

Visual Analysis of Multi-Omics Data

Austin Swart^{1,*}, Ron Caspi¹, Suzanne Paley¹ and Peter D. Karp¹

¹ *Bioinformatics Research Group, SRI International, Menlo Park, CA, USA*

Correspondence*:

Peter D. Karp

pkarp@ai.sri.com

2 ABSTRACT

3 We present a tool for multi-omics data analysis that enables simultaneous visualization of up to
4 four types of omics data on organism-scale metabolic network diagrams. The tool's interactive
5 web-based metabolic charts depict the metabolic reactions, pathways, and metabolites of a
6 single organism as described in a metabolic pathway database for that organism; the charts are
7 constructed using automated graphical layout algorithms.

8 The multi-omics visualization facility paints each individual omics dataset onto a different
9 "visual channel" of the metabolic-network diagram. For example, a transcriptomics dataset
10 might be displayed by coloring the reaction arrows within the metabolic chart, while a
11 companion proteomics dataset is displayed as reaction arrow thicknesses, and a complementary
12 metabolomics dataset is displayed as metabolite node colors. Once the network diagrams are
13 painted with omics data, semantic zooming provides more details within the diagram as the user
14 zooms in. Datasets containing multiple time points can be displayed in an animated fashion. The
15 tool will also graph data values for individual reactions or metabolites designated by the user.
16 The user can interactively adjust the mapping from data value ranges to the displayed colors and
17 thicknesses to provide more informative diagrams.

18 **Keywords:** omics, omics analysis, multi-omics, multi-omics analysis, metabolic networks

1 INTRODUCTION

19 Scientists are faced with a coming deluge of single- and multi-omics datasets, such as transcriptomics data
20 plus metabolomics data, reaction flux measurements plus transcriptomics data, and transcriptomics data
21 plus proteomics data. Although these data hold great promise, they present sizable analysis challenges;
22 data analysis is a major bottleneck to discovery from multi-omics technologies. Developing computational
23 methods to extract new understanding from complex multi-omics data presents significant challenges in
24 terms of conveying the aspects of a biological system that are changing, and facilitating comparisons of the
25 different omics measurements for the same biological subsystem.

26 We present a tool for multi-omics data analysis that enables simultaneous visualization of up to four
27 types of omics data on organism-scale metabolic charts. The tool is an expansion of an earlier tool called
28 the Cellular Overview Paley et al. (2021); Paley and Karp (2006). The Cellular Overview is a web-based
29 interactive metabolic chart that depicts the metabolic reactions, pathways, and metabolites of a single
30 organism as described in a metabolic pathway database for that organism. **The tool generates its organism-
31 specific metabolic charts using automated graphical layout algorithms Paley and Karp (2006); Karp and
32 Paley (1994) and provides semantic zooming of its diagrams.** The tool was quite popular for analysis of

33 single-omics datasets because it directly conveys to the user the changes in activation levels of different
34 metabolic pathways in the context of the full metabolic network.

35 This article reports significant multi-omics extensions to the Cellular Overview. The tool can now read a
36 multi-omics dataset from a single file or from a set of files. That multi-omics dataset can contain up to
37 four single-omics datasets. Each of those datasets specifies on which of four “visual channels” within the
38 Cellular Overview the dataset will appear. Those channels are the color and thickness of reaction edges
39 within the diagram, and the color and thickness of metabolite nodes within the diagram. For example, a
40 multi-omics dataset could depict transcriptomics data as the color of the metabolic-reaction edges within
41 the diagram, proteomics data as the thickness of reaction edges, one type of metabolomics data as the
42 color of metabolite nodes, and a second type of metabolomics data (possibly measured using a different
43 technology) as the thickness of metabolite nodes. Each of the visual channels can be animated, with manual
44 stepping of the animation if desired. The user can precisely control the mapping from the color assignments
45 and thicknesses within the diagram to the associated data values. The user can also magnify regions of the
46 display and graph sequences of data values.

47 The multi-omics Cellular Overview is part of the larger Pathway Tools (PTools) software system Karp et al.
48 (2019, 2020). PTools is an extensive bioinformatics software system whose capabilities include genome
49 informatics, pathway informatics, omics data analysis, comparative analysis, and metabolic modeling.
50 Pathway informatics features include metabolic reconstruction, pathway search, pathway visualization, and
51 metabolic route search. Thus, the metabolic pathway databases on which the Cellular Overview omics-data
52 analysis tools depend can be created through the metabolic reconstruction component of PTools. PTools
53 is used in a wide spectrum of life-science applications, facilitating studies of sequenced bacteria, plants,
54 and animals, and enabling metabolic engineering. No other software system known to us enables a user
55 to install one software tool to access such a large number of seamlessly integrated capabilities. PTools
56 contains another multi-omics analysis tool called the Omics Dashboard Paley et al. (2017); Paley and Karp
57 (2024) that provides a hierarchical model for analyzing multi-omics datasets; the multi-omics Cellular
58 Overview provides an alternative, metabolism-centric approach to analyzing multi-omics data.

59 The remainder of this article discusses related work on metabolic network-based omics visualization.
60 It describes in more detail what we mean by a multi-omics dataset, and the file formats in which the
61 tools accept multi-omics data. We then describe the visualizations produced by the multi-omics Cellular
62 Overview and the controls provided with the diagram.

2 RELATED WORK ON METABOLIC NETWORK-BASED OMICS VISUALIZATION

63 Here we compare the PTools Cellular Overview with related tools for visual pathway-based analysis of
64 omics data. The comparison considers several dimensions of these tools: Do they support analysis of
65 multi-omics data, and how? How are their underlying diagrams produced, e.g., must the metabolic network
66 diagrams be drawn manually (which is quite time consuming), or are they produced automatically? Do the
67 underlying diagrams support important functionality such as semantic zooming and animated displays?

