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Abstract

Degree-preserving rewiring is a widely used technique for generating unweighted networks
with given assortativity, but for weighted networks, it is unclear how an analog would pre-
serve the strengths and other critical network features such as sparsity level. This study
introduces a novel approach for rewiring weighted networks to achieve desired directed as-
sortativity. The method utilizes a mixed integer programming framework to establish a tar-
get network with predetermined assortativity coefficients, followed by an efficient rewiring
algorithm termed “strength and sparsity preserving rewiring” (SSPR). SSPR retains the
node strength distributions and network sparsity after rewiring. It is also possible to accom-
modate additional properties like edge weight distribution, albeit with extra computational
cost. The optimization scheme can be used to determine feasible assortativity ranges for an
initial network. The effectiveness of the proposed SSPR algorithm is demonstrated through
its application to two classes of popular network models.

Keywords: attainable assortativity, directed assortativity, mixed integer programming,
weighted network rewiring

2008 MSC: 90C35, 62H20, 90C11

1. Introduction

Assortativity is an important measure characterizing the correlation structure of nodal
features of networks. Generating random networks with predetermined assortativity is crit-
ical for justifying network theories [1], exploring spectral properties [2], improving model
fit [3], and optimizing network robustness [4]. Edge rewiring is a widely accepted technique
for generating networks with given assortativity. The degree-preserving rewiring (DPR) al-
gorithm proposed by Newman [1] ensures that the node degree distribution of an undirected
network keeps unchanged throughout the course of rewiring so as to preserve the fundamen-
tal topology of the rewired network. An extension of Newman’s algorithm, called DiDPR,
was recently developed for generating directed networks with predetermined directed assor-
tativity coefficients [3]. More generally, rewiring techniques have found practical applications
in many fields such as biological science [5], clinical trials [6], and social network analysis [7],
among others.

Despite the long availability of Newman’s algorithm for unweighted networks, rewiring a
weighted network to achieve predetermined assortativity proves to be a challenging task that
has not yet been studied in the literature. While directly extending Newman’s algorithm
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to weighted networks may seem feasible for preserving node strengths, a naive extension
fails to retain other important network properties, such as sparsity, simultaneously. When
edge weights are represented as integer values, one potential approach involves a multi-
edge scheme, where a weighted edge is divided into multiple unit-weight edges, and then
Newman’s two-swap method or similar techniques are applied. However, this approach does
not translate smoothly to networks with real-valued edge weights. Even for networks with
integer-valued edge weights, this method lacks practical utility, as it results in a substantial
increase in the number of edges [8] and alters the network’s sparsity, a typical feature observed
in most real-world networks [9]. In the subsequent section, we will delve into more details
about this approach and explore other potential possibilities for addressing the challenge of
rewiring weighted networks to achieve predetermined assortativity.

This paper introduces a novel rewiring algorithm for generating weighted, directed net-
works with four predetermined directed assortativity coefficients [10]. Notably, the proposed
algorithm ensures that both out- and in-strength distributions, along with sparsity, are metic-
ulously preserved upon the completion of the rewiring process. Newman’s approach involves
searching for a target network structure characterized by a joint degree distribution that
matches the desired assortativity values and represents the stationary status of the rewiring
process [1, 3]. In contrast, the proposed algorithm directly produces a weighted, directed net-
work with assortativity measures precisely equal to the given values, provided that they are
attainable. The desired network structure is not unique and we formulate an optimization
problem to provide one feasible solution. With carefully chosen objective function for the
optimization, the algorithm can retain certain network topology and properties in addition
to strength distributions and sparsity after rewiring. Further, the optimization scheme also
helps to identify the attainability of each assortativity coefficient by establishing its upper
and lower bounds given the initial network configuration.

