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Abstract. Recent advances in differentiable modeling, a genre of physics-informed machine learning that trains neural
networks (NNs) together with process-based equations, has shown promise in enhancing hydrologic models’ accuracy,
interpretability, and knowledge-discovery potential. Current differentiable models are efficient for NN-based
parameter regionalization, but the simple explicit numerical schemes paired with sequential calculations (operator
splitting) can incur numerical errors whose impacts on models’ representation power and learned parameters are not
clear. Implicit schemes, however, cannot rely on automatic differentiation to calculate gradients due to potential issues
of gradient vanishing and memory demand. Here we propose a “discretize-then-optimize” adjoint method to enable
differentiable implicit numerical schemes for the first time for large-scale hydrologic modeling. The adjoint model
demonstrates comprehensively improved performance, with Kling-Gupta efficiency coefficients, peak-flow and low-
flow metrics, and evapotranspiration that moderately surpass the already-competitive explicit model. Therefore, the
previous sequential-calculation approach had a detrimental impact on the model’s ability to represent hydrologic
dynamics. Furthermore, with a structural update that describes capillary rise, the adjoint model can better describe
baseflow in arid regions, and also produce low and peak flows that outperform even pure machine learning methods
such as long short-term memory networks. The adjoint model rectified some parameter distortions but did not alter
spatial parameter distributions, demonstrating the robustness of regionalized parameterization. Despite higher
computational expenses and modest improvements, the adjoint model’s success removes the barrier for complex

implicit schemes to enrich differentiable modeling in hydrology.

1. Background

Accurate hydrologic predictions are crucial for effective water resource management around the world under a
changing climate (Hannah et al., 2011; Sivapalan et al., 2003). In recent years, deep learning models such as long
short-term memory (LSTM) networks have gained traction in hydrology due to their high predictive performance in
various applications, including streamflow prediction, soil moisture estimation, and the modeling of stream
temperature and dissolved oxygen (Bloschl et al., 2019; Fang et al., 2017; Feng et al., 2020; Kratzert et al., 2019;
Ouyang et al., 2021; Rahmani et al., 2021b, a; Zhi et al., 2023). Despite their impressive capabilities, deep learning
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models are often criticized for their limited interpretability and dependence on extensive observations. Additionally,
they are unable to provide outputs for untrained variables (those not trained using observations as targets), e.g.,
evapotranspiration (ET), water storage, or snow water equivalent, which are of great interest to stakeholders but are
not extensively observed.

In response to these limitations, alternative approaches that merge the process-based understanding of hydrologic
systems with various genres of physics-informed machine learning techniques have been explored. These approaches
include differentiable modeling (DM), interpretable machine learning approaches (Wang et al., 2021), post-processing
(Frame et al., 2021), and embedding trained networks into existing models (Bennett and Nijssen, 2021). Notably, the
neural networks must be pretrained using either observations or model simulations as the target. Not many approaches
allow interpretability, continued updating of the neural networks, and knowledge discovery at the same time.
Recently, differentiable modeling (DM) (Shen et al., 2023) was proposed as a pathway to train neural networks (NNs)
together with physical equations in an “end-to-end” fashion (Figure 1), where the NNs can provide parameters or
unknown relationships for the process-based components (Tsai et al., 2021; Feng et al., 2023, 2022; Aboelyazeed et
al., 2023; Bindas et al., 2024). When the model is “differentiable” (explained in the next paragraph), we have a “credit
assignment path” (Schmidhuber, 2015) between tunable parameters and the objective function, which enables efficient
training of massive amounts of weights on big data based on outputs of the combined system. It also removes the need
for direct supervising data for the output of the NN (although such data can be used as additional constraints when
available), and enables the discovery of knowledge from data. To make the model differentiable, we prefer translating
physical models onto differentiable platforms, which would guarantee the desired sensitivity as the physics are baked
into the model, over training an NN as a physical model surrogate. As the models are interpretable, they can be used
to provide a full narrative of the physical processes and have the potential to discover scientific knowledge and
unrecognized linkages from data. They also extrapolate better in space, especially in data-sparse regions, due to using
process-based equations as the backbone of calculations and respecting assumed physical laws like conservation of
mass (Feng et al., 2023).

Essentially, differentiable models aim to train coupled NNs (by optimizing their weights, w, in Figure 1) using gradient
descent. In the end-to-end fashion, we must be able to calculate the gradients of model outputs with respect to NN
weights along all the steps (physical equations and NN layers) in the model. Models supporting such gradient
calculations are called “differentiable” models (Shen et al., 2023). Gradient descent is the only currently-known way
to train NNs with massive amounts of weights on big data, and such computational infrastructure is very efficient,
especially when paired with parallel GPU (graphics processing units) processing and automatic differentiation (AD,
explained further below). Modern machine learning platforms are built to support differentiability and NN training
using AD, but there are other options as well. For example, while not the focus of DM, we can train NNs as surrogate
models for physical models (minding all the complexities with maintaining the accuracy of a surrogate model as well
as the fact that we cannot modify the internal functions of a surrogate model) and place it alongside a parameterization
network (Tsai et al., 2021). As another example, adjoint state methods have been developed to solve an accompanying

equation to produce gradients of an equation-solving step (Chen et al., 2018).
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While there have been significant advances in differentiable models, certain numerical approximations have been
introduced to facilitate their easy implementation on machine learning platforms utilizing AD. These approximations
can result in numerical errors, colloquially termed the "ancient numerical demon" (Clark and Kavetski, 2010; Kavetski
and Clark, 2010) with implications for the calibrated parameter values. Such approximations encompass, but are not
limited to, ad-hoc operator splitting (sequential operations), explicit numerical schemes without error control, and the
use of threshold-like functions to avoid negative state variables, all of which can degrade the quality of gradient
calculations for parameter optimization. Recently published differentiable hydrological models (Feng et al., 2022,
2023) mostly used these numerical approximations because of their straightforward implementation and a long legacy
of usage (Aghakouchak and Habib, 2010; Beck et al., 2020; Bergstrom, 1976, 1992; Seibert and Vis, 2012). The
numerical errors can be compensated for by pushing the calibrated parameters to a different part of the parameter
space (Clark and Kavetski, 2010; Kavetski and Clark, 2010). With such compensation, the daily streamflow
performance metrics such as Nash Sutcliffe model efficiency coefficient (NSE) can be kept high, but the interpretation
of the results and the physical significance of the calibrated parameters are obscured. The implications of numerical
errors were examined in detail before, where Kavetski and Clark (2010) addressed the issues using implicit schemes.
However, the issue of explicit vs. implicit solvers has not been examined in the context of a regionalized
parameterization scheme, especially a novel differentiable model relying on regionalized parameter learning with
NNs, which applies implicit regional constraints. The extent to which numerical schemes can impact regionalized
parameter distributions is unclear.

As an underpinning of deep learning, automatic differentiation (AD) decomposes complex calculations into a
sequence of elementary arithmetic operations, and then applies the chain rule of differentiation to compute the
derivative of the output with respect to its input variables. AD often needs to store some intermediate results or
instructions, thus consuming memory. AD typically requires very little effort on the modeler’s side besides writing
the model in a forward mode (no need to provide gradient functions) on a machine learning platform like PyTorch,
Tensorflow, JAX, or Julia, and is the obvious tool to calculate gradients for explicit models. However, if we want to
improve a model’s accuracy and stability using implicit solvers that require iterative steps, AD could run into the issue
of having high overhead and excessive memory usage. Memory use is a significant issue for GPUs which are crucial
to modern machine learning. Furthermore, tracking the gradients of the many iterative steps with AD may lead to the
dreaded vanishing gradient problem (Hochreiter and Schmidhuber, 1997) facing recurrent neural network training,
where the gradients become exceedingly small and prevent the NN weights from being effectively updated. These
issues, unfortunately, make it challenging for differentiable models to employ implicit solvers that encompass a wealth
of powerful and essential tools for solving some equations, e.g., those containing elliptic operators (Groundwater
equations (Todd and Mays, 2004); Richards’ equation (Richards, 1931); shallow water equations (Sadourny, 1975);
heat equation (Bergman, 2011)) or systems of nonlinear equations (Aboelyazeed et al., 2023).

The adjoint method has been widely used for equation-constrained optimization (Cao et al., 2002) in various fields
such as meteorology, oceanography, and geophysics, but only in recent years has it been applied for neural network
training with differential equations (Rackauckas et al., 2021). Hydrologic modelers have also used the adjoint for data

assimilation (Fisher and Andersson, 2001; White et al., 2003; Neupauer and Wilson, 2001; Liu and Gupta, 2007;
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Castaings et al., 2009; Jay-Allemand et al., 2020; Bandai, 2022). Instead of automatically working through the
elementary operations as AD does, the adjoint solves another accompanying equation (derived by the modeler based
on the chain rule and the associative property of matrix multiplication) to rapidly produce the gradients of outputs
with respect to inputs --- more precisely, it computes the vector-Jacobian product. However, the adjoint method has
not yet been extensively explored in the context of large-scale, regionalized hydrologic simulations (White et al., 2003;
Colleoni et al., 2022), which require mini-batch processing, high data throughput, and a long time for integration. It
is unclear if the adjoint method is applicable in this scenario.

Adjoint methods can be defined at different levels. Simply put, the adjoint-state method is defined at the differential
equation level (called “optimize-then-discretize™), involving the solution of a separate differential equation for the
adjoint (Chen et al., 2018). However, we can also define it at lower functional levels, e.g., solving an adjoint equation
for a specific operator inside a discretized numerical model (called “discretize-then-optimize™) (Onken and Ruthotto,
2020). The latter is more naturally implemented along with the numerical algorithms to solve the forward problem.
In both machine learning and process-based modeling, an important point for consideration is whether the basic
architecture has the expressive power to represent the phenomenon of interest. Deep networks can approximate
extremely complex functions, due to the enormous amount of weights that can be trained, along with their generic
architecture (Hornik et al., 1989). For process-based models (or hybrid differentiable models), structural deficiencies
may lead to problematic behaviors that cannot be remediated (even with the help of highly flexible NNs for
parameterization). It is unclear whether the difference between implicit and explicit solvers can lead to differences in
representation, and whether differentiable models can help us identify structural deficiencies.

In this work, we proposed the application of the “discretize-then-optimize” adjoint method to implement implicit
numerical schemes in differentiable hydrologic models (referred to as implicit adjoint-based models or "adjoint
models" for brevity, also denoted as SHBV.adj.). We then compared them to the existing differentiable models with
explicit Euler time stepping and sequential operations (referred to as explicit sequential models or "sequential models"
for brevity and are denoted as SHBV). We investigated the impacts of these methods on hydrologic model performance
and parameter distributions. Furthermore, we examined the potential for these adjoint-based methods to enhance the
performance of differentiable models, bringing them closer to or surpassing the performance of state-of-the-art LSTM
models. We sought answers for the following questions:

1. Can we support implicit numerical solvers in large-scale differentiable hydrologic modeling, and what are
their implications for performance and computational efficiency?

2. Do implicit and sequential models have different representation power, i.e., does the sequential-calculation
approach result in errors that prevent it from accurately representing certain aspects of hydrologic
dynamics?