68 Three approaches have been used to produce drawings of large metabolic networks, independent of
69 their use for analysis of omics data. Approach 1: General graph layout algorithms have been used by
70 Cytoscape Shannon et al. (2003) and VisANT Hu et al. (2007). Diagrams produced by these algorithms
71 bear little resemblance to textbook pathway diagrams, which means these diagrams are less familiar to
72 biologists and therefore more time consuming to learn. Such diagrams are also less useful because creators
73 of biological pathway drawings have adopted specialized graphical conventions for a reason — they speed
74 the understanding of pathways. Approach 2: Manually drawn pathways have been used by KEGG-related

Tool	Diagram Type	Full Network	Simultaneous Omics	Omics Popups	Animation	Semantic Zooming
PTools	PSA	YES	4	YES	YES	YES
KEGG Mapper	MAN	YES	2	no	no	no
PathView Web	MAN	no	2	no	no	no
Paint Omics	MAN	no	3	no	no	no
KEGG Atlas	MAN	YES	?	no	no	no
iPath	MAN	YES	2	no	YES	no
Escher	MAN	YES	2	no	no	no
VisANT	GEN	YES	1	no	YES	no
PathVisio	MAN	no	3	no	no	no
ReconMap	MAN	YES	4	no	no	no
ReConn	GEN	no	1	no	no	YES
Omics Visualizer	GEN	no	1	no	no	YES

Table 1. Comparison of omics painting tools. **Meanings of table cells across the full table:** YES = this capability is present in this tool; no = this capability is not present in this tool; “?” = unclear whether this tool has this capability. **Diagram Type:** MAN = diagram generated manually; PSA = Diagram generated by pathway-specific graph-layout algorithm; GEN = diagram generated by general layout algorithm.

75 tools and Escher. Although manually drawn diagrams do use biological pathway drawing conventions,
 76 the only way to scale this approach to thousands of genomes is to create large “uber pathway diagrams”
 77 that combine pathways from many organisms, and thus a single uber diagram can be re-used across many
 78 organisms. However, such diagrams necessarily contain many pathways that are not present in any one
 79 organism, making the diagrams confusing and larger than necessary. Furthermore, these diagrams must
 80 be updated manually when the underlying pathway DB is updated. Approach 3: Pathway-specific layout
 81 algorithms have been used by PTools. This approach produces organism-specific diagrams containing
 82 just those pathways present in a given organism. This approach scales to thousands of organisms and can
 83 be updated automatically so that the diagram always reflects the latest version of each pathway. These
 84 algorithms are difficult to develop.

85 Table 1 compares omics pathway-painting tools along the following six dimensions. (1) Do their diagrams
 86 use general layout algorithms, manual uber drawings, or pathway-specific algorithms? (2) Do they paint
 87 omics data on full metabolic network diagrams, or onto single-pathway diagrams only? (3) How many
 88 omics datatypes can the tool visualize simultaneously? (4) Can the tool depict omics pop-ups that graph
 89 omics data for a given gene or metabolite, which provide more precise quantitative information than the
 90 colored grid squares that many diagrams produce? (5) Can the tool produce animated displays to depict
 91 multiple time points or conditions? (6) Does the whole-network diagram support semantic zooming that
 92 alters the amount of information displayed as the user zooms in and out, such as gene and metabolite
 93 names?

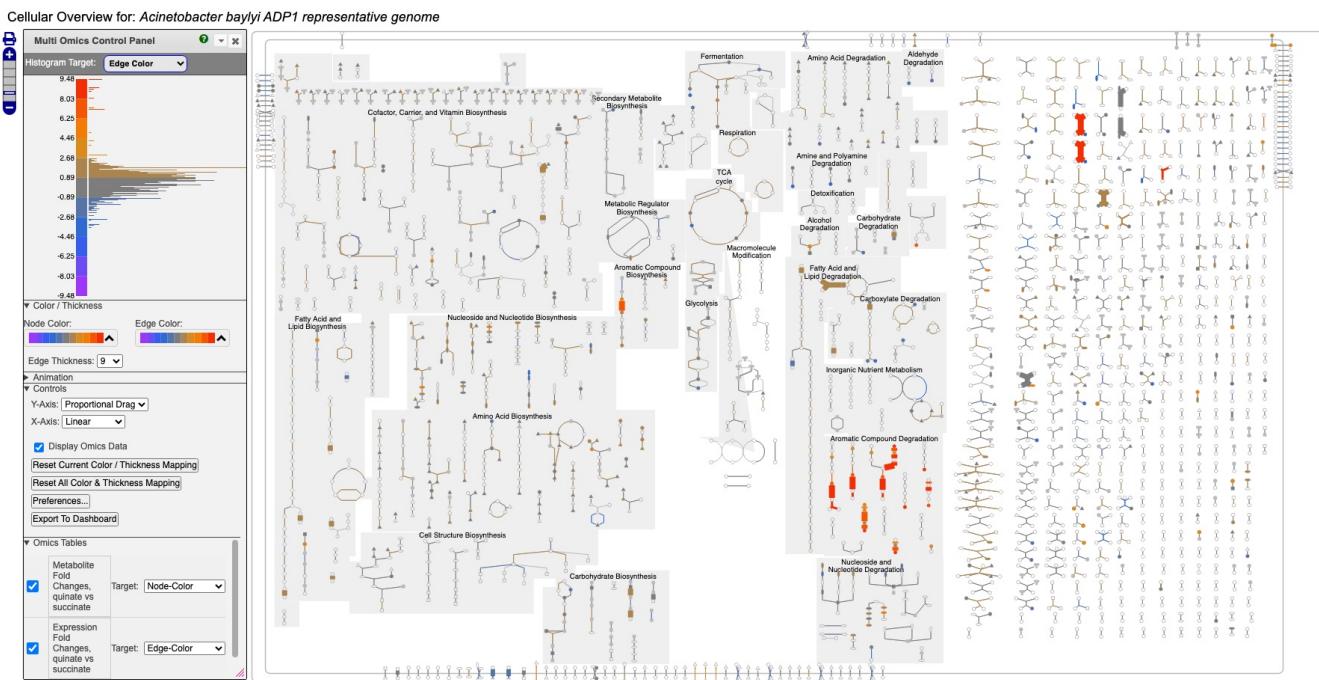
94 The software tools are described in Table 1 are as follows: PTools Karp et al. (2020) and KEGG
 95 Mapper Kanehisa and Sato (2020), which are the only tools that paint data onto both full metabolic
 96 network diagrams and individual metabolic pathways. PathView Web Luo et al. (2017) and PaintOmics
 97 3 Hernández-de Diego et al. (2018) paint multi-omics data onto single-pathway diagrams, not onto full
 98 metabolic network diagrams; the same is true of BioMiner Bauer et al. (2015) (not listed in table — defunct,
 99 website not active). KEGG Atlas Okuda et al. (2008) (defunct) and iPath 2.0 Yamada et al. (2011) paint
 100 data onto full metabolic network diagrams. Escher King et al. (2015) paints data onto any network diagrams
 101 manually created by the user, which can be for individual pathways, collections of pathways, or full

