
Predicting Performance and Accuracy of Mixed-Precision
Programs for Precision Tuning

Yutong Wang
University of California, Davis

United States of America
ytwwang@ucdavis.edu

Cindy Rubio-González
University of California, Davis

United States of America
crubio@ucdavis.edu

ABSTRACT

A mixed-precision program is a floating-point program that utilizes
different precisions for different operations, providing the opportu-
nity of balancing the trade-off between accuracy and performance.
Precision tuning aims to find a mixed-precision version of a pro-
gram that improves its performance while maintaining a given
accuracy. Unfortunately, existing precision tuning approaches are
either limited to small-scale programs, or suffer from efficiency
issues. In this paper, we propose FPLearner, a novel approach that
addresses these limitations. Our insight is to leverage a Machine
Learning based technique, Graph Neural Networks, to learn the
representation of mixed-precision programs to predict their perfor-
mance and accuracy. Such prediction models can then be used to
accelerate the process of dynamic precision tuning by reducing the
number of program runs. We create a dataset of mixed-precision
programs from five diverse HPC applications for training our mod-
els, which achieve 96.34% F1 score in performance prediction and
97.03% F1 score in accuracy prediction. FPLearner improves the
time efficiency of two dynamic precision tuners, Precimonious
and HiFPTuner, by an average of 25.54% and up to 61.07% while
achieving precision tuning results of comparable or better quality.

CCS CONCEPTS

• Computing methodologies→ Neural networks; • Software

and its engineering→ Software performance; Software reli-

ability.

KEYWORDS

program representation, Graph Neural Networks, floating point,
mixed precision, numerical software, program optimization, preci-
sion tuning

ACM Reference Format:

Yutong Wang and Cindy Rubio-González. 2024. Predicting Performance
and Accuracy of Mixed-Precision Programs for Precision Tuning. In 2024

IEEE/ACM 46th International Conference on Software Engineering (ICSE ’24),

April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3597503.3623338

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’24, April 14–20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3623338

1 INTRODUCTION

With the advancement of artificial intelligence techniques and su-
percomputer performance, numerical software with extensive use
of floating-point (FP) arithmetic has become increasingly preva-
lent, accompanied by a rapid escalation in power consumption.
Unfortunately, designing compute-intensive applications that are
both reliable and energy-efficient remains a significant challenge
in recent years [5]. The reason is that when working with FP arith-
metic, determining the appropriate FP precision is crucial. Although
high precision guarantees program accuracy and reliability, it may
also compromise efficiency and result in unnecessary energy con-
sumption. For example, on most modern processors, utilizing single
precision formats can be at least twice as fast as the performance
of double precision formats [3]. A trade-off between accuracy and
performance is often achieved by mixed precision, i.e., performing
different operations in different precisions.

Automated precision tuning is regarded as a promising direc-
tion for finding mixed-precision programs that achieve the best
trade-off between performance and accuracy [13]. Precision tuning
entails replacing the original precision assigned to FP variables in
numerical programs with lower precision in a manner that ensures
accuracy standards are maintained. However, it is non-trivial to rea-
son about mixed precision due to the higher potential for numerical
errors arising from minor changes in the precision of FP variables.
This characteristic presents difficulties in various domains such as
Deep Neural Networks acceleration [10], compiler optimizations
in FP programs [24, 46], and CUDA programs acceleration [30].

Existing automated precision tuners mainly use either static
analysis or dynamic search-based approaches. Although static ap-
proaches [14, 16, 58] are generally sound and do not require ex-
ecuting programs with input data, they are restricted to FP ex-
pressions or small programs and unable to tune large codes with
conditionals and loops, thus have not been utilized for High Per-
formance Computing (HPC) workloads [45]. On the other hand,
dynamic search-based approaches [25, 37, 53, 54] have been applied
to larger-scale numerical programs but require running numerous
mixed-precision program versions to determine the effect of mixed
precision in program performance and accuracy. Thus, dynamic
approaches are time-intensive and face the challenge of an expo-
nential search space of mixed-precision programs. Furthermore,
the overall time required by dynamic approaches is based on the
program’s execution time. As a result, performing dynamic analysis
on larger HPC programs becomes progressively more challenging
and time-consuming, as they necessitate longer execution times. As
far as we are aware, all search-based precision tuners suffer from
scalability issues when applied to large HPC programs.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yutong Wang and Cindy Rubio-González

In this paper, we present FPLearner, a Machine Learning (ML)
based approach to learn the representation of floating-point mixed-
precision programs for predicting their performance and compu-
tation accuracy. FPLearner is designed to improve the efficiency
of existing dynamic precision tuners, while ensuring the quality
of the proposed solutions. Our insight is straightforward: reduc-
ing the number of program runs required during the search by
automatically predicting “promising” mixed-precision programs,
i.e., programs that are likely to exhibit performance speedup while
satisfying the specified accuracy constraint.

We are inspired by recent work in vulnerability detection [9, 70],
type inference [63], and bug detection [17], among others, which
investigate the potential of Graph Neural Networks (GNNs) [55]
in program representation. However, predicting performance and
accuracy of mixed-precision programs remains challenging due
to several factors. First, existing methods have not been applied
to represent mixed-precision programs which contain numerous
arithmetic operations. We propose a novel GNN-based approach
to learn features from a customized graph representation, named
Precision Interaction Graph (PIG), which is designed to represent
mixed-precision programs by modeling interactions of precision
among FP variables across the program. Second, mixed-precision
programs involve long-range dependencies among FP variables. To
overcome the challenge, we innovatively deploy a Gated Graph Neu-
ral Network (GGNN) architecture [40] to capture long dependencies
among FP operations in such programs, while also effectively learn-
ing information from various relations in the graph.

Since there is no existing dataset for the purpose of making infer-
ences on mixed-precision programs, we build a dataset with 1228
mixed-precision programs from five representative HPC applica-
tions. Each sample has a performance label and an accuracy label,
indicating whether the program has speedup and is within error
threshold, respectively. Our experimental evaluation shows that
our models are effective at accurately predicting both execution
performance (96.34% F1 score) and computation accuracy (97.03%
F1 score), outperforming other baseline methods. Additionally, we
integrate our models to existing precision tuners and evaluate it on
four case studies. The results show that our models improve the
efficiency of precision tuners by an average of 25.54% and up to
61.07% in time cost while generating a mixed-precision program of
comparable or better quality.

In summary, our paper makes the following contributions:

• We design a novel graph representation to model precision
interactions in mixed-precision programs (Section 3.1).

• We deploy a GNN architecture highly suitable for learning
features from the graph representation of mixed-precision
programs (Section 3.2), and describe how the models can be
integrated into existing precision tuners (Section 3.3).

• We construct training datasets of mixed-precision programs
from five diverse HPC applications (Section 4.1).

• We present an evaluation that compares FPLearner models
to popular baselines and measures our design choices in
program representation. Furthermore, we demonstrate the
benefits of integrating our prediction models into state-of-
the-art precision tuners (Section 4).

