

1 The Genome Explorer Genome Browser

2 James Herson,¹ Markus Krummenacker,² Aaron Spaulding,² Paul O'Maille,³ Peter D.
3 Karp^{2*}

4 ¹Advanced Technology and Systems Division, SRI International, Menlo Park, CA, USA

5 ²Artificial Intelligence Center, SRI International, Menlo Park, CA, USA

6 ³BioSciences Division, SRI International, Menlo Park, CA, USA

7 *Address correspondence to Peter Karp, pkarp@ai.sri.com

8 ABSTRACT

9 Are two adjacent genes in the same operon? What is the order and spacing between
10 several transcription-factor binding sites? Genome browsers are software
11 data-visualization and exploration tools that enable biologists to answer questions such as
12 these. In this paper we report on a major update to our browser, Genome Explorer, that
13 provides nearly instantaneous scaling and traversing of a genome, enabling users to
14 quickly and easily zoom into an area of interest. The user can rapidly move between scales
15 that depict the entire genome, individual genes, and the sequence; Genome Explorer
16 presents the most relevant detail and context for each scale. By downloading the data for
17 the entire genome to the user's web browser and dynamically generating visualizations
18 locally, we enable fine control of zoom and pan functions and real-time redrawing of the
19 visualization, resulting in smoother and more intuitive exploration of a genome than is
20 possible with other browsers. Further, genome features are presented together, in-line,
21 using familiar graphical depictions. In contrast, many other browsers depict genome
22 features using data tracks, which have low information density and can visually obscure

23 the relative positions of features. Genome Explorer diagrams have high information
24 density that provides larger amounts of genome context and sequence information to be
25 presented in a given sized monitor than for tracks-based browsers. Genome Explorer
26 provides optional data tracks for analysis of large-scale datasets and a unique
27 comparative mode that aligns genomes at orthologous genes with synchronized zooming.

28 **Importance**

29 Genome browsers provide graphical depictions of genome information to speed
30 uptake of complex genome data by scientists. They provide search operations to help
31 scientists find information, and zoom operations to enable scientists to view genome
32 features at different resolutions. We introduce the Genome Explorer browser which
33 provides extremely fast zooming and panning of genome visualizations, and displays
34 with high information density.

35 **Introduction**

36 Genome browsers communicate the positions of functional elements within a genome
37 to scientists, and support inference of new genome features from large datasets. These
38 functional elements include genes, transcription start sites, transcription-factor binding
39 sites, and origins of replication. Genome browser designers also hope to enable efficient
40 navigation through a genome that will enable scientists to interpret experimental datasets
41 with respect to genome organization, compare related genomes, and extract and export
42 genome-sequence regions.

43 In more detail, the problems that genome browser designers seek to solve include the
44 following. In order to effectively convey the full range of features and spatial
45 relationships within a genome, browsers must be able to scale their graphical
46 presentations from the sequence level to a level where an entire prokaryotic chromosome
47 is displayed in one screen, a factor of approximately 1500 (from 10 bases per inch to

48 approximately 15KB per inch). This scaling must be done quickly and smoothly to enable
49 the user to rapidly find the scale that answers their current informational question.

50 At these many scales, browser designers face the problem of conveying an appropriate
51 information density [1] (meaning the screen area required to display a given piece of
52 information) that enables scientists to find the information they want, as well as providing
53 surrounding genome context, without forcing the user to endlessly engage with zoom and
54 positional controls (which can be quite slow for older browsers if the server must generate
55 a new image for every such change). Another challenge browser designers face is to
56 provide useful semantic zooming levels. Semantic zooming successively reveals new
57 graphical features at different zoom levels, such as gene names and transcription start
58 sites.

59 The Pathway Tools genome browser has been under development since 1995 [2, 3, 4].
60 This article describes its third incarnation, which we call Genome Explorer. Genome
61 Explorer is notable for employing a different graphical organization than most genome
62 browsers, which are predominately organized around a series of parallel visual “tracks.”
63 Although Genome Explorer does support tracks, it is primarily organized around genome
64 diagrams that capture genome features in a manner that is both more space efficient than
65 tracks, and that communicates spatial relationships, including superposition, more
66 effectively than do tracks.

67 Many genome browsers have been implemented over the years and have made use of
68 a number of computer technologies. Early, first-generation browsers were desktop-based,
69 including AceDB [5] and the first incarnation of the Pathway Tools genome browser [2, 3].
70 The development of the World Wide Web in the 1990s led to second-generation browsers
71 that used image-based web technologies including GBrowse [6, 7], the Ensembl genome
72 browser [8], the NCBI genome browser [9], the IMG genome browser [10, 11], the
73 MicroScope genome browser [12], and the second incarnation of the Pathway Tools
74 genome browser [4]. Second-generation browsers are relatively slow because their
75 genome images are generated on a remote server and each zoom operation generates a