The remainder of the paper is organized as follows. Section 2 introduces the notations and
elucidates the challenges for the extension of Newman’s algorithm to weighted networks. Sec-
tion 3 presents an efficient strength and sparsity preserving reserving algorithm for weighted,
directed networks with given assortativity coefficients, followed by an approach to determin-
ing assortativity coefficient bounds and a generalization allowing to consider other network
properties like edge weight distribution. Section 4 provides extensive simulations showing the
applications of the proposed algorithm to the Erdos-Rényi model and the Barabési-Albert
model. Lastly, some discussions and future works are addressed in Section 5.

2. Preliminaries

Starting with notations, we layout the challenges when extending Newman’s algorithm
to weighted, directed networks.

2.1. Notations

Let G := G(V, E) be a weighted, directed network with node set V' and edge set E.
Additionally, let (v, v;, w;;) € E denote a weighted, directed edge from source node v; € V
to target node v; € V with weight w;; > 0. For the special case of v; = vj, (v;,vj,w;;) € E is
a self-loop. Network G is characterized by its associated adjacency matrix W := (w;;)nxn,
where n = |V| is the number of nodes in G. If there is no edge from v; to v;, i.e., (v;, vj, w;j) ¢
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E, then the corresponding w;; in W is set to 0. Fundamental node-level properties of
weighted, directed networks are si(l) = ey Wij and 37;(2) = > ,.cy Wi, which respectively
refer to the out- and in-strength of node v]i. The superscripts “1" and “2” are respectively
used to represent “out” and “in” throughout the rest of the manuscript for simplicity.

The directed assortativity coefficients considered in this paper are adopted from those
proposed by Yuan et al. [10]. By considering the combinations of out- and in-strengths
of source and target nodes, there are four types of assortativity coefficients, denoted by
r(a,b) = rw(a,b) with a,b € {1,2}, where r(a, b) is the assortativity coefficient based on the
a-strength of source nodes and b-strength of target nodes. For example, r(1,2) refers to the
assortativity coefficient based on the out-strength of source nodes and in-strength of target
nodes. The rest three are interpreted in the similar manner.

Mathematically, the directed assortativity coefficients are expressed as

a —(a b —(b
e wig | (52— 58 (s~ 58)]

a b ’
7_O's(rc) Uéré

r(a,b) = a,b e {1,2}, (1)

where 7:= ) w;; is the total weight of all edges,

v;,v; €V

(a) 1) (a
g(a) o ZUi,UjGV wljsl . Z’UZ‘GV Sl( )Sl( )

src T T

is the weighted mean of the a-type strength of source nodes and

a —(a 2 1 a _(a 2
o ((l) L Z’Uiy’l)j ev wzj (S’L( ) - SS(TC)) B Zviev S’L( ) (Sl( ) — SS(I‘C)>
src T - = -

is the associated weighted standard deviation. The counterparts Et(fg) and at(rlg are defined

analogously for target nodes. For more properties about the directed, weighted assortativity
coefficients, see Yuan et al. [10].

2.2. Challenges

Newman’s algorithm for generating an unweighted, undirected network with a predeter-
mined assortativity measure is based on a two-swap DPR algorithm [1]. Tt effectively adjusts
the assortativity while preserving the marginal node degree distribution. Recently, this idea
was translated into a practical approach with concrete via a convex optimization framework,
and further extended to unweighted, directed networks by Wang et al. [3]. The extension
solely requires accounting for edge directions during the rewiring process, and since all edges
possess unit weight, both node degrees and the total edge number remain unchanged. For a
graphical illustration, refer to the top-left panel of Figure 1.

An example that attempts to extend Newman’s algorithm to a weighted, directed net-
work [8] is shown in the top-right panel of Figure 1. As depicted, however, when the sampled
edges for swap have different weights, an additional edge with weight equal to their weight
difference needs to be added to preserve node strengths; the rightmost red edge (with weight
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Figure 1: Left panel: An illustration of DPR in [1] and DiDPR in [3]; Dashed edges refer to the edges that
are removed in the rewiring; Each edge has weight 1. Middle panel: An illustration of DPR directly extended
to weighted, directed networks; Edge weights are given next to the corresponding edges. Right panel: An
illustration of three-swap rewiring for weighted, directed networks.