2 MOTIVATION

This section describes dynamic precision tuning, and provides an
example to emphasize the demand for predicting performance and
accuracy of mixed-precision programs.

Dynamic Precision Tuning. Given a target FP program, the
dynamic FP precision tuning process seeks to find a lower-precision
variant of the program, often a mixed-precision program, that im-
proves performance while adhering to specified computation accu-
racy constraints. The majority of existing precision tuners [5, 23,
25, 38, 53, 54] rely on a search-based approach with a trial-and-fail
paradigm. The precision tuners typically start by creating a search
space that includes all variables and function calls requiring preci-
sion tuning. The precision tuners then proceed to conduct a search
with the aim of identifying an optimal mixed-precision program.
The optimal solution is defined as the mixed-precision program
variant that delivers the greatest performance speedup while keep-
ing the computation error below a predetermined threshold. In
reality, finding the “best” solution is not feasible, and precision
tuners settle on a local minimum.

Despite their potential benefits, dynamic precision tuners face
significant scalability challenges. For instance, they must execute
every candidate mixed-precision program encountered during the
search at least once to determine if it is faster than the original
program and meets the given error threshold. This is particularly
problematic when the target program has a long runtime, as it
becomes infeasible to explore a large number of mixed-precision
program variants due to the considerable time cost involved.

An Example of Precision Tuning. We present a motivating
example of precision tuning on LULESH version 2.0 [33], a proxy
application developed at Lawrence Livermore National Laboratory.
LULESH discretely approximates the hydrodynamics equations by
dividing the spatial problem domain into a collection of volumetric
elements defined by a mesh.

Search Space. We first define a search space which considers 365
FP variables declared in the program. The initial type of each FP vari-
able is double. With the precision candidate set {float, double},
the size of the search space is 2365. The approximate average run-
time of the original LULESH program on our machine is 18 seconds.
If we assume each mixed-precision program version of LULESH
also takes around 18 seconds, then evaluating all possible mixed-
precision programs would take 2365 × 18 seconds, approximately
equaling to 3.76 × 10107 hours. Even if we parallelize this task,
the search space remains excessively vast, leading to significant
computational resource consumption.

Search-based Precision Tuning. Since exploring the whole search
space for the global optimum is overly expensive, we adopt a state-
of-the-art dynamic precision tuner [54], leading us to a local mini-
mum. The precision tuner narrows down the scope to 2564 mixed-
precision programs by applying a heuristic search. Each of mixed-
precision programs requires to be run at least once to observe its
runtime and computation accuracy. If we assume there is no over-
head other than running the programs, and each mixed-precision
program takes an average 18-second runtime, then the tuning pro-
cess would take 2564 × 18 seconds, which equals to 13 hours. This
is a large amount of time compared to the running time of the

Predicting Performance and Accuracy of Mixed-Precision Programs for Precision Tuning ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Mixed-Precision Programs
Graph Backbone Precision Interaction Graph Models

Stage 1: Program Representation Stage 2: Graph Learning

Performance
Prediction

Accuracy
Prediction

Figure 1: Overview of FPLearner.

target program, and limits the scalability of existing search-based
precision tuners.

Demand for Performance and Accuracy Prediction. To optimize
the search process, our insight is to make predictions about the per-
formance and accuracy of mixed-precision programs to reduce the
total number of program runs required by precision tuning. Specif-
ically, if we can accurately predict the two key factors: (i) whether
a mixed-precision program is faster than the original program, and
(ii) whether its computation error falls within a given error thresh-
old, then precision tuners can avoid program runs, resulting in
significant time savings. This motivates the need for predicting the
performance and accuracy of mixed-precision programs.

The following section describes how FPLearner represents
mixed-precision programs and uses an ML architecture to train
models that predict performance and accuracy. We also describe
the integration of FPLearnermodels into existing precision tuners.

3 TECHNICAL APPROACH

Our goal is to train models that predict if a mixed-precision version
of a given initial FP program (i) achieves performance speedup with
respect to the initial program, and (ii) produces a result within a pre-
defined error threshold. Figure 1 shows a high-level description of
FPLearner, which includes two stages: program representation of
mixed-precision programs, and graph learning using GGNNs [40].
This section discusses our approach in more detail along with a use
case scenario of our models in precision tuning.

3.1 Program Representation

In the first stage, FPLearner analyzes a mixed-precision program
and extracts the necessary information to build a graph representa-
tion, named Precision Interaction Graph (PIG). Representing pro-
grams is challenging due to the abundance of structural information
contained within them, which cannot be effectively captured by
conventional text-based representations. To address this, graph-
based methods are employed to represent programs. However, ac-
curately representing FP programs is challenging because of their
mixed-precision nature. Numerical arithmetic operations in such
programs, even with minor precision changes, e.g., converting a
variable from double to float, may significantly impact perfor-
mance and accuracy. Inspired by this, we prioritize the program
semantics concerning FP arithmetic operations, where precision
interactions among FP variables occur, during the graph construc-
tion process. We leverage the graph structure to model precision

interactions in FP programs, leading to a more effective program
representation for reasoning about the use of FP mixed precision.

To achieve this, FPLearner utilizes the Abstract Syntax Tree
(AST) as the backbone of a PIG and extracts FP arithmetic related
features of the nodes in the AST to obtain their initial representation
(Section 3.1.1). Furthermore, FPLearner constructs four additional
kinds of edges from the graph backbone, each of which emphasizes
different aspects of the target programs (Section 3.1.2). The final PIG
serves as input to the second stage of FPLearner for graph-level
prediction tasks (Section 3.2).

3.1.1 Graph Backbone and its Node Representation. FPLearner
starts by constructing the AST of the mixed-precision program,
whose nodes and edges serve as the foundation for the PIG. An
AST is an ordered tree where inner nodes represent operators and
leaf nodes represent operands [64]. Each statement or predicate
in the program is mapped to an operator in the graph. A sample
mixed-precision program is shown in Figure 2a as well as its graph
representation in Figure 2b. In this program, each assignment state-
ment (lines 2, 3, 5) is represented by an assignment operator “=”
in the graph; the predicate on line 4 is represented by a compari-
son operator “≥”, and the function call on line 6 is represented by
“CALL”. In addition to statements and predicates, an inner node in
the graph can also represent an arithmetic operator such as “∗” on
line 5, or a function call such as the mathematic library call “sqrt”
on line 2.

Leaf nodes represent identifiers and constants, which in numeri-
cal programs are often of type floating point. To differentiate mixed-
precision versions of an FP program, it is useful to represent leaf
nodes using their precision. For example, in the mixed-precision
program from Figure 2a, every identifier and constant is in either
double or single precision. To reflect this, we use “D” to represent
type double and “F” to represent type float in the corresponding
graph. The scope of our work centers around two precisions, double
and single. However, it can be effortlessly adapted to accommodate
additional precisions.