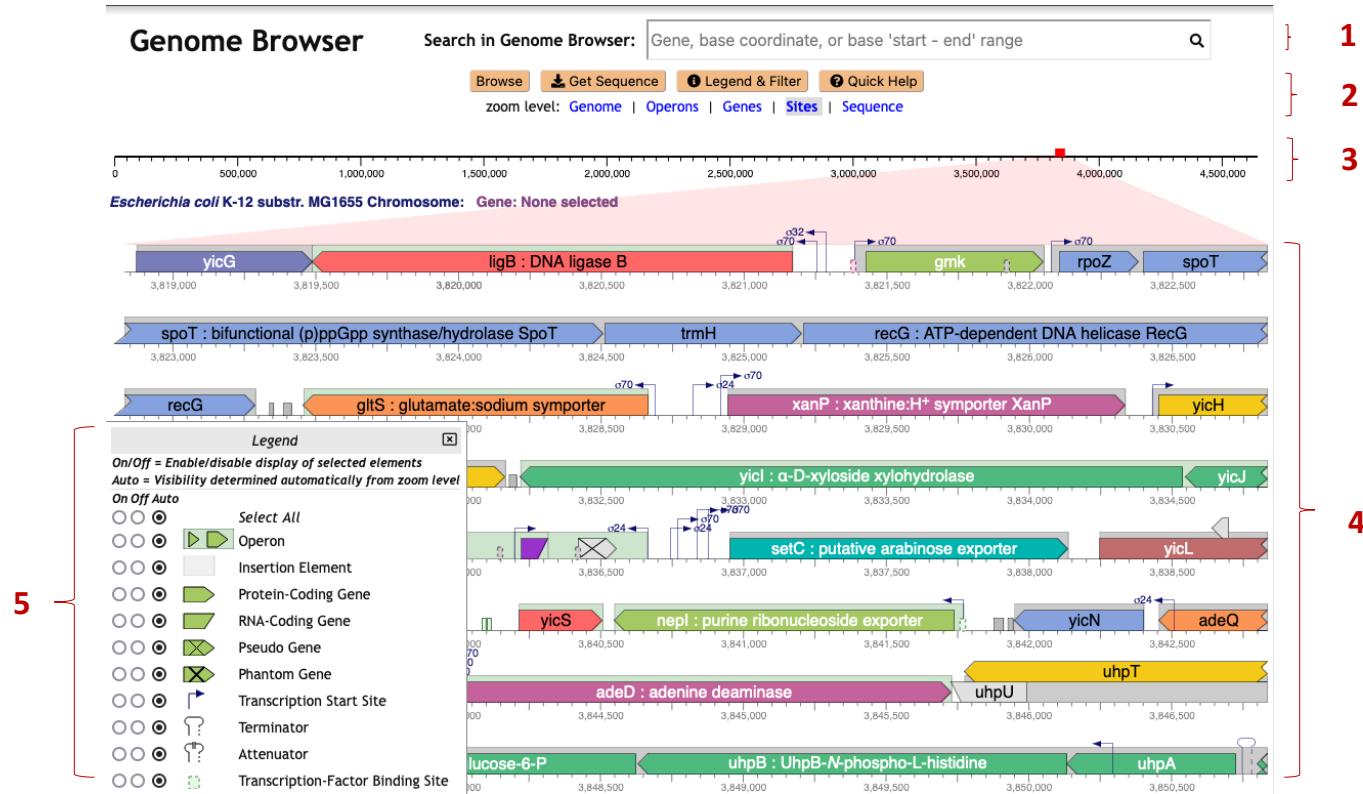
76 new image that must be downloaded from the server via the internet, which can take a
77 second or more.

78 The third generation of faster web-based genome browsers use JavaScript to generate
79 the genome images within the user's web browser, and include JBrowse [13], JBrowse 2
80 [14], newer versions of the UCSC Genome Browser [15], and Genome Explorer. Although
81 third-generation genome browsers are certainly faster than second-generation browsers,
82 there is still significant variation among their capabilities. Here we present the capabilities
83 of Genome Explorer.

84 **Results**

85 Genome Explorer can operate in three different modes: basic mode supports search
86 and browsing of a single replicon; comparative mode supports comparison of two or
87 more genomes aligned at orthologous genes; and tracks mode enables visual analysis of
88 large-scale datasets such as chip-seq data.

89 Genome Explorer is part of the Pathway Tools software, which powers the BioCyc.org
90 website and a number of other websites. Genome Explorer is available for use with all of
91 the 20,000 genomes within BioCyc.org, each of which is stored in a Pathway/Genome
92 Database (PGDB). Experiment with the browser at this URL with the free EcoCyc
93 database for *E. coli* K-12:


94 <https://biocyc.org/genbro/genbro.shtml?orgid=ECOLI&replicon=COLI-K12>. Different
95 BioCyc databases vary as to which genome features they contain, such as
96 transcription-start sites and terminators; therefore, different sets of features will be visible
97 in the genome browser for different databases. EcoCyc has a particularly comprehensive
98 collection of information.

99 **Basic Browsing Mode**

100 An example Genome Explorer window is presented in Figure 1. This window depicts
101 the basic mode of Genome Explorer. In basic mode the major components of the Genome

102 Explorer window are indicated by numbered regions in the diagram as follows. (1)
103 Genome Explorer search bar. (2) Command buttons (orange) and zoom-level selectors
104 (blue). (3) Depiction of full length of current replicon; the red rectangle indicates the
105 region shown at higher resolution below. (4) High-resolution area of replicon. (5) Legend
106 explaining graphical conventions used in high-resolution area. The legend is invoked at
107 user request. The check-boxes in the legend enable and disable display of each type of
108 feature in the high-resolution area. The On and Off settings within the legend are absolute;
109 under the Auto setting visibility of a feature is computed by semantic zooming rules.

110 Within the high-resolution area (4) multiple graphical icons depicting genes and
111 genome sites are shown. Lines wrap vertically as do the lines of a book. Gene color
112 indicates operon organization: adjacent genes in the same color belong to the same
113 operon. The gray boxes indicate the extents of operons. As indicated by the legend, this
114 image depicts protein-coding genes (example: *ligB* in the top line), RNA-coding genes
115 (example: short purple gene to the right of the legend), and pseudogenes (example: gray
116 gene with an "X" to the right of the purple RNA-coding gene). The Genome Explorer
117 does not yet depict introns and exons, which are planned for future work, hence currently
118 the Genome Explorer is best suited for bacterial genomes. A variety of sites are shown
119 here including transcription start sites (with sigma-factor indicated), terminators (last
120 line), and transcription-factor binding sites (examples: two green sites to the right of the
121 legend and to the left of *yicS*).

122

FIG 1 Genome Explorer basic mode, with legend shown in the lower-left corner. Numbers are explained in the text.

123 Even within this small window shown for publication purposes, a fairly large region
 124 of the genome encompassing many operons is shown because of line wrapping, yet there
 125 is also room to depict fairly small sites such as transcription-start sites. We refer to the
 126 display of genes, transcription-start sites, terminators, and other sites adjacent to one
 127 another within the same rectangular regions as “in-line display.”

