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We present Einstein coefficient spectra and a detailed-balance derivation of generalized
Einstein relations between them that is based on the connection between spontaneous
and stimulated emission. If two broadened levels or bands overlap in energy, transitions
between them need not be purely absorptive or emissive. Consequently, spontaneous
emission can occur in both transition directions, and four Einstein coefficient spectra
replace the three Einstein coefficients for a line. At equilibrium, the four different
spectra obey five pairwise relationships and one lineshape generates all four. These
relationships are independent of molecular quantum statistics and predict the Stokes’
shift between forward and reverse transitions required by equilibrium with blackbody
radiation. For Boltzmann statistics, the relative strengths of forward and reverse
transitions depend on the formal chemical potential difference between the initial
and final bands, which becomes the standard chemical potential difference for ideal
solutes. The formal chemical potential of a band replaces both the energy and
degeneracy of a quantum level. Like the energies of quantum levels, the formal
chemical potentials of bands obey the Rydberg-Ritz combination principle. Each
stimulated Einstein coefficient spectrum gives a frequency-dependent transition cross-
section. Transition cross-sections obey causality and a detailed-balance condition with
spontaneous emission, but do not directly obey generalized Einstein relations. Even
with an energetic width much less than the photon energy, a predominantly absorptive
forward transition with an energetic width much greater than the thermal energy can
have such an extreme Stokes’ shift that its reverse transition cross-section becomes
predominantly absorptive rather than emissive.

Einstein coefficients | line broadening | free energy | Stokes’ shift | luminescence

Einstein’s relationships between single-photon absorption, stimulated emission, and
spontaneous emission (1–4) conflict with the time-energy uncertainty principle (5, 6) by
ascribing a finite lifetime to the upper state of an infinitely narrow spectroscopic line. Since
all quantum levels are radiatively broadened (7), a generalization of Einstein’s treatment is
needed. This paper presents an internally consistent treatment of the thermal equilibrium
relationships between absorption, stimulated emission, and spontaneous emission that
obeys detailed balance and causality and is compatible with the time-energy uncertainty
principle.

Beyond practical use of the same lineshape for narrow absorption and emission
transitions (3, 4, 8), all detailed-balance attempts to generalize Einstein’s absorption-
emission relations treat only one of two essential difficulties. First, transitions with
widths comparable to the average transition photon energy create the difficulty that the
range of final–initial energy differences spreads across zero; Van Vleck, Weisskopf, and
Margenau treated such transitions in the limit of width very much less than the thermal
energy (9, 10). Second, transitions with widths comparable to the thermal energy create
the difficulty that equilibrium within the initial level affects absorption and emission
differently; McCumber treated such transitions (11), but his treatment has previously
unstated restrictions that limit the width compared to the transition photon energy
and the thermal energy. Our prior introduction of three Einstein coefficient spectra
for transitions between two broadened levels (12) has the same unstated restrictions as
McCumber’s. The combination of both difficulties is illustrated in Fig. 1, which also
shows spectra of possible transition frequencies for increasing level widths. Prior attempts
to generalize have not simultaneously treated both essential difficulties, nor have they
demonstrated, as Einstein (1) and Milne (13) did, that equilibrium with blackbody
radiation drives molecular translational equilibrium.

The derivation of generalized Einstein relations between Einstein coefficient spectra
presented here uses detailed balance and quantum properties of light to obtain powerful
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Fig. 1. Transitions between two bands for three different amounts of band
broadening. In all three columns, the thermal energy is kBT /h�sr = 1/2
and the density of states ratio is �S :�R = 2:1. In each column, both bands
have the same Gaussian band broadening with standard deviation �E. (A)
Infinitely narrow bands or quantum energy levels as in Einstein’s theory for
line spectra; �E/h�sr = 0. (B) Broadened bands in which energetic overlap
between bands can be practically neglected, as in McCumber’s relationship
between cross-sections; �E/h�sr = 1/8. (C) The general case of energetically
overlapping bands with widths comparable to the thermal energy treated
here; �E/h�sr = 1/3. Within each column, the density of states for both
bands is shown in grayscale at left, the R to S transition is in the middle
(upward blue arrow from blue thermal population distribution in R to gray
density of states in S), and the S to R transition is at right (downward red
arrow from red thermal population distribution in S to gray density of states
in R). E is the molecular energy. In each column, the lower panels (D–F )
show the corresponding spectra of signed Bohr transition frequencies arising
from double-convolution of the conditional thermal population distribution
in the initial band and the density of states in the final band with a photon
+ molecule energy-conserving delta function. Thick blue curves show the
spectrum for the transition from R to S (mostly absorption at positive
transition frequencies) and thick red curves show the spectrum for the
transition from S to R (mostly emission at negative transition frequencies).
To highlight the Stokes’ shift, thin red curves show the S to R spectrum
on a frequency-reversed axis. In (A and D), the absorption and emission
photon energies are equal. In (B and E), the frequency-reversed emission
spectrum is centered slightly below the overlapping absorption spectrum
(Stokes’ shift). In (E), R to S transition frequencies are practically confined
to positive frequencies (absorption) and S to R transition frequencies are
practically confined to negative frequencies (emission). In (C and F ), there
is a larger Stokes’ shift, and some configurations within band S lie below
thermally populated configurations within band R, so that the spectrum of R
to S transition frequencies in (F ) extends across zero frequency, involves both
absorption and emission, and is unclassifiable as either. The spectrum of S
to R transition frequencies in (F ) extends even further across zero frequency,
and is also unclassifiable as either emission or absorption.

thermodynamic relationships between spectra—molecular quan-
tum and statistical mechanics are not used. In particular, molec-
ular energy levels and Bohr transition frequencies play no role
in the derivation and transition frequencies are not assumed to
obey the Bohr frequency condition. For infinitely narrow levels,
a molecular Boltzmann distribution, and Einstein’s quantum
conditions, the generalized Einstein relations give Einstein’s
results and the Bohr frequency condition. In this paper, we use
the phrase Bohr transition frequency and simplified quantum
models only to motivate the form of the spectra, illustrate how
quantum results can be used in a kinetic and thermodynamic
theory of spectroscopy, and argue that an extreme consequence
of the generalized Einstein relations is necessary.

Hypotheses

Here, we treat thermal equilibrium transitions between bands
in molecules. Molecules may be any finite-sized single-photon
absorber made up of bound particles: an atom in vacuum, a

molecule in solution, a protein (even one containing multiple
pigments), a single many-body system, etc. Einstein’s infinitely
narrow quantum levels are generalized to broadened molecular
bands. Each band has a thermodynamic equilibrium population
and must encompass coherent molecule-environment evolution
during radiative transitions so that any single-photon transition
ends within one band. Molecules often equilibrate among con-
stituent forms that can be separately quantified but not physically
separated (14). IUPAC allows a “molecular entity” to specify
the molecule plus structural and/or quantum characteristics
that are conserved on the timescale of an experiment. The
calculation of total absorption from a sum over bands requires
that each quantum state or thermodynamic molecular entity
belongs to one and only one band. We will treat a band as
a thermodynamic constituent on a spectroscopic measurement
timescale; the equilibrium properties of a band depend on
thermodynamic properties such as temperature and pressure.

From a quantum perspective, each band incorporates coupled
states that share a common characteristic or characteristics; from a
thermodynamic perspective, those same characteristics partition
the molecular population among bands. Within each band, all
remaining degrees of freedom for molecule, environment, and
radiation are noncharacteristic and freely variable. For example,
with a molecular electronic state (including spin) as the common
characteristic of a band, the accompanying vibrational, rotational,
solvent, and radiation field degrees of freedom are noncharacter-
istic and freely variable. If a band incorporates several electronic
states (for example, by specifying the number of electrons n and
holes p in a small piece of semiconductor), the electronic state
within the band becomes noncharacteristic and freely variable.

Unlike quantum levels, two broadened bands can overlap in
energy so that a transition between them in one direction (for
example, R → S) can involve both absorption and emission;
as a result, the molecular transition is unclassifiable as either.
In such cases, we speak of forward and reverse molecular
transitions. The energetic overlap between two bands that makes
transitions between them unclassifiable in practice is common
in transitions between excited electronic states of molecules
and between excited bands in semiconductors. Since thermal
excitations within a band (such as phonon or vibrational energy
levels within an electronic band or state) often have no energetic
upper bound, energetic overlap between bands is typical even
when it is not practically important. Even if a molecular transition
between two bands is unclassifiable, each single-photon transition
between the two bands can still be classified as absorption or
emission according to whether it annihilates or creates a photon.
It is convenient to use the sign of the cyclic frequency to
distinguish photon absorption (� > 0) from photon emission
(� < 0). Since every broadened molecular transition can involve
stimulated emission, every broadened molecular transition can
also occur by spontaneous emission.