2) from vy to vy illustrates this necessity. Consequently, this attempt becomes impractical, as
it leads to a significant increase in the number of edges during the rewiring process, thereby
compromising network sparsity. For certain special cases, a potential remedy is to generalize
the three-swap idea introduced by Uribe-Leon et al. [11]. The bottom panel of Figure 1
demonstrates an example of this approach, which is applicable only to simple edge weights
(e.g., integer-valued) and demands additional efforts to search specific structures for rewiring
to occur. In the provided example, it requires sampling a module of four nodes connected
by three directed edges, where the out-strengths of the source nodes (i.e., v; and wvy) are
identical. Candidate structures satisfying such restrictions may be scarce or non-existent,
making methods based on three-swap impractical in real-world scenarios.

Furthermore, an issue not investigated by Newman [1] is whether the predetermined
assortativity level is achievable through rewiring. Newman’s algorithm requires the develop-
ment of a transition matrix M to construct the joint edge degree distribution for the target
network with predetermined assortativity. The existence of this matrix M is not guaranteed
as it depends on both the structure of the initial network and the predetermined assortativity
value. In other words, given an initial network, not every predetermined assortativity level
is attainable through rewiring. Inspired by the work of Wang et al. [3], as a byproduct, this
paper also delves into an investigation of assortativity attainability by determining upper
and lower bounds for each of the four directed assortativity coefficients, conditional on the
structure of the initial network.

3. Strength and Sparsity Preserving Rewiring

We propose an efficient strength and sparsity preserving rewiring (SSPR) algorithm de-
signed for weighted, directed networks with predetermined assortativity coefficients. The
crux of the algorithm lies in the quest for a target network with the desired assortativity
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coefficients by solving a mixed integer linear programming problem. Subsequently, the al-
gorithm employs a novel rewiring technique to ensure the preservation of critical network
properties, such as marginal strength distributions and network sparsity.

3.1. Finding a Target Network

Given a fully observed network G := G(V(G), E(G)) with a weighted adjacency matrix
W and predetermined assortativity measures r*(a,b),a,b € {1,2}, the primary goal is to
generate a new network H (defined on the same node set V(H) = V(G) = V, but with a
different edge set E(H) # E(G)) whose assortativity measures are equal to the given r*(a, b)
through rewiring G. Meanwhile, it is essential to retain crucial network properties like node
out- and in-strength distributions and network sparsity after rewiring. Provided that such
H exists, its adjacency matrix A := (\;;)nxn, which is referred to as the target adjacency
matrix, must satisfy the following conditions:

(1) The entries of A are non-negative, i.e., \;; > 0 for all v;,v; € V;

(2) The row and column sums of A are identical to the counterparts in W (preserving
marginal strength distributions);

(3) The number of non-zero elements in A is the same as that in W (preserving network
sparsity);

(4) The assortativity measures (of A) computed from Equation (1) are equal to the given
r*(a,b) for all a,b € {1, 2}.

Depending on the analytic objectives and computing resources, one may also include ad-
ditional conditions that restrict the lower and upper bounds of the non-zero elements in
A in order to prevent the emergence of a large proportion of extremely small weights or
unexpected outliers.

Now the problem boils down to finding a suitable target adjacency matrix A, which may
not be unique, but any single solution would suffice. To set it up, consider a latent, binary
matrix Z := (2;j)nxn associated with A, where z;; = 1 for A;; > 0; z;; = 0 otherwise. The
search for a solution to A involves solving a mixed integer linear programming problem as
follows:

win f(A),
s.t. )\ij =0 if Zij = 0, VUZ‘,U]‘ eV,
K < >\ij < Ky if Zij = 1, V’UZ',U]' S V,