128 *Navigation: Zooming, Translation, and Search*

129 Genome Explorer zooming operations are performed by spinning the mouse wheel,
130 scrolling the trackpad, or pressing the up/down arrow keys, while pointing the mouse at
131 the desired center-point for the zooming operation (such as the upstream region of a
132 gene). In this fashion the user can ensure the area they point at remains on the screen for
133 the duration of the zooming operation.

134 As we increase the zoom level around a given region using the Genome Explorer, more
135 and more information becomes visible. Gene names and product names are depicted as
136 the size of each gene increases. Transcription factor names appear (see Figure 2, first line)
137 as do the names of binding sites for small RNAs. The legend (see Figure 1) depicts the full
138 set of genome features that are depicted. Further zooming reveals the nucleotide sequence
139 and the amino-acid sequence of coding regions (Figure 3). Zooming out reveals overall
140 genome organization (Figure 4). As shown in that figure, tooltips are available at all zoom
141 levels to provide additional information on genes and sites.

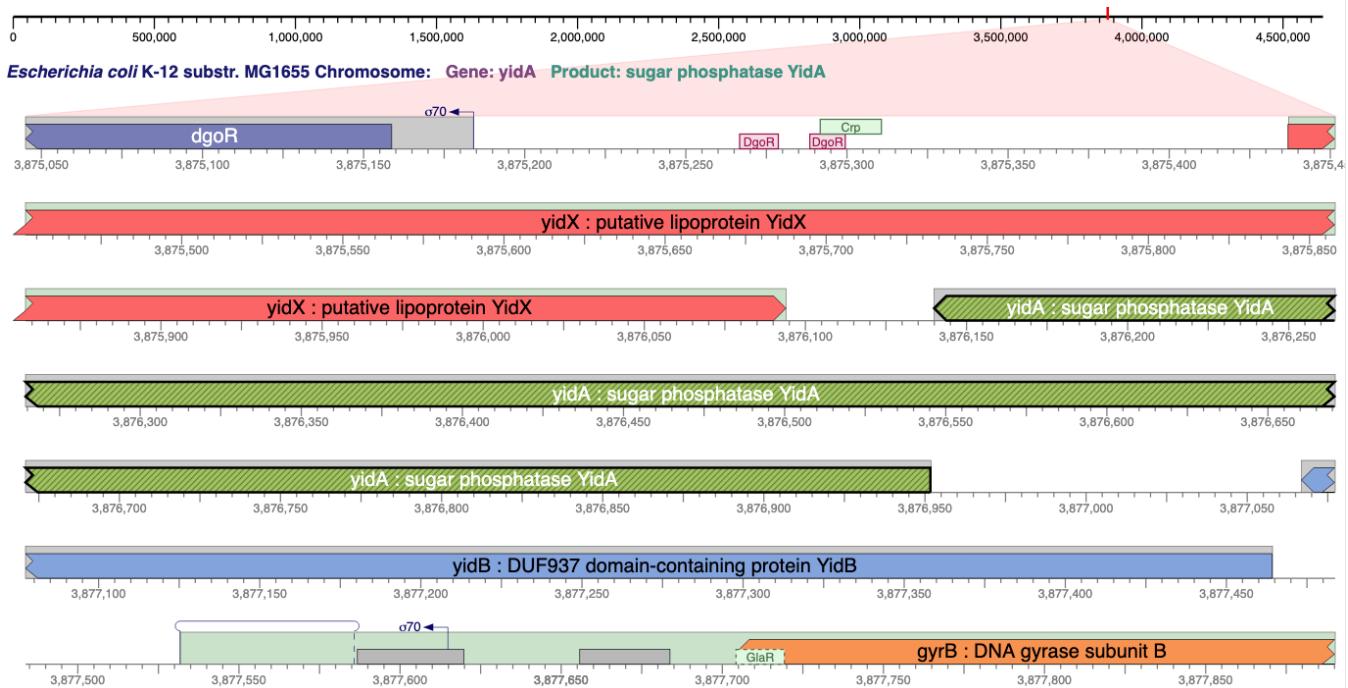
142 Zooming can also be performed by clicking on the zoom levels listed under
143 component (2) in Figure 1; for example, clicking on “Sequence” zooms immediately to the
144 sequence level.

145 The user can move horizontally within the genome by clicking and dragging with the
146 mouse, such as by dragging a gene left, right, up, or down. The user can also move
147 horizontally by dragging the red box in the full-replicon diagram at the top, by clicking at
148 a position within that diagram, and by pressing the left-arrow and right-arrow keys.

149 The “Search in Genome Browser” box shown at the top of Figure 1 and several other
150 figures can be used to position the browser at a feature of interest based on a
151 user-supplied gene name, accession number, gene-product name (including substrings),
152 single base coordinate, or start/end coordinates.