3. Do we get very different parameter distributions with the implicit (adjoint) model than with the sequential
model at the regional and local scales?

The full version name of the adjoint model is SHBV.adj-CAMELS-hydroDL where “6” indicates differentiable
modeling, “adj” represents adjoint, “CAMELS” represents the training dataset, and “hydroDL” stands for software

implementation.
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2. Data and Methods

As a high-level summary, the differentiable model couples an LSTM network to a conceptual hydrologic model,
Hydrologiska Byrans Vattenbalansavdelning (HBV), and trains them together in an end-to-end fashion (from the input
of LSTM to the output of the HBV) on daily discharge data on 671 basins in the conterminous United States (CONUS).
The LSTM, which provides static or dynamic parameters for HBV, is not trained directly with pre-calibrated
parameters but is jointly trained with HBV using the discharge observations. This joint training, where the LSTM
weights are updated, is supported by either AD for the explicit HBV model or the adjoint method for the implicit HBV
model. The conceptual frameworks of the two models are similar, and the differences between AD and the adjoint
only pertains to how the gradients are obtained during backpropagation through the solving of HBV’s equations.
However, due to gradient vanishing and memory issues arising from the required numerical iterations, the implicit
model simply cannot be supported by AD for backpropagation. In addition to the implementation of the implicit
scheme, this work also evaluated a structural change (incorporating capillary rise) to HBV, based on insights acquired
during joint training. We compared the explicit (sequential), implicit, improved explicit (sequential) and improved
implicit differentiable models and a direct LSTM simulation of streamflow in terms of various streamflow metrics,
and the differentiable models are also benchmarked in terms of ET and baseflow fraction simulations. In the following,
we describe the different parts of the framework as well as discuss the differences between AD and the adjoint method

in more detail.

2.1 Datasets

We utilized the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) data set (Addor et al.,
2017; Newman et al., 2014) for this study. This dataset comprises basin-averaged hydrometeorological time series,
catchment attributes, and streamflow observations from the United States Geological Survey (USGS) for 671
catchments across the CONUS. The majority of its daily streamflow observations span from 1980 to 2014. For our
study, the meteorological forcing data was sourced from Daily Surface Weather Data on a 1-km Grid for North
America (Daymet) Version 4 (Thornton et al., 2020). From the CAMELS dataset, we incorporated catchment
attributes such as topography, climate patterns, land cover, soil, and geological characteristics as inputs to our models
(Table Al).

We compared our model simulation with the streamflow observation, as well as the streamflow simulation from a
traditional process-based model, SAC-SMA (Sacramento Soil Moisture Accounting), with the model calibrated by
the National Weather Service. The simulation results of SAC-SMA are provided in CAMELS. To assess the accuracy
of predicted intermediate variables, we also employed the Baseflow Index (BFI) from the CAMELS dataset and
evapotranspiration (ET) data from the MOD16A2 dataset (Running et al., 2017). BFI is obtained by applying Lyne
and Hollick filters with warm-up periods to streamflow hydrographs (Ladson et al., 2013). The MOD16A2 Version 6
Evapotranspiration/Latent Heat Flux product provides 8-day composites at a 500-meter pixel resolution and is
aggregated to the average values at the basin levels. The algorithm used for the MOD16A2 dataset relies on the

Penman-Monteith equation logic, incorporating daily meteorological reanalysis data and Moderate Resolution
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Imaging Spectroradiometer (MODIS) remote sensing inputs like vegetation dynamics, albedo, and land cover

(Monteith, 1965; Mu et al., 2011; Running et al., 2017).

2.2. Models
2.2.1 Differentiable, Learnable, Regionalized Process-Based Model

This study utilized the differentiable regionalized process-based model framework presented in Feng et al. (2022),
which employs the HBV model as its backbone and utilizes LSTM for parameter regionalization. The motivation for
making the model differentiable is so that it can train connected NNs in an “end-to-end” manner to learn robust and
complex relationships from big data, which can provide indirect supervision to the NNs. As stated above, the model
was already made programmatically “differentiable” because it was implemented on the PyTorch ML platform, so
gradient information can backpropagate through it. However, it previously was only integrated in time using the
explicit Euler method with no error control. The HBV model is a conceptual model that uses a set of linked storage
components representing processes like snow accumulation and melt, soil moisture dynamics, and river routing to
forecast river discharge. To summarize the NN-HBV coupling succinctly, the differentiable model based on HBV can

be written as:

8 = g,,(x,A) )

where 0 represents HBV physical parameters, A contains 35 static attributes such as topography, climate, soil texture,
land cover, and geology (Table Al in Appendix), x represents the meteorological forcings, and g,, is a
parameterization neural network that seeks to capture the prevalent relationship between the input data and the HBV
parameters (w represents the weights of the neural network). 8 can be formulated as being either static-in-time or
time-dependent, where new values are obtained for every day of the simulation. More details about the data can be

found in Feng et al. (2022). The HBV forward simulation is succinctly written as
0 = HBV (x,0) )

where @ is the simulated streamflow. The HBV model utilizes three primary forcing variables: precipitation (P),
temperature (T), and potential evapotranspiration (Ep). The Hargreaves (1994) method, which considers mean,
maximum, and minimum temperatures along with latitudes, is employed to estimate Ep, representing the total
evaporative demand. The same forcings, X = {P, T, Ep}, were used in g,,. It should be noted that HBV only serves as

an example, and other hydrologic models (Knoben et al., 2019) can be similarly employed.

2.2.2 Hydrologiska Byrans Vattenbalansavdelning model

The HBV model employs a framework that includes five water storages and associated fluxes to encapsulate the
primary hydrological processes within a catchment. It can simulate hydrologic variables, including soil moisture,
groundwater storage, evapotranspiration, quick flow, baseflow, streamflow, etc. It consists of four main modules to

classify all storages and fluxes as shown in Figure. 1:
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Snow Accumulation and Melt: This module uses a temperature-index method to distinguish between rainfall and

snowfall and to simulate the snow accumulation and melt processes.

O ot Ry, Somt @
P, = P if T < Oy, otherwise 0 4)
sz = (Orr — T)HDDgrfz )
Smett = (T' = 0rr) Opp (6)

where ¢ is time; Sy, is the current snow storage [mmy]; F; is the precipitation as snow [mm/day]; Ry, is the refreezing
of liquid snow [mm/day]; Spe;; is the snowmelt as water equivalent [mm/day]; Orr, Opp, and 6, ¢, are threshold

temperature for snowfall [°C], degree-day factor [mm°C-'day'], and refreezing coefficient [-], respectively.

ds;; (7)
dth = Smelt — sz = Lsnow

Lipow = Stig — GCWHSp (3

where Ig0, is the snowmelt infiltration to soil moisture [mm/day]; Sy;4 is the liquid water content in the snowpack
[mm]; and 6y, is the water holding capacity as a fraction of the current snowpack [-].

Soil Moisture and Evapotranspiration: The model features a simple soil moisture accounting scheme where
precipitation and snowmelt infiltration can either contribute to evapotranspiration or runoff. Potential
evapotranspiration, typically calculated externally (e.g., using the Hargreaves method (Hargreaves, 1994)), limits the

actual evapotranspiration from the soil storage.

ds. ©
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12
E, = (S5 — Orc)/dt (12
4 (13)
Fo= min (5 ) 1
r=minlp g, P
P (14)
Cr = OcxSyx(1——S
" € Onpe * Opc



where S is the current storage in soil moisture [mm]; S; ; is the current storage in the lower subsurface zone [mm/day];
B, is the precipitation as rain [mm/day]; P,sf is the effective flow to the upper subsurface zone [mm/day]; E is the
rainfall excess [mm/day]; E; is the actual evapotranspiration [mm/day]; C, is the capillary rise from the lower
subsurface zone; O is a time parameter [day™']; Oz is the maximum soil moisture (field capacity) [mm]; Oyp is the
230 fraction ratio of the field capacity [-] and is set to a constant value of 1 in the discrete model to prevent gradient
explosion, while in the adjoint model, it is treated as a static parameter to be learned; 6, is the vegetation wilting
point [-]; § is a parameter influencing the shape of the soil moisture function [-]; y is a parameter influencing the
shape of the evapotranspiration function [-].
Runoff Generation: Runoff in the HBV model is represented by three components - two quick flows (near surface

235  flow and interflow), and delayed runoff (or baseflow).

dSyy (15)
gt = Perr E, —perc — Qo — (4
Perc = min (Opere, Syz/dt) (16)
17
Qo = HKO (Suz — OuzL) (1)
18
Q= 9K15UZ 1%
ds,, (19)
7t = Perc = &(=6)
(20)

Q; = BKOSLZ

where Sy, is the current storage in the upper subsurface zone [mm]; perc is the percolation to the lower subsurface
zone [mm/day]; Q,, Q;, and Q, are the near surface flow [mm/day], interflow [mm/day], and baseflow [mm/day],
respectively; Op,er¢ is the percolation flow rate [mm/day]; 6, O, , and 8, are the recession coefficients [day-1].

Basin-scale routing: We employ a gamma function to simulate the flow routing through rivers and lakes within the

240  catchment, leading to the simulated discharge at the catchment outlet.

, @1)
Q) = f £(5)Q'(¢ — s)ds

L 22)
= — a—1 [
$(s) F(Ha)HbQ“S e “b

where Q' = Qy + Q; + Q,; Q is the simulated streamflow at the catchment outlet; 8, [-] and 8,[-] are two routing

parameters.
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Figure 1: A schematic view of the HBV model. g, is a parameterization neural network that seeks to capture the prevalent
relationship between raw input data and the HBV parameters (w represents the weights of the neural network). 0 and 0*
are the static and dynamic HBV parameters, respectively. I, is the snowmelt infiltration to soil moisture, Rg, is the
refreezing of liquid snow, and s,,¢; is the snowmelt as water equivalent. Et is the actual evapotranspiration, Pg is the
effective flow to the upper subsurface zone, and E, is the rainfall excess. Qg, Q;, and Q; are the near surface flow, interflow,
and baseflow, respectively. Q is the simulated streamflow at the catchment outlet.

In this work, we investigated two distinct HBV structures. The first structure replicates the structure employed in Feng
et al. (2022) adapted from the HBV structure used in Beck et al. (2020). A primary limitation of this structure is its
inability to represent the depletion of storages and the occurrence of zero flow. In scenarios where precipitation events
are minimal and soil moisture is not entirely depleted, there always exists a recharge flow directed into the groundwater
compartments, consequently producing a baseflow. To alleviate this limitation, according to previous experiences
(Knoben et al., 2019), various strategies can be employed: (1) applying a threshold-based function to Q1 and Q2, (2)
constraining the effective rainfall and excess volume, (3) adapting the ET functions, (4) introducing a sink flux in the
lower subsurface zone to directly remove water, and (5) incorporating a capillary flux to redistribute water among soil
zones. Among these strategies, we chose to incorporate a capillary flux from the lower subsurface zone to the surface
soil, as illustrated by the dashed arrow in Figure 1, in order to avoid introducing threshold-like functions, which would
complicate gradient calculations. Notably, this is not the typical capillary flux from the upper subsurface zone.
Similarly, the reciprocal flux between different soil zones is profoundly influenced by the operation order, making it
more susceptible to numerical errors in the sequential models. The capillary flux can increase the evapotranspiration,

especially when surface soil moisture is at a diminished level, thereby moderating the baseflow. This flux (Equation

9
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14) is mathematically accounted for by additional terms in brackets of Equations 9 and 19, whereby it is subtracted
from the lower subsurface soil zone and added to the upper soil zone. The sequential and adjoint model incorporating
the capillary flux are referred to as “the sequential improved model (§HBV improved model)” and “the adjoint

improved model (§HBV.adj improved model)”, respectively.