>z = E@),
ij
ZAU = Zwiﬂ' = 5;2), Vu; €V,
Z Nij = Zwij = si(l), Vv, €V,
j j
ra(a,b) =r*(a,b), a,be {1,2},

where ky > Kk, > 0 are the preset upper and lower bounds for edge weights, and f(-) is an
arbitrary linear function.
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In theory, the objective function f(-) can be any function of A and the constraints do
not have to be linear in A. For instance, one may set f(A) = >_, ; |wy; — Ay;| if it is desired
that the edge weight distribution changes as little as possible after rewiring. Nonetheless,
the more complex the objective function is and the more additional constraints are, the more
time is required for solving the optimization problem even with a possibility of unsolvable
risks. Especially when there are non-linear constraints, the optimization problem becomes
a mixed integer non-linear programming problem, which demands more solving time or
even computationally intractable. Therefore, when there is no mandatory condition for
f(+), we recommend setting it to zero for improving the optimization speed. Mathematical
programming solvers like Gurobi [12] and CPLEX [13] can be used to efficiently solve such
problems.

A byproduct of the optimization scheme is that it can be used to determine the bounds
of feasible assortativity levels. Given an initial network GG, not all the values in the natural
bounds of assortativity coefficient (i.e., [—1,1]) are attainable through SSPR that will be
elaborated in the next subsection. From Equation (1), the assortativity coefficients are
linear in edge weights, allowing us to find the assortativity bounds by adjusting the objective

function. Specifically, we can set the objective function to be f(A) = Z” )\Z-jsga) sg-b) to find
the lower bound of 7*(a,b), and set f(A) = —3_, )\Z-jsga)sg-b) to find the upper bound of

r*(a,b). See detailed illustrations in Section 4.

3.2. Rewiring towards Target Network

Once the target adjacency matrix A is determined, the next crucial task is to establish a
feasible rewiring scheme to move from given W towards A while preserving node in- and out-
strengths and network sparsity. Figure 2 shows a hypothetical example of rewiring a pair of
edges (v;, v;, w;;) and (vg, v, wy) among four nodes v;, v;, v, and v;. The underlying principle
is to keep the out- and in-strengths of the four nodes identical by a meticulously redistributed
weight of amount Aw < min{w;;, wy; }. It is worth noting that the directed edges (vg, v, wg;)
and (v;, v, wy) may not exist before rewiring, and that the selected edges (v;,v;,w;;) and
(vg, vy, wgy) may be removed after rewiring, so represented by dotted lines. The corresponding
changes in the adjacency matrix are illustrated in the lower panel of Figure 2. It is clear
that the row and column sums in the adjacency matrix remain unchanged. An appropriate
Aw must be determined for each rewiring step.

Before proceeding, however, it is crucial to show the existence of at least one rewiring
path from W to A. To achieve this, define ¥ := (1), xn, = W — A, the difference between
the initial adjacency matrix W and the target adjacency matrix A. A successful rewiring
process means that, at the end of the rewiring, ¢,; = 0 for all 7, j € {1,...,n}. We employ
a sweeping procedure to adjust all ¢;;’s one by one in an order from the top to the bottom
and the left to the right within each row. The existence of a path is shown by induction.
Suppose that 1;; is the next element in the sweeping procedure awaiting an adjustment via
rewiring. That is, we already have 1, = 0 for all [ if £ < 7 and for [ < j if £ = 7 from
previous sweeping steps. Proposition 3.1 shows the existence of a rewiring path leading to
¥;; = 0 with the associated proof given in Appendix Appendix A.

Proposition 3.1. For any i,j < n, there always exists a path leading to vV;; = 0 after
TEWITIing.
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Figure 2: A hypothetical example reflecting the principle of rewiring through a graphical representation and
the corresponding changes in the adjacency matrix.
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Figure 3: An example of rewiring scheme illustrating Proposition 3.1.

Figure 3 illustrates an example of a rewiring scheme corresponding to the principle behind
Proposition 3.1. The objective is to transform 15 = 3 (shown in blue) to 0 through rewiring.
The ;- j+’s to be adjusted are highlighted in red, with the corresponding Aw values indicated
above the arrows. Notably, the selection of Aw values is not unique. To reduce subsequent
rewiring steps, we prioritize making non-sweeped 1);;’s zero whenever possible. Specifically,
for each pair (k,1) with k£ >4 and [ > j, given 1;; > 0, we set Aw = min{¢;;, max{¢y;, 0} };
given 1;; < 0, we set Aw = max{t;;, min{—y;,0}, min{—1;;,0}}. These additional condi-
tions for Aw selection are essential to prevent the generation of negative edge weights during
the rewiring process.