Unlike most of the existing node embedding methods for pro-
gram representation, we do not directly use source code to represent
nodes. Instead, we create the initial node representation using three
node features that are most relevant to FP characteristics: the node’s
type, its precision (if applicable), and the name of the operator (if
applicable). The type refers to the kind of program construct a
node represents, such as variable, constant, or control structures.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yutong Wang and Cindy Rubio-González

1 void foo() {

2 double a = sqrt(1.1);

3 float b = 2.0;

4 if (a >= 1.3952) {

5 float c = a * b;

6 update(c);

7 }

8 }

(a) A sample mixed-precision program.

Operand node in float

F

=

*

D F

≥ == CALL

D CALL

D

F D DD F CD

AST
CF

DD
TC

PD

AF

Operand node in double
Operator node

(b) A sample Precision Interaction Graph (PIG).

Figure 2: A code sample and its PIG.

This feature provides the fundamental structural information of the
program. The node’s precision applies to (i) FP identifiers, (ii) FP
constants, (iii) arithmetic operators, and (iv) FP mathematical func-
tions that have implementations in different precisions. Consider
again the example from Figure 2. The precision of the FP identifier
a on line 4 is double, the type of FP constants such as 1.1, 2.0 and
1.3952 is double if no suffix “f” is used. The precision of the node
“∗” is double—the type of the operand with the highest precision.
Finally, the type of the FP mathematical function “sqrt” is double,
while the type of “sqrtf” (the single-precision implementation
of “sqrt”) would be float. Regarding operator names, the name
attribute is extracted when a node represents (i) an assignment
statement, (ii) a predicate, (iii) an arithmetic operator (e.g., “∗”),
or (iv) a mathematical library function call (e.g., “sqrt”). Our in-
sight for extracting FP precision and operator names is to learn the
semantics from FP arithmetics between different precisions.

After node feature extraction, we use word2vec [47] to encode
each feature and concatenate the three encodings together into a
fixed-length vector to initialize the node representation. Note that
we do not use features such as variable names. FP programs may
follow different naming conventions, and we have found that FP
programs in particular lack using descriptive variable names.

3.1.2 Edge Construction. To obtain more comprehensive informa-
tion beyond the capabilities of an AST, FPLearner creates four
additional types of edges using the graph backbone established in
Section 3.1.1. This expanded graph structure, as illustrated in Fig-
ure 2b, is what we refer to as the PIG: TypeCasting, AssignedFrom,
Control Flow, and Program Dependence (including Data Dependence

and Control Dependence) edges.

TypeCasting Edge (TC). Type casting refers to both, explicit
castings included in the program, and implicit castings added by
compilers. In mixed-precision programs, type casting typically in-
volves automatic type conversion between different precisions,
such as converting from double to float or vice versa. When per-
forming FP arithmetic operations, the precision of the result is the
maximum of the precisions of the operands. In Figure 2’s sample
program, line 5 uses a multiplication operator where one operand
variable a is in double precision while the other operand variable
b is in single precision. Thus, the multiplication is performed in
double precision, which requires variable b to be cast to double.
This is illustrated in Figure 2b by the TypeCasting edge from the
node “F” to the node “∗”. Additionally, when assigning FP values,
the precision of the right-hand-side expression must match the

precision of the target variable on the left-hand side. Thus, on line
5, the precision of the multiplication result is double, and must
be cast to float before being stored in variable c. Consequently,
another casting edge exists from the node “∗” to the node “=”.

FPLearner constructs the TypeCasting edges based on our ob-
servation that excessive type castings can have adverse effects on
program performance, and even potentially lead to an increase in
computation errors. For instance, if the result of an arithmetic oper-
ation in double precision is assigned to a single-precision variable,
the result must be rounded to fit the single-precision format, causing
not only additional processing time but also a loss of precision that
would introduce errors in the calculation. As our approach aims
to infer program performance and computation accuracy, these
TypeCasting edges provide relevant information to learn patterns
in precision interactions.

AssignedFrom Edge (AF). AssignedFrom edges denote that the
values of right-hand-side variables are used to compute the value
of the left-hand-side variable in an arithmetic assignment. In other
words, these edges capture dependencies within assignment state-
ments. For example, the values of variable a and b on line 5 of the
sample program are used to compute the value of variable c. As
shown in Figure 2b, this assignment statement leads to two As-

signedFrom edges within PIG. One edge originates from the node
that represents variable a and links to the node that represents
variable c, while the other edge connects the node that represents
variable b to the node that represents variable c.

The use of AssignedFrom edges is motivated by a prior study [25]
that leverages variable dependence in FP arithmetic assignments
to model programs. This approach is based on the assumption that
highly dependent variables are more likely to be assigned the same
precision. The addition of AssignedFrom edges to our PIG improves
its effectiveness by highlighting the precision interactions resulting
from FP arithmetic assignments within the program.

Control Flow (CF) and Program Dependence (PD) Edges. To
build the PIG across a wider range of contexts, we employ two clas-
sic program analysis techniques: control flow analysis and program
dependence analysis. Control flow edges, as shown in Figure 2b,
capture the execution order of FP arithmetic statements and alter-
native paths that are determined by conditional statements, such
as the if statement on line 4 of the program. Program dependence
edges [19] reflect dependencies among statements and predicates.
Data dependence (DD) edges are a type of program dependence
edge that is created by calculating reaching definitions for each

Predicting Performance and Accuracy of Mixed-Precision Programs for Precision Tuning ICSE ’24, April 14–20, 2024, Lisbon, Portugal

statement and predicate. This type of edge captures the influence
of one FP variable on another across different locations within the
program. Control dependence (CD) edges, on the other hand, corre-
spond to the influence of predicates on the values of FP variables.

3.2 Graph Learning

To make inferences on program performance and computation ac-
curacy, the second stage of FPLearner uses a GNN architecture to
learn features on the input graph PIG. GNNs are deep learning (DL)
based methods specialized for the graph domain. We train separate
models for the performance and accuracy prediction respectively.
In this section, we will first introduce the graph definition and
notations that will be used (Section 3.2.1), subsequently describe
the two parts of our graph learning architecture: the propagation
model (Section 3.2.2) and the output model (Section 3.2.3). And next,
we will discuss the novelty of our approach (Section 3.2.4) and the
insights behind our design choices (Section 3.2.5).

3.2.1 Graph Definition and Notations. We formulate the PIG as
a multi-relational graph, which is a type of information network
defined in [56]. As shown in Figure 2b, our multi-relational PIG
has five types of edges (AST, TC, AF, CF and PD), as well as one
type of node, for the sake of simplicity. Nodes are distinguished
based on their features. The graph is denoted as a directed graph
𝐺 = (𝑉 , 𝐸), consisting of a node set 𝑉 where a node is defined as
𝑣 ∈ {1, 2, ..., |𝑉 |}, and an edge set 𝐸 where an edge is defined as
𝑒 = (𝑣, 𝑣 ′) ∈ 𝑉 ×𝑉 . The graph is also associated with an edge type
mapping function 𝜙 : 𝐸 → 𝑅, where 𝑅 denotes the set of edge types
and in our case, |𝑅 | = 5. The rest of the notations that will be used
in the following sections are shown and explained in Table 1.