2.2.3 Long short-term memory network

Long Short-Term Memory (LSTM) is a recurrent neural network (RNN) designed for identifying patterns in long time
series. While traditional RNNs face challenges like vanishing or exploding gradients (Hochreiter and Schmidhuber,
1997), LSTM alleviates these issues using a distinct cell architecture with input, forget, and output gates. These gates
modulate information flow, rendering LSTM especially effective for tasks like time series forecasting and sequence-
to-sequence modeling. Given LSTM's proficiency in capturing temporal dynamics, it serves two primary functions in
this study: direct streamflow prediction, and regionalized parameterization.

Direct streamflow prediction using LSTM:

Q = LSTM(x,A,w) 23)

This model serves as a benchmark. The meteorological forcings, x, used in the pure LSTM includes precipitation,
solar radiation, max and min temperature, and vapor pressure. Attributes, A4, includes topography, climate, soil texture,
land cover, and geology. w are the LSTM weights to be trained for streamflow prediction. More details about the pure
LSTM streamflow model can be found in Kratzert et al. (2019) and it is referred to here as the LSTM model. We used
the code from Kratzert et al. (2019) and ran the model in the same training and testing periods as the HBV models.
Although we have a separate implementation that generated similar performance (Feng et al., 2020; 2021), here we
include just one LSTM model from a third party for cross comparability. While LSTM offers exceptional accuracy
in streamflow prediction, its application in hydrologic modeling presents interpretability challenges and it does not
produce intermediate physical states or fluxes.

Regionalized parameterization using LSTM:

LSTM can also serve as a parameter learning function, referred to as g, in the DM framework:

0 or 8 = LSTM(x,A,w) (24)

where the parameters learned can be either static (@) or time-dynamic (8%). The forcings, x, only include precipitation,
temperature, and potential evapotranspiration used in HBV (same as Feng et al. (2022)). A includes the same 35 static
attributes used in the pure LSTM model, listed in Table Al. w represents the LSTM weights to be trained for HBV

parameter estimation.

When employed for regionalized parameterization (in this context, this means all available training sites are employed
to train one network), LSTM establishes a correlation between input data and HBV parameters. By learning from a
dataset with 671 basins, it tries to learn the implications of basin characteristics, making it applicable to ungauged
basins. The HBV parameters used in Eq. 3 - Eq. 22 can be treated as static (8) or dynamic parameters (8%). When

treated as static, the same parameter value is used throughout the HBV simulation, whereas dynamic parameterization

10
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(DP) provides a time series of parameters that differ for each basin and each day. In Feng et al. (2022), the DP approach
was adopted for parameter y, which was intended to reflect the impacts of vegetation on ET. Additionally, the shape
coefficient, 8, was set to be dynamic to account for the nonlinear relationship between surface soil moisture and
effective rainfall. In the adjoint model, besides y and B, the field capacity, 85 is also treated as dynamic to enhance

the adaptability of the model.

2.2.4 Backpropagation with a coupled NN and process-based model

Within the framework of the differentiable model, the HBV model's parameterization is achieved by optimizing the
weights, w;, of the LSTM. This process learns the relationship between the input big data and the optimal
parameterization using gradient descent:

dlL (25)
dwmn

where «a is the learning rate (a model hyperparameter) and can be updated automatically by the optimizer, AdaDelta
(Zeiler, 2012); L is the loss function that evaluates the discrepancy between the simulated and observed streamflow
based on root-mean-square error (RMSE), conducted on a mini-batch of basins during the training process; n is the

iteration number.
. dL . . . .
The gradient -, can be decomposed into multiple terms using the chain rule:

dL 9L dLde AL  ALaQdS de (26)

dw odw 0d6dw Oow dQ ds do” dw
where :_va represents the gradient of regularization terms applied to the weights in the loss function and z—; represents
the gradient of the loss function with respect to the HBV parameters (8), which encompasses the backpropagation

. . . a . a 6
steps through the loss function associated with the streamflow (ﬁ) and HBV functions (£ %). Z—W represents the

gradient of the HBV parameters with respect to the LSTM weights. During backpropagation, we automatically obtain
the gradient vector Z—‘i as the program tracks through each function and resolves the gradients from left to right of the

chain rule terms in Equation 26.

2.2.5 Adjoint-based implicit scheme

The HBV model, like many hydrological models, relies on a set of ordinary differential equations (ODEs) to simulate
processes. Following many previous hydrologic modeling studies, Feng et al. (2022) solved the HBV model by
describing each process in a sequential manner with a daily time step (sequential model). They managed the fluxes by
sequentially adding to or subtracting from the water storages, limiting the depletion or saturation of storages with
threshold functions, and ensuring that the storages were updated following each individual process. It remains unclear
how the explicit and sequential approach to solving ODEs influences the parameter estimation and internal fluxes,

subsequently altering the prediction of streamflow.

11



330

335

340

To enhance numerical accuracy, this study utilized an adjoint-based implicit numerical scheme to solve the ODEs

aL 3Q

do . .
30°35° and —y 0 Eq. 26 can be easily handled by AD. The

simultaneously and implicitly. The gradient components,

as

other gradient component, 10’

is challenging for an implicit solver due to the numerous iterations and matrix solving
required (Eq. 2).
Consistent with the approach adopted in MARRMoT (Knoben et al., 2019), in one time step, the time derivatives of

all ODEs are discretized using a first-order backward Euler implicit scheme:

S5 fisten .
At ’
This can be reformulated as a nonlinear equation:
t_ ct-1 (28)
F(St,Ht)=f(5t,9t)——At =0
The Newton-Raphson method is used to solve Eq. (28):
29)

F(st,n—l et,n—l)
F,S (St,n—l’ gt,n—l)

St,n — St,n—l —

where n is the iteration number and S simply refers to a generic storage. Typically, Equation 29 is computed for many
iterations until convergence, but the number of iterations poses a challenge to AD (due to gradient vanishing) and
GPU memory as discussed above. To avoid applying AD throughout the iterations, we differentiate F(S,8) = 0 with

respect to 6:

oF ords_ (30)
96 " 9Sde
Thus, we obtain the following equation.
s oF _ oF G
do ~ ‘as’ a6
Substituting Eq. 31 into Eq. 26, the gradient of weights of LSTM becomes:
dl _ 9L dLd9 _ oL oL OF _OF df (32)
dw ow  dodw dw 9SS’ 90’ dw
We seek to solve for the “adjoint”, A, which satisfies:
(33)

OF o _ _ L
G =-G3)

S . oL\ T. a . .
Here the adjoint is a so-called “vector-Jacobian product”, where (é)TIS the vector and (((,’—IMZ)T)‘1 is the Jacobian

matrix.

Upon obtaining the adjoint A, we substitute it into Eq. 32 :
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dL 0L dLdé L dF _do (34)

aw = ow ' doaw ~ow ' * 50 dw

While solving for the adjoint requires solving a matrix, the adjoint method bypasses the need for direct AD through
all Newton iterations. Only after the Newton iteration converges and the solution is obtained do we need to compute
the vector and the Jacobian and solve the Jacobian matrix, thus greatly reducing the amount of information that
requires AD. Furthermore, in our implementation, the adjoints for all the basins in the minibatch are computed in
parallel to permit rapid training on the GPU. The forward processes and the backward processes via backpropagation
are summarized in Figure 2. In the backward mode, we only need to customize the backward function of the Newton

solver and pass Z—; for backpropagation to the subsequent steps. The other parts are automatically supported by PyTorch

with AD.
1. Newton solver for
HBV ODEs
2. Save Jacobian
tri ﬁ d a_F
Forward mode matrices, - and =5,
for the backward

.
. LSTM HBV function Streamflow
S .Forcu.ll(i Baseflow Loss(Q.Q*)
tatic attributes parameters
Use AD and \ __ELete. ) Apto

JL
Use Fri calculate

dL

b . - calculate Backward mode
ag to caleulate the adjoint, 4, (Eq. oL oLo0

g 33) and 52 = A7 & as~ a0as

dw dw ) an 0" a8

Figure 2: Schematic view of the forward code for streamflow prediction and backward code for gradient backpropagation.

In the backpropagation process, the steps utilizing automatic differentiation (AD) can be automatically executed by
PyTorch. We only need to address the adjoint calculation and pass % for backpropagation to the subsequent step. The

bolded derivatives represent the outputs of each step in the backward mode.

2.2.6 Metrics, Model Training, and Hyperparameters

The training phase employed data spanning 15 years, from 1 October 1980 to 30 September 1995, while the
performance evaluation was conducted on data spanning another 15 years, from 1 October 1995 to 30 September
2010. In all cases, one neural network was trained on all the training basins with all training data. The hyperparameters
of the LSTM unit were inherited from Feng et al. (2022). A hidden state of 256, a mini-batch size of 100, and a time
series length of 365 days were used to train the models. The model was trained to minimize an objective function (loss

function) based on root-mean-square error (RMSE) across all basins in a mini-batch:

—— (35)
Zf:l Z?=1(Q -Q *)2 +a 22:1 ZZ:l(Q -Q *)2

Loss = (1.0 — ) BxT BxT

~ 36
Q =log,y(/Q +€+0.1) (36)

where B is the number of basins (mini-batch size), T is the number of days involved in the training (time series length),

and Q is the log-transformed streamflow (transformation done to better represent the low flows in the training data).

13



370

375

380

385

390

395

400

€ is a small value (1 * 107°) to stabilize the gradient calculation. @; is a weight parameter to balance the model’s
performance between high flow and low flow, where a large value of «; intends to improve the low flow performance.
Here we set a; to 0.25, which was manually tuned in Feng et al. (2022).

To evaluate model performance, the Nash-Sutcliffe model efficiency coefficient (NSE; Nash & Sutcliffe (1970)), the
Kling-Gupta model efficiency coefficient (KGE; Gupta et al., (2009)), and the low flow and peak flow related
hydrological signatures were computed for streamflow as well as metrics for other hydrological variables such as ET
and baseflow. The metrics used to evaluate all model performance were:

e NSE: The NSE metric was derived from the ratio of the error variance of the modeled time series to the
variance of the observed time series, with a value of 1 indicating a perfect model and 0 indicating performance
equivalent to using the long-term mean value as the prediction.

e KGE: The KGE metric considers correlation, bias, and flow variability error, with a perfect simulation having
a value of 1.

e Low flow RMSE: The low flow RMSE represents the RMSE of the bottom 30% of the streamflow range.

e Peak flow RMSE: The peak flow RMSE represents the RMSE of the top 2% of the streamflow range.

e Absolute FLV: The percent of absolute bias of the bottom 30% (“low”) flow range. That is, the sum of the
absolute bias of the low flow divided by the sum of the low flow values.

e Absolute FHV: The percent of absolute bias of the top 2% (“peak”) flow range. That is, the sum of the
absolute bias of peak flow divided by the sum of peak flow values.

e Baseflow index spatial correlation: The correlation between simulated BFI (Q,/Q) and BFI from the
CAMELS derived from Ladson et al. (2013) across all basins in a spatial context.

e Temporal ET simulation NSE: NSE of the ET time series from the models compared against ET data from

the MODIS satellite mission.