102 metabolic networks. VisANT Hu et al. (2007) paints data onto network diagrams generated with general
103 pathway-layout algorithms. PathVisio Kutmon et al. (2015) display data on manually generated network
104 diagrams. ReconMap Noronha et al. (2017) paints up to 4 types of data onto a single manually drawn
105 diagram of the full human metabolic network. Reconn Ligtenberg et al. (2013) is a Cytoscape plug-in.
106 Omics Visualizer Legeay et al. (2020) supports multiple values per node, showing nodes as circles and
107 splitting the circle into pie sections, each one describing a different omics value and colored differently. It
108 does not color edges. PTools is the most powerful tool, providing organism-specific metabolic-network
109 diagrams that are generated automatically, support semantic zooming, and enable visualization of up to
110 four omics datasets simultaneously with animation and omics popups.

111 **PTools Limitations:**

112 Scaling to larger metabolic networks is not likely to be an issue for PTools because metabolic networks
113 for known organisms simply do not become that much larger than the *E. coli* network. The time to load
114 two datasets containing reaction flux data for 3209 reactions, plus two datasets containing metabolomics
115 data for 1796 compounds, consisting of 20 time points (columns), was 20 seconds. This is a large number
116 of time points, and most metabolomics datasets are much sparser. Should the size of the dataset double for
117 a larger metabolic network, we believe this time would still be acceptable.

3 MULTI-OMICS FILE FORMATS


118 We consider a multi-omics dataset that can be analyzed using the Cellular Overview to be a collection
119 of from one to four single-omics datasets. The single-omics datasets can be measurements of transcript
120 abundance (e.g., transcriptomics), protein abundance (e.g., proteomics), reaction flux, or metabolite
121 abundance (e.g., metabolomics). For that matter, a single-omics dataset can contain any numeric values that
122 the user wants to map to the reaction edges or metabolite nodes of the metabolic network diagram. Each of
123 these single-omics datasets can contain one or more time points or conditions, which are represented as
124 columns in the corresponding file. It is preferable, but not required, that each single-omics dataset contain
125 the same number of columns (time points or conditions).

126 A multi-omics dataset can be provided to the Cellular Overview in two ways: as a single file and as a set
127 of files, one per single-omics dataset. This approach provides flexibility both to those users who prefer to
128 separate out each single-omics dataset into a separate file, and to those users who prefer to put all their data
129 into one file. Another design goal for the file format is to capture the settings of parameters for the Cellular
130 Overview so that the user can store these parameters into the file once, rather than having to enter them
131 every time they invoke the Cellular Overview.

132 **3.1 Single-File Multi-omics Format**

133 This format enables up to four single-omics datasets to be combined together into one text file. The file is
134 organized with a header section at the beginning that specifies how many single-omics datasets will follow.
135 The header also defines Cellular Overview parameters for each dataset including which data columns from
136 the single-omics dataset should be used, the type of data in that dataset (e.g., “gene” versus “compound”),
137 an identifying text label for that dataset, and a unique identifier for that dataset (e.g., “Table1”).

138 Next, there is a file section for each single-omics dataset. Each single-omics dataset is encoded as a
139 table consisting of a set of rows and columns. Each row describes a single gene, protein, metabolite, etc.,
140 depending on the type of data in that single-omics dataset. For example, for transcriptomics data, the first
141 column in each row is the name or identifier of a gene. Subsequent columns, which are tab-delimited, list
142 numeric data values for the transcriptomics measurements at different time points or conditions.

Figure 1. Full Cellular Overview for *A. baylyi* painted with multi-omics data. On the left is the control panel for the Cellular Overview. The histogram at the top of the control panel shows the assignment of data value ranges to edge colors; red and orange colors represent data values from 4.48–9.48.

143 An example file in single-file format is provided as Supplemental File 1. The file format is documented
 144 online in Section 9.3.7 of Web Site User's Guide for Pathway Tools-Based Web Sites (2024).

145 **3.2 Multi-File Multi-Omics Format**

146 The multi-file format separates the sections within the single-file format into multiple files. The header
 147 section from the single-file format becomes a separate file called the master file. The master file is where
 148 parameter values are assigned for each omics dataset, and the master file lists the file names for each
 149 single-omics dataset. Each data table section from the single-file format is stored in a separate file.

4 MULTI-OMICS CELLULAR OVERVIEW VISUALIZATIONS

150 This section demonstrates the use of the Multi-Omics Cellular Overview on multi-omics datasets for
 151 *Acinetobacter baylyi* and *Synechocystis* PCC 6803.

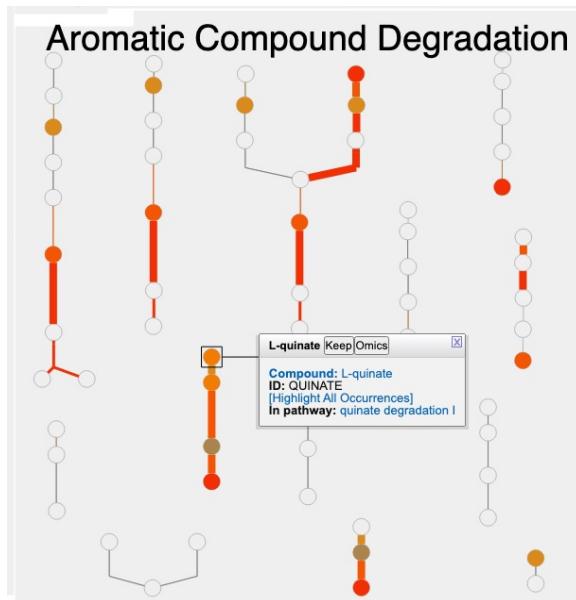
152 **4.1 Single Time Point Dataset for *Acinetobacter Baylyi***

153 Figure 1 depicts a multi-omics dataset using the Cellular Overview. The diagram is organized to
 154 show metabolic pathways and reactions inside the cell membrane, with individual reactions on the right
 155 side, and pathways on the left. Pathways flow downwards. The diagram is divided so that biosynthetic
 156 pathways are drawn on the left portion of the pathway area and catabolic pathways are on the right
 157 side. Further subdivisions group pathways into categories such as cofactor biosynthesis and carbohydrate
 158 degradation. Edges (lines) in the diagram represent reactions, and nodes represent metabolites. Node shapes
 159 communicate the type of metabolite, e.g., triangles are amino acids and squares are carbohydrates; shaded
 160 nodes are phosphorylated compounds. As the user zooms in and out of the diagram with a mouse wheel
 161 or trackpad, the names of pathways, metabolites, genes, and enzymes appear. The menu to the right (not
 162 shown) enables the user to search the diagram by gene name, metabolite name, enzyme name, etc.