3.2.2 Propagation Model. The propagation model, which consti-
tutes the initial segment of the GGNN architecture, is determined
by the subsequent recurrence:

ℎ
(0)
𝑣 = 𝑥𝑣, 𝑣 ∈ {1, 2, . . . , |𝑉 |} (1)

𝑚
(𝑙+1)
𝑣,𝑞 =

∑
𝑣′∈𝑁𝑞 (𝑣)

Θ𝑞 · ℎ (𝑙)
𝑣′ (2)

ℎ
(𝑙+1)
𝑣 = GRU ©­«ℎ (𝑙)𝑣 ,

|𝑅 |∑
𝑞=1

𝑚
(𝑙+1)
𝑣,𝑞

ª®¬ (3)

In the first step, represented by Equation (1), for node 𝑣 in the
node set 𝑉 , the initial representation vector 𝑥𝑣 is assigned to the
first component of the node 𝑣 ’s hidden state, which is denoted as
ℎ
(0)
𝑣 . As discussed in Section 3.1.1, each node’s initial embedding

has a fixed length. The second step, represented by Equation (2),
passes information between node 𝑣 and all adjacent nodes in its
neighborhood 𝑁𝑞 (𝑣), with learnable parameters Θ𝑞 that depend on
the edge type and direction, and aggregates this information using
a summation operator. The third step, represented by Equation (3),
involves the Gated Recurrent Unit (GRU) update for ℎ (𝑙+1)𝑣 , which
incorporates the summation aggregation of each edge type’s neigh-
borhood information and the information from the previous step
ℎ
(𝑙)
𝑣 . By following this recurrence, the final representation vector

for each node in the last layer 𝐿 is obtained and denoted as ℎ (𝐿)𝑣 for
node 𝑣 ∈ 𝑉 .

Table 1: Notations and Explanations.

Notation Explanation

𝑥𝑣 Initial feature vector of node 𝑣
𝑙 Hidden layer 𝑙 ∈ {1, 2, ..., 𝐿}
ℎ𝑣 Hidden state vector of node 𝑣
𝑞 Edge type 𝑞 ∈ {1, 2, ..., |𝑅 | }

𝑁𝑞 (𝑣) Neighbors of node 𝑣 for its outgoing edges in terms of 𝑞
Θ𝑞 Learnable parameters in terms of edge type and direction
𝑚𝑣,𝑞 Message vector for node 𝑣 in terms of edge type 𝑞
𝑁 The number of total data examples in the training set
𝑝𝑖 Mixed-precision program, 𝑖 ∈ {1, 2, ..., 𝑁 }
𝑦𝑖 Class label of the corresponding program 𝑝𝑖

3.2.3 Output Model. Equation (4) defines the output model, which
is the second component of the GGNN architecture.

Prob (𝑝𝑖) = Sigmoid
𝑀𝐿𝑃

©­« 1
|𝑣 |

|𝑉 |∑
𝑣=1

ℎ
(𝐿)
𝑣

ª®¬
 (4)

Once theGGNNarchitecture has propagated information through
𝐿 layers, the representation vector ℎ (𝐿)𝑣 of each node 𝑣 ∈ 𝑉 is av-
eraged globally to obtain a vector that represents the entire graph.
This vector is then fed into a Multi-Layer Perceptron (MLP) that
is enveloped by a Sigmoid activation layer to generate the output
value 𝑃𝑟𝑜𝑏 (𝑝𝑖) of program 𝑝𝑖 . The output value 𝑃𝑟𝑜𝑏 (𝑝𝑖) will then
be used to calculate the Binary Cross Entropy (BCE) loss:

𝐿 = − 1
𝑁

𝑁∑
𝑖=1

𝑦𝑖 · 𝑙𝑜𝑔 Prob (𝑝𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − Prob (𝑝𝑖)) (5)

where 𝑦𝑖 = {0, 1} and 𝑃𝑟𝑜𝑏 (𝑝𝑖) represent the likelihood that pro-
gram 𝑝𝑖 belongs to the class label 1 in the binary graph classification
task. The training goal is to minimize the BCE loss on all labeled
programs, which is experimentally confirmed as the most simple
and effective loss function in our implementation.

It has been shown that the GGNN architecture can capture long-
range interactions [40, 70]. This is suitable to our domain where
long-range interactions between mixed-precision values are often
observed in numerical programs. For instance, in the sample pro-
gram depicted in Figure 2a, the variable a is used twice on lines 4
and 5, following its assignment on line 2. The return value from
the function call sqrt and its precision have an impact on the sub-
sequent usages of a. However, even for such a small program, the
graph nodes representing a on lines 2 and 5 are not sufficiently
close to facilitate learning. Real-world mixed-precision programs
are often significantly longer and more complex than the sample
program. Therefore, to draw accurate inferences on the execution
performance and computation accuracy of mixed-precision pro-
grams in practical applications, our architecture is a vital necessity.

3.2.4 Novelty of Our Approach. Diverse GNN architectures have
shown revolutionary performances in software engineering [69].
FPLearner showcases the novelty of adopting a GNN architecture,
GGNN, that benefits us to learn features from compute-intensive
numerical programs. This is a significant departure from previous

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yutong Wang and Cindy Rubio-González

research, as we address the unique challenges posed by mixed-
precision programs. The first challenge is that FP operations usually
exist throughout the entire program, and a single FP variable may
be used in a far-off arithmetic operation within the program. Rep-
resenting such programs requires graphs one order of magnitude
larger than those reported in prior work [9, 17, 70]. Larger graphs
require propagating information over longer ranges in the graph.
GGNNs have the advantage of capturing long-range dependencies
within the graph, which assists us in tackling this challenge ef-
fectively. The second challenge is that different types of relations
describing distinct and rich contexts in mixed-precision programs
should be captured. For instance, TypeCasting edges can capture the
context of precision castings on FP variables, while AssignedFrom
edges capture dependencies between variables in an FP assignment
statement. The GGNN architecture allows to learn features from a
multi-relational graph with distinct meanings of connectivity from
various edge types.

3.2.5 Why Binary Classification. Our approach simplifies the task
of predicting performance and accuracy by treating it as a binary
classification problem. This simplification naturally fits our preci-
sion tuning use case, where the focus is on determining whether a
program meets the required standards rather than precise values,
especially for accuracy checking.

Alternatively, modeling the prediction as a regression problem
poses challenges [65]. For example, our preliminary studies show
that accuracy and performance values often have an imbalanced
and skewed distribution. Rare and extreme values, including pro-
gram errors that can reach infinity, are frequently encountered.
Additionally, missing data in certain target regions makes gener-
alization difficult across the entire supported range. Therefore we
leverage the binary classification approach to mitigate the impact
of such data distribution. However, tackling the challenges within
the regression problem is a future direction that can provide more
precise and comprehensive information for the tuning process.