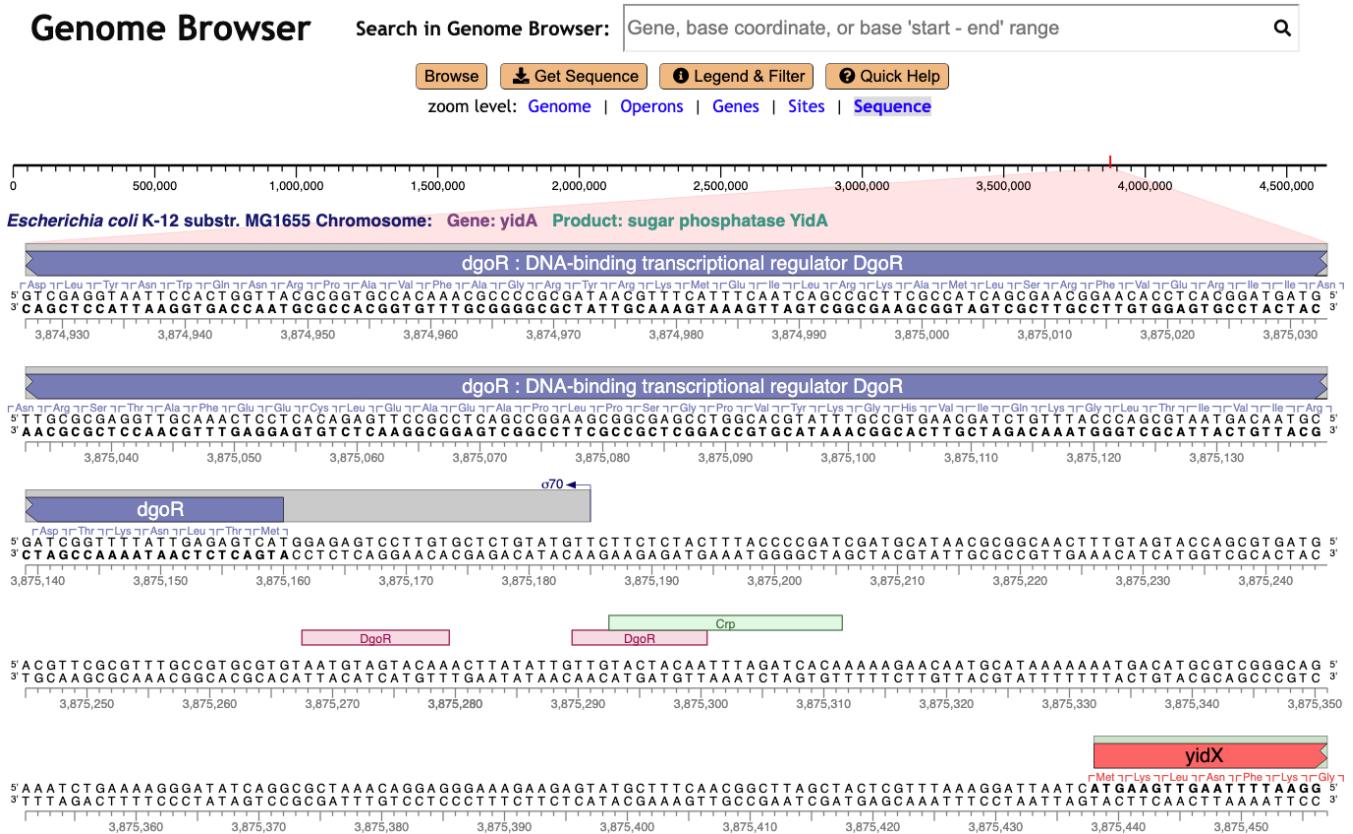
Genome Browser

Search in Genome Browser: Gene, base coordinate, or base 'start - end' range

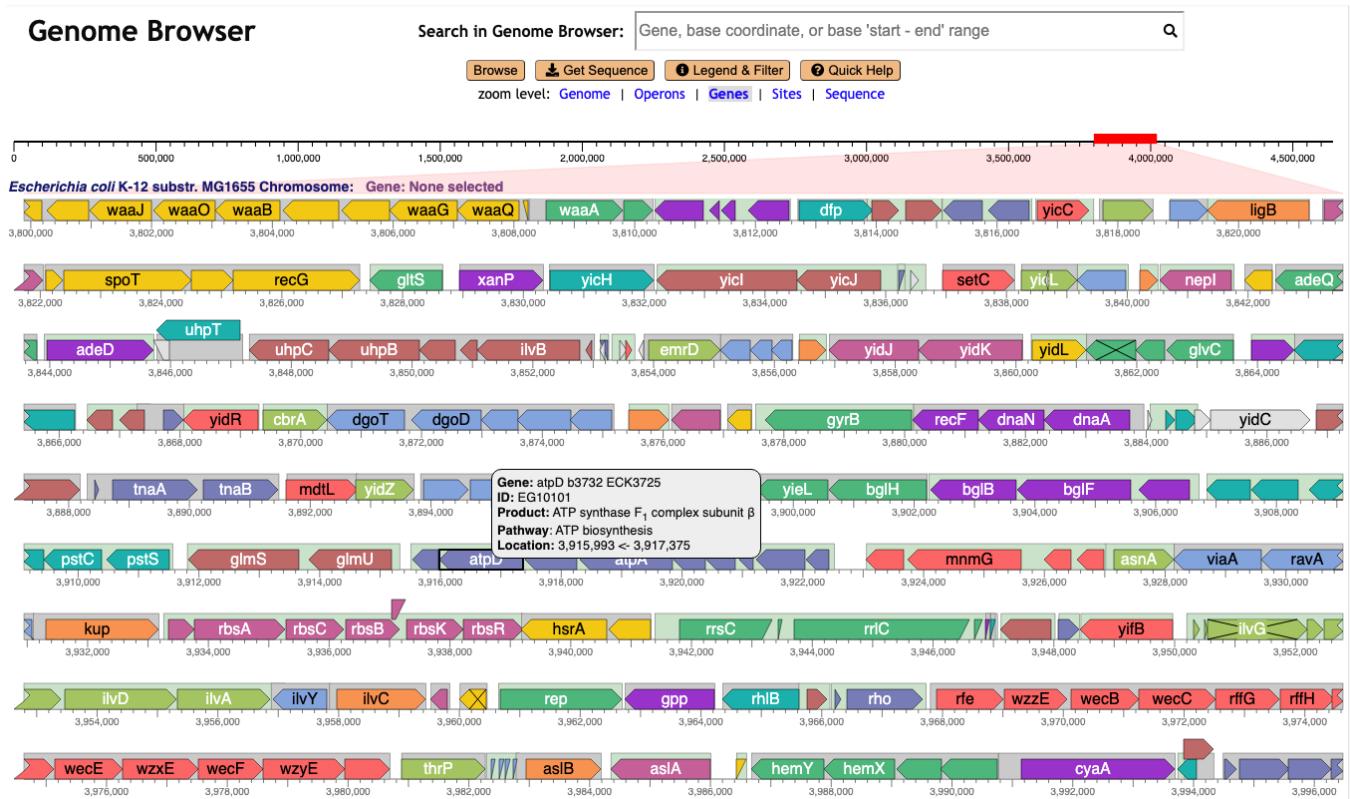

[Browse](#)

[Get Sequence](#)

[Legend & Filter](#)


[Quick Help](#)

zoom level: [Genome](#) | [Operons](#) | [Genes](#) | [Sites](#) | [Sequence](#)



153

FIG 2 Genome Explorer zoomed to depict sites in the *E. coli* genome, after a search for the *yidA* gene, which is highlighted.

