297 dle panel shows that more rewiring steps were required for $r^*(1, 2)$ and $r^*(2, 1)$. This was
298 intuitively expected as their initial values were further away from the targets. The right
299 panel shows again that the post-rewiring edge weight distribution (i.e., $\text{Gamma}(5, 0.2)$) us-
300 ing $f(\Lambda) = \sum_{i,j} |w_{ij} - \lambda_{ij}|$ is much closer than that using $f(\Lambda) = 0$ to the edge weight
301 distribution of the initial networks.

302 Finally, the box plots of the lower and upper bounds of the attainable assortativity coeffi-
303 cients based on 100 replicates for the simulated PA networks with the number of evolutionary
304 steps $m = 1000$ are shown in Figure 9. With the same value of m , the number of edges was
305 fixed, and a larger β resulted in a denser network. The range of assortativity coefficients for
306 large β was found wider than that for small β , as larger β caused greater variances for node
307 in- and out-strengths.

308 5. Discussions

309 The SSRP algorithm tackles the rewiring problem of Newman [1] towards predetermined
310 assortativity levels in the context of weighted, directed networks. The rewiring retains the
311 certain critical network properties such as the marginal node out- and in-strength distri-
312 butions and the sparsity. The essential idea of the proposed approach is determining the
313 adjacency matrix of a target network by solving a mixed integer programming problem,
314 followed by a sweeping procedure to transform the initial network to the target by using
315 rewiring. More complex objective functions could be used in setting up the mixed integer
316 programming problem at additional computational costs to minimize the change in the edge

317 weight distribution. The proposed algorithm is also applicable to unweighted or undirected
 318 networks with minor modifications.

319 There is a major difference between the SSRP algorithm and other rewiring methods
 320 like Newman's algorithm [1] and the DiDPR algorithm [3]. The SSRP algorithm derives a
 321 deterministic solution of target network with predetermined assortativity measures, but the
 322 others aim to find an stochastic solution, that is, they search a target network with assorta-
 323 tivity measures whose expectations equal to the given values. Accordingly, the determination
 324 of target networks differs between SSRP and other methods, too. SSRP directly works on
 325 adjacency matrix calculation, whereas the other methods determine target adjacency matrix
 326 through joint node-degree distributions governed by given assortativity measures. This dif-
 327 ference means an advantage for the SSRP algorithm in some applications and a limitation
 328 in other applications. Extending the DiDPR algorithm in Newman's sense to generating
 329 weighted, directed networks remains an open question, yet challenging for preserving net-
 330 work sparsity or other critical network properties in addition to marginal node degree or
 331 strength distributions.

332 **Appendix A. Proof of Proposition 3.1**

333 *Proof.* Without loss of generality, assume $\psi_{ij} > 0$. Since we have $\sum_{j=1}^n \psi_{ij} = 0$ according
 334 to the rewiring setup, there exists a nonempty set $S_j \subseteq \{j+1, j+2, \dots, n\}$ such that
 335 $\psi_{ij^*} < 0$ for all $j^* \in S_j$ and $\psi_{ij} + \sum_{j^* \in S_j} \psi_{ij^*} \leq 0$, where the equality holds if ψ_{ij} is the
 336 only positive element in the i -th row. Similarly, due to $\sum_{i=1}^n \psi_{ij} = 0$, for each ψ_{ij^*} with
 337 $j^* \in S_j$, there exists $T_i(j^*) \subseteq \{i+1, i+2, \dots, n\}$ such that $\psi_{i^*j^*} > 0$ for all $i^* \in T_i(j^*)$ and
 338 $\psi_{ij^*} + \sum_{i^* \in T_i(j^*)} \psi_{i^*j^*} \geq 0$.

339 It follows that

$$\sum_{j^* \in S_j} \sum_{i^* \in T_i(j^*)} \psi_{i^*j^*} \geq \psi_{ij},$$

340 which suggests that, for each pair of (i^*, j^*) , there exists $0 \leq u_{i^*j^*} \leq \psi_{i^*j^*}$ giving rise to

$$\sum_{j^* \in S_j} \sum_{i^* \in T_i(j^*)} u_{i^*j^*} = \psi_{ij}.$$

341 Therefore, there exists a path continuously rewiring (v_i, v_j, w_{ij}) and $(v_{i^*}, v_{j^*}, w_{i^*j^*})$ with
 342 $\Delta w = u_{i^*j^*}$ for all i^* and j^* leading to $\psi_{ij} = 0$.