To accommodate energetically overlapping bands, we replace
Einstein’s set of three nonnegative coefficients for an infinitely
sharp spectroscopic line with a set of four nonnegative Einstein
coefficient spectra for transitions between two bands R and S.
The integrals of these spectra give Einstein coefficients:

BS→R(p, T ) =
∫ +∞

−∞

bS→R(�, p, T )d�,

(stimulated transition from S to R)
[1a]

AS→R(p, T ) =
∫ +∞

0
a�S→R(−�, p, T )d�,

(spontaneous transition from S to R)
[1b]
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BR→S(p, T ) =
∫ +∞

−∞

bR→S(�, p, T )d�,

(stimulated transition from R to S)
[1c]

AR→S(p, T ) =
∫ +∞

0
a�R→S(−�, p, T )d�.

(spontaneous transition from R to S)
[1d]

All four Einstein coefficient spectra depend on pressure p,
temperature T , system composition, and external potentials
or fields, but we have omitted system composition, external
potentials, and fields from the notation for simplicity. We have
avoided labeling the stimulated transitions as either absorption
or emission. Spontaneous emission spectral densities have a right
superscript �.* The transition in Eq. 1d would not occur for
infinitely narrow levels with S above R, but is appreciable for
the situation in Fig. 1 C and F. Finally, this approach includes
intraband transitions within a single band, where R = S and only
two Einstein coefficient spectra exist.

The fundamental hypothesis of this paper assumes that the
conditional transition probabilities per unit time for a molecule
in band S to make a single-photon transition to band R are:

bΓS→R(u�+; p, T )

=
∫ +∞

0
[bS→R(�, p, T ) + bS→R(−�, p, T )]u�+(�)d�,

(stimulated)

[2a]

aΓS→R(p, T ) =
∫ +∞

0
a�S→R(−�, p, T )d�,

(spontaneous)
[2b]

where u�+(�) is the positive-frequency spectral density of elec-
tromagnetic energy per unit volume. In Eq. 2a, the first product
inside the integral represents absorption from S to R and the
second product represents stimulated emission from S to R.
The use of conditional transition probabilities per unit time
assumes weak molecule–field coupling. The simple form of
Eq. 2 assumes that molecules are isotropic or pseudoisotropic
through time-averaging (1) (so that a and b are independent
of electromagnetic polarization vector " and wavevector k) and
assumes a homogeneous and isotropic medium (1). The total
conditional transition probability per unit time for a single-
photon transition from S to R is

ΓS→R(u�+; p, T ) = bΓS→R(u�+; p, T ) + aΓS→R(p, T ). [3]

The same expressions, with band subscripts interchanged, hold
for molecular transitions from R to S. These expressions reduce
to Einstein’s for infinitely narrow lines.

Einstein’s derivation of relationships for line spectra in vacuum
explicitly supposed that the A and B coefficients are constants.†
Since equilibrium bands and spectra depend on temperature,
the generalized Einstein relations must be derived differently.
A fundamentally different derivation is necessary even for

*A spectral density is characterized by invariant integrals over corresponding variable
ranges and thus transforms under the change of variables theorem as a�(�) =
a!(! =2��)(d!/d�). In contrast, a spectrum is invariant with b(�) = b(! =2��).
†Einstein explicitly stated that the statistical weights (called level degeneracies here) are
numbers, independent of temperature, and that the A and B coefficients are constants.
We think that Einstein’s derivation uses an implicit assumption that the more clearly
quantum mechanical A and B coefficients, energy-level difference Es − Er , and level-to-
level transition frequency �sr are independent of temperature.

radiatively broadened transitions of a single molecule in infinite
vacuum because emission that is stimulated by temperature-
dependent blackbody radiation dominates over spontaneous
emission for frequencies � < ln(2)kBT /h (15). As a result,
radiative lifetimes and radiative linewidths are temperature
dependent (8, 16), so that Einstein coefficient spectra always
depend on temperature. Only the pressure dependence in Eqs.
1–3 disappears in vacuum.

We now consider what can be deduced at a single temperature
and pressure from radiative transitions between a pair of
broadened bands at equilibrium. At equilibrium, there is no
distinction between the forward and backward direction of time
for molecular processes (17–19). This time-reversal invariance
is necessary for equilibrium and underlies detailed balance
(20, 21). Detailed balance allows multiple molecular relaxation
mechanisms to proceed simultaneously and demands that each
molecular relaxation mechanism, all by itself, must generate
the same equilibrium. Detailed balance between time-reversed
processes at equilibrium demands not only that the integrated
rates from Eqs. 2 and 3 for radiative transitions from S to R
balance the integrated rates for radiative transitions from R to S,
but further demands that, over any frequency interval, the rate for
equilibrium total emission (spontaneous plus stimulated) from S
to R must exactly balance the rate for its time-reversed process,
which is equilibrium absorption from R to S over the same
frequency interval. Because it requires time-reversal invariance,
this detailed balance can be violated, for example, in a fixed
external magnetic field or if the entire system is rotating (21).‡

For a single molecule, each time-averaged equilibrium rate
is equal to the product of the equilibrium probability for the
prior condition of occupying the initial band [for example,
eqPS(p, T ) for band S] with the equilibrium conditional transi-
tion probability per unit time. For any bands R and S, detailed
balance between time-reversed processes at equilibrium equates
the single-molecule, time-averaged equilibrium rate for total
emission from S to R to the single-molecule, time-averaged
equilibrium rate for absorption from R to S:

eqPS [bS→R(−�)u�BB+(�) + a�S→R(−�)]d�
= eqPRbR→S(�)u�BB+(�)d�, [4]

where u�BB+(�, p, T ) is the positive-frequency spectral density of
blackbody radiation per unit volume and the frequency interval
d� can be as small as we like. Every quantity in Eq. 4 is a function
of the thermodynamic variables (p, T , etc.) and these must be
the same throughout but have been suppressed to emphasize
the frequency where it appears. Similarly, the time-averaged
equilibrium rate for total emission from R to S must equal the
time-averaged equilibrium rate for absorption from S to R, but
this result is obtained from Eq. 4 by exchanging band labels. Eq. 4
also applies to intraband transitions with R = S. Eq. 4 preserves
both equilibrium band populations and equilibrium photon
numbers and can also be derived by balancing both. Einstein’s
detailed-balance treatment (1) appeared to be objectionable
because it combined two different rate laws on one side but
not the other (19), as on the left and right of Eq. 4; this apparent
inconsistency was first resolved by Bothe (15) and his resolution
will be needed for the derivation in the next section.

‡For transitions between quantum states, complex-conjugate Hermitian matrix elements
can be used to directly connect rate constants for absorption from and emission into a
single mode without requiring time-reversal invariance. This approach is used in ref. 11.
However, these single-mode rate constant relationships from Hermitian matrix elements
do not guarantee spatial equilibrium—see Radiative Thermalization and footnote¶ below.
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Solving Eq. 4 for the equilibrium blackbody radiation gives

u�BB+(�, p, T ) =

[
a�S→R(−�, p, T )
bS→R(−�, p, T )

]
[ eqPR(p, T )bR→S(�, p, T )

eqPS(p, T )bS→R(−�, p, T )

]
− 1

. [5]

Assuming dilute molecules and that any cavity surrounding the
sample is large (so that the density of modes becomes continuous)
(1), the Planck blackbody radiation spectral density may be
written in terms of the positive frequency spectral density of
electromagnetic modes per unit volume G�

+(�, p, T ):

u�BB+(�, p, T ) =
h�G�

+(�, p, T )
exp(h�/kBT )− 1

, [6]

where h is the Planck constant and kB is the Boltzmann constant.
For example, a linear, homogeneous, and isotropic sample that is
weakly dispersive and (approximately) transparent has (22, 23)

G�
+(�, p, T ) = 8��2[n(�)]2[∂(�n(�))/∂�]�(�)/c3, [7]

where c is the speed of light in vacuum, the refractive index
n depends on frequency, pressure, temperature, composition,
etc. (p, T , etc. have been suppressed), and �(�) is a Heaviside
unit step function that restricts � ≥ 0. If we directly assume
(without derivation) that the Planck law describes the average
spectral density of radiation at thermal equilibrium (SI Appendix,
Text—Derivations of the Planck Law), comparing Eqs. 5 and 6
immediately suggests the generalized Einstein relations:

a�S→R(−�, p, T ) = h�G�
+(�, p, T )bS→R(−�, p, T ),

bS→R(−�, p, T ) =
eqPR(p, T )
eqPS(p, T )

bR→S(�, p, T ) exp(−h�/kBT ).