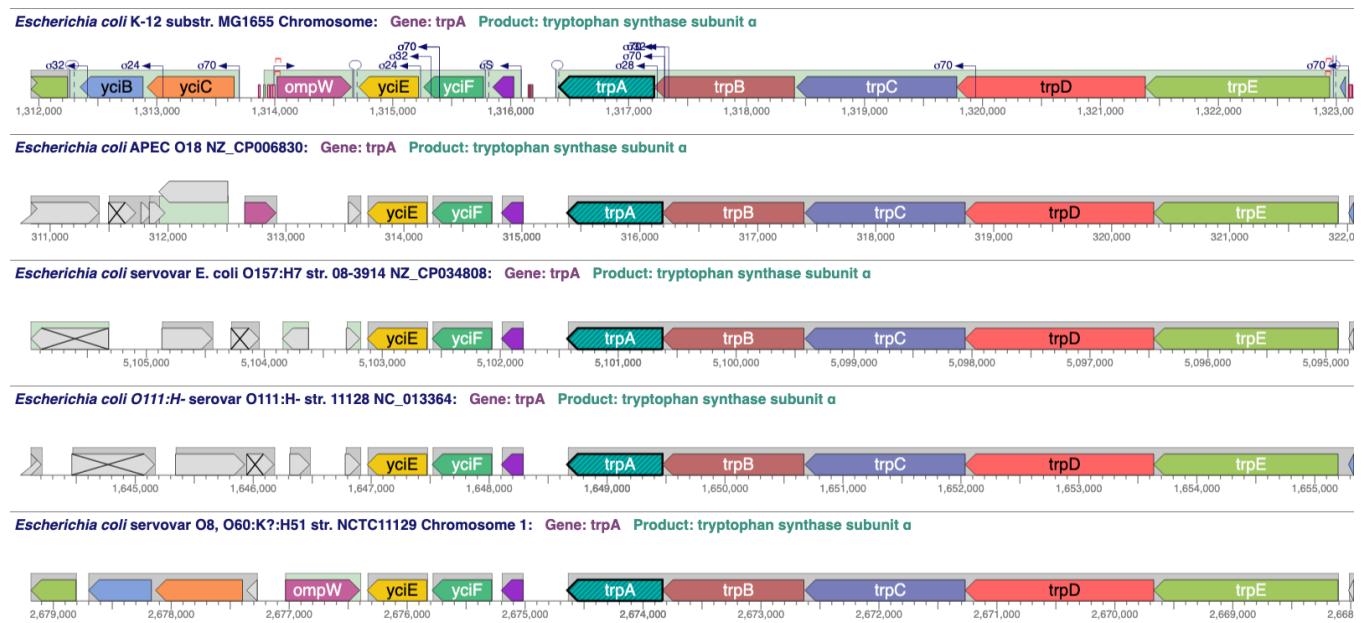
FIG 3 Genome Explorer zoomed to depict sequence in the *E. coli* genome.

FIG 4 Genome Explorer displays a 200kb region of the *E. coli* genome.

156 The use of the mouse wheel and trackpad provide fine control over the amount of
 157 zooming that occurs. In contrast, click-based zooming occurs at rather coarse increments
 158 that can be quite difficult to adjust to achieve the exact desired scaling – coarser scaling
 159 improves zooming speed but increases the difficulty of arriving at exactly the desired
 160 zoom level.

161 *Selection of Nucleotide and Amino-Acid Sequences*

162 Basic mode provides a sequence-selection capability whereby the user zooms to the
 163 starting base (or amino-acid residue) of interest, clicks on it, and then zooms to the ending
 164 base (or residue) and clicks on that. There is no limit to the size of the selected region, and
 165 for circular chromosomes the selected region can span the origin. The selected nucleotide
 166 or amino-acid sequence region can be copied to the clipboard or saved to a FASTA file.


167 Other browsers supporting sequence selection include IMG, NCBI, JBrowse, and the
168 UCSC browser.

169 Comparative Mode

170 Our goal in developing the comparative mode of Genome Explorer is to enable users
171 to easily visualize differences in the conservation of genes and other features across many
172 genomes. Figure 5 shows an example comparison across several strains of *E. coli* that can
173 be re-created using the URL

174 https://biocyc.org/genbro/ortho.shtml?lead-orgid=ECOLI&lead-genes=EG11024&orgids=GCF_001021615,ECOLI,GCF_000010765,GCF_004010715,GCF_900636075.

176 Instead of using sequence-based alignments, comparative mode aligns genomes at
177 orthologous genes. The user invokes comparative mode by specifying a “lead gene” in a
178 given organism, and a set of other organisms to compare with. Genome Explorer includes
179 in the alignment all of the user-selected organisms that have an ortholog to the lead gene,
180 based on the ortholog database maintained by BioCyc. The genomes are aligned at the
181 center-point of each ortholog. Each replicon is drawn in one line — line wrapping is
182 disabled in comparative mode.