3.3 Using the Models in Precision Tuners

We specifically focus on dynamic precision tuning [5, 23, 25, 38, 53,
54], to showcase a use case scenario of the FPLearner models. For
a description of the typical workflow of dynamic precision tuners,
please refer to Section 2.

The workflow for using the models in precision tuners is shown
in Figure 3. Our goal is to utilize the models to aid precision tuning
of any FP program, especially those not included in the initial
training process. Therefore, it is necessary to fine tune the models
prior to their use to learn features of mixed-precision programs
from unseen applications more effectively. This motivates the need
for three main steps, as described below.

Step 1: Pre-run Stage. This stage relates to collecting data to
fine tune the models for a new target application. During this stage,
we leverage the precision tuner to produce an initial set of mixed-
precision programs. In other words, the precision tuner runs the
search on the target application for a short amount of time to
gather initial mixed-precision programs. The programs are executed
to determine their performance and computation accuracy, thus
obtaining the ground truth. These mixed-precision programs, along

Original Program Precision Tuner Mixed-Precision Programs

FPLEARNER Models

+

Max
Speedup

Step 2: Fine-Tuning

Step 1: Pre-run

Step 3: Optimization

Resulting Program

Figure 3: Dynamic Precision Tuning with FPLearner.

with their respective performance and accuracy labels, constitute
the fine-tuning dataset for the subsequent fine-tuning stage.

Step 2: Fine-tuning Stage. The pre-trained performance pre-
diction and accuracy inference networks are fine tuned on the target
application’s dataset, which has limited data because of the time
and cost associated with program execution for dataset construc-
tion in the pre-run stage. Note that running the precision tuner for
a longer period of time would defeat the purpose of having models
to predict performance and accuracy. As a result of the limited data,
a challenge in this stage is that for either performance or accuracy
inference task, the binary class label distribution varies on distinct
target applications. In case of an imbalanced label distribution, we
apply a widely accepted and straightforward technique known
as random oversampling, which entails the random repetition of
minority instances to balance the class distribution, and has been
proven useful when working with limited data [48].

A standard fine-tuning technique [66] is adopted to copy layers
from the propagation model of the pre-trained prediction networks
to the target network. After that, the output model is initialized
randomly and trained on the target dataset. This method of fine
tuning has been shown effective in training a large target network
without the risk of overfitting, particularly when the target dataset
is much smaller in size than the base dataset [22, 27, 66].

Step 3: Optimization Stage. In the optimization stage, the pre-
cision tuner benefits from the use of two fine-tuned networks that
improve the efficiency of the remaining search. This stage starts
by continuing the search from the pre-run stage. Every candidate
mixed-precision program in the search path is evaluated using two
models: the performance prediction model to determine if it has
a runtime speedup compared to the original program, and the ac-
curacy inference model to determine if its computation results are
within a given error threshold. The search process aims to identify
the program with the highest speedup, and to achieve this, only pro-
grams that are classified as “promising”—with both a speedup and
within the error threshold—are executed to verify the prediction,
and most importantly, to obtain the actual speedup. If a program

Predicting Performance and Accuracy of Mixed-Precision Programs for Precision Tuning ICSE ’24, April 14–20, 2024, Lisbon, Portugal

is predicted to fail to meet the speedup or error threshold crite-
ria, it is not executed. This allows the search process to continue
without being burdened by mixed-precision programs that are less
likely to meet the performance and accuracy requirements. This
methodology results in a more efficient precision tuning process.

4 EVALUATION

The goal of this evaluation is to answer the following questions:
RQ 1. How effective is our approach in predicting performance

and computation accuracy of mixed-precision programs?
RQ 2. How effective is each type of edge in PIG to represent mixed-

precision programs?
RQ 3. How useful are our FPLearnermodels when integrated into

existing dynamic precision tuners?
RQ 4. How effectively can the parameters in our pre-trainedmodels

be transferred to new programs?

4.1 Datasets for Model Training

To evaluate the effectiveness of FPLearner we must create a large
dataset of mixed-precision programs for which both performance
and accuracy are known. To the best of our knowledge, we are the
first to create such a dataset.

We create a dataset of mixed-precision programs based on five
large representative HPC applications written in C/C++: Blacksc-
holes [6], CFD [11], Hotspot [11], HPCCG [29], and LavaMD [11].
These programs are part of HPC-MixPBench [49], a benchmark
suite for mixed-precision analysis. We excluded small kernels and
applications for which we could not find mixed-precision versions
that outperform the original programs. The precisions used in the
mixed-precision programs are double and single precision.

The dataset must include (1) acceptable mixed-precision pro-
grams that are faster than the original program and meet the error
threshold, and (2) unacceptable programs that are slower than the
original program or fail to satisfy the error threshold. Finding ac-
ceptable programs is challenging as randomly assigning lower preci-
sion often leads to unacceptable programs. Instead, we leverage the
precision tuner Precimonious [54], which systematically searches
for suitable precision configurations while adhering to performance
and accuracy constraints. We collect all explored mixed-precision
programs and label them based on speedup and error threshold
compliance. This process uses representative inputs provided by
the benchmarks, which achieve a 92% code coverage on average.

Table 2 presents an overview of the dataset. Our focus on real-
world HPC applications with intensive FP operations results in
relatively large graph sizes compared to previous work in program
representation.1 The class label distribution in the set of mixed-
precision programs is imbalanced. To address this, we randomly
select 628 programs for a balanced dataset in performance pre-
diction and another 600 for accuracy prediction, both including
samples from all applications. As shown in the rest of this section,
the prediction models trained on these datasets prove effective.

We use the code analysis platform Joern [64] to extract nodes
and edges from the AST and to compute the CF and PD edges

1For example, work on vulnerability detection [70] reports graph node size no larger
than 500 when representing functions from large C projects such as the Linux kernel.

Table 2: Mixed-Precision Program Dataset Overview.

Application LOC #Progrs/ Graph Size

#Graphs Avg. #Nodes Avg. #Edges

Blackscholes 287 760 2237 5215
CFD 648 1798 4713 18809
Hotspot 302 504 1254 7581
HPCCG 287 552 2676 6121
LavaMD 288 348 2416 6122

Datasets

Performance - 628 3195 11487
Accuracy - 600 3191 11597

of PIG. The TC edges are inferred based on FP arithmetic opera-
tors, assignments, and function call arguments, considering implicit
type conversions across different precisions. Additionally, we in-
corporate AF edges following the approach outlined in [1]. The
PIG edges are directed. While TC and AF edges are typically much
less common than other types, we amplify their impact by adding
corresponding inverse edges which is a common practice [2, 9].

4.2 RQ1: Model Performance

4.2.1 Baselines. To the best of our knowledge, we are the first to
propose a technique to predict the performance and accuracy of
mixed-precision HPC applications. We compare the performance
of our GGNN approach with three DL-based baselines that we
implement. The first two treat source code as natural language,
while the third uses a graph representation of the program as input.