However, additional physical considerations are necessary to
justify detailed balance between absorption and stimulated plus

spontaneous emission in Eq. 4 and to establish these relations as
the unique solution to Eq. 4.

Derivation

Fig. 2 shows the flow of a derivation that depends on two
fundamental physical assumptions: First) that a photon has
energy E = h�; Second) that stimulated and spontaneous
emission are two aspects of a single emission process in which,
for each mode (",k) of the electromagnetic field, the conditional
transition probability for emission is proportional to (l",k +
1), where l",k is the number of photons initially present in
mode (", k). Bothe (15) identified the part of the conditional
transition probability which is proportional to l",k as stimulated
emission and the part which is proportional to 1 as spontaneous
emission. Spontaneous emission of a photon can occur into
any electromagnetic mode with a transition probability that
is independent of the number of photons initially present in
that mode. Bothe’s recognition that there is fundamentally one
emission process [for example from (S, l",k) to (R, l",k + 1)]
with a transition probability proportional to (l",k + 1) for each
mode (15) was proven by Dirac (24) and justified Einstein’s
apparently objectionable (19) step of equating the sum of the
two emission rates to the absorption rate when invoking detailed
balance. It justifies taking total emission from S to R as the
time-reversal of absorption from R to S in Eq. 4. Fundamen-
tally, this single-photon transition probability proportional to
(l",k + 1) arises from a quantum electrodynamic treatment of
the electromagnetic fields as linear harmonic oscillators (24, 25).
This proportionality is common to all single-photon transitions,
so there is no need to specify the molecule–field interaction
further (in particular, the results do not depend on a multipole
expansion, let alone a specific electric or magnetic multipole
transition order).

Based on the second fundamental physical assumption above,
the conditional transition probability per unit time for total
emission involves sums of the form

Eq. (14)b: GER

Eq. (14)a:  aem & bem

Eq. (4): a, b & BB+

Eq. (2):  Γ, a & b

Eq. (11):  +{lε,k}

Eq. (12):  +

#1) Einstein coefficient spectra

#2) weak coupling, dilute molecules

#3) linear, homogeneous, isotropic

#4) molecular pseudo-isotropy

#5) Ephoton = hν

#6) lε,k stimulated +1 spontaneous

#7) any cavity is large

#8) time-reversal detailed balance

#9) Planck ΒΒ+ Eq. (6)

Fig. 2. Flow of detailed-balance derivation of the generalized Einstein relations. Nine assumptions are in black bordered boxes at Left, with thick borders
for the hypothesis and fundamental assumptions and thin borders for simplifying assumptions that could be modified. The tie bars at the Left indicate prior
assumptions that are required for later assumptions. Left to Right and Top to Bottom, the colored arrows show how assumptions combine to generate results
in boxes with the same-colored border and how assumptions and prior results combine to generate further results. Light blue shading within a box indicates
a previously known result.
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emΓS→R =
∑
", k,l

P",k(l",k)�S→R(", k)(l",k + 1)

=
∑
",k,l

P",k(l",k)�S→R(", k)l",k +
∑
",k

�S→R(", k),

[8]

where P",k(l",k) is the probability that mode (", k) with positive
frequency �k contains l",k photons before the emission transition
and �S→R(", k) is determined by the molecular transition and
the unspecified initial configuration within band S. The second
sum after the second equality was simplified using the unit sum
of photon-number probabilities for each mode:

∞∑
l=0

P",k(l",k) = 1. [9]

Assuming that the isotropic medium is linear and that the
photon energy is h�, Eqs. 2a and 8 combine to require that
we define the isotropic equilibrium B-coefficient spectrum for
stimulated emission by averaging over all modes with frequency
�k for an equilibrium initial configuration within band S:〈eq�S→R(", k)

〉
",k = bS→R(−�k, p, T )h�k/V . [10]

With Eq. 10, the first sum after the second equality in Eq. 8
contains, in the limit of large volume V ,∑

",k,l

P",k(l",k)h�kl",k

V
=
∫

u�+(�)d�, [11]

where u�+ is the average spectral density of electromagnetic energy
per unit volume that appears in Eq. 2a. Similarly, the second sum
after the second equality of Eq. 8 contains∑

",k

h� k
V

=
∫

h�G�
+(�, p, T )d�, [12]

where G�
+ is the spectral density of electromagnetic modes per

unit volume that appeared in the Planck blackbody radiation
spectral density. Using Eqs. 8–12, the conditional transition
probability per unit time for total emission becomes

emΓS→R =
∑
", k,l

bS→R(−�k, p, T )[P",k(l",k)h�k(l",k + 1)/V ]

=
∫ +∞

0
bS→R(−�, p, T )[u�+(�) + h�G�

+(�, p, T )]d�,

[13]

in which the integral of the first product after the second
equality is the conditional transition probability per unit time
for stimulated emission from S to R in Eq. 2a and the integral
of the second product after the second equality is the conditional
transition probability per unit time for spontaneous emission
from S to R in Eq. 2b. This last identification proves the first
generalized Einstein relation:

a�S→R(−�, p, T ) = h�G�
+(�, p, T )bS→R(−�, p, T ). [14a]

For any given transition, the spectral density for spontaneous
emission is equal to the product of the photon energy, the
spectral density of electromagnetic modes per unit volume, and
the Einstein B-coefficient spectrum for stimulated emission. As

can be seen from Fig. 2, Eq. 14a does not depend on assuming
detailed balance or Planck blackbody radiation, it results directly
from the electromagnetic mode density connection between
spontaneous and stimulated emission.

With Eq. 14a proven, Eqs. 5 and 6 uniquely establish the
generalized Einstein relation between the stimulated reverse
transition from S to R and the stimulated forward transition
from R to S:

bS→R(−�, p, T ) =
eqPR(p, T )
eqPS(p, T )

bR→S(�, p, T ) exp(−h�/kBT ).

[14b]

Except in special circumstances, this single-molecule relationship
does not necessarily hold between the average spectra of an
inhomogeneous sample (12). If all of S lies energetically above
all of R, then the forward transition from R to S is absorption
and the reverse transition from S to R is stimulated emission. At
thermodynamic equilibrium, the time-averaged, single-molecule
results of Eq. 14 are valid for any temperature above zero.

For interband transitions, Eq. 14 provides five pairwise
relationships between the four spectra in Eq. 1. Although
6 = 4·3/2 pairwise relationships are possible among four spectra,
there is no direct sixth relationship between the two A-coefficient
spectral densities. In principle, either B-coefficient spectrum
determines its A-coefficient spectral density and determines both
reverse spectra up to a common constant multiplier eqPS/

eqPR ,
so it determines all four lineshapes. (Unlike spectra, lineshapes
such as bS→R(�)/BS→R contain no information about transition
strength.) Alternatively, if both A-coefficient spectral densities are
nonzero, they can determine all four spectra.§ If one A-coefficient
spectral density were zero, Eq. 14 would provide three pairwise
relationships among the three nonzero spectra, paralleling the
three pairwise relationships among the three Einstein coefficients
for line spectra. For a nonzero linewidth, the Einstein coefficients
need not obey Einstein’s relationships.

Intraband transitions with R = S have only two Einstein
coefficient spectra. For intraband transitions, Eq. 14a re-
lates a�R→R(−�) to bR→R(−�)�(�) and Eq. 14b constrains
bR→R(−�) = bR→R(�) exp(−h�/kBT ) at equilibrium. As a
result, any one half-spectrum determines all three nonzero half-
spectra for intraband transitions.

Einstein’s Special Case. Einstein considered a stationary molecule
that is isolated in vacuum and has infinitely narrow line
transitions between idealized energy levels (r and s) with
temperature-independent quantum properties.† It will be shown
here that imposing Einstein’s temperature-independent quantum
properties and intramolecular Boltzmann distribution on Eq. 14
gives the Bohr frequency condition and Einstein’s relations for
line spectra.