343 The proof for $\psi_{ij} < 0$ can be done mutatis mutandis. □

344 For illustration, consider a generic example Ψ matrix as shown in Figure A.10. Suppose
 345 that $\psi_{ij} > 0$ is our rewiring target. Without loss of generality, suppose that $\psi_{i(j+1)}$ (in blue)
 346 and $\psi_{i(j+2)}$ (in blue) are the only two negative values in the i -th row. In this example, we
 347 have $j^* \in S_j = \{j+1, j+2\}$. We then only focus on the $(j+1)$ -th and $(j+2)$ -th columns.

348 For $j^* = j+1$, suppose that $\psi_{(i+1)(j+1)}$ (in red) and $\psi_{n(j+1)}$ (in red) are the only two entries
 349 greater than 0, then the associated $T_i(j^*)$ is $\{i+1, n\}$. On the other hand, for $j^* = j+2$,
 350 suppose that there is only one $\psi_{(i+2)(j+2)} > 0$ (in red), then the associated $T_i(j^*)$ becomes
 351 $\{i+2\}$. Note that all of the row sums and column sums are equal to 0. By the transitivity

$$\begin{pmatrix}
0 & 0 & \dots & 0 & 0 & 0 & \dots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \dots & 0 & 0 & 0 & 0 \dots & 0 \\
0 & 0 & \dots & \psi_{ij} & \psi_{i(j+1)} & \psi_{i(j+2)} & \dots & \psi_{in} \\
\psi_{(i+1)1} & \psi_{(i+1)2} & \dots & \psi_{(i+1)j} & \psi_{(i+1)(j+1)} & \psi_{(i+1)(j+2)} & \dots & \psi_{(i+1)n} \\
\psi_{(i+2)1} & \psi_{(i+2)2} & \dots & \psi_{(i+2)j} & \psi_{(i+2)(j+1)} & \psi_{(i+2)(j+2)} & \dots & \psi_{(i+1)n} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\psi_{n1} & \psi_{n2} & \dots & \psi_{nj} & \psi_{n(j+1)} & \psi_{n(j+2)} & \dots & \psi_{nn}
\end{pmatrix}$$

Figure A.10: Example stage of a Ψ during the rewiring.

352 property of inequalities, we have

$$\left. \begin{array}{l} \psi_{ij} + \psi_{i(j+1)} + \psi_{i(j+2)} \leq 0 \\ \psi_{i(j+1)} + \psi_{(i+1)(j+1)} + \psi_{n(j+1)} \geq 0 \\ \psi_{i(j+2)} + \psi_{(i+2)(j+2)} \geq 0 \end{array} \right\} \implies \psi_{ij} \leq \psi_{(i+1)(j+1)} + \psi_{(i+2)(j+2)} + \psi_{n(j+1)}. \quad (\text{A.1})$$

353 Recall that in this example, all ψ_{ij} , $\psi_{(i+1)(j+1)}$, $\psi_{n(j+1)}$, and $\psi_{(i+2)(j+2)}$ are greater than 0.
354 Next, we rewire (v_i, v_j, w_{ij}) and $(v_{i+1}, v_{j+1}, w_{(i+1)(j+1)})$ with $\Delta w = \min\{\psi_{ij}, \psi_{(i+1)(j+1)}\}$. If
355 ψ_{ij} becomes 0, the rewiring is completed; Otherwise, we will rewire $(v_i, v_j, w_{ij} - \Delta w)$ and
356 $(v_{i+2}, v_{j+2}, w_{(i+2)(j+2)})$ and continue in this fashion until ψ_{ij} reaches 0, which is guaranteed
357 pertaining to Equation (A.1).

358 **References**

- 359 [1] M. E. J. Newman, Mixing patterns in networks, *Physical Review E* 67 (2003) 026126.
- 360 [2] P. Van Mieghem, H. Wang, X. Ge, S. Tang, F. A. Kuipers, Influence of assortativity and
361 degree-preserving rewiring on the spectra of networks, *The European Physical Journal B* 76 (2010) 643–652.
- 363 [3] T. Wang, J. Yan, Y. Yuan, P. Zhang, Generating directed networks with predetermined
364 assortativity measures, *Statistics and Computing* 32 (2022) 91.
- 365 [4] H. Chan, L. Akoglu, Optimizing network robustness by edge rewiring: A general frame-
366 work, *Data Mining and Knowledge Discovery* 30 (2016) 1395–1425.
- 367 [5] F. Iorio, M. Bernardo-Faura, A. Gobbi, T. Cokelaer, G. Jurman, J. Saez-Rodriguez, Ef-
368 ficient randomization of biological networks while preserving functional characterization
369 of individual nodes, *BMC Bioinformatics* 17 (2016) 542.
- 370 [6] P. C. Staples, E. L. Ogburn, J.-P. Onnela, Incorporating contact network structure in
371 cluster randomized trials, *Scientific Reports* 5 (2015) 17581.