3. Results and Discussion

In this section, we first examine the overall performance of the adjoint model in comparison with the sequential model
and direct LSTM simulation. Then, we examine the impact of a structural change (adding capillary rise to improve
baseflow performance) on the sequential and adjoint models. Finally, we examine how using an explicit sequential
solution or implicit solutions impacts the spatial distribution of parameters produced by the regionalized

parameterization network.

3.1. Adjoint model

Before making any structural changes, the adjoint model already demonstrated a highly competitive streamflow
prediction performance overall --- its KGE, high-flow, and low-flow metrics are all modestly better than those of the
sequential model (Table 1). For KGE, the adjoint model (0.75) is higher than the sequential model (0.73) but lower
than LSTM (0.77). In terms of peak-flow RMSE (lower is better), the adjoint model scored 2.47 mm/day, lower (and
thus better) than the 2.56 mm/day scored by both the sequential model and LSTM, which was in turn noticeably lower
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than SAC-SMA’s 3.19 mm/day. In terms of low-flow RMSE, the adjoint model’s performance (0.048 mm/day) was
lower than that of the sequential model (0.074 mm/day) and LSTM (0.055 mm/day).

Surprisingly, the adjoint model (§HBV.adj) even slightly surpassed the LSTM in peak-flow accuracy, reducing the
median high-flow RMSE by 0.1 mm/day and the median FHV by 0.2%. While this difference is small, we remind the
readers that the metrics are extremely difficult to improve at this level and we have not noticed better high-flow metrics
elsewhere for this benchmark. The advance may be attributable to SHBV.adj’s mass balance preservation (achieved
by avoiding the thresholds for negative state values) and reduction of numerical errors, which forces the model to
more accurately represent extreme values. It’s worthwhile to mention that while SHBV.adj is competitive with LSTM
at the median on CAMELS basins, as illustrated earlier, it was outperformed by LSTM for the low-KGE basins (lower
part in Figure 3 where NSE or KGE is in [0,0.5]). One possibility is that rainfall data have significant predictable bias
and errors for these basins (see more discussion in Section 4). On a side note, this comparison also highlights that a
single metric like median KGE or NSE may not tell the full story.

The adjoint model improved predictions for other hydrological variables not employed as training targets (and thus
cannot be directly simulated by LSTM), including baseflow and ET. The spatial correlation of the simulated Base
Flow Index (BFI) (Q,/Q) was enhanced to 0.83 in comparison with the sequential model’s correlation of 0.76 (Table
2). This improvement is consistent with the adjoint model's superior ability to capture low flows. The correlation of
simulated ET to the MODIS product was increased from 0.59 with the sequential model to 0.61 with the implicit
(adjoint) model. Both BFI and MODIS products are only alternative estimates, but they are derived using different
methods and MODIS utilizes independent information, and thus a better agreement is nonetheless an indication of
better model behavior.

As the implicit model comprehensively improved the streamflow simulation (high and low flows, uncalibrated
variables), we conclude that the numerical errors of the sequential model, introduced by the dependence on the order
of calculations, have a negative impact on the model’s ability to represent hydrologic dynamics and fit observations.
The differences are admittedly small, but one should not expect major gaps here because the sequential model was
already highly competitive and did not leave too much room for improvement (Feng et al., 2022; 2023). It is also
worthwhile mentioning that the small differences in the median metrics could manifest as larger differences in
capturing some peak events (Figure 6).

Probing further into the low-flow issue, the sequential model seemed to have significant structural deficiencies in
representing low flows, which were remediated by using the implicit solver. The sequential model’s FLV values were
much larger than LSTM’s (Figures 4a & 4c). With the implicit solver, the adjoint model reduced FLV for a number
of regions: (i) on the Great Plains; (ii) in Indiana/Ohio (south of Lake Michigan); and (iii) some basins in the southeast
including Florida (Figure 4e). Therefore, the numerical errors with the sequential model exerted a substantial negative
impact on the model’s ability to accurately represent baseflow. The adjoint model mitigated the overestimation of zero
and near-zero flows in arid areas (as seen in Figure 6, site i) and also corrected the underestimation of the recession
limb (refer to Figure 6, site ii).

We suspect the above-highlighted regions are where effective flow strongly competes with runoff and ET, and thus

the order of calculations has large impacts on the separation of fluxes. On the Great Plains, the precipitation tended to
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be in sync with potential ET, and both were high in summer months (Fang and Shen, 2017) --- when the sequential
HBYV calculates ET before effective flow, there can be significantly less effective flow than if effective flow was
computed first. The belt of Indiana/Ohio has compacted soil with high bulk density and difficulty with drainage and
thus a shallow water table, which also exists for Florida due to the low relief. In all of these cases, there is competition
between effective flow and other processes (ET or excess rainfall): calculating excess first could generate more excess
volume than would be if ET is calculated first. In the arid southwest, the competition between effective flow and ET
is also important. The implicit scheme mitigates this problem by solving two operators simultaneously while avoiding

overshooting fluxes or stability issues, which enables a better fit to the data.
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Table 1: Summary of statistical streamflow metrics for all models in the testing period using Daymet meteorological forcing
data. We used the code from Kratzert et al. (2019) for cross-group comparability.

Model Median | Median | Median Median Median low Median Dynamic
NSE KGE absolute absolute flow RMSE | peak flow | parameters
(non- (non- (mm/day) RMSE
absolute) absolute) (mm/day)
FLV (%) FHV (%)
LSTM 40.59 13.46
0.73 0.77 (29.70) (-4.19) 0.055 2.56
SAC-SMA 59.40 17.55
0.66 0.73 (46.96) (-9.79) 0.081 3.19 -
SHBV 56.53 15.29
0.73 0.73 (50.93) (-8.89) 0.074 2.56 v,B
SHBV.adj 43.29 13.25
0.72 0.75 (37.61) (-4.33) 0.048 2.47 Y, B, Orc
SHBV 35.69 15.45
improved 0.73 0.75 (21.09) (-10.61) 0.049 2.72 V.0
6HBV.adj 37.63 14.36
improved 0.73 0.76 (28.63) (-6.04) 0.047 2.59 Y, B, Orc

Table 2: Summary of the statistical hydrological signatures of all models in the testing period

Baseflow index Median NSE
Methods spatial correlation of temporal ET
simulation
LSTM - -
SAC-SMA - -
SHBV 0.76 0.59
6HBV.adj 0.83 0.61
SHBV 0.80 0.54
improved
6HBV.adj 0.86 0.6
improved
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Figure 3: Empirical cumulative distribution function of test performance metrics for all models: Nash-Sutcliffe Efficiency

455

(NSE, left) and Kling-Gupta Efficiency (KGE, right). LSTM represents a fully data-driven deep learning model previously

used in Kratzert et al. (2019), and SAC-SMA is a purely process-based model and the simulation results are provided in
CAMELS. SHBYV represents the original differentiable explicit “sequential” HBV model, and §HBV.adj is the implicit
adjoint-based HBV model. “Improved” indicates models where a capillary flux was added from the lower subsurface zone

to the surface soil to mitigate issues with zero and low flows.
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Absolute FLV maps (%)
(a) LSTM (b) QHBV
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(9) 6HBV improved - LSTM (h) &6HBV.adj |mproved LSTM
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Figure 4. Maps of percent of absolute bias of the bottom 30% (“low”) flow range (absolute FLV, %) of (a) the LSTM model,
(b) the sequential model (c) the adjoint model, and (d) the adjoint improved model; and maps of differences in FLV between
(e) the adjoint model and the sequential model, (f) the adjoint improved model and the adjoint model, (g)the sequential
improved model and the LSTM model, and (h) the adjoint improved model and the LSTM model. In (e), (f), (g), and (h),
dark color indicates an improvement in baseflow representation. The sites annotated in the maps represented by star-
shaped points (and labeled with i, ii, and iii in (a)), represent the locations for the plots in Figure 6.

3.2 The impact of structure changes of HBV

Although the implicit scheme improved the simulations, all models, including the LSTM, exhibited significant
underperformance within the geographical expanse of the Great Plains (Figure 5), particularly pronounced in areas
marked by low, or even zero, baseflow conditions (Figure Ald in Appendix). In particular, the original HBV model

encountered challenges in accurately simulating instances of zero flow due to its structural limitations, resulting in

19



high FLV values (Figure 4b&c). Specifically, even a minimal precipitation event leads to the creation of a recharge

flow in HBV from the soil moisture zone to the subsurface soil zone, which subsequently contributes to the base flow.

(a) LSTM (b) SAC-SMA

A
ESL =S

1.0

(f) 6HBV.adj improved

Tt =) i
2t L=

).Wq;""i‘

-1.0 -0.5 0.0 0.5 1.0-1.0 -0.5 0.0 0.5 1.0

475 Figure 5. Maps of Kling-Gupta Efficiency (KGE) for (a) LSTM, (b) SAC-SMA, (c¢) The sequential model (d) the adjoint
model, (e) the sequential improved model, and (f) the adjoint improved model. The sites annotated in the maps represented
by star-shaped points labeled with (i), (ii), and (iii) represent the locations for the plots in Figure 6.
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Figure 6: The time series of streamflow simulations from models and observation at locations annotated in Figure 4 and
Figure 5. KGE values of models in the whole testing period are listed in the subfigures.

As we enhanced the HBV model by adding a capillary rise from the lower subsurface zone to the soil zone, the
baseflow simulations were improved for both the sequential and adjoint models (Table 1 and Figure 4c&d), with
improvements over the default adjoint model in both absolute FLV (from 43.29 to 37.63 mm/day) and baseflow index
(from 0.83 to 0.86). This means a decent description of baseflow in arid regions needs a mechanism to help the model
produce zero or near-zero baseflow, such as returning water from the lower zones to the upper zone (though multiple
other structural changes may have similar effects - see Section 2.2.2). The structural change mostly continued to
improve FLV, substantially reducing FLV within the western coastal regions, the southwestern region, the Great
Plains, and the Gulf Coastal Plain, characterized by relatively flat topography and where groundwater-driven flow
contributes proportionally less to the overall streamflow dynamics, as evident from the associated low baseflow index

(Figure 4f and Figure A1d).
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The improvements with baseflows comes with a penalty in the high flows. The best adjoint improved model has a
low-flow RMSE of 0.047 mm/day, better than the sequential model, the adjoint model without capillary rise, or LSTM
(Table 1). However, the high-flow RMSE did see a slight increase from 2.47 to 2.59 mm/day, but still better than the
sequential models (Table 1 & Figure 6, site iii). A critical divergence in absolute FLV of §HBV improved models and
LSTM appears in the center US (Figure 4g&h), where accurate flow predictions depend significantly on the fidelity

of actual ET simulations.