For a single isolated molecule, the intramolecular Boltzmann
probability ratio for occupation of levels s and r is

(eqPs/
eqPr) = (gs/gr) exp[−(Es − Er)/kBT ],

where Es and gs are the quantum energy and degeneracy of level
s. For transitions between energy levels of a single molecule in
vacuum, Eq. 14b becomes

§If both A-coefficient spectral densities are nonzero, a B-coefficient spectrum that is
nonzero and continuous in a neighborhood of � = 0 determines the ratio eqPR/eqPS
by continuity there; otherwise, it remains as an unknown common constant multiplier
between forward and reverse spectra so that only the lineshape is determined for the
reverse spectrum.
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gsbs→r(−�, T )
= grbr→s(�, T ) exp[−(h� − (Es − Er))/kBT ]. [15]

Einstein’s derivation requires a single (as yet unspecified)
frequency �sr for transitions between r and s, so that

br→s(�, T ) = Br→s�(� − �sr)

and
bs→r(−�, T ) = Bs→r�(� − �sr).

Following Einstein (1), we require that the quantum level
degeneracies, B coefficients, energy level difference, and tran-
sition frequency �sr are constants, independent of temperature.†
Substituting the above spectra, integrating both sides of Eq. 15,
and using Eqs. 1c and 1a gives

gsBs→r = grBr→s exp[−(h�sr − (Es − Er))/kBT ].

Since the quantum properties are all independent of temperature,
we immediately obtain the Bohr frequency condition,

�sr = (Es − Er)/h,

and Einstein’s absorption-stimulated emission relation for line
spectra in vacuum,

gsBs→r = grBr→s.

Using the spectral density of modes from Eq. 7 with vacuum
refractive index n = 1, and substituting Eq. 14a into Eqs. 1a and
1b, we see that it reduces to Einstein’s spontaneous-stimulated
emission relation

As→r = (8�h�3
sr/c3)Bs→r .

As in Einstein’s treatment (1), the Bohr transition frequency
emerges as a consequence of an intramolecular Boltzmann
distribution and his requirement that properties of idealized
infinitely narrow quantum levels be constants, independent of
temperature; conservation of energy was not directly invoked.
None of the additional requirements or results of this subsection
are used elsewhere in this paper except to discuss Einstein’s special
case in Spectroscopic Thermodynamics.

Results
Radiative Thermalization. The generalized Einstein relations are
a consequence of imposing equilibrium with Planck blackbody
radiation and equilibrium band probabilities (which remain
undetermined at this point) on hypothesized rate expressions
for single-photon transitions. Following Einstein (1), if our
hypothesis and assumptions are correct, the resulting molecule–
radiation interaction must, all by itself, drive both radiatively
coupled molecular degrees of freedom and radiation field to a
dynamic equilibrium that agrees with the theory of heat. In this
section, we show that the generalized Einstein relations have
implications, beyond those directly mandated by hypothesis and
assumptions, for molecular equilibrium within bands, molecular
translation, and the equilibrium photon number distribution at
each frequency.

The factor of exp(−h�/kBT ) on the right-hand side of
Eq. 14b red-shifts stimulated emission to lower frequencies than
absorption. As illustrated in Fig. 1 D–F, this frequency shift
becomes significant for linewidths that are appreciable compared

to the thermal energy kBT . This Stokes’ shift between absorption
and emission (26) was first qualitatively explained by Einstein
as caused by thermal dissipation of excess molecular energy
after excitation by one photon and before emission of another
(27, 28). Here, we have found the quantitative form of the Stokes’
shift that is required for equilibrium with Planck blackbody
radiation. In particular, it holds for radiative line broadening
in vacuum, where excitation by blackbody radiation and energy
conservation directly dictate the total thermal emission spectral
density so that it differs from that produced by nonequilibrium
resonance fluorescence with spectrally flat excitation (25). This
equilibrium result for purely radiative broadening does not
require equilibration within the upper band before emission.
As illustrated in Fig. 1, this Stokes’ shift is generated by
different thermal equilibrium distributions within the initial
band for absorption transitions vs. emission transitions. A Stokes’
shift between absorption and stimulated emission cross-sections
of similar form (without negative frequencies and the signed
cross-sections to be used below) has been previously obtained
from an equilibrium Boltzmann distribution for quantum-level
occupation probabilities within each band (see ref. 11 and
references cited in ref. 12); this prior result is subject to two
additional restrictions to be developed below. In contrast, we have
not presumed anything about linewidth, molecular quantum
statistics, or the equilibrium energy distribution within a band—
rather, equilibrium with Planck blackbody radiation generates,
all by itself, a Stokes’ shift that reflects equilibrium energy
distributions within bands from the theory of heat. Eq. 14b
demonstrates that the equilibrated Stokes’ shift always has the
same form when written in terms of Einstein B-coefficient
spectra.

Although no assumptions have been made about the molecular
quantum statistics, Eqs. 2, 6, and 14 predict the translational
velocity probability distribution for a single molecule in field-free
vacuum. Einstein proposed that a molecule in vacuum always
directionally absorbs or emits a photon with momentum of
magnitude h� /c into a single mode (1). Einstein demonstrated
that momentum conserving, completely directional absorption
and emission in a vacuum blackbody radiation field do not
disturb the average translational kinetic energy of a Maxwell–
Boltzmann velocity probability distribution when Doppler fre-
quency shifts, transformation of the electromagnetic energy
density, aberration, and the molecular photon recoil are taken
into account (to first order in v/c) in the molecular rest frame
(1). Einstein treated molecular translation with nonrelativistic
classical mechanics and found that the average linear dissipative
drag from net absorption steadily damps the molecular velocity,
but that random fluctuations in velocity from photon recoil
counterbalance the drag to sustain equilibrium. There are no
essential difficulties in using Einstein coefficient spectra to adapt
Einstein’s demonstration (SI Appendix, Text–Adapting Einstein’s
Derivation). One can then adapt Milne’s completion of Einstein’s
treatment (13) to calculate how vacuum blackbody radiation
drives any nonequilibrium velocity distribution to the ther-
mal equilibrium Maxwell–Boltzmann probability distribution.
Finally, Einstein’s theory of Brownian motion (29) can be
used to calculate how vacuum blackbody radiation drives any
nonequilibrium molecular spatial distribution to the spatially
uniform equilibrium probability distribution. This demonstrates
(to first order in v/c) that Einstein coefficient spectra in the
molecular rest frame combine with vacuum blackbody radiation
to drive translational equilibrium in the rest frame where
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blackbody radiation is isotropic.¶ # Einstein’s demonstration was
based on an intramolecular Boltzmann distribution for quantum
level occupation probabilities (1). In contrast, the only statistical
assumption that entered the derivation here was equilibrium
with homogeneous and isotropic Planck blackbody radiation,
but the vacuum Planck law requires infinitely dilute molecules
in free space, so the quantum statistical consequences of that
requirement appear here.

Bothe (15) used Einstein coefficients for line spectra to obtain
the Bose photon number distribution at each frequency (30) for
the blackbody radiation field by treating all emission as a single
process and requiring, for each frequency and each l , detailed-
balance equality between the equilibrium total rate for absorption
from all modes with (l + 1) photons and the equilibrium total
rate for emission from all modes with l photons. There are
no essential difficulties with using Einstein coefficient spectra
and the generalized Einstein relations in Bothe’s argument (SI
Appendix, Text–Adapting Bothe’s Derivation), which is based on
a stronger form of detailed balance than Eq. 4. At each frequency,
this adaptation of Bothe’s argument obtains the equilibrium
distribution of blackbody radiation photon numbers from the
average blackbody radiation photon number (used in deriving the
generalized Einstein relations) and the light–matter interaction.
Again, no assumptions about molecular quantum statistics are
needed.