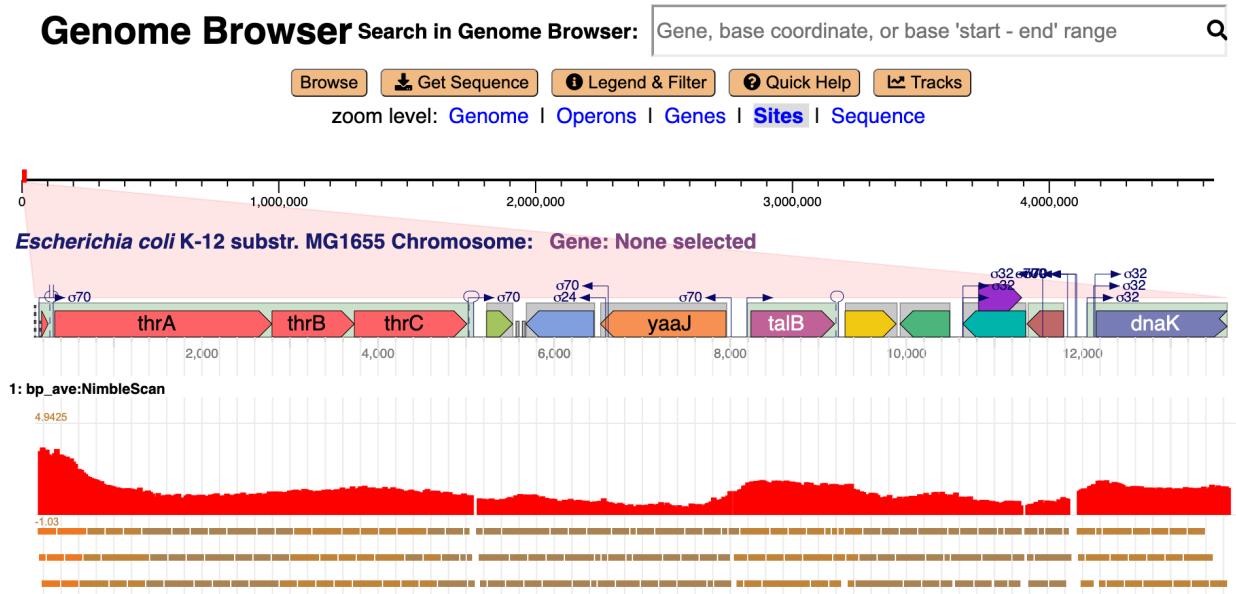
183

FIG 5 Genome Explorer comparative mode applied to the region around the *trp* operon in five *E. coli* strains. Genes in color have an ortholog in the top strain whereas gray genes have no ortholog in the top strain.

184 The meaning of the gene colors is different in comparative mode: genes in the same
185 colors are orthologs, but with the caveat that only a dozen colors are available, and colors
186 are recycled after the dozen have been used, so some genes in the same color are not
187 orthologs. However, usually it is clear from gene position, name, and length, which genes
188 are orthologs and which are not. To be completely sure, the user can hover the mouse
189 over a given gene, which visually highlights all of its visible orthologs.

190 Comparative mode depicts all other genome features present in the displayed region
191 for each genome. Zooming and panning are controlled in the same way as for basic mode;
192 the genomes zoom and pan in a synchronized fashion. The user can select a different lead
193 gene at any time.

194 We are not aware of other browsers that support an ortholog-based comparative mode
195 or that provides synchronized panning and zooming.


196 **Tracks Mode**

197 Tracks mode enables the analysis of one or more large-scale datasets visually aligned
198 against the genome to correlate features in those datasets with known genome features
199 such as genes that are stored in the PGDB. When tracks are enabled the Genome Explorer
200 changes to an unwrapped (single-line) in-line display and the one or more input datasets
201 are drawn below that single-line display (see Figure 6). Zooming and panning of the
202 tracks region and of the in-line diagram are synchronized and use the same mouse
203 gestures as does basic mode.

204 Track data can be drawn in three different styles, two of which are shown in Figure 6.
205 Track data can be drawn as horizontal bars that indicate the genomic extent of each
206 feature in the track data file. The color of each bar reflects the intensity value, if any,
207 provided in the input data file for that genome region. Track data can also be drawn as a

208 bar graph (red graph in Figure 6) or point graph (not shown) for cases in which the input
209 data include an intensity value for the Y-axis. A tracks control panel (not shown) enables
210 the user to select the display style and Y-axis scale for each track. The Y-axis scale is
211 needed because the scale of the data can vary greatly in different regions of the genome,
212 thus the default scale from the minimum to the maximum data value is not appropriate
213 for every region of the genome.

214 The Genome Explorer accepts tracks data in the GFF file format. The data shown in
215 Figure 6 is available at <http://www.ai.sri.com/pkarp/pubs/genome-explorer-tracks.gff>.