163 Figure 1 depicts a multi-omics dataset for *Acinetobacter baylyi* ADP1 in which growth of *A. baylyi* was
164 compared under succinate versus quinate as the carbon source Stuani et al. (2014). The component single-
165 omics datasets were (1) a transcriptomics dataset, (2) a gene essentiality dataset, and (3) a metabolomics
166 dataset. All three datasets had a measurement at one time point only. The input data files specified that
167 dataset (1) should be targeted to edge colors, dataset (2) should be targeted to edge thicknesses, and dataset
168 (3) should be targeted to node colors.

169 Follow these steps to recreate Figure 1:

- 170 1. Visit BioCyc.org in a web browser.
- 171 2. Click the Change Current Database button and type *Acinetobacter baylyi* ADP1.
- 172 3. Run this command from the top menu: Tools → Metabolism → Cellular Overview.
- 173 4. Run this command from the right-sidebar operations menu: Upload Multi-Omics Data from File.
- 174 5. Click the Choose File button in the dialog.
- 175 6. Provide Supplemental File 1 as the input file.
- 176 7. Click the Submit button in the dialog.


177 Figure 1 shows the resulting Cellular Overview diagram painted with the preceding multi-omics dataset.
178 Although changes are evident in many areas of metabolism, they are particularly strong in the area Aromatic
179 Compound Degradation, which contains many red nodes and edges and lies to the bottom-right of center.
180 Zooming in on that region initially presents the diagram in Figure 2, which shows that metabolite changes
181 (node colors), gene expression changes (edge colors), and gene essentiality (edge thicknesses) are well
182 coordinated (they are all high). As we further zoom Figure 3, metabolite shapes (e.g., circular nodes) are
183 replaced by metabolite names; the names are colored with omics data. The new carbon source, quinate,
184 appears in a pathway near the middle of the figure, quinate degradation I. The end product of that pathway
185 is protocatechuate, which is the input to the pathway at the top center of Figure 3, namely aromatic
186 compounds degradation via beta-ketoadipate. Thus, the Cellular Overview has clearly shown the pathways
187 that the cell activates to catabolize quinate.

188 The only two amino acids whose abundances are increased during growth on quinate are the aromatic
189 amino acids tyrosine and phenylalanine, which can be found in the Amino Acid Biosynthesis region of the
190 Cellular Overview. Stuani et al. (2014) noted this fact, and postulated that products of quinate degradation
191 in the periplasm may be leaking into the cytoplasm where they become inputs to the biosynthetic pathways
192 for these two amino acids.

193 4.2 Multiple Time Point Dataset for *Synechocystis* PCC 6803

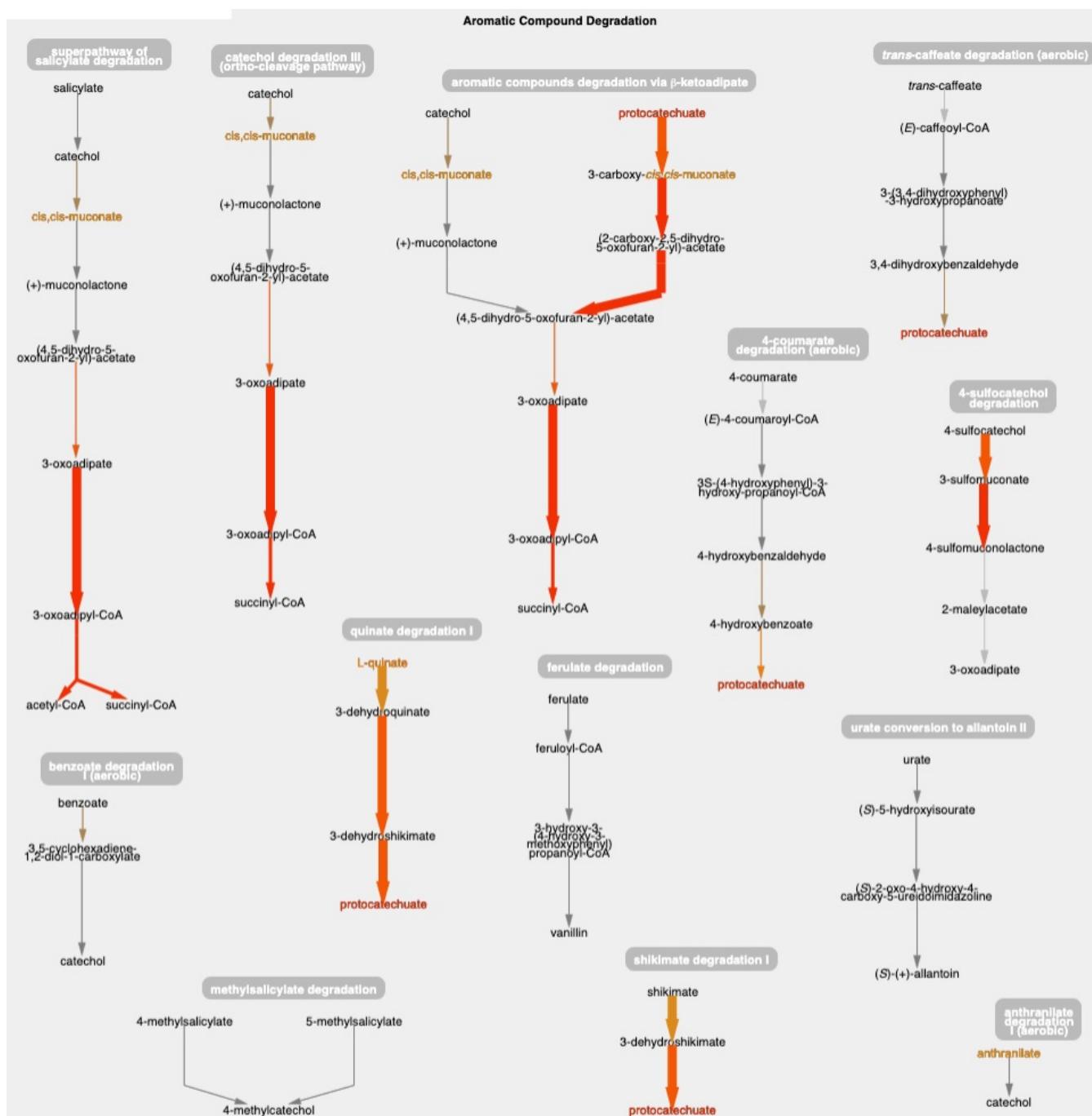
194 Figure 4 depicts a multi-omics dataset for the cyanobacterium *Synechocystis* sp. PCC 6803 from a study
195 of the effects of the transition from light to dark on this organism Angermayr et al. (2016). Five time
196 points were taken at 1 hr, 3 hr, 11.75 hr (right before the transition), 13 hr, and 15 hr. The authors reported
197 transcriptomics and proteomics data at all time points. They also provided limited metabolomics data
198 consisting of a list of the most changed metabolites, with a corresponding score for each, but no time
199 points.