3.3 Analysis of impacts on parameterization

The adjoint and sequential models achieved optimal performance with different dynamic parameterizations in this
temporal test (trained and tested on the same basins but in different periods). The sequential model used y and S as
dynamic parameters while the adjoint model used dynamic y, § and field capacity, Ozc. Or¢ plays a significant role
in computing effective rainfall, excess, evapotranspiration (ET), and capillary rise, exerting substantial influence over
infiltration and recharge mechanisms. Implicit schemes, involving more intricate computations like solving nonlinear
equations, enables greater adaptability to data. Adapting 5. dynamically can improve the model's ability to represent
real-world hydrological behavior, such as soil shrink and swell, frozen ground, soil surface sealing and expansion of
the saturation excess areas (or variable source area) (Schneiderman et al., 2007) which are not directly considered in
the default HBV.

The spatial patterns of the regionalized HBV parameter values demonstrate moderate differences but still a significant
level of consistency between the sequential and adjoint models, suggesting that our regionalization is robust. These
patterns also exhibit similarities to the parameter values estimated by Beck et al. (2016) (Figure A2 in the Appendix,
reprinted) and also conform well with large-scale climate patterns on CONUS (Figure 7a&b). It was known previously
that explicit and implicit schemes arrive at very different optimal parameters (Kavetski and Clark, 2010) so we had
expected larger discrepancies, but the results show only moderate shifts. Such consistency is likely due to the strong
implicit constraints imposed by parameter regionalization using data from the whole CONUS. Since all basins are
served by the same neural network for the mapping, 8 = g,,(x, A), it ensures autocorrelation in the parameter fields
due to autocorrelation in the used predictors, and thus suppresses overfitting to local noise and numerical errors. As a
result, the existence of numerical errors alone did not lead to noisy metric surface for even the explicit model (as
shown in (Kavetski and Clark, 2010)). Previously, it was difficult to efficiently impose such strong constraints and
nearly optimally learn the parameters, but the differentiable modeling framework can enable regionalization at low
cost and high parallel efficiency.

Delving deeper into the parameter field changes due to employing the implicit solver, we found that the adjoint model
seems to have tampered down some large (close-to-bound) parameter values, which suggests that parameter
compensation for numerical error is mitigated. The shape coefficient, 8, exhibits larger values (>4) within warm
climate regions, while lower values (<3) characterize cold and mountainous regions (Figure 7 & Figure Ala). In the
North Dakota, Gulf Coastal Plain, and Florida, the adjoint model predicts a reduced [ compared to the sequential
model. § can influence the flashiness of the peaks and a larger § tends to cause more threshold-like behaviors. Since

the sequential model calculates ET after effective rainoff and excess, the available water for runoff is more than that
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for the adjoint model which solves the equation implicitly, and thus needs such a large f§ to generate the same amount
of effective flow. A similar pattern is observed for the field capacity, 8¢, of the sequential model. However, the
adjoint model's field capacity estimation for the northeastern US is notably reduced compared to the sequential model,
attributed to smaller clay fraction and forest fraction (Figure Alb&c), crudely aligning with estimated 8y reported
by Beck et al. (2016).

The adjoint model provided a reasonable estimation for other key parameters, including the recession coefficient of
the lower subsurface zone (6, ) and the wilting point (8,p). 0, usually exhibits a correlated pattern to the baseflow
index (BFI) (Figure Ald). Higher BFI indicates greater groundwater-based base flow, corresponding to a lower 6y,
value that leads to diminished groundwater discharge during low-flow periods. Both the sequential and adjoint models
exhibited a consistent 6, pattern that contrasts with the baseflow index (BFI) pattern (Figure 7 & Figure Ald).
Overall, the estimated wilting point, 8;p, of the sequential model is lower than that of the adjoint model, leading to
increased ET. As mentioned, ET being underestimated arises from the sequential solving approach of the sequential

model, a smaller 8, compensate for such numerical errors.

0.05 0.06 0.07 0.08 009 010 011 0.12 0.13 0.04 005 006 007 008 009 010 011

ei_,a 9LJ"
Tal ™ =5 T | -

e

(a) Sequential model (b) Adjoint model

Figure 7: Map of the optimized parameter B, field capacity, O, the recession coefficient of lower subsurface zone, 0g,, and
the wilting point, 0 p , from (a) sequential model and (b) adjoint model. The sites annotated in the maps represented by
star-shaped points labeled with letters A-D, represent the locations for the plots in Figure 8.
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The sequential and adjoint models exhibit similar sensitivity patterns across varying HBV parameters in high-
performance basins (as illustrated in Figure 8A&B, and geographical locations in Figure 7). This consistency again
highlights the stability of the regionalization scheme, in contrast to the noisy metric surface shown in Kavetski and
Clark (2010) for single basins. For these two basins, we see a smooth contour where the NN-predicted values
(annotated by the symbol “0”) were not too far from the optimal value. However, in basins exhibiting poor
performance (as depicted in Figure 8C&D), their differences enlarged and apparently numerical errors shifted the
parameter distributions. Although the overall contour patterns stay similar, the values of the contours have changed
quite significantly, due to the dependence on the calculation order.

The process of parameter regionalization introduces a trade-off between performance and spatial coherence, leading
to parameters that might not be optimal for each specific basin; when this gap is too large, it suggests there might be
some structural issues or missing information. Take basin (D) (Figure 8D) as an example, where the optimal values
for O and S fall within the ranges of 100 - 200 mm and 1.0 - 4.0, respectively, but the NN-predicted parameter
values (centers of the KGE contours in Figure 8) deviate significantly from these optimal ranges. The regionalized
parameters thus produced a rather low KGE of -0.3. This trade-off could mean that some key processes are not well
represented and the parameters could potentially compensate for these processes, but the compensation was prevented
by regionalization. A notable example is the absence of topographic information and subbasin-scale spatial
heterogeneity, which are crucial for modeling arid basins but were not fully considered by the present parameterization

network. These parameter gaps give us hints for the next stage of model improvements.
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Figure 8: Impact of numerical schemes on the KGE surface of HBV model: The contour of KGE calculated from the (I)
sequential model and (II) adjoint model on the 2D slice of field capacity (Bgc) and parameter . The predicted parameter
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values are positioned at the central point of the contours delineated by circles. The locations of selected sites are annotated
in Figure 7.

4. Further discussion

While this work focuses on enabling implicit solvers in differentiable modeling, we do not suggest that explicit solvers
are to be discouraged. It has long been explored in the numerical algorithm literature that each type of solver has
advantages and disadvantages and is suitable for different problems. For example, implicit solvers are not only
preferred but also necessary for stiff ODEs, especially those with dynamics on vastly different time scales and those
resulting from the discretization of elliptic PDEs. Using explicit solvers for them could necessitate very small time
steps.

Further complications of using explicit schemes with small time steps include computational expenses, parallel
efficiency, and matching forcing functions. Even though hourly data are now publicly available, directly training an
hourly model with ML techniques remains computationally expensive and may also cause the problem of gradient
vanishing if the training time steps are too numerous (Gauch et al., 2021; Greff et al., 2017). The numerical schemes
employed in the physical models within the differentiable modeling framework need to maintain stability for
simultaneous large-scale simulations in each minibatch while also allowing for gradient tracking. Batched learning
and parallel efficiency may prefer uniform operations across basins and challenge the application of adaptive time-
stepping algorithms. We conducted tests on the differentiable HBV model with various numerical schemes and fixed
smaller time steps (Table A2 & Figure A3 in Appendix). The sequential model and implicit adjoint model with a 1-
day time step presented higher performance than the explicit Euler schemes with smaller time steps or the fourth-order
Runge-Kutta scheme. The main reason may be that the daily forcing inputs and daily physical parameters from the
neural network do not match the smaller time steps within a day. Thus, explicit schemes with smaller time steps may
be complicated by the need for matching forcing functions as well. Some multi-time-scale ML techniques have been
used to predict hourly flood hydrographs using daily flow data to avoid gradient vanishing issues in the direct hourly
training (Gauch et al., 2021; Sarigdl and Katipoglu, 2023). These approaches present possible solutions for future
investigations.

The parameterization function (the neural network) embedded in the differentiable models demonstrates robustness,
as evidenced by the similarity of parameter patterns and metric surfaces derived from various numerical schemes in
Figure 7 and Figure A3. We did not observe a notable macroscale roughness in the metric surface (Figure A3) as
shown in Kavetski and Clark (2010) when using explicit schemes. Moderate distortions and roughness were present
on the KGE surface in models employing the RK scheme (sites A and D). As we reduced the time steps and
transitioned to implicit schemes, these distortions seem to have alleviated and converged toward the metric surface,
consistent with the better numerical solution. That is, the 4-hourly and hourly patterns are more similar to the implicit
results than that of the RK scheme. The convergence toward the implicit scheme suggests that the implicit scheme
results are more reliable.

The adjoint method was used in this work to support the implicit numerical scheme in differentiable models, which

allows for the efficient joint training of the neural networks with physical models using gradient descent. Such joint
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and “online” training on big data is not possible without the process-based model being differentiable, because the
only presently known way to train such a large number of weights is via backpropagation. While we utilized a coupled
neural network in this work for regional parameterization, it can also be used to replace any component of the physical
model for knowledge discovery. For example, the runoff module in the HBV model could be replaced with a neural
network. Thanks to their ability to train on big data, differentiable models can be trained on all basins and constrain a
common neural network to learn a universal relationship between the inputs and the physical parameters. Such
relationships can be used for interpolation and extrapolation at sites lacking observations.

While the differentiable implicit model outperforms the sequential one and offers state-of-the-art performance, it
incurs a substantially larger computational cost. Newton's method to solve the implicit equation requires a number of
iterations (~3 to 4 iterations to solve Eq. 29) and, for the sake of the adjoint, we need to solve a matrix (Eq. 33). The
calculation of the Jacobian matrix for multiple basins, depending on the batch size, also consumes time. In addition,
the more complicated computational instructions of the adjoint procedure may encounter higher CPU overhead and
thus lower GPU utilization rate compared to the forward simulations. Due to all these reasons, the computational cost
is almost 5-10 times that of the sequential model. For context, compared to running traditional models on CPUs, our
implementation is already orders of magnitude more efficient due to parallel efficiency. Nonetheless, the increased
computational demand for the implicit solver still creates challenges for training at large scales as it requires thousands
of forward simulations. As a potential solution, based on the parameter consistency between the sequential and the
implicit models, it seems we can use the inexpensive sequential model as an “explorer model” for model structure
identification, hyperparameter tuning, and neural network pretraining. Then we can fine-tune the network using the
adjoint model. Hence, both models offer utility for global-scale applications. Although the adjoint model already
outperformed LSTM in terms of low-flow and high-flow RMSE, which is an astounding result, they still slightly fell
behind LSTM at certain basins with poor performance in the central and western US (arid regions). In the future, we
can assess multiple hypotheses that may explain why the adjoint model’s performance in these regions is not as good
as that of LSTM: (A) the differentiable model is more hampered by precipitation bias in these regions than LSTM,
which can internally account for predictable bias; (B) HBV’s baseflow inadequacy arises due to not fully utilizing
forcing information. LSTM can fully utilize information in the inputs, e.g., solar radiation and vapor pressure, while
the present HBV model only uses temperature in determining PET, apart from precipitation. The difference in solar
radiation and vapor pressure could have impacted long-term water balance and baseflow. Future work could use the
Penman-Monteith equation for PET, which considers vapor pressure, or learn better PET equations from data (Zhao
et al., 2019). (C) HBV faces a larger tradeoff between matching the high and low flow portions of the observed
hydrographs, and the adjoint models sacrificed low-flow performance to some extent in favor of better overall
performance; (D) the model backbone, HBV, is unable to represent some groundwater dynamics, e.g., lateral
redistribution of moisture from hillslope to valley (Clark et al., 2015; Fan et al., 2019). While LSTM could internally
form a cascade of neurons that transfers mass akin to lateral groundwater movements, the two-layer groundwater
structure in HBV is too simple to represent such impacts. These hypotheses will lead us to improved model structures

with the help of data. An unprecedented advantage with differentiable modeling is that we can simultaneously learn
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robust relationships from large data and find nearly optimal parameterization schemes. This reduces the complex,
iterative testing between different model structures and parameter optimization.