- 372 [7] C. Schweimer, C. Gfrerer, F. Lugstein, D. Pape, J. A. Velimsky, R. Elsässer, B. C.
373 Geiger, Generating simple directed social network graphs for information spreading,
374 in: F. Laforest, T. R., E. Simperl, A. D., A. Gionis, I. Herman, L. Médini (Eds.),
375 Proceedings of the ACM Web Conference 2022 (WWW '22), Association for Computing
376 Machinery, New York, NY, USA, 2022, pp. 1475–1485.
- 377 [8] D. R. Wuellner, S. Roy, R. M. D’Souza, Resilience and rewiring of the passenger airline
378 networks in the United States, *Physical Review E* 82 (2010) 056101.
- 379 [9] A.-L. Barabási, *Network Science*, Cambridge University Press, Cambridge, UK, 2016.
- 380 [10] Y. Yuan, J. Yan, P. Zhang, Assortativity measures for weighted and directed networks,
381 *Journal of Complex Networks* 9 (2021) cnab017.
- 382 [11] C. Uribe-Leon, J. C. Vasquez, M. A. Giraldo, G. Ricaurte, Finding optimal assortativity
383 configurations in directed networks, *Journal of Complex Networks* 8 (2020) cnab004.
- 384 [12] Gurobi Optimization, LLC, *gurobipy*: Python Interface to Gurobi, 2023. URL: <https://pypi.org/project/gurobipy/>, version 10.0.1.
- 386 [13] IBM, User’s Manual for CPLEX, 2022. URL: <https://www.ibm.com/docs/en/icos/22.1.1>.
- 388 [14] P. Erdős, A. Rényi, On random graphs I, *Publicationes Mathematicae Debrecen* 6
389 (1959) 290–297.
- 390 [15] E. N. Gilbert, Random graphs, *Annals of Mathematical Statistics* 30 (1959) 1141–1144.
- 391 [16] A.-L. Barabási, R. Albert, Emergence of scaling in random networks, *Science* 286 (1999)
392 509–512.
- 393 [17] P. Wan, T. Wang, R. A. Davis, S. I. Resnick, Fitting the linear preferential attachment
394 model, *Electronic Journal of Statistics* 11 (2017) 3738–3780.
- 395 [18] Y. Yuan, T. Wang, J. Yan, P. Zhang, Generating general preferential attachment
396 networks with R package *wdnet*, *Journal of Data Science* 21 (2023) 538–556.

Algorithm 1: Pseudo codes of the SSRP algorithm.

Input: Initial adjacency matrix \mathbf{W} ;
target adjacency matrix $\mathbf{\Lambda}$.

Output: Rewiring record R .

Algorithm:

```
 $n \leftarrow$  number of rows (or columns) of  $\mathbf{W}$ ;  
Initialize an empty list of rewiring steps  $R$ ;  
 $\Psi \leftarrow \mathbf{W} - \mathbf{\Lambda}$ ;  
for  $i = 1$  to  $n - 1$  do  
    /* Possibly insert a reorder step here to put elements with  
       larger magnitude earlier */  
    for  $j = 1$  to  $n - 1$  do  
        |  $\Psi, R \leftarrow \text{Rewire}(\Psi, R, i, j, n)$ ;  
    end  
end  
return  $R$ ;
```

Function $\text{Rewire}:$

Input: Matrix Ψ ;

rewiring record R ;
row and column indices i and j ;
number of rows n .

Output: Updated Ψ and R .

for $k = i + 1$ **to** n **do**

```
for  $l = j + 1$  to  $n$  do  
    if  $\psi_{ij} > 0$  then  
        |  $\Delta w \leftarrow \min(\psi_{ij}, \max(0, \psi_{k,l}))$ ;  
    else if  $\psi_{ij} < 0$  then  
        |  $\Delta w \leftarrow \max(\psi_{ij}, \min(0, -\psi_{i,l}), \min(0, -\psi_{k,j}))$ ;  
    if  $\psi_{ij} == 0$  or  $\Delta w == 0$  then  
        | Continue to the next  $l$ ;  
        |  $\psi_{ij} \leftarrow \psi_{ij} - \Delta w$ ; /* Update  $\Psi$  */  
        |  $\psi_{kl} \leftarrow \psi_{kl} - \Delta w$ ;  
        |  $\psi_{il} \leftarrow \psi_{il} + \Delta w$ ;  
        |  $\psi_{kj} \leftarrow \psi_{kj} + \Delta w$ ;  
    if  $\Delta w > 0$  then /* Record rewiring step */  
        | Append  $(i, j, k, l, \Delta w)$  to  $R$ ;  
    else  
        | Append  $(i, l, k, j, -\Delta w)$  to  $R$ ;  
end  
end  
return  $\Psi, R$ ;
```