Our text-based baselines are a native LSTM [31] (the most com-
monly used DL technique for code analysis [57]), and a Bidirectional
LSTM (BiLSTM) architecture [15] inspired by [43]. BiLSTMs, which
prove superior than unidirectional RNNs [26, 31] and CNNs [21, 39]
according to recent studies [42, 70], are suitable for our purpose as
they consider both forward and backward directions, capturing the
influence of earlier and later statements on FP variables.

The third baseline is a Relational Graph Neural Network (RGCN)
architecture [56]. Recent works [9, 59, 71] have shown that RGCNs
are more effective for multi-relational data compared to other GNNs
like Graph Convolutional Networks (GCNs) [35] and Graph Atten-
tion Networks (GATs) [61]. RGCNs extend the commonly used
GCNs and are well-suited for our use case as they can learn trans-
formations specific to relations, adapting based on the type and
direction of an edge in PIG.

4.2.2 Implementation and Training Details. We use PyTorch [50]
and PyTorch Geometric [20] to implement our approach and base-
lines. Our models are trained on two Nvidia RTX A6000 GPUs
(48GB memory per GPU) using Ubuntu 20.04 and CUDA 11.7.

The datasets of mixed-precision programs are randomly divided
into three parts: 70% for training, 10% for validation, and the remain-
ing 20% for testing. The batch size is set to 16 and we shuffle the
training dataset for each epoch during training. We set the training
epochs as 500, and use the early stopping manner [52] with the pa-
tience set to 30 epochs to reduce overfitting on the training dataset
and improve the generalization of our neural networks. We use the
Adam optimizer [34] with learning rate 0.0001, weight decay 0.001

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yutong Wang and Cindy Rubio-González

and L2 regularization to avoid overfitting. The dimension of the
vector representation of each token in our vocabulary is set to 100.
In our GGNN, we set the dimension of hidden states as 100, and
the number of time steps as 3.

4.2.3 Evaluation Metrics. We use four evaluation metrics to mea-
sure the effectiveness of our prediction models: accuracy (A), pre-
cision (P), recall (R) and F1 score (F1). In either the performance
prediction or the accuracy inference tasks, we calculate the metrics
for each label and then report their unweighted mean.

4.2.4 Experimental Results. As shown in Table 3, our approach,
which utilizes GGNNs to learn the graph representation PIG of
mixed-precision programs, outperforms the other DL-based base-
line methods in all four evaluation metrics. For instance, in terms
of F1 score, our approach achieves 96.34% on the performance pre-
diction task, which is a 27.89% improvement over LSTM, a 14.50%
improvement over BiLSTM and a 9.72% improvement over RGCN.
Additionally, our approach’s F1 score achieves as high as 97.03%
on the accuracy prediction task, resulting in a 28.80%, 11.78% and
12.85% gain compared to LSTM, BiLSTM and RGCN, respectively.
We hypothesize the reasons for our approach to surpass others.
Firstly, we find that PIG provides a more effective program repre-
sentation for mixed-precision programs by modeling inner preci-
sion interactions. Secondly, the GGNN architecture, as opposed to
LSTM and BiLSTM, can learn heterogeneous relationships within
a graph and benefit from a wider range of contextual information
to capture program features. Finally, compared to RGCN, the GRU
mechanism in GGNNs allows for deeper exploration and the cap-
ture of longer-range dependencies in the graph.

Response to RQ1: Benefitting from the graph representation
PIG and the NN architecture GGNN, our approach proves to be
effective in accurately predicting performance (96.34% F1 score)
and accuracy (97.03% F1 score) of mixed-precision programs,
which outperforms other baseline methods.

4.3 RQ2: Edge Ablation Study

To answer RQ2, we conduct an ablation study that investigates the
influence of each type of edge used in PIG by selectively excluding
one type at a time from the entire graph. This study allows us to
isolate and observe the specific contribution of each individual edge
type. The results are shown in Table 4. Compared to using all types
of edges, excluding any one type of edge decreases the accuracy
score by 5.46%–12.55% for performance prediction, and 4.69%–8.60%
for accuracy prediction. The individual contributions of each edge
type to the overall results are considered notable in comparison to
earlier studies with edge analysis [1, 2, 70]. Although TypeCasting

andAssignedFrom edges occur less frequently than other edge types,
they still make a similar contribution to an average accuracy gain of
5.66%. Overall, this ablation study confirms that our models benefit
from interactions among all edge types.

Response to RQ2: Our ablation study shows that each type of
edge provides a distinct context for learning the FP precision
interactions, and thus improves the effectiveness of the graph
representation for mixed-precision programs.

Table 3: Our Approach vs. Baselines. A: Accuracy, P: Preci-

sion, R: Recall, F1: F1 score.

Approach Performance Prediction Accuracy Prediction

A (%) P (%) R (%) F1 (%) A (%) P (%) R (%) F1 (%)

LSTM 70.05 69.28 69.49 68.45 71.09 71.85 71.22 68.23
BiLSTM 80.31 86.20 77.90 81.84 84.38 84.92 85.59 85.25
RGCN 85.16 88.01 85.26 86.62 82.81 84.33 84.03 84.18
GGNN 96.09 96.72 95.96 96.34 96.88 97.24 96.82 97.03

Table 4: Impact of Distinct Edges. A: Accuracy, P: Precision,

R: Recall, F1: F1 score. CF: Control Flow, PD: Program De-

pendence, TC: TypeCasting, AF: AssignedFrom.

Edges Performance Prediction Accuracy Prediction

A (%) P (%) R (%) F1 (%) A (%) P (%) R (%) F1 (%)

No AST 89.84 91.66 89.84 90.74 89.06 90.21 90.16 90.19
No CF 83.54 86.87 83.59 85.19 88.28 89.75 88.84 89.29
No PD 85.16 87.23 85.26 86.23 89.84 91.80 81.88 81.87
No TC 89.06 91.05 89.22 90.12 92.19 93.35 92.73 93.04
No AF 90.63 92.82 90.54 91.66 91.41 92.78 91.69 92.23
All types 96.09 96.72 95.96 96.34 96.88 97.24 96.82 97.03

Table 5: Statistics of Benchmarks used as Case Studies.

Benchmark LOC Graph Size Execution Time
#Nodes #Edges

CG 903 2564 11241 1.38s
MG 1228 6299 28354 1.25s
LULESH 3144 12512 44226 18.56s
LBM 1086 6500 32046 269.58s

4.4 RQ3: Case Studies

4.4.1 Experimental Setup. We present four case studies to explore
the usefulness of our FPLearner models in a real-world scenario,
namely FP dynamic precision tuning. We consider CG andMG from
the NAS C Parallel Benchmarks version 3.0 (NPB) [4], LULESH
version 2.0 [33] from LLNL, and LBM from the SPEC CPU 2017
Benchmarks [8]. Table 5 lists their sizes in lines of code (LOC), graph
size, and average runtime. These programs are commonly used in
precision tuning evaluation and represent the largest reported in the
existing literature. Notably, the number of FP variables in LULESH,
i.e., 365, is considerably larger compared to others, resulting in a
significantly larger search space for precision tuning. Additionally,
LBM exhibits a significantly longer execution time, emphasizing
the need to minimize program runs for reducing time cost.