The pseudo codes for the SSPR algorithm are summarized in Algorithm 1. Given the
difference matrix W, the Rewire function sweeps through its elements one at a time. Note
that the sweep only needs to be done for the first n — 1 rows as the column sums are zero;
similarly, within each row of ¥, we only need sweep the first n — 1 elements as all the row
sums are zero. At the beginning of each row, an optional step is to reorder the rows and
columns so that elements with larger magnitude get sweeped earlier. This would reduce the
number of rewiring steps (about 45% in our experiments in Section 4), but the extra sorting
step would increase the time complexity of the algorithm. The output of Algorithm 1 is
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Figure 4: Average trace plots for 100 replicates of ER networks with n = 200, p = 0.1, target assortativity
coefficients set to r*(1,1) = 7*(1,2) = 0.3, r*(2,1) = 7*(2,2) = —0.3, and objective function given by
f(A) = 0. The left panel shows the results with reordering, but the right panel shows those without
reordering.

the list of entire rewiring history of (i, j, k, [, Aw) for each step, where i, j, k, and [ are the
indices of the selected nodes v;, v;, vi, and v; for rewiring, and Aw is the associated rewiring
weight.

4. Simulations

We validate the proposed SSPR algorithm through simulation studies using two widely
used network models: the Erdos-Rényi (ER) model [14, 15] and the Barabasi-Albert model,
also known as the preferential attachment (PA) model [16]. Both models in their classic
forms are unweighted, but, in our study, they are extended by incorporating edge directions
and weights. The algorithm implementation is primarily based on the gurobipy module [12]
in Python, and the program was run on AMD EPYC 7763 processors utilizing 4 threads and
8 GB of memory.

4.1. ER Network Model

The classic ER model is governed by two parameters: the number of nodes n and the prob-
ability of emergence of a directed edge p. We augment the classic ER model by allowing self-
loops (from a node to itself) and edge weights. Specifically, three levels of n € {50, 100,200}
and three levels of p € {0.05,0.1,0.2} were considered. Edge weights were generated from a
gamma distribution with shape 5 and scale 0.2. For each configuration, a total of 100 ER
networks were generated. Isolated nodes, if any, were removed from the network prior to
rewiring. Pertaining to the nature of the ER model, all of the four assortativity coefficients
are expected to converge to 0 for large n.
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Figure 5: Average trace (left two panels) and edge weight violin plots (right panel) for 100 replicates of
ER networks with n = 200 and p = 0.1, target assortativity coefficients set to r*(1,1) = r*(1,2) = 0.1 and
r*(2,1) = r*(2,2) = —0.1. Both algorithms can make the assortativity coefficients reach the predetermined
targets, but the algorithm with f(A) = >, . |wi; — Ai;| requires much fewer rewiring steps, and its edge
weight distribution is almost unchanged after rewiring.

Figure 4 shows the results for n = 200 and p = 0.1 as an example. The results for other
settings of n and p present a similar pattern, so they are omitted. The target assortativity
coefficients were 7*(1,1) = r*(1,2) = 0.3, r*(2,1) = r*(2,2) = —0.3, and a simple objective
function f(A) = 0 was used to determine the target adjacency matrix for the assortativity
coefficients. The left panel presents the results with the reordering procedure implemented,
and the right panel presents the results without reordering. Each panel shows the average
trace plots for the four assortativity coefficients during rewiring. We observe that all of
the assortativity coefficients successfully reached their targets through the proposed SSPR
algorithm, regardless of whether the reordering procedure was implemented. However, the
right panel shows a significant increase in the number of rewiring steps when the reordering
procedure was not executed into the SSPR algorithm.