200 We generated the input file (Supplemental File 2) used to create Figures 4–8 by computing fold changes
201 relative to the 1 hr timepoint, so that transcriptomics and proteomics datasets each consist of 4 datapoints.
202 Only one time point is available for the metabolomics data, consisting of the reported scores. The input file

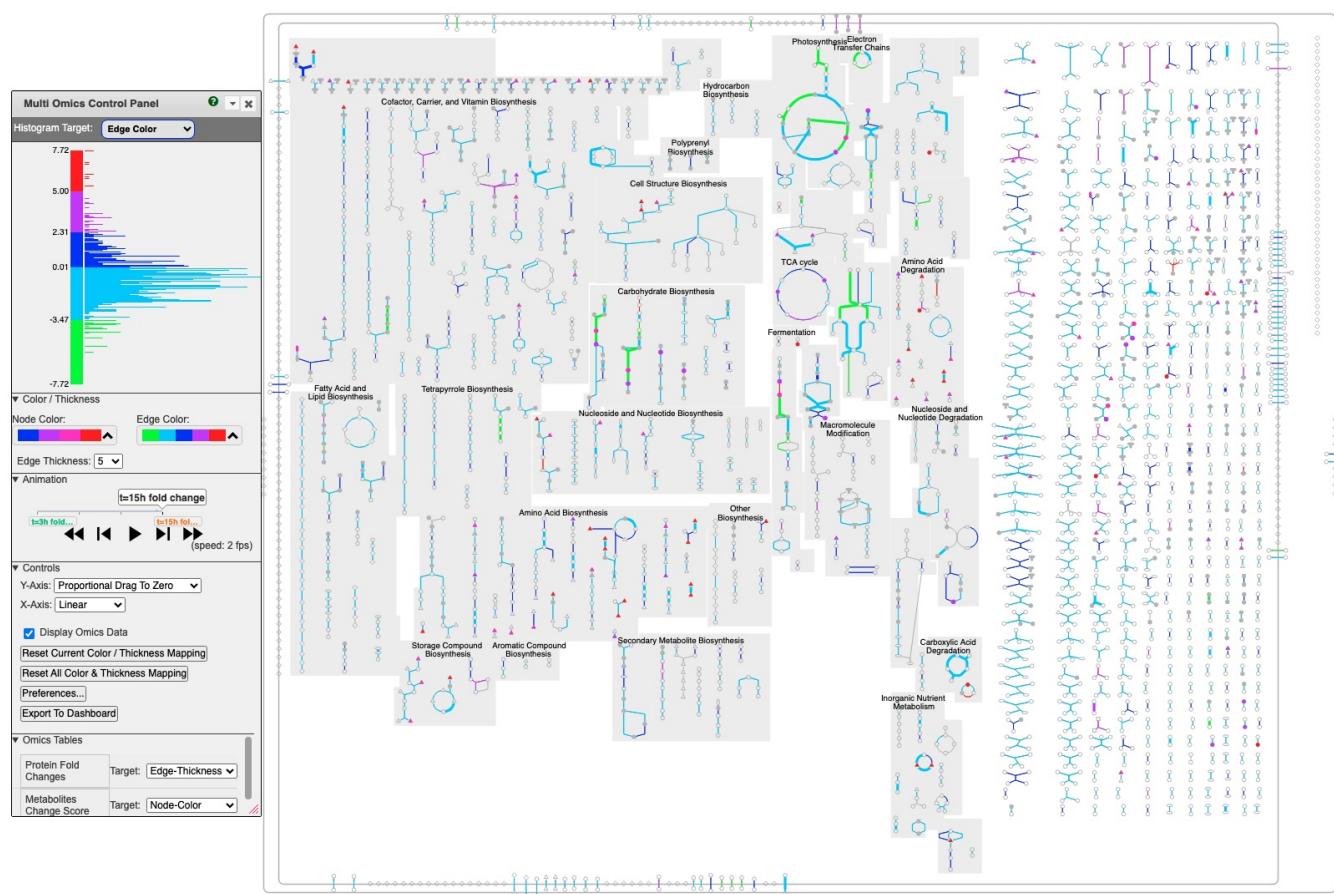
Figure 2. Visualization of *A. baylyi* multi-omics data on the Aromatic Compound Degradation region of the Cellular Overview; the remaining regions of the Cellular Overview have been cropped away.

203 specifies that the transcriptomics dataset should be targeted to edge colors, the proteomics dataset should
 204 be targeted to edge thicknesses, and the metabolomics dataset should be targeted to node colors.