The choice of program inputs and error thresholds for each pro-
gram can vary across different usage scenarios. A more experienced
user might be more selective on the program inputs and the error
thresholds to use [54]. For CG and MG, we use the provided input
Class A. For LULESH, we use the default program size 30 × 30 for
each spatial problem domain. And for LBM, we follow the standard
reference workload to run the program. These representative inputs
achieve a 85% code coverage on average. For CG, MG, and LULESH,

Predicting Performance and Accuracy of Mixed-Precision Programs for Precision Tuning ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 6: Case Studies. Time Cost Represented in hh:mm:ss. FT: Fine-tuning.

Benchmark Precision Tuner Setting #Programs #Runs %Runs Final Speedup Training Cost Search Cost Total Cost

CG

Vanilla P 532 532 100.00% 25.50% - 01:20:27 01:20:27
Precimonious (P) P + FPLearner 464 198 42.67% 26.56% 00:05:40 00:51:03 00:56:43 (↓ 29.50%)

P + FPLearner w/o FT 455 197 43.30% 21.96% 00:33:20 00:49:32 01:22:52
Vanilla H 388 388 100.00% 27.47% - 00:52:01 00:52:01

HiFPTuner (H) H + FPLearner 414 156 37.68% 27.62% 00:06:05 00:33:29 00:39:34 (↓ 23.93%)
H + FPLearner w/o FT 433 178 41.11% 23.81% 00:31:19 00:43:25 01:14:44

MG

Vanilla P 570 570 100.00% 14.69% - 01:13:47 01:13:47
Precimonious (P) P + FPLearner 356 214 60.11% 15.02% 00:07:28 01:05:44 01:13:12 (Comparable)

P + FPLearner w/o FT 482 246 51.04% 13.98% 00:29:52 01:20:18 01:50:10
Vanilla H 438 438 100.00% 14.07% - 00:57:32 00:57:32

HiFPTuner (H) H + FPLearner 317 149 47.00% 14.54% 00:07:36 00:40:13 00:47:49 (↓ 17.18%)
H + FPLearner w/o FT 370 202 54.59% 14.39% 00:29:59 00:45:25 01:15:24

LULESH

Vanilla P 2564 2564 100.00% 18.13% - 20:02:34 20:02:34
Precimonious (P) P + FPLearner 2428 960 39.54% 21.31% 01:13:04 15:30:16 16:43:20 (↓ 18.75%)

P + FPLearner w/o FT 2850 1281 44.95% 19.47% 02:42:24 18:48:37 21:31:01
Vanilla H 994 994 100.00% 23.73% - 05:15:05 05:15:05

HiFPTuner (H) H + FPLearner 937 424 45.25% 23.33% 01:04:32 02:56:38 04:01:10 (↓ 23.49%)
H + FPLearner w/o FT 731 349 47.74% 20.41% 02:22:56 02:17:09 04:40:05

LBM

Vanilla P 316 316 100.00% 18.42% - 20:51:12 20:51:12
Precimonious (P) P + FPLearner 223 132 59.19% 21.35% 00:08:16 07:58:41 08:06:57 (↓ 61.07%)

P + FPLearner w/o FT 486 256 52.67% 14.32% 00:51:40 14:01:17 14:52:57
Vanilla H 217 217 100.00% 17.38% - 09:54:45 09:54:45

HiFPTuner (H) H + FPLearner 222 144 64.86% 20.06% 00:09:12 06:44:56 06:54:08 (↓ 30.37%)
H + FPLearner w/o FT 322 140 43.48% 17.14% 00:57:30 06:55:04 07:52:34

we set the computation error threshold to be 10−4, while for LBM
we use 10−7, for which a larger speedup is found when using a
smaller (more restrictive) error threshold.

We evaluate our models on two dynamic precision tuners: Prec-
imonious [54] and HiFPTuner [25], which we refer to as Vanilla
Precision Tuners. Precimonious utilizes delta debugging [67], which
has been recognized as the most effective search strategy in recent
precision tuning studies [16, 49]. Besides, Precimonious has served
as the one and only dynamic tuning baseline for many of the lat-
est state-of-the-art precision tuners [23, 25, 36, 53]. More recent
state-of-the-art tuners that apply a trial-and-error paradigm in-
clude Blame [53], HiFPTuner [25], Promise [23], PyFloT [7], and
AMPT-GA [36]. HiFPTuner is selected over Blame because it is
more recent. Promise and PyFloT require additional runtime in-
formation that makes them unsuitable for our evaluation. Finally,
while conceptually AMPT-GA could benefit from our models, it is
designed for CUDA programs, and it is not publicly available.

During the pre-run stage (Section 3.3), we run the Vanilla Preci-

sion Tuners to collect the initial fine-tuning datasets: the first 100
mixed-precision programs for CG and MG, the first 500 mixed-
precision programs for LULESH, and the first 80 mixed-precision
programs for LBM. To measure program speedup, we execute each
mixed-precision program of CG and MG ten times and report their
average. We notice that LULESH and LBM are less sensitive to
performance noise given their larger runtime. Thus, we only report
the average of five runs for LULESH, and one run for LBM.

We consider three settings in our experiments:

(1) Vanilla Precision Tuner: the original precision tuner that exe-
cutes every candidate mixed-precision program explored dur-
ing the search to evaluate its performance and accuracy with
respect to the given error threshold.

(2) Precision Tuner + FPLearner: the precision tuner enhancedwith
our ML models. Specifically, the precision tuner’s search is
guided by the models’ predictions. However, only “promising”
mixed-precision programs are executed, i.e., those programs
predicted by the models to be both faster than the original pro-
gram and to produce a result within the given error threshold.
Note that “promising” programs must still be run because the
goal is to find the program with the highest speedup. As a result,
we not only verify the predictions but also obtain the actual
speedup when our models make correct decisions.

(3) Precision Tuner + FPLearner w/o FT: same process as (2) except
that the models employed are trained from scratch on the target
programs instead of applying model fine tuning.

4.4.2 Evaluation Metrics. We compare the settings with respect to:

Definition 4.1. (Program Quality). A mixed-precision program
𝑃1 is better than a program 𝑃2 if 𝑃1 achieves a larger performance
speedup that meets the accuracy requirement than 𝑃2.

Definition 4.2. (Search Effectiveness). A precision tuner𝑇1 is more
effective than the precision tuner 𝑇2 if the final mixed-precision
program generated by 𝑇1 is better than that found by 𝑇2.