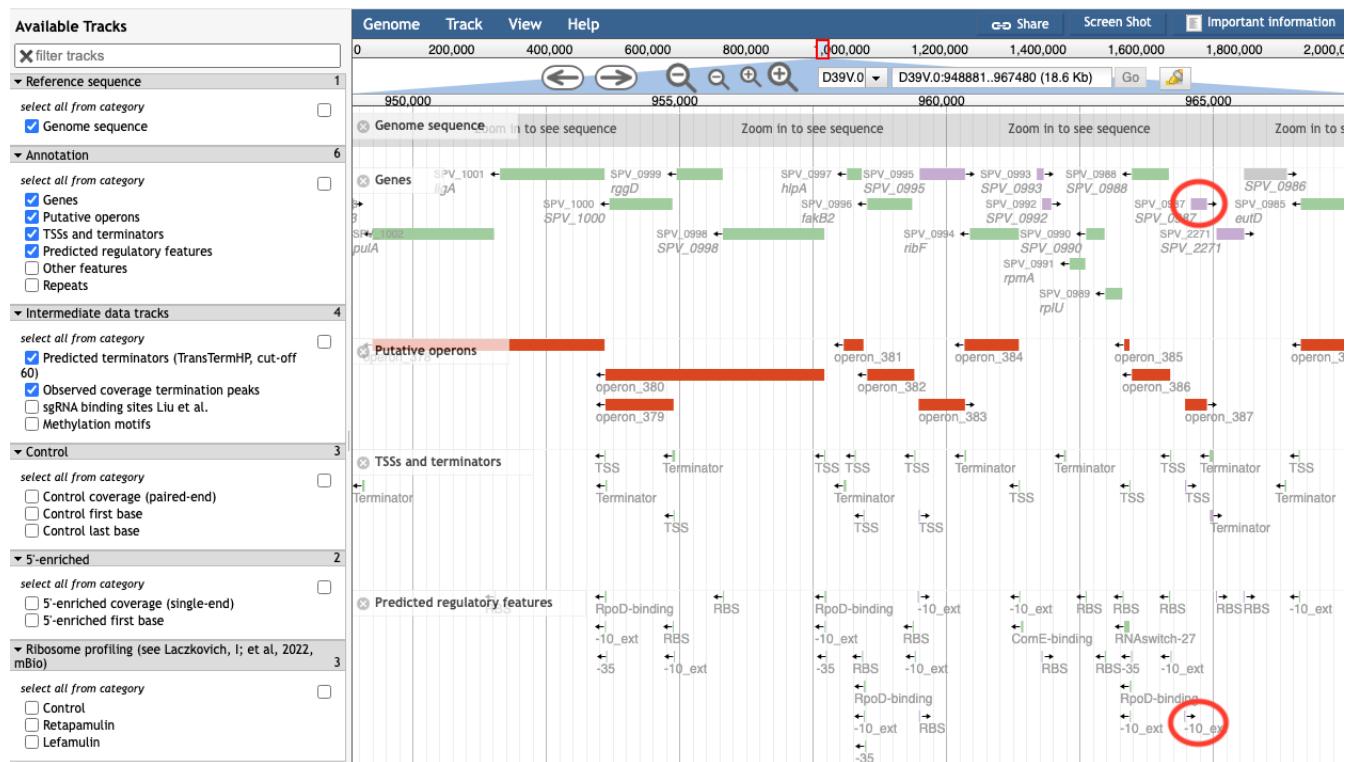

216

FIG 6 Genome Explorer tracks showing intensity of RNA polymerase binding in a section of the *E. coli* genome. The same dataset is represented twice in the diagram: the three linear regions at the bottom of the figure show binding regions as rectangles; the color of each rectangle indicates the intensity of binding. The red bar graph just above the three linear regions depicts the intensity of binding using the Y-axis.

217 Discussion

218 Tracks Compared with In-Line Display

219 Browsers such as JBrowse, GBrowse, and the UCSC browser make extensive use of
220 data tracks in the sense that tracks are the primary visual mechanism for representing
221 every type of genome feature. For example, the JBrowse window in Figure 7 provides, in
222 downwards order, tracks for operons (red), transcription start sites, terminators, and
223 ribosome binding sites. Each site is shown as a small rectangle with a direction-indicating
224 arrow. In Genome Explorer the preceding types of information are displayed in-line
225 alongside the gene diagrams. One advantage of the in-line approach is that it is more
226 efficient in its use of vertical space, enabling Genome Explorer to wrap multiple lines and
227 display much more of the genome within a screen of a given size, while still depicting
228 many types of sites.

FIG 7 A JBrowse view of the *Streptococcus pneumoniae* D39V genome. Several tracks are present in this view; for example, the green and purple rectangles near

the top constitute the “Genes” track, and the red rectangle constitutes the “Putative operons” track.

230 Compare Figure 1 with a JBrowse window for *Streptococcus pneumoniae* as shown in
231 Figure 7. These windows contain similar numbers of genes, but few gene names and no
232 product names are shown in the JBrowse window due to insufficient space — because no
233 wrapping is performed. To understand what genes are present in the JBrowse window the
234 user must manually hover over every gene to see its tooltip. Thus, it is more time
235 consuming to extract the same information from a JBrowse page versus a Genome
236 Explorer page.

237 Higher information density means more of the surrounding genome context is visible,
238 and when the sequence is visible, it means more sequence information can fit in the same
239 size screen. For example, on the same large monitor JBrowse can depict one line
240 containing 125 bases, whereas Genome Explorer can depict 10 wrapped lines containing
241 2400 bases.

242 Another issue with using tracks versus in-line display is that the vertical separation of
243 elements on different tracks increases the difficulty in ascertaining the positions of
244 features relative to one another. For example, in Figure 7 it is visually challenging to
245 assess the relative locations of features that are close to one another horizontally but far
246 from one another vertically. Do the two genome features that we have circled in red on
247 the right side of the diagram overlap or not? To answer this question the user must
248 carefully track their eyes vertically from one feature to another and try to measure the
249 distance of each feature to the nearest vertical line, a process that is both time consuming
250 and prone to error. This issue is a fundamental problem with the tracks approach.

251 In contrast, in a Genome Explorer in-line display, these features are right next to each
252 other and it is trivial and instantaneous to evaluate their relative positions. Overlapping
253 features do present challenges that we often handle through stacking of genes (see
254 Figures 1 and 4), transcription start sites, and transcription factor binding sites (see
255 Figures 2 and 3). At times we simply draw overlapping features on top of one another.

256 In-line display is also more intuitive to biologists than are tracks, because in-line
257 display uses graphical conventions (e.g., transcription start sites are depicted by arrows)
258 that biologists are familiar with from articles and textbooks, whereas tracks are less
259 familiar.

260 All this said, tracks are clearly useful and important, particularly for organisms with a
261 large number of diverse experimental datasets that simply cannot all be moved in-line, as
262 occurs when there is no graphical convention for depicting that type of data, or there are
263 too many types of overlapping data in the same horizontal region. For example, the
264 UCSC genome browser provides large numbers of tracks for *Homo sapiens* data. However,
265 the more data that can be moved in-line to reduce the number of tracks shown, the more
266 we simplify the evaluation of positional relationships for those tracks that remain by
267 decreasing the average vertical distance between tracks. Most microbes have many fewer
268 experimental datasets than are available for humans and hence have much less need for
269 large numbers of tracks. Thus, the Genome Explorer use of a hybrid inline and tracks
270 display exploits the strengths of both approaches.