In future research, it would be valuable to evaluate the advantages and disadvantages of "optimize-then-discrete"
versus "discretize-then-optimize" adjoint methods in hydrological differentiable models. Generally, the "optimize-
then-discrete" approach tends to be less accurate because of gradient inaccuracies when the adjoint state differential
equations aren't sufficiently resolved. On the other hand, the adjoint in the "discretize-then-optimize" method is solved
from the Jacobian matrix using automatic differentiation, offering greater efficiency and accuracy compared to
numerically solving the adjoint differential equation (Onken and Ruthotto, 2020). Nevertheless, it requires more work
to compare the two options.

The adjoint used in this work is derived for the gradient of the Newton solver, such that it can theoretically support
any model that can be solved with the Newton solver—not only bucket models governed by ODEs but also distributed
models governed by PDEs. However, the challenge may still exist in calculating the Jacobian matrix for a batch of
basins for PDEs, as the distributed parameters in PDEs are significantly greater in number than those in ODEs, and
can slow down the efficiency of the model in both forward and backward modes.

AD is a tool that we seldom used prior to the prevalence of deep learning. Neither did we have modern GPUs or the
software to maximize its utilization. The past few years saw substantial software and hardware investments from the
artificial intelligence community that have made these tools orders-of-magnitude more efficient. Utilizing these tools
and running hydrologic models on such platforms means the water community can leverage these investments and
can grow with the Al community at little cost. For example, the model can automatically become even faster with

slight effort to embrace just-in-time compilation of torch 2.0 (Wu, 2023).

5. Conclusions

Our comparisons show that the numerical errors associated with the sequential model, and especially its dependence
on the order of computation, had detrimental impact on its representation power -- it cannot provide high-quality low
flow, high flow, and groundwater simulations and can introduce parameter compensations. The adjoint method for
gradient calculation enables the use of implicit solvers in differentiable modeling, partially mitigating the numerical
errors. While not explicitly demonstrated, other hydrologic problems that require implicit solvers can similarly benefit
from the adjoint method. With the implicit solver and with a structural change (capillary rise), our model
comprehensively improved the simulations of low flow, and an uncalibrated variable, baseflow fraction. While some
of the differences in metrics may not seem large, they are already significant and could result in flood peaks being
more accurately predicted. The comparison of baseflow simulations also implies that the same numerical issue may
hamper other models so that, in order to achieve top-of-the-line performance with differentiable models, numerical
errors have to be examined and the implicit model and adjoint will be needed.

The capacity of differentiable models to outperform the LSTM in low-flow and high-flow metrics at the median of
CAMELS basins proves that structural priors (and physical interpretability) and state-of-the-art performance are not
mutually exclusive, and pure deep networks are not necessarily the performance ceiling of environmental models

(although we do expect them to be close to optimal). In fact, for rarely-observed events or spatial extrapolation,
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structural priors may potentially overcome data limitations. The fact that modifying the structure can result in better
physical representations hints that we can make further improvements to baseflow and peak flow, and identify better
structure from data.

The regionalization scheme produced overall stable parameter fields that, on first look, have similar patterns between
sequential and implicit models, but a deeper investigation shows that the implicit scheme reduced large, near-bound
parameter values where competition between fluxes is likely to occur. This is visual evidence that parameter
compensation occurs more strongly with the sequential model and it can be mitigated. Since it is preferable to remove
the interference of numerical errors prior to interpreting the parameter fields, the implicit model would be favored
when the interest is in the intermediate parameters or internal fluxes. The ancient demon of numerical errors remains

relevant in the new era of big data, but may be mitigated by the adaptive capability of deep networks.
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Appendix

Table A1 are the forcing and attribute variables used in the LSTM models.

Table A1: Summary of the forcing and attribute variables used in all Models
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Variable name Unit
PRCP Precipitation mm/day
Forcings E, Potential evapotranspiration mm/day
T Temperature °C
p_mean Mean daily precipitation mm/day
pet_mean Mean daily PET mm/day
. Seasonality and timing of
p_seasonality S -
- precipitation
frac snow F ractionl of precipitation i
- falling as snow
Aridity PET/P -
. Frequency of high
high fr s days/
187_prec_tred precipitation days aysiyear
. A durati f high
high prec_dur Verag.e . ur'a ton ot g days
precipitation events
low_prec_freq Frequency of dry days days/year
A durati fd
low_prec_dur verage u.ra on ot ay days
. periods
Attributes
elev_mean Catchment mean elevation m
slope_mean Catchment mean slope m/km
Catchment area (GAGESII )
area_gages2 km

estimate)

frac forest

Forest fraction

Maximum monthly mean of

lai A -
al_max the leaf area index
Difference between the
maximum and minimum
lai diff -
ad monthly
mean of the leaf area index
Maximum monthly mean of
gvf max . -
- the green vegetation
gvf diff Difference between the -
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maximum and minimum
monthly mean of the green
vegetation fraction

dom land cover frac

Fraction of the catchment
area associated with
the dominant land cover

dom land cover

Dominant land cover type

root_depth 50

Root depth at 50th
percentile, extracted from a
root depth
distribution based on the
International Geosphere-
Biosphere Programme
(IGBP) land cover

soil_depth_pelletier

Depth to bedrock

soil_depth_statgso

Soil depth

soil_porosity

Volumetric soil porosity
soil_conductivity

soil_conductivity

Saturated hydraulic
conductivity

cm/hr

max_water_content

Maximum water content

sand_frac Sand fraction -
silt_frac Silt fraction -
clay frac Clay fraction -

geol class_Ist

Most common geologic
class in the catchment basin

geol class 1st frac

Fraction of the catchment
area associated with its
most common geologic

class

geol class 2nd

Second most common
geologic class in the
catchment basin

geol class 2nd frac

Fraction of the catchment
area associated with its 2nd
most common geologic
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class

carbonate rocks frac

Fraction of the catchment
area as carbonate
sedimentary rocks

geol porosity

Subsurface porosity

geol permeability

Subsurface permeability

705

We provided the maps four attributes, aridity, forest fraction, caly fraction, and the baseflow index, used in the

differential models to support our analysis.

(a) Aridity (b) Forest Fraction

(c) Clay Fraction
[T
- Ny

10 15 20 25 30

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

Figure Al: Map of the static attributes: (a) Aridity, (b) Forest Fraction, (¢) Caly Fraction, and (d) Baseflow index from
710 CAMELS dataset.

We reprint the Figure 4 in Beck et al. (2016) to facilitate a comprehensive parameter comparison.
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(a) FC (mm)

Figure 4. For HBV, mean values of the regionalized parameters based on the 10 most similar donor catchments for: (a) the maximum
water storage in the unsaturated-zone store (FC); (b) the soil moisture value above which actual evaporation reaches potential evaporation
(LP); (¢) the shape coefficient of recharge function (BETA); and (d) the recession coefficient of lower groundwater store (K2). For maps of all
other parameters, see supporting information Figure 52.1.

Figure A2: For HBV, mean values of the regionalized parameters based on the 10 most similar donor catchments for: (a)
the maximum water storage in the unsaturated-zone store (FC); (b) the soil moisture value above which actual evaporation
reaches potential evaporation (LP); (c) the shape coefficient of recharge function (BETA); and (d) the recession coefficient
of lower groundwater store (K2). Reprinted with permission from Beck et al. (2016).

We conducted tests on the differentiable HBV model with various numerical schemes and time steps (Table A2 &
Figure A3). The forcing and physical parameters estimated by the neural network (LSTM) remain constant within a
day. In theory, with smaller time steps, we were supposed to configure the forcing function and LSTM to provide
hourly inputs and physical parameters that match the progression of time within a day, i.e., the inputs should reflect
diurnal changes in forcing. However, this configuration would greatly increase the memory usage and complexity and
is thus out of the scope of this study (Gauch et al., 2021). Here we distinguish between explicit scheme and sequential
scheme with operator splitting: the explicit scheme solves the right-hand side of the ODE simultaneously while the
sequential scheme applies an order to the operations, generally from surface to subsurface, as directed in the original
HBV. The fixed-step explicit Euler scheme with one-day time step caused divergence in the large-scale simulation
due to its instability. However, with 4-hour and 1-hour time steps, the explicit Euler schemes exhibited better
performance than the 4th-order Runge-Kutta (RK) explicit scheme but still lagged behind the daily sequential scheme
that employed ad-hoc operation splitting or the implicit adjoint scheme. The regional parameters learned through
various numerical schemes exhibit similarity, indicating the robustness of the parameterization function (the neural
network) embedded within the differentiable models (Figure A3). However, parameter distortion and surface
roughness in the KGE models employing explicit schemes, particularly the RK scheme, were still observed.

Table A2: Summary of streamflow metrics for models using different numerical schemes and time steps. Timing was
obtained on a Nvidia Tesla V100 GPU.

. Median
Memor Median ak
Model Numerical Time Usg eo Zr Computational | Median | Median | low flow If)li)w
scheme step gep time per batch | NSE KGE RMSE
batch (mm/day) RMSE
Y| (mm/day)
supy | Fixedstep |y g0 1 227am 1.6s - - - -
explicit
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The fourth-

SHBV | order Runge- | 1day | 2532M 3.9s 069 | 0.70 0.061 3.25
Kutta explicit

SHBV Fixed-step | 4 s | 2706M 6.3 072 | o071 0.09 2.50
explicit

SHBV Fixed-step |1y o | 4146M 18.1s 072 | 0.71 0.08 2.63
explicit

dHBV Sequential 1 day 2266M 1.5s 0.73 0.73 0.074 2.56

SHBV.adj Implicit 1day | 2788M 19.5s 072 | 0.75 0.048 2.47
adjoint
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Figure A3: Impact of numerical schemes on the KGE surface of the HBV model: The contour of KGE calculated from the
(I) 4th order Runge-Kutta explicit scheme, (II) Fixed-step Euler explicit with 4 hour time step with 4 hour time step, (I1I)
Fixed-step Euler explicit with 1 hour time step, (IV) sequential scheme, and (V) implicit adjoint scheme on the 2D slice of

740 field capacity (FC) and parameter. The predicted parameter values are positioned at the central point of the contours
delineated by circles. The locations of selected sites are annotated in Figure 7.