Transition Cross-Sections. Einstein coefficient spectra directly
obey detailed balance and the generalized Einstein relations,
but are asymmetric with respect to zero frequency so that their
relationship to causality is an indirect one through transition
cross-section spectra. If the molecules in an ensemble are
isotropically oriented on average and absorb independently
of each other (SI Appendix, Text–Conditions for Independent
Molecular Absorption), the Einstein B-coefficient spectra for
isotropic and unpolarized light can be used to calculate net
absorption from a polarized beam of light. If, in addition, the
solution is homogeneous and uniform in the electromagnetic
sense,|| the beam of light is normally incident, and the beam
of light is so weak that band populations and distributions
practically remain at equilibrium, then the Beer–Lambert law
holds. For a beam of light, the steady-state spectral irradiance is

I �+(�, z) = u�+(�, z) · v1(�, p, T ), [16]

where the energy transport velocity v1 reduces to the group
velocity vg(�, p, T ) = c/[∂(�n(�))/∂�] in weakly dispersive
transparent media (31). Taking into account loss and gain in
the electromagnetic equation of continuity, propagation of the
spectral irradiance with sample depth z involves a sum over all
transitions from all initial bands

I �+(�, z)
I �+(�, 0)

= exp

−∑
R,S

NR�R→S(�, p, T )z

 , [17]

¶ McCumber showed that balancing absorption from and emission into the same
electromagnetic mode (",k) preserves the molecular velocity distribution (11). We note
that single-mode balancing allows an inexorable displacement of the spatial distribution
along k due to the transient photon-recoil increase in molecular momentum while in
the excited state; single-mode balancing is insufficient to guarantee spatial equilibrium. In
contrast, the derivation presented here shows that spatial equilibrium results from spatial
homogeneity, isotropy, and time-reversal detailed balance.
#The convection of light complicates the analogous demonstration for molecules moving
inside matter.
||Solute molecules must be much smaller than the wavelength of light for a solution to be
uniform in the electromagnetic sense.

where NR is the molecular number density in initial band R, and
each transition cross-section spectrum is

�R→S(�, p, T )
= h�[bR→S(�, p, T )− bR→S(−�, p, T )]/v1(�, p, T ). [18]

For positive frequency �, b(�) represents absorption and b(-�)
represents stimulated emission. The transition cross-section is
positive for net absorption and negative for net stimulated
emission. In contrast to prior work, each transition cross-section
includes the opposite effects of photon number losses from ab-
sorption and gains from stimulated emission that both originate
from a single B-coefficient spectrum. The sum in Eq. 17 includes
intraband transitions with R = S. Compared to the usual formula
in which all cross-sections are defined as positive (8), Eqs. 17 and
18 algebraically distinguish absorption from stimulated emission
through the sign of the transition cross-section.

Fig. 3 shows a pair of B-coefficient spectra that obey the
generalized Einstein relation, the transition cross-section for
each, and the corresponding A-coefficient spectral densities.
For transitions between a pair of bands, if one B-coefficient
spectrum is confined to positive transition frequencies and the
other B-coefficient spectrum is confined to negative transition
frequencies, then McCumber’s broadband relations between
absorption and stimulated emission cross-sections (11) become
accurate for the homogeneously broadened laser transitions that
motivated his pioneering work. This requires linewidths that
are narrow compared to the average photon energy in both
absorption and emission (the “if” condition above requires a
second necessary restriction on the linewidth to be introduced in
Extreme Stokes’ Shifts). The forward and reverse transition cross-
sections in Fig. 3 illustrate a departure from McCumber’s relation
outside its limit of validity.

Up to this point, negative transition frequencies have referred
to stimulated emission and the frequency of the electromagnetic
field has always been positive. Eqs. 16–18 are equally valid for
positive and negative electromagnetic field frequency �. From this
point on, this allows us to adopt the complex-valued exponential
Fourier transform view in which positive and negative frequencies
(rather than sines and cosines) are needed to form a complete basis
for the electromagnetic fields. Eqs. 16–18 have the same form for
a positive-frequency spectral irradiance or for a spectral irradiance
that is an even function of frequency over the entire real axis. Since
the refractive index, and hence the energy transport velocity, is
an even function of frequency, the transition cross-sections are
defined over the entire real frequency axis as even functions of
frequency: �R→S(−�, p, T ) = �R→S(�, p, T ).

When considered over the entire frequency axis, the physical
interpretation of the two B-coefficient spectra in Eq. 18 must be
expanded. For negative values of the frequency, b(�) represents
stimulated emission and b(-�) represents absorption, so each
changes its nature upon crossing zero frequency. With this
expanded physical interpretation, the two terms in Eq. 18 parallel
the positive and negative frequency terms in the exact rotating
wave decomposition of the impulse response and susceptibility
for interband transitions (32).** In both decompositions, terms
that cross zero frequency indicate that photons can be both
absorbed and emitted in the same molecular transition direction
(34). Wiersma and coworkers have shown that neglecting rotating

**The rotating wave decomposition becomes exact for vanishing bath-induced relaxation
between distinct initial and final bands. In contrast, the generalized Einstein relations and
Eqs. 17–21 also apply to intraband transitions (such as those treated in refs. 9, 10, and
33) in which the bath can induce transitions between “lower” and “upper” levels within a
single band.
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Fig. 3. Low-frequency transitions between energetically overlapping bands.
Top Einstein B-coefficient spectra for R to S (thick blue) and S to R (thick
red) transitions. All spectra shown are completely specified by a Gaussian
lineshape for the mostly absorptiveR to S transition centered at �R→S = 4 THz,
aB coefficientBR→S = e2/(4�0meh�R→S) ≈3.0×1023 m3/J·s2, an equilibrium
population ratio specified by a change in standard chemical potential of
Δ�o

R→S/h = 3 THz, a Stokes’ shift of (2�) = 2 THz and a temperature T =
300 K (kBT/h ≈ 6.2 THz). (The B coefficient is determined from an oscillator
strength fR→S = 1 (see refs. 3 and 4) for the R to S transition. Based on the
other parameters, the S to R transition has oscillator strength fS→R = −1/2.)
Positive transition frequencies indicate absorption and negative transition
frequencies indicate stimulated emission. The thin red curve is the frequency-
reversed B-coefficient spectrum of the S to R transition.Middle The R to S (light
blue) and S to R (pink) transition cross-sections between the two energetically
overlapping bands. Each has both absorption and stimulated emission
contributions that cancel at zero frequency and partially cancel nearby. A
positive transition cross-section represents net absorption and a negative
transition cross-section represents net stimulated emission. Transition cross-
sections are functions of the radiation frequency. The thermally averaged
transition cross-section (dotted magenta) weights each transition cross-
section by the Boltzmann population of the initial band. For simplicity,
R and S are the only bands and the refractive index is n = 1. Bottom
Einstein A-coefficient spontaneous emission spectral densities for the R to
S transition (dashed blue) and S to R transition (dashed red) as functions
of the transition frequency. The initial band population-weighted average
(dot-dashed magenta) is proportional to the spontaneous emission photon
number spectral density.

wave decomposition terms that cross zero frequency by making
the rotating wave approximation generates errors for a model of
the broad visible absorption spectrum of the solvated electron
in water (35), so both terms in Eq. 18 can be simultaneously
important for optical transitions.

We now consider low-frequency behavior and detailed balance
for transition cross-sections. Each transition cross-section in
Eq. 18 is even, so because each B-coefficient spectrum is finite
for a finite-sized molecule, each transition cross-section has a
lowest-order frequency variation as the square of the frequency
(or a higher even power) near zero frequency. This lowest-order
variation with the square of the frequency is an experimentally
verified aspect of the Van Vleck–Weisskopf impact theory

for the pressure-broadened net absorption lineshape in gases
(9, 16, 33).†† Although the Van Vleck–Weisskopf lineshapes are
the only lineshapes justified by a microscopic theory that have
been proven to satisfy detailed balance between absorption and
emission, this agreement is restricted to low-frequency classical
Rayleigh–Jeans blackbody radiation (10). In contrast, Eqs. 4, 6,
14, 16, and 18 show that the cross-sections found here obey
detailed balance with Planck blackbody radiation:

h�[eqPRa�R→S(−�, p, T ) + eqPSa�S→R(−�, p, T )]
= [eqPR�R→S(�, p, T ) + eqPS�S→R(�, p, T )]
· u�BB+(�, p, T )v1(�, p, T ). [19]

For each pair of bands, the equilibrium statistical average of
the spontaneously emitted power is equal to the equilibrium
statistical average rate at which energy is absorbed (absorption
minus stimulated emission) for every frequency.‡‡ Summing
Eq. 19 over all bands gives van Roosbroeck and Shockley’s less
specific relationship (23) between the total rates. A statistical
average spontaneous emission spectral density

〈
a�(�)

〉
and its

corresponding statistical average transition cross section
〈
�(�)

〉
,

which are given by the expressions enclosed in brackets in Eq. 19,
can be compared in Fig. 3. Eq. 19 shows that the fourth Einstein
coefficient spectrum introduced here is necessary to reconcile the
classical and quantum frequency regimes. This more symmetrical
relationship between statistical average spontaneous emission and
statistical average absorption differs practically from all prior
work. With widths comparable to both the photon energy and
the thermal energy, the statistical average spontaneous emission
and the forward and reverse transition cross-sections in Fig. 3 do
not obey the relationships in refs. 9–11. Such transitions occur
in the frequency range useful for thermal imaging (36), where
band populations are quite sensitive to temperature changes.