205 Follow these steps to recreate Figure 4:


206 1. Visit BioCyc.org in a web browser
 207 2. Click the Change Current Database button and type “Synechocystis sp. PCC 6803 substr. Kazusa”
 208 3. Run this command from the top menu: Tools → Metabolism → Cellular Overview
 209 4. Run this command from the right-sidebar operations menu: Upload Multi-Omics Data from File
 210 5. Click the Choose File button in the dialog
 211 6. Provide Supplemental File 2 as the input file
 212 7. Click the Submit button in the dialog

213 Depending on your selection of color palettes for the different datasets and the ranges you specify for the
 214 histograms, your image may differ in appearance from Figures 4–8.


215 Click on the play button to start the animation. The diagram will move through the time points, showing
 216 significant changes in many of the pathways and reactions.

217 We now present several examples of where using this tool can help users to observe interesting phenomena
 218 found in these omics data.

219 **Example 1.** Using the animation feature, the tool makes it easy to see multiple changes that occur
 220 simultaneously. For example, Figure 5 shows the “superpathway of electron transport in the thylakoid
 221 membrane” at the latest time point (towards the end of the dark period). One can see how photosystem
 222 II (green line) has low transcription (green color) and high protein concentration (thick line) at this time
 223 point. At the same time, transcription of the succinate dehydrogenase complex (purple line) and Ndh2
 224 (NADH-quinone oxidoreductase) is significantly higher (no proteomic data is available for these two
 225 complexes), indicating that, during the dark, the main sources for reducing power are succinate and NADH.

Figure 3. The Aromatic Compound Degradation region of the *A. baylyi* Cellular Overview zoomed to a higher magnification than Figure 2, causing metabolite nodes to become visible.

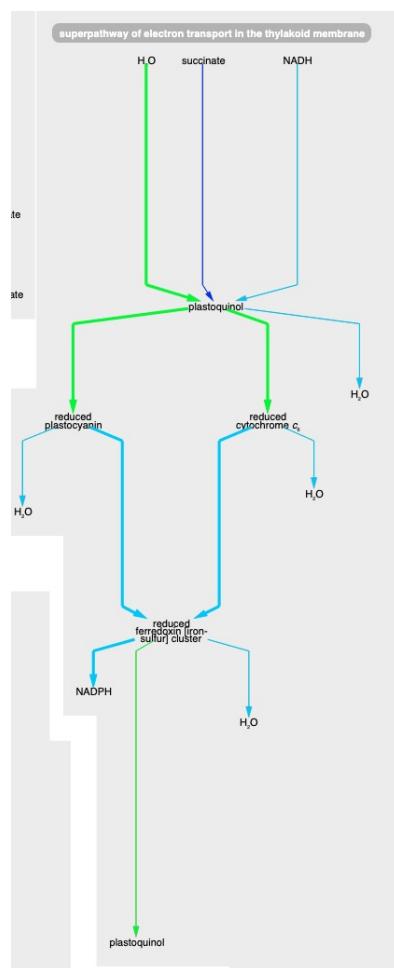
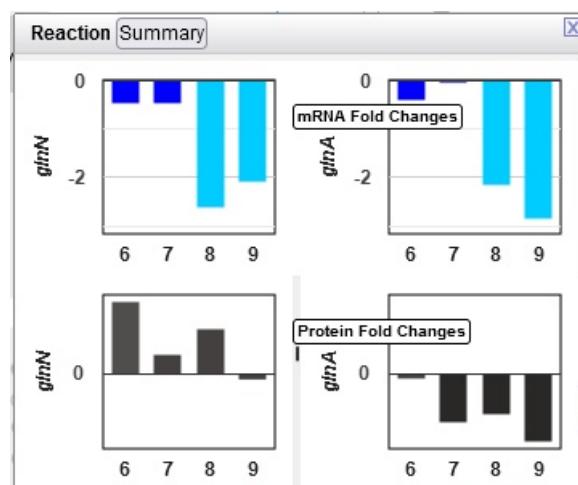
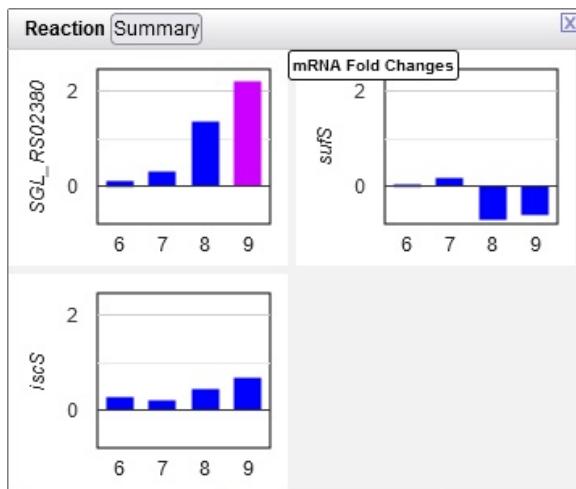


Figure 4. Multi-time point dataset for *Synechocystis* PCC 6803 shown on the Cellular Overview. The omics viewer control panel is on the left side of the diagram. In this diagram, edge color is assigned to transcriptomics data, edge thickness is assigned to proteomics data, and node color is assigned to metabolomics data. The histogram shown in the image describes the color distribution for depicting transcriptomics data. The red, purple, orange, and black rectangles point to data described further in Figures 5, 6, 7, and 8, respectively.


226 **Example 2.** Glutamate and glutamine are among the most dynamic metabolites in this study Angermayr
 227 et al. (2016). They commented that GlnA (glutamine synthetase type I) shows strong downregulation in the
 228 dark, while GlnN (glutamine synthetase type III) protein levels showed no significant change. By hovering
 229 the mouse on the glutamine synthetase reaction in the “L-glutamine biosynthesis” pathway and selecting
 230 “Omics,” a popup diagram appears that clearly illustrates this observation (Figure 6).

231 **Example 3.** The only amino acid whose synthesis was enhanced in the dark was L-alanine. The only
 232 L-alanine biosynthetic route demonstrated so far in *Synechocystis* is desulfuration of L-cysteine, and three
 233 enzymes are known to catalyze this reaction. Opening the relevant popup suggests that the responsible
 234 enzyme under these conditions is the cysteine desulfurase encoded by the sll0704 gene (shown in Figure 7
 235 as SGL_RS02380, the accession ID assigned by RefSeq).


236 **Example 4:** The authors noted that chlorophyll content increased in the first three hours of the light
 237 period. Looking at the multiomics data for ChlP (Figure 8), the enzyme that converts chlorophyllide a to
 238 chlorophyll a and part of the “chlorophyll a biosynthesis II” pathway, one can see a strong delay in the
 239 degradation of the enzyme, as the levels of the enzyme continue to grow in the dark despite a very strong
 240 decline in transcription.