34



745

750

755

760

765

770

775

780

References

Aboelyazeed, D., Xu, C., Hoffman, F. M., Liu, J., Jones, A. W., Rackauckas, C., Lawson, K.,
and Shen, C.: A differentiable, physics-informed ecosystem modeling and learning framework
for large-scale inverse problems: demonstration with photosynthesis simulations,
Biogeosciences, 20, 2671-2692, https://doi.org/10.5194/bg-20-2671-2023, 2023.

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: Catchment Attributes and
MEteorology for Large-Sample studies (CAMELS) version 2.0,
https://doi.org/10.5065/D6G73C3Q, 2017.

Aghakouchak, A. and Habib, E.: Application of a Conceptual Hydrologic Model in Teaching
Hydrologic Processes, Int. J. Eng. Educ., 26, 2010.

Bandai, T.: Inverse Modeling of Soil Moisture Dynamics: Estimation of Soil Hydraulic Properties
and Surface Water Flux, Ph.D., University of California, Merced, United States -- California, 172
pp., 2022.

Beck, H. E., van Dijk, A. I. J. M., de Roo, A., Miralles, D. G., McVicar, T. R., Schellekens, J., and
Bruijnzeel, L. A.: Global-scale regionalization of hydrologic model parameters, Water Resour.
Res., 52, 3599-3622, https://doi.org/10.1002/2015WR018247, 2016.

Beck, H. E., Pan, M., Lin, P., Seibert, J., Dijk, A. I. J. M. van, and Wood, E. F.: Global fully
distributed parameter regionalization based on observed streamflow from 4,229 headwater
catchments, J. Geophys. Res. Atmospheres, 125, e2019JD031485,
https://doi.org/10.1029/2019JD031485, 2020.

Bennett, A. and Nijssen, B.: Deep learned process parameterizations provide better
representations of turbulent heat fluxes in hydrologic models, Water Resour. Res., 57,
€2020WR029328, https://doi.org/10.1029/2020WR029328, 2021.

Bergman, T. L. (Ed.): Introduction to heat transfer, 6th ed., Wiley, Hoboken, NJ, 960 pp., 2011.

Bergstréom, S.: Development and application of a conceptual runoff model for Scandinavian
catchments, PhD Thesis, Swedish Meteorological and Hydrological Institute (SMHI), Norképing,
Sweden, 1976.

Bergstréom, S.: The HBV model - its structure and applications, Swedish Meteorological and
Hydrological Institute (SMHI), Norrképing, Sweden, 1992.

Bindas, T., Tsai, W.-P., Liu, J., Rahmani, F., Feng, D., Bian, Y., Lawson, K., and Shen, C.:
Improving river routing using a differentiable Muskingum-Cunge model and physics-informed
machine learning, Water Resour. Res., 60, e2023WR035337,
https://doi.org/10.1029/2023WR035337, 2024.

Bloschl, G., Bierkens, M. F. P., Chambel, A., Cudennec, C., Destouni, G., Fiori, A., Kirchner, J.
W., McDonnell, J. J., Savenije, H. H. G., Sivapalan, M., Stumpp, C., Toth, E., Volpi, E., Carr, G.,
Lupton, C., Salinas, J., Széles, B., Viglione, A., Aksoy, H., Allen, S. T., Amin, A., Andréassian,
V., Arheimer, B., Aryal, S. K., Baker, V., Bardsley, E., Barendrecht, M. H., Bartosova, A.,
Batelaan, O., Berghuijs, W. R., Beven, K., Blume, T., Bogaard, T., Amorim, P. B. de, Béttcher,
M. E., Boulet, G., Breinl, K., Brilly, M., Brocca, L., Buytaert, W., Castellarin, A., Castelletti, A.,

35



785

790

795

800

805

810

815

820

Chen, X., Chen, Y., Chen, Y., Chifflard, P., Claps, P., Clark, M. P., Collins, A. L., Croke, B.,
Dathe, A., David, P. C., Barros, F. P. J. de, Rooij, G. de, Baldassarre, G. D., Driscoll, J. M.,
Duethmann, D., Dwivedi, R., Eris, E., Farmer, W. H., Feiccabrino, J., Ferguson, G., Ferrari, E.,
Ferraris, S., Fersch, B., Finger, D., Foglia, L., Fowler, K., Gartsman, B., Gascoin, S., Gaume, E.,
Gelfan, A., Geris, J., Gharari, S., Gleeson, T., Glendell, M., Bevacqua, A. G., Gonzalez-Dugo,
M. P., Grimaldi, S., Gupta, A. B., Guse, B., Han, D., Hannah, D., Harpold, A., Haun, S., Heal, K,
Helfricht, K., Herrnegger, M., Hipsey, M., Hlavacikova, H., Hohmann, C., Holko, L., Hopkinson,
C., Hrachowitz, M., lllangasekare, T. H., Inam, A., Innocente, C., Istanbulluoglu, E., Jarihani, B.,
et al.: Twenty-three unsolved problems in hydrology (UPH) — a community perspective, Hydrol.
Sci. J., 64, 1141-1158, https://doi.org/10.1080/02626667.2019.1620507, 2019.

Cao, Y., Li, S., and Petzold, L.: Adjoint sensitivity analysis for differential-algebraic equations:
algorithms and software, J. Comput. Appl. Math., 149, 171-191, https://doi.org/10.1016/S0377-
0427(02)00528-9, 2002.

Castaings, W., Dartus, D., Le Dimet, F.-X., and Saulnier, G.-M.: Sensitivity analysis and
parameter estimation for distributed hydrological modeling: potential of variational methods,
Hydrol. Earth Syst. Sci., 13, 503-517, https://doi.org/10.5194/hess-13-503-2009, 2009.

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D.: Neural ordinary differential
equations, in: Proceedings of the 32nd International Conference on Neural Information
Processing Systems, Montreal, Canada, 6572—6583, 2018.

Clark, M. P. and Kavetski, D.: Ancient numerical daemons of conceptual hydrological modeling:
1. Fidelity and efficiency of time stepping schemes, Water Resour. Res., 46, W10510,
https://doi.org/10.1029/2009WR008894, 2010.

Clark, M. P., Fan, Y., Lawrence, D. M., Adam, J. C., Bolster, D., Gochis, D. J., Hooper, R. P.,
Kumar, M., Leung, L. R., Mackay, D. S., Maxwell, R. M., Shen, C., Swenson, S. C., and Zeng,
X.: Improving the representation of hydrologic processes in Earth System Models, Water
Resour. Res., 51, 5§929-5956, https://doi.org/10/f7wcd4, 2015.

Colleoni, F., Garambois, P.-A., Javelle, P., Jay-Allemand, M., and Arnaud, P.: Adjoint-based
spatially distributed calibration of a grid GR-based parsimonious hydrological model over 312
French catchments with SMASH platform, EGUsphere, 1-37,
https://doi.org/10.5194/egusphere-2022-506, 2022.

Fan, Y., Clark, M., Lawrence, D. M., Swenson, S., Band, L. E., Brantley, S. L., Brooks, P. D.,
Dietrich, W. E., Flores, A., Grant, G., Kirchner, J. W., Mackay, D. S., McDonnell, J. J., Milly, P.
C. D., Sullivan, P. L., Tague, C., Ajami, H., Chaney, N., Hartmann, A., Hazenberg, P.,
McNamara, J., Pelletier, J., Perket, J., Rouholahnejad-Freund, E., Wagener, T., Zeng, X,,
Beighley, E., Buzan, J., Huang, M., Livneh, B., Mohanty, B. P., Nijssen, B., Safeeq, M., Shen,
C., Verseveld, W., Volk, J., and Yamazaki, D.: Hillslope hydrology in global change research
and earth system modeling, Water Resour. Res., 55, 1737-1772,
https://doi.org/10.1029/2018WR023903, 2019.

Fang, K. and Shen, C.: Full-flow-regime storage-streamflow correlation patterns provide insights

into hydrologic functioning over the continental US, Water Resour. Res., 53, 8064—-8083,
https://doi.org/10.1002/2016WR020283, 2017.

36



825

830

835

840

845

850

855

860

Fang, K., Shen, C., Kifer, D., and Yang, X.: Prolongation of SMAP to spatiotemporally seamless
coverage of continental U.S. using a deep learning neural network, Geophys. Res. Lett., 44,
11,030-11,039, https://doi.org/10.1002/2017gl075619, 2017.

Feng, D., Fang, K., and Shen, C.: Enhancing streamflow forecast and extracting insights using
long-short term memory networks with data integration at continental scales, Water Resour.
Res., 56, e2019WR026793, https://doi.org/10.1029/2019WR026793, 2020.

Feng, D., Liu, J., Lawson, K., and Shen, C.: Differentiable, learnable, regionalized process-
based models with multiphysical outputs can approach state-of-the-art hydrologic prediction
accuracy, Water Resour. Res., 58, e2022WR032404, https://doi.org/10.1029/2022WR032404,
2022.

Feng, D., Beck, H., Lawson, K., and Shen, C.: The suitability of differentiable, physics-informed
machine learning hydrologic models for ungauged regions and climate change impact
assessment, Hydrol. Earth Syst. Sci., 27, 2357-2373, https://doi.org/10.5194/hess-27-2357-
2023, 2023.

Fisher, M. and Andersson, E.: Developments in 4D-Var and Kalman Filtering, European Centre
for Medium Range Weather Forecasts, Shinfield Park, Reading, Berkshire RG2 9AX, England,
2001.

Frame, J. M., Kratzert, F., Raney Il, A., Rahman, M., Salas, F. R., and Nearing, G. S.: Post-
Processing the National Water Model with Long Short-Term Memory Networks for Streamflow
Predictions and Model Diagnostics, JAWRA J. Am. Water Resour. Assoc., 57, 885-905,
https://doi.org/10.1111/1752-1688.12964, 2021.

Gauch, M., Kratzert, F., Klotz, D., Nearing, G., Lin, J., and Hochreiter, S.: Rainfall-runoff
prediction at multiple timescales with a single Long Short-Term Memory network, Hydrol. Earth
Syst. Sci., 25, 2045-2062, https://doi.org/10.5194/hess-25-2045-2021, 2021.

Greff, K., Srivastava, R. K., Koutnik, J., Steunebrink, B. R., and Schmidhuber, J.: LSTM: A
Search Space Odyssey, IEEE Trans. Neural Netw. Learn. Syst., 28, 22222232,
https://doi.org/10.1109/TNNLS.2016.2582924, 2017.

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared
error and NSE performance criteria: Implications for improving hydrological modelling, J.
Hydrol., 377, 80-91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.

Hannah, D. M., Demuth, S., van Lanen, H. A. J., Looser, U., Prudhomme, C., Rees, G., Stahl,
K., and Tallaksen, L. M.: Large-scale river flow archives: importance, current status and future
needs, Hydrol. Process., 25, 1191-1200, https://doi.org/10.1002/hyp.7794, 2011.