To illustrate the impact of the selection of objective function f(-), consider rewiring
ER networks with n = 200 and p = 0.1 to achieve assortativity coefficients r*(1,1) =
r*(1,2) = 0.1 and r*(2,1) = r*(2,2) = —0.1. Two objective functions f(A) = 0 and
f(A) = 37, lwiz — Aij| were used in setting up the mixed integer programming problem
in Section 3.1. The average trace plots of the assortativity levels based on 100 simulated
networks are displayed in the left two panels of Figure 5. Clearly, both algorithms can make
the assortativity coefficients reach the predetermined targets, but the algorithm with the
more complex objective function f(A) = >, . [wi; — Aij| requires much fewer rewiring steps.
The right panel of Figure 5 compares the density of the edge weights (i.e., Gamma(5,0.2))
of the initial networks and the rewired networks obtained under the two objective functions.
The post-rewiring edge weight distribution with objective function f(A) = 0 is noticeably
different from that of the initial networks. In contrast, the post-rewiring edge weight dis-
tribution with objective function f(A) = }_, ; lwi; — Ajj| is almost identical to that of the
initial networks.
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The comparisons in Figure 5 seems suggesting a preference of using f(A) = 37, ; |wi; —Aijl
as the objective function, but there are other factors to consider. Fewer rewiring steps do
not necessarily mean less overall computation time. In fact, among the 100 replicates in
the present example, the median computation time for f(A) = 0 was 5 seconds, but for
f(A) = 2, |wij — Aiy| it was about 191 seconds. Further, there is no guarantee that
optimization problem with the more complex objective function can be solved within a
reasonable amount of time. For instance, for the experiment of ER networks with n = 100
and p = 0.01, 48 out of the 100 simulations did not finish within 12 hours on a computer
with AMD EPYC 7763 processors with 4 threads and 8 GB of RAM.

Figure 6 shows the box plots of the attainable upper and lower bounds of assortativity
coefficients for the 100 ER networks generated under each combination of n = 200 and
p € {0.05,0.1,0.2}. It appears that the bounds are very close to the nominal bounds of
—1 and 1. That is, all the values between —1 and 1 appear to be attainable for all four
assortativity coefficients. Such observation is expected owing to the feature of ER networks.

4.2. PA Network Model

) =)
() ()

Figure 7: The «, 8 and v edge-creation scenarios (from left to right).
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Figure 8: Average trace and edge weight density plots for PA networks with m = 1000, o = v = 0.15,
B = 0.7, and target assortativity coefficients r*(1,1) = r*(1,2) = 0.1, r*(2,1) = r*(2,2) = —0.1. The left
two panels are average trace plots based on objective functions f(A) =0 and f(A) =}, ; |wi; — Aiz[; The
algorithm with f(A) = >~ . |wi; — Ai;| requires much fewer rewiring steps. The right panel compares the
density of edge weights of the initial networks and the constructed target networks under the same two
objective functions; The post-rewiring edge weight density of the algorithm using f(A) = Z” lwij — Aijl
remains almost the same.

The PA network model is an evolutionary model assuming that nodes with large degrees
are more likely to be connected by new nodes [16]. We incorporate edge weights into a
directed PA network model with five parameters («, 3,7, d;,2) [17, 18]. Specifically, the
growth scheme of the extended PA network model is: (1) with probability 0 < o < 1,
(vi,vj, w;;) is added from a new node v; to an existing node v;; (2) with probability 0 < g <1,
(v, vj,w;;) is added between two existing nodes v; and v;; (3) with probability 0 < v < 1,
(vi, vj, w;;) is added from an existing node v; to a new node v;. The weight of each edge is
independently drawn from a probability distribution A with support on R* or its nonempty
subset. Regardless of edge-creation scenario, the probability of sampling an existing node,
v; for instance, as a source (or target) node is proportional to si(l) + 01 (or 51(2) + d2). See
Figure 7 for a graphical illustration.