Causality imposes global requirements [dispersion relations
(37)] on each frequency-dependent transition cross-section and
its associated frequency-dependent phase shift so that transmit-
ted signals cannot precede speed-of-light propagation of their
inputs in the time domain. The transition cross-sections have
even frequency-domain symmetry and are continuous with a
continuous first derivative, as expected for a finite system of
bound charges. Their compatibility with causality thus follows
from Titchmarsh’s theorem (37) and the observation that the
transition cross-sections are square integrable. The phase shift
spectrum associated with a transition cross-section spectrum can
be calculated by Kronig’s method (32, 38).

Spectroscopic Thermodynamics. We can obtain powerful addi-
tional results by allowing the sample to contain many identical
molecules that obey Maxwell–Boltzmann statistics and recog-
nizing that the ratio eqPR/eqPS is an equilibrium constant. For
simplicity, we start by assuming that the molecules in bands R and
S behave as ideal chemical constituents [ideal gas, ideal mixture
(39), ideal solution (14), etc.] so that

eqPS(p, T )
eqPR(p, T )

= KR→S(p, T ) = exp[−Δ�o
R→S(p, T )/kBT ],

[20]
††In ref. 16, the classical Van Vleck–Weisskopf formula may be found in Eqs. 13–16, the
quantum formula in Eqs. 13–19, and comparison to experiment in Fig. 13-4. Ben-Reuven
(33) avoids critical �ij for � substitution errors in ref. 9 to correctly obtain the � 2

proportionality and to demonstrate that the quantum Van Vleck–Weisskopf lineshape
unifies the low-frequency Debye lineshape for dielectrics with the high frequency
Lorentzian lineshape as limiting cases. The quantum Van Vleck–Weisskopf lineshape is the
same for absorption and stimulated emission, and the net absorption lineshape matches
the classical average absorption in ref. 10.
‡‡Van Vleck called similar absorption minus stimulated emission terms “statistical”
because they depend on two different statistical equilibrium initial band probabilities.
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where KR→S is the thermodynamic equilibrium constant for the
thermal equilibrium reaction R→ S,

Δ�o
R→S(p, T ) = �o

S(p, T )− �o
R(p, T ) [21]

is the change in standard chemical potential for R → S, and
�o

S(p, T ) is the standard chemical potential (40) for a molecule
in band S. The standard chemical potential is the per-molecule
form of the standard Gibbs free energy, Go

S = NA�o
S , where

NA is Avogadro’s number. It is an intrinsic material property,
independent of molecular number density. In contrast, the
chemical potential depends on NS , the number density in band S,
the standard chemical potential, and the standard number density
N o as �S(NS , p, T ) = �o

S(p, T ) + kBT ln(NS/N o) (14, 40).
Since this is a unimolecular reaction, the change in standard
chemical potential is independent of the chosen standard states.

There is no essential difficulty in generalizing to nonideal
thermodynamic constituents or the presence of external fields—
then, all quantities in this section depend on the mole fractions
{xi} of the minimum number of chemical components necessary
to specify system composition (14) plus any external fields, the
thermodynamic equilibrium constant KR→S(p, T ) is replaced by
a composition and field-dependent number density equilibrium
constant K N

R→S(p, T, ... xi, ...) = eqNS/
eqNR , and the standard

chemical potentials �o
S(p, T ) are replaced by composition and

field-dependent formal chemical potentials �o′
S (p, T, ... xi, ...).

The term formal chemical potential is used by analogy to nonideal
formal electrode potentials (41), which replace standard electrode
potentials for specified nonstandard conditions.

With Eq. 20, the ideal Boltzmann form of the generalized
Einstein relation in Eq. 14b becomes

bS→R(−�, p, T )
= bR→S(�, p, T ) exp[−(h� − Δ�o

R→S(p, T ))/kBT ].
[22]

The frequency-dependent exp(−h�/kBT ) factor relates the line-
shapes of forward and reverse spectra; the frequency-independent
change in standard chemical Δ�o

R→S relates their magnitudes.
The forward and reverse B-coefficient spectra are equal at the
photon energy equal to the change in standard chemical potential
(as shown in the Top panel of Fig. 3).§§ According to Bohr’s
interpretation of the Rydberg-Ritz combination principle, a small

number of quantum energy levels determines the frequencies
for the larger number of spectroscopic transitions between
those levels (42). Since the standard chemical potential is a
thermodynamic state function, we assert here that standard
chemical potentials of bands will also obey the Rydberg-Ritz
combination principle.

To make contact with Einstein’s special case of line spectra,
we consider an idealized quantum level s of an isolated and
stationary molecule in vacuum, where the standard chemical
potential becomes a function of temperature alone,

�o
s (T ) = Es − kBT ln(gs) + constant, [23]

Es is the energy of the quantum level, gs is its degeneracy, and the
constant is needed to put different molecules on the same scale
of standard chemical potentials. Substituting Eq. 23 into Eqs. 21
and 22 gives Eq. 15. In the generalized Einstein relation of Eq.
22, the entropic contribution to the standard chemical potential
generalizes the degeneracy of a quantum level.

Extreme Stokes’ Shifts. The generalized Einstein relation in Eq.
14b has the thought-provoking consequence that sufficiently
broad forward transitions that are practically absorptive can
generate a Stokes’ shift so large that the reverse transition
becomes practically absorptive instead of emissive. Fig. 4 illus-
trates how a standard adiabatic model for transitions between
electronic states with vibrationally displaced potential energy
curves (43) can give such results. In this model, the photon
energy for a transition is equal to the vertical energy difference
between potential energy curves, so that a thermal distribution of
vibrational coordinates on the lower electronic curve broadens the
electronic transition. This vibrational broadening gives rise to a
progressively broader and higher frequency absorption spectrum
as the upper electronic curve is displaced to the right without
any change in the minimum-to-minimum energy difference. As
the (forward) absorption spectrum shifts to higher frequencies,
the (reverse) emission spectrum shifts to lower frequencies; the
reverse transition hits zero frequency in Fig. 4B, where the two
curves cross at the minimum of the upper curve; the reverse
transition is absorptive in Fig. 4C because the upper curve is
displaced so far to the right that its minimum lies outside and
below the lower curve. These behaviors do not conflict with the
generalized Einstein relations because the generalized Einstein

A B C

Fig. 4. Transitions between molecular bands with displaced potential curves. The vibrational potential energy curves for electronic states R and S have
the same harmonic force constant and same energy difference between potential minima throughout. Panels (A–C) show increasing displacements of the
equilibrium vibrational coordinate for band S. Forward (absorption) transitions from the thermal equilibrium coordinate distribution on R to S are represented
by blue arrows, and reverse transitions from the equilibrium coordinate distribution on S to R are represented by red arrows. Transition linewidths and the
Stokes’ shift both increase as the vibrational displacement increases from Left to Right. The Stokes’ shifted reverse transition is predominantly emissive in (A),
centered at zero frequency in (B), and predominantly absorptive in (C).

§§If gs 6= gr , Einstein’s special case of infinitely narrow lines gives br→s(�, T) = bs→r(−�, T) = 0 at h� = Δ�o
r→s(T), thus making the forward and reverse B-coefficient spectra equal

there as required by Eq. 22.
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relations connect absorption in the forward transition to total
emission at the same frequency in the reverse transition. This
simplified model provides an example in which a generalization
of Einstein’s relations must allow extremely large Stokes’ shifts
to generate absorption instead of emission. The reversal from
emissive to absorptive character for a large Stokes’ shift arises
naturally by using signed frequencies in a set of 4 Einstein
coefficient spectra.