Hargreaves, G. H.: Defining and using reference evapotranspiration, J. Irrig. Drain. Eng., 120,
1132-1139, https://doi.org/10.1061/(ASCE)0733-9437(1994)120:6(1132), 1994.

Hochreiter, S. and Schmidhuber, J.: Long Short-Term Memory, Neural Comput., 9, 1735-1780,
https://doi.org/10.1162/neco.1997.9.8.1735, 1997.

Hornik, K., Stinchcombe, M., and White, H.: Multilayer feedforward networks are universal
approximators, Neural Netw., 2, 359-366, https://doi.org/10.1016/0893-6080(89)90020-8, 1989.

37



865

870

875

880

885

890

895

Jay-Allemand, M., Javelle, P., Gejadze, I., Arnaud, P., Malaterre, P.-O., Fine, J.-A., and
Organde, D.: On the potential of variational calibration for a fully distributed hydrological model:
application on a Mediterranean catchment, Hydrol. Earth Syst. Sci., 24, 5519-5538,
https://doi.org/10.5194/hess-24-5519-2020, 2020.

Kavetski, D. and Clark, M. P.: Ancient numerical daemons of conceptual hydrological modeling:
2. Impact of time stepping schemes on model analysis and prediction, Water Resour. Res., 46,
W10511, https://doi.org/10.1029/2009WR008896, 2010.

Knoben, W. J. M., Freer, J. E., Fowler, K. J. A., Peel, M. C., and Woods, R. A.: Modular
Assessment of Rainfall-Runoff Models Toolbox (MARRMOoT) v1.2: an open-source, extendable
framework providing implementations of 46 conceptual hydrologic models as continuous state-
space formulations, Geosci. Model Dev., 12, 24632480, https://doi.org/10.5194/gmd-12-2463-
2019, 2019.

Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and Nearing, G.:
Benchmarking a catchment-aware Long Short-Term Memory network (LSTM) for large-scale
hydrological modeling, Hydrol. Earth Syst. Sci. Discuss., 1-32, https://doi.org/10/ggj67p, 2019.

Ladson, A. R., Brown, R., Neal, B., and Nathan, R.: A standard approach to baseflow separation
using the Lyne and Hollick filter, Australas. J. Water Resour., 17, 25-34,
https://doi.org/10.7158/13241583.2013.11465417, 2013.

Liu, Y. and Gupta, H. V.: Uncertainty in hydrologic modeling: Toward an integrated data
assimilation framework, Water Resour. Res., 43, https://doi.org/10.1029/2006WR005756, 2007.

Monteith, J. L.: Evaporation and environment, Symp. Soc. Exp. Biol., 19, 205-234, 1965.

Mu, Q., Zhao, M., and Running, S. W.: Improvements to a MODIS global terrestrial
evapotranspiration algorithm, Remote Sens. Environ., 115, 1781-1800,
https://doi.org/10.1016/j.rse.2011.02.019, 2011.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part | — A
discussion of principles, J. Hydrol., 10, 282—290, https://doi.org/10.1016/0022-1694(70)90255-6,
1970.

Neupauer, R. M. and Wilson, J. L.: Adjoint-derived location and travel time probabilities for a
multidimensional groundwater system, Water Resour. Res., 37, 1657-1668,
https://doi.org/10.1029/2000WR900388, 2001.

Newman, A. J., Sampson, K., Clark, M. P., Bock, A., Viger, R. J., and Blodgett, D.: A large-
sample watershed-scale hydrometeorological dataset for the contiguous USA. Boulder,
https://doi.org/10.5065/D6MW2F4D, 2014.

Onken, D. and Ruthotto, L.: Discretize-Optimize vs. Optimize-Discretize for Time-Series
Regression and Continuous Normalizing Flows, https://doi.org/10.48550/arXiv.2005.13420, 30
July 2020.

Ouyang, W., Lawson, K., Feng, D., Ye, L., Zhang, C., and Shen, C.: Continental-scale

streamflow modeling of basins with reservoirs: Towards a coherent deep-learning-based
strategy, J. Hydrol., 599, 126455, https://doi.org/10.1016/j.jhydrol.2021.126455, 2021.

38



900

905

910

915

920

925

930

935

Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov, K., Supekar, R., Skinner, D.,
Ramadhan, A., and Edelman, A.: Universal Differential Equations for Scientific Machine
Learning, https://doi.org/10.48550/arXiv.2001.04385, 2 November 2021.

Rahmani, F., Shen, C., Oliver, S., Lawson, K., and Appling, A.: Deep learning approaches for
improving prediction of daily stream temperature in data-scarce, unmonitored, and dammed
basins, Hydrol. Process., 35, 14400, https://doi.org/10.1002/hyp.14400, 2021a.

Rahmani, F., Lawson, K., Ouyang, W., Appling, A., Oliver, S., and Shen, C.: Exploring the
exceptional performance of a deep learning stream temperature model and the value of
streamflow data, Environ. Res. Lett., 16, 024025, https://doi.org/10.1088/1748-9326/abd501,
2021b.

Richards, L. A.: Capillary conduction of liquids through porous mediums, Physics, 1, 318-333,
https://doi.org/10/ccmx4x, 1931.

Running, S., Mu, Q., and Zhao, M.: MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4
Global 500m SIN Grid V006, https://doi.org/10.5067/MODIS/MOD16A2.006, 2017.

Sadourny, R.: The dynamics of finite-difference models of the shallow-water equations, J.
Atmospheric Sci., 32, 680-689, https://doi.org/10.1175/1520-
0469(1975)032<0680: TDOFDM>2.0.CO;2, 1975.

Sarigol, M. and Katipoglu, O. M.: Estimation of hourly flood hydrograph from daily flows using
machine learning techniques in the Blylk Menderes River, Nat. Hazards, 119, 1461-1477,
https://doi.org/10.1007/s11069-023-06156-x, 2023.

Schmidhuber, J.: Deep learning in neural networks: An overview, Neural Netw., 61, 85-117,
https://doi.org/10/f6v78n, 2015.

Schneiderman, E. M., Steenhuis, T. S., Thongs, D. J., Easton, Z. M., Zion, M. S., Neal, A. L.,
Mendoza, G. F., and Todd Walter, M.: Incorporating variable source area hydrology into a
curve-number-based watershed model, Hydrol. Process., 21, 3420-3430,
https://doi.org/10.1002/hyp.6556, 2007.

Seibert, J. and Vis, M. J. P.: Teaching hydrological modeling with a user-friendly catchment-
runoff-model software package, Hydrol. Earth Syst. Sci., 16, 3315-3325,
https://doi.org/10/f22r5x, 2012.

Shen, C., Appling, A. P., Gentine, P., Bandai, T., Gupta, H., Tartakovsky, A., Baity-Jesi, M.,
Fenicia, F., Kifer, D., Li, L., Liu, X., Ren, W., Zheng, Y., Harman, C. J., Clark, M., Farthing, M.,
Feng, D., Kumar, P., Aboelyazeed, D., Rahmani, F., Song, Y., Beck, H. E., Bindas, T., Dwivedi,
D., Fang, K., H6ge, M., Rackauckas, C., Mohanty, B., Roy, T., Xu, C., and Lawson, K.:
Differentiable modelling to unify machine learning and physical models for geosciences, Nat.
Rev. Earth Environ., 4, 552-567, https://doi.org/10.1038/s43017-023-00450-9, 2023.

Sivapalan, M., Takeuchi, K., Franks, S. W., Gupta, V. K., Karambiri, H., Lakshmi, V., Liang, X.,
McDONNELL, J. J., Mendiondo, E. M., O’Connell, P. E., Oki, T., Pomeroy, J. W., Schertzer, D.,
Uhlenbrook, S., and Zehe, E.: IAHS Decade on Predictions in Ungauged Basins (PUB), 2003—
2012: Shaping an exciting future for the hydrological sciences, Hydrol. Sci. J., 48, 857-880,
https://doi.org/10.1623/hysj.48.6.857.51421, 2003.

39



940

945

950

955

960

965

Thornton, M. M., Shrestha, R., Wei, Y., Thornton, P. E., Kao, S.-C., and Wilson, B. E.: Daymet:
Daily Surface Weather Data on a 1-km Grid for North America, Version 4,
https://doi.org/10.3334/ORNLDAAC/1840, 2020.

Todd, D. K. and Mays, L. W.: Groundwater Hydrology, John Wiley & Sons, 663 pp., 2004.

Tsai, W.-P., Feng, D., Pan, M., Beck, H., Lawson, K., Yang, Y., Liu, J., and Shen, C.: From
calibration to parameter learning: Harnessing the scaling effects of big data in geoscientific
modeling, Nat. Commun., 12, 5988, https://doi.org/10.1038/s41467-021-26107-z, 2021.

Wang, R., Kim, J.-H., and Li, M.-H.: Predicting stream water quality under different urban
development pattern scenarios with an interpretable machine learning approach, Sci. Total
Environ., 761, 144057, https://doi.org/10.1016/j.scitotenv.2020.144057, 2021.

White, L. W., Vieux, B., Armand, D., and LeDimet, F. X.: Estimation of optimal parameters for a
surface hydrology model, Adv. Water Resour., 26, 337-348, https://doi.org/10.1016/S0309-
1708(02)00189-6, 2003.

Wu, P.: PyTorch 2.0: The Journey to Bringing Compiler Technologies to the Core of PyTorch
(Keynote), in: Proceedings of the 21st ACM/IEEE International Symposium on Code Generation
and Optimization, New York, NY, USA, 1, https://doi.org/10.1145/3579990.3583093, 2023.

Zeiler, M. D.: ADADELTA: An adaptive learning rate method, ArXiv Prepr. ArXiv12125701, 1-6,
http://arxiv.org/abs/1212.5701, 2012.

Zhao, W. L., Gentine, P., Reichstein, M., Zhang, Y., Zhou, S., Wen, Y., Lin, C., Li, X., and Qiu,
G. Y.: Physics-constrained machine learning of evapotranspiration, Geophys. Res. Lett., 46,
14496-14507, https://doi.org/10.1029/2019g1085291, 2019.

Zhi, W., Ouyang, W., Shen, C., and Li, L.: Temperature outweighs light and flow as the

predominant driver of dissolved oxygen in US rivers, Nat. Water, 1, 249-260,
https://doi.org/10.1038/s44221-023-00038-z, 2023.

40



	1. Background
	2. Data and Methods
	2.1 Datasets
	2.2. Models
	2.2.1 Differentiable, Learnable, Regionalized Process-Based Model
	2.2.2 Hydrologiska Byråns Vattenbalansavdelning model
	2.2.3 Long short-term memory network
	2.2.4 Backpropagation with a coupled NN and process-based model
	2.2.5 Adjoint-based implicit scheme
	2.2.6 Metrics, Model Training, and Hyperparameters


	3. Results and Discussion
	3.1. Adjoint model
	3.2 The impact of structure changes of HBV
	3.3 Analysis of impacts on parameterization

	4. Further discussion
	5. Conclusions
	Competing Interests
	Acknowledgments
	Data Availability Statement
	Appendix
	References