The seed network for all of the extended PA networks in our simulation study contained
one weighted edge (1,2,1.0). The parameters were set to § € {0.6,0.7,0.8}, a = v =
(1 —75)/2 and 6; = d, = 1. Again, h was set to be a gamma distribution with shape 5 and
scale 0.2. We considered PA networks of different sizes determined by number of evolutionary
steps m € {200,400, 600, 800,1000}. The number of replicates for each combination of m
and § was 100. The target assortativity coefficients for this series of simulation studies were
also r*(1,1) = r*(1,2) = 0.1 and 7*(2,1) = r*(2,2) = —0.1.

The PA network simulation study yielded conclusions similar to those from the ER net-
work simulation study, despite that the evolutionary processes of the two models are tremen-
dously different. Since the results across different m and g combinations for PA networks
are similar, we only report those for m = 1000 and S = 0.7 in Figure 8. The left two panels
present the average trace plots obtained under different objective functions f(A) = 0 and
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Figure 9: Side-by-side box plots of the upper and lower bounds of the assortativity coefficients of PA networks
with m = 1000, 8 € {0.6,0.7,0.8} and a =~y = (1 — 5)/2.

f(A) =32, lwi; — Aij|, where the reordering procedure was implemented to both. All the
assortativity coefficients reach target values. More rewiring steps were needed for objective
function f(A) = 0, but less computing time was needed. Precisely, the median runtime
was 43 seconds with f(A) = 0 and 142 seconds for f(A) = 37, ;|wi; — Ayj|. The mid-
dle panel shows that more rewiring steps were required for r*(1,2) and r*(2,1). This was
intuitively expected as their initial values were further away from the targets. The right
panel shows again that the post-rewiring edge weight distribution (i.e., Gamma(5,0.2)) us-
ing f(A) = >, ;|wi; — Aij| is much closer than that using f(A) = 0 to the edge weight
distribution of the initial networks.

Finally, the box plots of the lower and upper bounds of the attainable assortativity coeffi-
cients based on 100 replicates for the simulated PA networks with the number of evolutionary
steps m = 1000 are shown in Figure 9. With the same value of m, the number of edges was
fixed, and a larger ( resulted in a denser network. The range of assortativity coefficients for
large 8 was found wider than that for small 3, as larger [ caused greater variances for node
in- and out-strengths.

5. Discussions

The SSRP algorithm tackles the rewiring problem of Newman [1] towards predetermined
assortativity levels in the context of weighted, directed networks. The rewiring retains the
certain critical network properties such as the marginal node out- and in-strength distri-
butions and the sparsity. The essential idea of the proposed approach is determining the
adjacency matrix of a target network by solving a mixed integer programming problem,
followed by a sweeping procedure to transform the initial network to the target by using
rewiring. More complex objective functions could be used in setting up the mixed integer
programming problem at additional computational costs to minimize the change in the edge
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weight distribution. The proposed algorithm is also applicable to unweighted or undirected
networks with minor modifications.

There is a major difference between the SSRP algorithm and other rewiring methods
like Newman’s algorithm [1] and the DiDPR algorithm [3]. The SSPR algorithm derives a
deterministic solution of target network with predetermined assortativity measures, but the
others aim to find an stochastic solution, that is, they search a target network with assorta-
tivity measures whose expectations equal to the given values. Accordingly, the determination
of target networks differs between SSPR and other methods, too. SSRP directly works on
adjacency matrix calculation, whereas the other methods determine target adjacency matrix
through joint node-degree distributions governed by given assortativity measures. This dif-
ference means an advantage for the SSRP algorithm in some applications and a limitation
in other applications. Extending the DiDPR algorithm in Newman’s sense to generating
weighted, directed networks remains an open question, yet challenging for preserving net-
work sparsity or other critical network properties in addition to marginal node degree or
strength distributions.