271 **Genome Browser Zooming**

272 We consider rapid, efficient zoom and pan to be key tools for helping users explore
273 and understand a genome. We have optimized these operations to make them as fast and
274 easy as possible. Compared to second-generation browsers, Genome Explorer zooming is
275 very rapid because all of its zooming is computed within the user's web browser and
276 does not require network communication with the server — thus zooming occurs
277 essentially instantaneously. Browsers that use older web technologies must request the
278 server generate a new image each time a zoom click occurs, and wait for that image to be
279 transmitted across the internet. Compared to other third-generation browsers, we have
280 prioritized zooming over scrolling by re-purposing the mouse wheel and two-finger
281 trackpad swipe for zoom instead of scroll. This approach is also used in other interfaces in
282 which zooming is a key activity such as in maps and many image editors. This is in
283 contrast to other browsers that require clicking a widget. Additionally, the fast response of
284 Genome Explorer permits a “continuous zoom” so that the genome smoothly expands or

285 contracts by small increments around the mouse cursor rather than larger discrete steps.
286 This enables the user to stay better oriented. Finally, our implementation allows the user
287 to easily switch between zoom and pan operations, which are both used to navigate to a
288 desired view — users don't have to move the mouse to different areas of the screen for
289 each activity.

290 Typically, click-based zooming in browsers such as JBrowse provides four zooming
291 buttons: two that zoom in and two that zoom out, with each pair providing a large zoom
292 step and a small zoom step (see the four magnifying glasses near the top of Figure 7). One
293 reason wheel-based zooming is faster is that the user controls the zoom increment by the
294 speed at which they rotate the wheel, whereas with zoom buttons the increments are fixed
295 and are often the "wrong" size for what the user is trying to accomplish, with manual
296 entry of coordinates the only way to interpolate between the provided sizes.

297 The second reason wheel-based zooming is faster is that when using click-based
298 zooming across very large scales is because it is easy to lose track of one's position within
299 the genome since most browsers zoom in and out with respect to a fixed point, e.g., the
300 center of the diagram. Often the center of the diagram is not the point the user wants to
301 zoom in on. After clicking a few times, the user becomes lost, having zoomed in to an
302 unfamiliar area of the genome, and can have difficulty figuring out how to get to the
303 region they wanted to go to. The user must spend time orienting themselves and
304 backtracking to earlier in the zooming process, where they can recognize some landmark.
305 In contrast, Genome Explorer zooming uses the mouse pointer position as the fixed point,
306 around which zooming is centered, and thus the user controls the zoom point. With
307 practice one learns to make subtle adjustments to the zoom point as the mouse wheel
308 spins, does not become lost during zooming, and has no reason to backtrack.

309 **Materials and Methods**

310 Genome Explorer is implemented in JavaScript and uses an HTML5 canvas. It has
311 been tested on Chrome, Firefox, and Safari.

312 When the user invokes the Genome Explorer on a new genome, the browser makes
313 several Web service calls back to a Pathway Tools server. Those calls return all genome
314 features on the selected replicon, and, for comparative mode, the orthologs among the
315 selected genomes. These services are implemented in Common Lisp.

316 The speed comes from the fact that all graphics operations are performed in the user's
317 web browser. The only data retrieved during operation of the browser are chunks of DNA
318 sequence that are requested on demand for the region being drawn.

319 **Acknowledgments**

320 We thank Suzanne Paley, Peter Midford, and Lisa Moore for helpful suggestions. This
321 work was supported by grant NSF2109898 from the National Science Foundation.

322 **References**

323 [1] Tufte ER. The Visual Display of Quantitative Information, Vol. 2. Cheshire, CT:
324 Graphics Press; 2001.

325 [2] Karp P, Riley M, Paley S, Pellegrini-Toole A. EcoCyc: Electronic Encyclopedia of *E.*
326 *coli* Genes and Metabolism. Nuc Acids Res. 1996;24(1):32-40.

327 [3] Karp P, Paley S. Integrated Access to Metabolic and Genomic Data. J Comput Biol.
328 1996;3:191-212.

329 [4] Karp PD, Keseler IM, Shearer A, Latendresse M, Krummenacker M, Paley SM, et al.
330 Multidimensional annotation of the *Escherichia coli* K-12 genome. Nuc Acids Res.
331 2007;35:7577-90. <http://nar.oxfordjournals.org/cgi/content/full/35/22/7577>.

332 [5] Thierry-Mieg J, Thierry-Mieg D, Stein L. ACEDB: The ACE database manager. In:
333 Bioinformatics Databases and Systems. Norwell, MA: Kluwer Academic Publishers;
334 1999. p. 265-78.

335 [6] Stein LD, Mungall C, Shu S, Caudy M, Mangone M, Day A, et al. The generic
336 genome browser: A building block for a model organism system database. *Genome*
337 *Res.* 2002 Oct;12(10):1599-610.

338 [7] Donlin MJ. Using the Generic Genome Browser (GBrowse). *Curr Protoc*
339 *Bioinformatics.* 2007;Chapter 9:Unit 9.9.

340 [8] Newman V, Moore B, Sparrow H, Perry E. The Ensembl Genome Browser: Strategies
341 for Accessing Eukaryotic Genome Data. *Methods Mol Biol.* 2018;1757:115-39.

342 [9] NCBI Genome Browser. .
343 https://www.ncbi.nlm.nih.gov/nuccore/NC_000913.3?report=graph.

344 [10] Chen IA, Markowitz VM, Chu K, Palaniappan K, Szeto E, Pillay M, et al. IMG/M:
345 integrated genome and metagenome comparative data analysis system. *Nucleic*
346 *Acids Res.* 2017;45(D1):D507-16.

347 [11] Integrated Microbial Genomes and Microbiomes. . <https://img.jgi.doe.gov/>.

348 [12] Vallenet D, Belda E, Calteau A, Cruveiller S, Engelen S, Lajus A, et al. MicroScope –
349 an integrated microbial resource for the curation and comparative analysis of
350 genomic and metabolic data. *Nucleic Acids Res.* 2013;41(Database issue):D636-47.

351 [13] Skinner ME, Uzilov AV, Stein LD, Mungall CJ, Holmes IH. JBrowse: a
352 next-generation genome browser. *Genome Res.* 2009;19(9):1630-8.

353 [14] Dries C, Stevens GJ, Xie P, Martinez TDJ, Hershberg EA, Leung A, et al. JBrowse 2: a
354 modular genome browser with views of synteny and structural variation. *Genome*
355 *Biol.* 2023;24(1):74.

356 [15] Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The
357 human genome browser at UCSC. *Genome Res.* 2002;12(6):996-1006.