These consequences of the generalized Einstein relations
developed here are most readily illustrated mathematically by
using a Gaussian lineshape for the forward B-coefficient spectrum
from R to S. For this lineshape, Eq. 14b shows that the
B-coefficient spectrum for the reverse transition from S to R
must also be a Gaussian with the same variance and that the
variance Δ2 and Stokes’ shift (2�) between absorption and
emission are related by the thermal energy: Δ2 = (2�)kBT /h
(12). (The same equation has previously been obtained from
semiclassical displaced harmonic oscillator models for electronic
transitions (44), but the generalized Einstein relations show that
any homogeneous Gaussian lineshape has this Stokes’ shift.) If
the center frequency for the forward transition is �R→S , then the
dimensionless parameter Δ2/(�R→SkBT /h) becomes one when
(2�) = �R→S so that the reverse transition is centered at � = 0
(as in Fig. 4B). With such an improbably precise coincidence, the
cross-section for the reverse transition would vanish identically
for all frequencies, �S→R(�) = 0, yet its spontaneous emission
spectral density a�S→R(−�) would remain nonzero. For larger
linewidths, bS→R(−�, p, T ) becomes centered at negative �,
so that bS→R(�, p, T ) is centered at positive � and the reverse
transition from S to R becomes absorptive (as in Fig. 4C ). A large
homogeneous absorption linewidth can generate a Stokes’ shift
so extreme that the reverse transition becomes predominantly
absorptive. Furthermore, so long as Δ/(kBT /h) is sufficiently
large, such an extreme Stokes’ shift can occur for small Δ/�R→S .

As mentioned previously, prior detailed-balance relations that
account for a Stokes’ shift (11, 12) are practically limited
to linewidths much narrower than the transition frequency,
Δ � �R→S . For a homogeneous Gaussian lineshape, the above
paragraph places a second necessary restriction on the variance,
Δ2
� �R→SkBT /h, which depends on both the transition

frequency and the thermal energy. These two restrictions are
independent. When either of these two conditions is not
satisfied, the theory with 4 Einstein coefficient spectra, signed
frequencies, and signed transition cross-sections developed here
allows continuous changes from emissive to absorptive transitions
with dramatic consequences.

Discussion

The generalized Einstein relations between absorption and emis-
sion spectra are exact at thermodynamic equilibrium. However,
there is essentially no thermal equilibrium emission from excited
electronic bands at room temperature, so electronic emission
spectra are measured by nonequilibrium luminescence, incan-
descence, or stimulated emission. The derivation of Eq. 14a con-
necting spontaneous and stimulated emission actually requires
only that their rates be well defined. Application of the Einstein
line spectra A and B relationships to luminescence and absorption
line spectra implicitly supposes rapid equilibrium among the
degenerate states within a quantum level. Similarly, equilibrium
Einstein coefficient spectra become applicable to nonequilibrium
luminescence after equilibrium within the luminescent band (but
not between different bands), which establishes a nonequilibrium

chemical potential for the luminescent band. This circumstance is
called thermal quasi-equilibrium. In thermal quasi-equilibrium,
the conditional probabilities for configurations within each band
take their equilibrium values, but the prior probability for the
band, PS , deviates from its equilibrium probability eqPS . For a
large molecule in a room temperature solution, a large body of
evidence indicates that thermal quasi-equilibrium within excited
electronic states is usually established on a few picosecond
timescale (45, 46). Picosecond thermal quasi-equilibrium is even
more firmly established within the conduction and valence bands
of semiconductors, where it is the criterion for the existence of
quasi-Fermi levels (47).

Nonequilibrium applications require that each band reach
thermal quasi-equilibrium much faster than relaxation between
separate bands, so that each band can be treated as a metastable
thermodynamic constituent. For example, transitions between
the upper and lower Dirac cones of graphene (48) should be
treated as intraband transitions within a single band consisting
of the double cone. If bands are in rapid equilibrium on the
timescale of a slower measurement, it can sometimes be necessary
or convenient to regard them as a single band. Conversely,
bands originating from different components necessary to specify
thermodynamic composition cannot be combined in this way.
Steady-state luminescence weights spectra by quantum yield
rather than radiative rate, so luminescence spectra are not
necessarily proportional to the spectral density of the radiative
rate that appears in Eq. 14a; this provides more opportunities
for detecting ensemble inhomogeneity by comparing absorption
and luminescence (12) than those implied by Eq. 14b.

The generalized Einstein relations allow a broad absorption
transition to generate such an extreme Stokes’ shift that its reverse
transition crosses zero frequency to become mainly absorptive
instead of emissive. We suggest that one-electron intervalence-
transfer absorption transitions in symmetrical mixed-valence
complexes (44, 49, 50) can be regarded as prototypical examples
with V min

S = V min
R in Fig. 4 and Δ�o

R→S = 0 by symmetry. In
these transitions, an asymmetrically localized charge is transferred
between two equivalent centers that are weakly coupled through
an insulating bridge. In fact, within the approximation of a Gaus-
sian absorption lineshape, these intervalence-transfer absorptions
obey �R→S ≈ Δ2/(2kBT /h) (44, 50). In the context of the
generalized Einstein relations, this known relationship between
their center frequency and homogeneous linewidth arises from
an extreme Stokes’ shift of (2�) = 2�R→S between forward
and reverse absorption transitions with the same B-coefficient
spectra. Such transitions can have visible absorption linewidths
that are much less than the center photon energy but much
greater than the thermal energy, with practically no emission
(44)—the two charge configurations R and S can equilibrate
through normal electron transfer (51)¶¶. (If the electron-transfer
coupling expands the coherent molecule-environment evolution
beyond one final state during the radiative transition, then it
modifies the spectra of both states and the two electronic states
must both belong to the same band even at equilibrium.) The
generalized Einstein relations still hold at equilibrium and the rate
of spontaneous emission still balances the rate of net absorption at
each frequency in Eq. 19, but the equal equilibrium populations
of the initial and final bands imply that the equilibrium

¶¶For intervalence-transfer absorption, the potential curves in Fig. 4 are “diabatic” potential
curves that neglect the coupling between charge centers. Weak coupling enables electron
transfer between charge centers near the diabatic curve crossing—see ref. 49. Such
electron transfer could prevent the equilibration needed for the near-vanishing reverse
transition cross-section in Fig. 4B, but the coupling would hardly affect the equilibrium
spectra for large solvent configuration (or vibrational) displacement in Fig. 4C.
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conditional transition probability for spontaneous emission per
unit time (aΓS→R(p, T ) in Eq. 2b) can be many orders of
magnitude smaller in relation to the integrated absorption cross-
section than for an ordinary forward-absorptive/reverse-emissive
transition. In the asymmetrical circumstances of Fig. 4C, the
upper state still practically loses its equilibrium emission, but
can decay by normal backelectron transfer, quenching, etc. Use
of the generalized Einstein relations to identify Stokes’ shifted
absorption in other systems could provide insights into their
spectroscopy, thermodynamics, reaction dynamics, and quasi-
equilibrium radiative processes.

For interband transitions, the signed frequency and fourth
Einstein coefficient introduced here can be practically impor-
tant if either transition cross-section has a low-frequency �2

component [as for intraband transitions (9, 10, 16, 33)], if
a�S→R(−�)/�3 does not vanish in the low-frequency limit (as may
be the case for the nonequilibrium spontaneous emission spectral
density of the solvated electron—see ref. 52), if the rotating wave
approximation breaks down (as in the absorption spectrum of
the solvated electron—see ref. 35), or if a Gaussian linewidth
has variance Δ2 approaching or exceeding (�R→SkBT /h) [as in
intervalence transitions (44, 49, 50) and the visible absorption
spectrum of the solvated electron (53)]. Such matters probe
the extreme wings of the lineshape, about which little is
known, so the above diagnostic list may not be exhaustive. The
practical need for a signed frequency and extra A coefficient
do not necessarily go hand-in-hand; for example, symmetrical
one-electron intervalence transfer absorptions require a signed
frequency and two B-coefficient spectra, but both A coefficients
are practically negligible. The signed frequency and extra A
coefficient might not be practically necessary for transitions in
which the absorption cross-section is linked to emission## by
a generalized Einstein relation within measurement accuracy
and a�S→R(−�)/�3 vanishes in the low-frequency limit within
measurement accuracy.