Appendix A. Proof of Proposition 3.1

Proof. Without loss of generality, assume 1;; > 0. Since we have 2?21 ¥;; = 0 according
to the rewiring setup, there exists a nonempty set S; C {j + 1,5 + 2,...,n} such that
i+ < 0 for all j* € S; and v;; + Zj*esj i+ < 0, where the equality holds if 1;; is the
only positive element in the i-th row. Similarly, due to Y"1  ;; = 0, for each ;- with
J* €8, there exists T;(j*) C {i + 1,7+ 2,...,n} such that ¢«;« > 0 for all i* € T;(5*) and
Vije + D peemy(jr) Yirjs 2 0.

It follows that

Z Z Pixje 2 i,

J*€S; i eT;(5*)

which suggests that, for each pair of (i*, j*), there exists 0 < s« < 1+ giving rise to

Z Z U jx = 77[)1]

JreS; i*€Ty(5*)

Therefore, there exists a path continuously rewiring (v;,v;, w;;) and (v, vjx, W) with
Aw = wu;«j« for all ¢* and j* leading to ;; = 0.
The proof for 1;; < 0 can be done mutatis mutandis. n

For illustration, consider a generic example ¥ matrix as shown in Figure A.10. Suppose
that 1;; > 0 is our rewiring target. Without loss of generality, suppose that 1;(;;1y (in blue)
and v;(j12) (in blue) are the only two negative values in the i-th row. In this example, we
have j* € S; = {j +1,j +2}. We then only focus on the (j + 1)-th and (j + 2)-th columns.

For j* = j+1, suppose that 1(;11)(j41) (in red) and 4,(j41) (in red) are the only two entries
greater than 0, then the associated T;(5*) is {i + 1,n}. On the other hand, for j* = j + 2,
suppose that there is only one 9 ;9)(j+2) > 0 (in red), then the associated T;(j*) becomes
{i 4+ 2}. Note that all of the row sums and column sums are equal to 0. By the transitivity
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Figure A.10: Example stage of a ¥ during the rewiring.

property of inequalities, we have

Yij + Vigig1) + Vig+2) <0
Vigi+1) + Va1 G+) T Uni4) = 0 p = Uij < Y1) + Vus2)i+2) + Ungrn)-  (AL)
Vigj+2) + Vi+2)j+2) = 0

Recall that in this example, all ¥y;, V(ir1)(j+1); Yn(j+1), and Pgito)(j1+2) are greater than 0.
Next, we rewire (v;, v;, wi;) and (Vip1, Vi1, Wesny+1)) With Aw = min{tj, Ypnygan - I
;; becomes 0, the rewiring is completed; Otherwise, we will rewire (v;,v;, w;; — Aw) and
(Vig2, Vj2, Wiy2)(j+2)) and continue in this fashion until +;; reaches 0, which is guaranteed
pertaining to Equation (A.1).
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Algorithm 1: Pseudo codes of the SSRP algorithm.

Input: Initial adjacency matrix W
target adjacency matrix A.
Output: Rewiring record R.
Algorithm:
n <— number of rows (or columns) of W
Initialize an empty list of rewiring steps R;
U W —A;
fori=1ton—1do

larger magnitude earlier */
for j=1ton—1do
‘ U, R < Rewire(W¥,R,1,7,n);
end

end
return R;

/* Possibly insert a reorder step here to put elements with

Function Rewire:

Input: Matrix ¥,
rewiring record R;
row and column indices ¢ and j;
number of rows n.

Output: Updated ¥ and R.

for k=i+1tondo

for =35+ 1tondo

if ¢ij > ( then

‘ Aw < min();;, max(0, ¢y;));
else if 1;; < 0 then

if ¢;; == 0 or Aw == 0 then
‘ Continue to the next [;

pij = i — Aw ;
Y — Y — Aw;
Vi — Y + Aw;

Yrj < Uy + Aw;

if Aw > 0 then

‘ Append (i, 7, k, [, Aw) to R;
else

‘ Append (i,1, k, j, —Aw) to R;

end

end
return ¥, R;

‘ Aw A max(wiju min(07 _¢i,l)7 min<07 _wk,J))v

/* Update W x/

/* Record rewiring step */
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