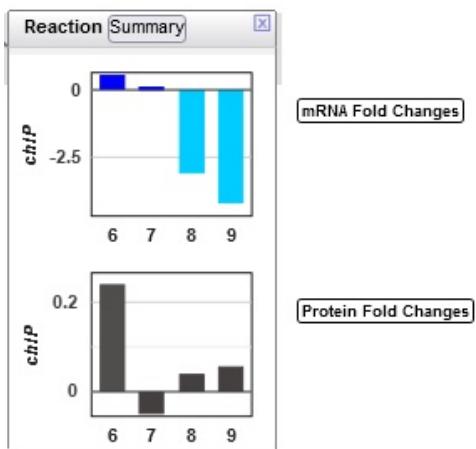

Figure 5. The *Synechocystis* pathway “superpathway of electron transport in the thylakoid membrane” extracted from Figure 4, at the latest time point. The pathway combines several electron transport pathways that occur in the thylakoid membrane, including components of linear photosynthetic electron transport, respiratory electron transport, cyclic electron transport, and photoprotection by flavodiiron proteins.

Figure 6. Omics pop-ups graphing *Synechocystis* transcriptomics and proteomics data for the *glnA* and *glnN* genes and their products, which catalyze the ATP-dependent conversion of L-glutamate to L-glutamine. The transcription of both genes is strongly down-regulated in the dark, but proteomics data indicate a much stronger decline in the amount of GlnA than of GlnN.

Figure 7. Transcriptomics data for three *Synechocystis* cysteine desulfurases. Transcription of the *sll0704* gene (shown as *SGL_RS02380*) is strongly up-regulated in the dark, whereas the transcription of the *iscS* and *sufS* genes does not change significantly.

Figure 8. Transcriptomics and proteomics data for the *Synechocystis chlP* gene and its product, geranylgeranyl diphosphate reductase, which catalyzes a reaction during chlorophyll a biosynthesis.

241 4.3 Omics Viewer Controls

242 Several omics-viewer controls enable the user to tune the diagram to meet their needs more effectively.
 243 The controls are shown in the left side of Figure 4.

244 With the top control, the user can adjust the mapping of colors and thicknesses to data values. Currently
 245 the histogram at the top left shows the number of Cellular Overview data points that are mapped to each
 246 of the y-axis values. For example, the most data points are in the dark blue and light blue regions that
 247 correspond to data values near 0. The histogram is labeled “Histogram Target: Edge Color” to indicate that
 248 the diagram is currently depicting edge colors, but the user can also select node colors, node thicknesses,
 249 and edge thicknesses.

250 Currently the control shows that for edge colors there is a linear mapping between data values from -7.72
 251 to 7.72 and the five colors (green to red) shown. If the user wanted the red and green colors at the extremes
 252 to encompass a larger set of data values, they could use the mouse to click on the axis label “4.80” and

253 drag that label downwards to expand the length of the red color scale with all of the other regions of the
254 scale decreasing in size. Similarly a user could grab the label “-4.80” and drag it upwards.

255 With the next control pane, labeled “Color/Thickness,” the user can choose among several provided color
256 scales, each containing a different set of colors. The user can also change the maximum edge thickness the
257 tool uses.

258 The next pane (“Controls”) enables the user to make other adjustments such as selecting how the y-axis
259 dragging works and resetting the color mapping to the defaults.

260 The next pane (“Omics Tables,” visible in Figure 1) shows the mapping from each provided single-omics
261 dataset to its target within the Cellular Overview. For example, it shows that expression fold changes are
262 mapped to edge colors. The user can alter the mapping as desired.

263 If the user mouses over a node or edge within the diagram, a tooltip appears that both identifies that
264 metabolite or reaction and enables the user to display omics pop-ups for that entity and then graph its omics
265 data.

5 CONCLUSIONS

266 We have illustrated the use of the extended Cellular Overview multi-omics visualization capabilities using
267 multi-omics datasets for *A. baylyi* and *Synechocystis*. For *A. baylyi*, the tool identified likely pathways
268 that degrade quinate, and confirmed an observation from the original publication of this dataset that two
269 aromatic amino acids increased in abundance. For *Synechocystis*, the tool identified a number of changes in
270 the metabolic state of the organism, including which cysteine desulfurase isozyme is likely to be responsible
271 for the increased level of L-arginine.

272 The multi-omics Cellular Overview supports coordinated analysis of multi-omics datasets on
273 automatically generated organism-specific metabolic network diagrams. Up to four single-omics datasets
274 can be analyzed simultaneously including transcriptomics, proteomics, and metabolomics data. The datasets
275 are provided via either a single input file or through separate files for each single-omics dataset. The user
276 specifies for each dataset whether it should be displayed as node colors, node thicknesses, edge colors,
277 or edge thicknesses. The user can alter the mapping of data values to the color and thickness scales via
278 interactive sliders. Datasets containing multiple time points can be displayed as animations with the ability
279 to single-step the animations. The tool can also graph the data values for individual nodes and edges.

6 MATERIALS AND METHODS

280 The software that generates Cellular Overview layouts is written in Common Lisp. The software that
281 displays Cellular Overview diagrams and multi-omics data is written in JavaScript, and has been tested
282 within the Chrome, Firefox, and Safari browsers. Although the functionality described herein can be
283 verified through the interactive BioCyc website, all software described in this article is freely available to
284 research institutions for research purposes as part of the Pathway Tools software, including source code, by
285 request to ptools-support@ai.sri.com.

286 For the example datasets used in this paper, we downloaded the publicly available supplementary data
287 files for Stuani et al. (2014) and Angermayr et al. (2016). Where log2 fold change columns were not already
288 present, we computed them (relative to the first timepoint for the *Synechocystis* data, and based on the
289 provided fold change column for the *Acinetobacter* data). The gene essentiality data for the *Acinetobacter*
290 dataset was provided as normalized optical-density growth yields. We subtracted this value from 1 for
291 each gene to generate a measure of essentiality such that higher values represent greater essentiality.

292 The individual component datasets were extracted and combined into a single tab-delimited file for each
293 example, each with an added header section. The resulting files are available as Supplementary Files 1 (the
294 *Acinetobacter* example) and 2 (the *Synechocystis* example).