The Einstein coefficient spectra and relations have been
presented so as to illustrate their broad validity and how they can
be extended. For instance, the spectral density of electromagnetic
modes can be modified for an absorbing medium (22, 54) or
a cavity (16) so long as the molecule–field coupling remains
weak. Finally, the results developed here can be applied to
other thermal excitation and de-excitation mechanisms involving
absorption and emission of single quasi-particles (for example,
treating phonon absorption and emission involves a different
mode density and group velocity, as in Brillouin’s discussion
(55) of generalizing the thermal radiation law of Balfour Stewart
and Kirchhoff (42) to phonons).

Conclusions

By exploiting quantum aspects of light, we have developed
a picture of single-photon transitions between broadened
molecular bands that can be treated as metastable constituent
forms of a molecule within classical thermodynamics. The
generalized Einstein relations presented here do not depend
on molecular quantum or statistical mechanics. Rather, they
establish temperature-dependent detailed-balance relationships
between spectra that have both the nonspecific character and
the broad applicability of thermodynamic results. For a pair
of levels, Einstein’s theory has three independent parameters:

##With static inhomogeneity, the Stokes’ shift between ensemble absorption and ensem-
ble emission can be less than that predicted by the single-molecule generalized Einstein
relations—see ref. 12.

one B coefficient, one degeneracy ratio, and one Bohr transition
frequency that combine to determine the line spectra. In parallel,
the generalized Einstein relations have one B coefficient, one
change in standard chemical potential, and one underlying
B-coefficient lineshape that combine to determine four different
Einstein coefficient spectra between two bands. The generalized
Einstein relations provide five pairwise relationships among the
four Einstein coefficient spectra. Importantly, the generalized
Einstein relations predict stimulated reverse lineshapes from
stimulated forward lineshapes and vice versa. In ordinary
cases, where forward and reverse are absorptive and emissive,
the general forward-reverse lineshape relation quantifies the
Stokes’ shift between absorption and emission that is always
required by the theory of heat. In extreme cases, the Stokes’
shift can be so large that the cross-sections for both forward
and reverse stimulated transitions become practically absorp-
tive while extraordinarily slow spontaneous emission maintains
detailed balance.

In conclusion, the generalized Einstein relations treat transi-
tions between broadened metastable bands that have thermody-
namic formal chemical potentials rather than transitions between
sharp quantum levels that have energies and degeneracies.
The relationships apply rigorously to thermal emission and
are expected to apply with high accuracy to emission from
any band that has reached internal thermal quasi-equilibrium.
This enables measurement of the intrinsic thermodynamic
properties of thermalized excited states on ultrafast timescales.
Such measurements could replace order of magnitude approx-
imations for excited state equilibrium constants [developed by
Förster for excited state proton transfer (56), by Marcus for
excited state electron transfer (51), and by others for specific
photochemical reactions (57, 58)] with exact thermodynamic
cycles that have spectroscopic accuracy. The determinations of
the standard chemical potential for bright and dark excitons
by Ryu et al. (12) show that the generalized Einstein relations
can also be used to measure nonequilibrium free energy in
at least some circumstances. For a single molecule, detailed
balance, the density of modes connection between spontaneous
and stimulated emission, and Planck blackbody radiation dictate
a Stokes’ shift for emission, a Maxwell–Boltzmann translational
velocity distribution, and relationships between Einstein coeffi-
cient spectra that are compatible with the uncertainty principle
and encompass Einstein’s results. The resulting relationships
between transition cross-sections are practically different from
prior detailed-balance results (9–11) in the low-frequency range
useful for thermal imaging and can be dramatically different at
any frequency for transitions with linewidths that exceed the
thermal energy.

Data, Materials, and Software Availability. There are no data underlying
this work.
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Supporting Information Text

Derivations of the Planck Law. Although derivations of the vacuum Planck law by Einstein (1–4), Eddington (5), and Bothe (6)
conflict with the time-energy uncertainty principle, various other derivations do not. If one insisted on deriving the Planck
law as a step in the derivation here, then the assumptions in Bose’s derivation of the vacuum Planck law(7, 8) [as clarified
by Einstein(9–12)] would be compatible with the uncertainty principle but would directly imply the Bose photon number
distribution obtained here by adapting Bothe’s derivation (6). Adding Bose’s assumptions would thus turn the adaptation of
Bothe’s derivation below into a consistency check between the light-matter interaction in the generalized Einstein relations and
the Bose photon number distribution. Direct assumption of a Planck blackbody radiation spectral density is less far-reaching - it
makes no direct assumptions about the distribution of photon numbers in the blackbody radiation field around the equilibrium
average photon number given by the Planck spectral density. A modern derivation of the Planck blackbody radiation spectral
density inside transparent matter may be obtained by substituting k(ν) = 2πνn(ν)/c into the vacuum derivation from the
equilibrium average energy per electromagnetic mode and the spectral density of electromagnetic modes as a function of
wavenumber given in section 1.3 of ref. (13).

Adapting Einstein’s Derivation. Einstein’s derivation of the molecular average translational kinetic energy may be found in
sections 4-7 of ref. (1–4) and corresponding substitutions are needed only in his Eqs. (20)-(25). Using the correspondences

(1/S)pnexp(-En/kBT ) to eqPN ,
(1/S)pmexp(-Em/kBT ) to eqPM ,

Bmn to bN→M (ν, p, T ),
Bnm to bM→N (−ν, p, T ),

and pnB
m
n = pmB

n
m to eqPM (p, T )bM→N (−ν, p, T ) = eqPN (p, T )bN→M (ν, p, T ) exp(−hν/kBT ),

where ν is the frequency in the molecular rest frame, Einstein’s demonstration carries over to broadened generalized Einstein
coefficient spectra with only one slight modification. The one modification is that the number of emission processes is not
necessarily exactly equal to the number of absorption processes, but only equal on average, which is also the situation in
a multi-level system. Assuming conservation of (molecule + photon) momentum, Einstein’s identification of the photon
momentum hν/c in the molecular rest frame with (Em − En)/c through the Bohr frequency condition is not needed.

Adapting Bothe’s Derivation. Bothe’s derivation of the equilibrium Bose photon number distribution at each frequency may be
found in section 1 of ref. (6). Bothe omitted the degeneracy factors for simplicity and left out the partition function. Using the
correspondences

exp(-W1/kBT ) to eqP1,
exp(-W2/kBT ) to eqP2,

B2
1 to b1→2(ν, p, T ),

B1
2 to b2→2(−ν, p, T ),

and B1
2 = B2

1 to eqP2(p, T )b2→1(−ν, p, T ) = eqP1(p, T )b1→2(ν, p, T ) exp(−hν/kBT ),
the Bose photon number distribution follows from Bothe’s Eqs. (2) and (3) and his application of the principle of detailed
balance. Bothe’s other assumptions are not needed for this derivation from the generalized Einstein relations.

Conditions for Independent Molecular Absorption. Molecules in an ensemble absorb independently if they are so dilute that
there are no chemical, quantum statistical, or electromagnetic couplings. For linear absorption of a normally incident beam,
the spectral irradiance obeys

Iν+(ν, z) = Iν+(ν, 0) exp[−4πνκ(ν)z/c],
where κ(ν) is the imaginary part of the complex-valued refractive index n̂ = n+ iκ. For sufficiently dilute absorbers in an
otherwise transparent medium, Eq. [17] becomes valid and comparison gives

κ(ν, p, T ) =
∑
R,S

eqNR(p, T )σR→S(ν, p, T )c/(4πν).

For non-magnetic materials with complex-valued dielectric permittivity ε̂ = ε′ + iε′′ we have (in Gaussian units) n̂2 = ε̂ so that
ε′ = n2 − κ2 and ε′′ = 2nκ.

As a result, for sufficiently dilute absorbers in an otherwise transparent medium,
ε′′(ν, p, T ) =

∑
R,S

eqNR(p, T )σR→S(ν, p, T )cn(ν, p, T )/(2πν).

If this is substituted into the solution for κ in terms of the permittivity,
κ(ν) = {(1/2)[−ε′(ν) + [(ε′(ν))2 + (ε′′(ν))2](1/2)]}(1/2), [Eq. (83.13) of ref. (14)]

then the solution for κ will be consistent with Eq. [17] if the (positive) imaginary part of the dielectric permittivity is very
much less than the absolute value of the real part,

ε′′(ν) << |ε′(ν)|.
Transition cross sections proportional to ν2 (or a higher even power) at low frequency guarantee that a sufficiently dilute total
absorber number density N exists to satisfy ε′′ << |ε′| for all frequencies so that the imaginary part of the refractive index can
be linear in the number densities and Eq. [17] can hold.
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