CONFLICT OF INTEREST STATEMENT

295 The BioCyc website is available under a subscription program that is used to support its operations and
296 development.

AUTHOR CONTRIBUTIONS

297 PDK directed the research and authored most of the article. SP and RC constructed the examples and wrote
298 the example sections. AS wrote the software.

FUNDING

299 This work was supported by grant NSF2109898 from the National Science Foundation.

SUPPLEMENTAL DATA

300 Supplemental File 1: Single-file mult-omics dataset for *A. baylyi*.

301 Supplemental File 2: Single-file mult-omics dataset for *Synechocystis* PCC 6803.

REFERENCES

302 Angermayr, S. A., van Alphen, P., Hasdemir, D., Kramer, G., Iqbal, M., van Grondelle, W., et al. (2016).
303 Culturing *synechocystis* sp. strain pcc 6803 with n2 and co2 in a diel regime reveals multiphase glycogen
304 dynamics with low maintenance costs. *Appl Environ Microbiol* 82, 4180–4189

305 Bauer, C., Stec, K., Glintschert, A., Gruden, K., Schichor, C., Or-Guil, M., et al. (2015). BioMiner: Paving
306 the Way for Personalized Medicine. *Cancer Inform* 14, 55–63

307 Hernández-de Diego, R., Tarazona, S., Martínez-Mira Balzano-Nogueira, L., Furi'o-Tarí, Pappas, G. J. J.,
308 and Conesa, A. (2018). PaintOmics 3: a web resource for the pathway analysis and visualization of
309 multi-omics data. *Nuc Acids Res* 46, W503–W509

310 Hu, Z., Ng, D. M., Yamada, T., Chen, C., Kawashima, S., Mellor, J., et al. (2007). VisANT 3.0: New
311 modules for pathway visualization, editing, prediction and construction. *Nuc Acids Res* 35, W625–32

312 Kanehisa, M. and Sato, Y. (2020). KEGG Mapper for inferring cellular functions from protein sequences.
313 *Protein Sci* 29, 28–35

314 Karp, P. D., Midford, P., Billington, R., Kothari, A., Krummenacker, M., Ong, W., et al. (2019). Pathway
315 Tools version 23.0 update: Software for pathway/genome informatics and systems biology. *Brief
316 Bioinform* 22, 109–126

317 Karp, P. D., Midford, P., Paley, S., Krummenacker, M., Billington, R., Kothari, A., et al. (2020). Pathway
318 Tools version 24.0: Integrated software for pathway/genome informatics and systems biology [v4]. *arXiv*
319 , 1–98 <http://arxiv.org/abs/1510.03964v4>

320 Karp, P. D. and Paley, S. M. (1994). Automated drawing of metabolic pathways. In *Proc Third International
321 Conference on Bioinformatics and Genome Research*, eds. H. Lim, C. Cantor, and R. Robbins (World
322 Scientific Publishing Co.), 225–238

323 King, Z. A., Drager, A., Ebrahim, A., Sonnenschein, N., Lewis, N. E., and Palsson, B. O. (2015). Escher:
324 A web application for building, sharing, and embedding data-rich visualizations of biological pathways.
325 *PLoS Comput Biol* 11, e1004321

326 Kutmon, M., van Iersel, M. P., Bohler, A., Kelder, T., Nunes, N., Pico, A. R., et al. (2015). PathVisio 3: an
327 extendable pathway analysis toolbox. *PLoS Comput Biol* 11, e1004085

328 Legeay, M., Doncheva, N. T., and Jensen, J. H. M. L. J. (2020). Visualize omics data on networks with
329 omics visualizer, a cytoscape app. *F1000Res* 9, 157

330 Ligtenberg, W. P., Bosnacki, D., and Hilbers, P. A. (2013). Reconn: a cytoscape plug-in for exploring and
331 visualizing reactome. *J Bioinform Comput Biol* 11, 1350004

332 Luo, W., Pant, G., Bhavnasi, Y. K., Blanchard, J. R., and Brouwer, C. (2017). Pathview web: user friendly
333 pathway visualization and data integration. *Nucleic Acids Res* 45, W501–W508

334 Noronha, A., Danielsdottir, A. D., Gawron, P., Johannsson, F., Jonsdottir, S., Jarlsson, S., et al. (2017).
335 ReconMap: an interactive visualization of human metabolism. *Bioinformatics* 33, 605–607

336 Okuda, S., Yamada, T., Hamajima, M., Itoh, M., Katayama, T., Bork, P., et al. (2008). KEGG Atlas mapping
337 for global analysis of metabolic pathways. *Nuc Acids Res* 36, W423–26. doi:10.1093/nar/gkn282

338 Paley, S., Billington, R., Herson, J., Krummenacker, M., and Karp, P. D. (2021). Pathway tools visualization
339 of organism-scale metabolic networks. *Metabolites* 11, 64. doi:10.3390/metabo11020064

340 Paley, S. and Karp, P. (2024). The omics dashboard for interactive exploration of metabolomics and
341 multi-omics data. *Metabolites* 14

342 Paley, S. M. and Karp, P. D. (2006). The Pathway Tools cellular overview diagram and omics viewer. *Nuc
343 Acids Res* 34, 3771–8

344 Paley, S. M., Parker, K., Spaulding, A., Tomb, J., O'Maille, P., and Karp, P. D. (2017). The Omics
345 Dashboard for interactive exploration of gene-expression data. *Nuc Acids Res*

346 Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al. (2003). Cytoscape:
347 A software environment for integrated models of biomolecular interaction networks. *Genome Res* 13,
348 2498–2504

349 Stuani, L., Lechaplain, C., Salminen, A. V., Segurens, B., Durot, M., Castelli, V., et al. (2014). Novel
350 metabolic features in *acinetobacter baylyi* adp1 revealed by a multiomics approach. *Metabolomics* 10,
351 1223–1238

352 Web Site User's Guide for Pathway Tools-Based Web Sites (2024). <https://biocyc.org/PToolsWebsiteHowto.shtml>

354 Yamada, T., Letunic, I., Okuda, S., Kanehisa, M., and Bork, P. (2011). iPath2.0: Interactive pathway
355 explorer. *Nuc Acids Res* 39, W412–5