Definition 4.3. (Search Efficiency). A precision tuner 𝑇1 is more
efficient than the precision tuner𝑇2 if𝑇1 generates an equivalent or
a better mixed-precision program than 𝑇2 with fewer program runs.

Our ideal goal is to discover a mixed-precision program that
achieves a speedup equivalent to that found by the Vanilla Precision
Tuner in fewer runs. However, small runtime variation or mispre-
dictions may lead to different search paths, which ultimately may
result in different local minima being found. These variations are

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yutong Wang and Cindy Rubio-González

76.8 78.1 73.6 74.1 74.8 72.2 74.3 80.6

44.9

72.1

54.1
68.2 66.5 62.9

52.8
64.6

0

20

40

60

80

PP AP PP AP PP AP PP AP

A
(%

)

Fine-tuned model Model trained from scrach

CG MG LULESH LBM

(a) A: Accuracy.

79.1 78.8 73.3 79.5 76.5 73.6 75.7
84.7

55.7
71.3

55.1

73.7
60.9 63.6

54.3
62.5

0

20

40

60

80

PP AP PP AP PP AP PP AP

F1
 (%

)

Fine-tuned model Model trained from scrach

CG MG LULESH LBM

(b) F1: F1 score.

Figure 4: Fine-tuning vs. Training from Scratch. PP: Performance Prediction, AP: Accuracy Prediction.

acceptable as long as the resulting program has a speedup compa-
rable to that reported by the Vanilla Precision Tuner. Here we define
“comparable” as having a value difference of less than 0.5%.

4.4.3 Experimental Results. Table 6 shows the results for the four
case studies. #Programs is the number of candidate mixed-precision
programs explored during the search, while #Runs indicates the
number of programs actually executed. %Runs is the result from
dividing #Runs by #Programs in the search. Final Speedup refers to
the performance speedup achieved by the final mixed-precision
program recommended by the precision tuner. Training Cost for
FPLearner is the time taken for model fine tuning, whereas for
FPLearner w/o FT is the time required for training the models from
scratch. In addition, Search Cost refers to the time cost of the full
precision tuning process. Note that #Programs, #Runs and Search

Cost include the pre-run stage, during which the original precision
tuners are used to gather the initial set of mixed-precision programs,
and the optimization stage, in which our models are used during
the search to predict performance and accuracy, as described in
Section 3.3. Lastly, Total Cost is the overall time, which is composed
of Training Cost and Search Cost.

Here we compare Vanilla Precision Tuners with Precision Tuner +

FPLearner. We will further explore the comparison with Precision

Tuner + FPLearner w/o FT in Section 4.5. Across all case studies,
FPLearner achieves a 35.14%–62.32% reduction in program runs
compared to the total number of programs in the search. When
compared to Vanilla Precision Tuners, using FPLearner successfully
reduces program runs by 57.34%–65.98%. Total time cost reductions
are observed in all cases (17.18%–61.07%) except for MG, for which
using FPLearner achieves comparable time cost with Vanilla Preci-

monious. The most significant cost reduction is observed in LBM,
which has the longest running time. This serves as evidence that
FPLearner is particularly well-suited for programs with relatively
large runtime. Finally, compared to Vanilla Precision Tuners, using
FPLearner yields comparable or slightly superior results in terms
of final program speedup, which is expected as predictions are not
meant to deliberately make different search choices. This confirms
the effectiveness of our predictions.

Response to RQ3: Our models improve the time efficiency of
precision tuners by an average of 25.54% and up to 61.07% while
generating mixed-precision programs of comparable or better
quality, proving useful in both efficiency and effectiveness.

4.5 RQ4: Model Parameter Transferability

4.5.1 Experimental Setup. We measure the effectiveness of the
model parameter transferability in two settings: (1) FPLearner, i.e.,
fine tuning the pre-trained performance and accuracy prediction
models on the dataset of the target benchmark, and (2) FPLearner
w/o FT, i.e., training the same NN architectures from scratch on
the same target dataset. We compare these two settings in terms
of Model Performance, Search Effectiveness, and Search Efficiency.
We do not consider the scenario in which our pre-trained models
are used to make predictions on new benchmarks without fine-
tuning. We find that in all such cases the models are not capable of
generating reliable predictions.

4.5.2 Training and Testing Details. For FPLearner, we use the same
fine-tuning methodology as in prior work [27, 32, 68] to avoid over-
fitting when the dataset size of target benchmarks is limited, by
selecting a small number of epochs (less than 10) for training. We
found 8 epochs to be a good default for fine-tuning our models
on all four target benchmarks, resulting in validation accuracy ex-
ceeding 80%. However, we observe that training FPLearner w/o FT

for the same duration of epochs proves insufficient. Specifically,
after 8 epochs, the models trained from scratch tend to classify
the majority of data examples into a single class, leading to a low
validation accuracy. For a fair comparison, we continue to train
FPLearner w/o FT for a maximum number of 50 epochs with early
stopping [52], and terminate the training when its validation accu-
racy is equal to or larger than that of the fine-tuned models. We
use the same set of unseen programs when testing the general-
izability of both FPLearner and FPLearner w/o FT. Specifically,
for each benchmark, we report the performance of the models on
the set of mixed-precision programs that are explored during the
optimization stage of the Precimonious + FPLearner setting.

4.5.3 Experimental Results and Discussion. Figure 4 demonstrates
that fine-tuning our pre-trained models on all target programs
yields a substantial improvement in model performance of up to
31.9% when compared to training from scratch. This finding proves
the transferability of the knowledge learned from existing programs
to new programs. The superiority in Model Performance is reflected
in the fine-tuned FPLearner achieving better Search Effectiveness

as shown in Table 6. At the same time, FPLearner w/o FT requires
3.83× training cost on average than our fine-tuned FPLearner.
Based on these experimental results, we conclude that leveraging

Predicting Performance and Accuracy of Mixed-Precision Programs for Precision Tuning ICSE ’24, April 14–20, 2024, Lisbon, Portugal

the fine-tuning technique is beneficial in compensating for the lack
of sufficient training data in the target benchmarks.

Response to RQ4: Transferring parameters from pre-trained
models to new programs can significantly save time and prove
to be more effective than training without any prior knowledge.

4.6 Threats to Validity

Our primary external threat is the extent to which our results
can be generalized. We address this by (1) training our models on
programs from HPC-MixPBench, a representative benchmark for
mixed-precision analysis in HPC workloads, (2) employing a fine-
tuning technique for adapting to new numerical benchmarks that
proves its effectiveness, and (3) conducting case studies in bench-
marks widely-used in precision tuning, and the largest reported in
the literature. Secondly, our evaluation focuses on double and single
precision in C/C++ languages, but FPLearner can be extended to
support other precisions and languages. Finally, there is an internal
threat in selecting suitable baselines for predicting performance
and accuracy of mixed-precision programs as no existing work
addresses our research goal. We carefully selected representative
neural network architectures from [31], [43] and [56] based on their
potential in learning mixed-precision program features.

5 RELATED WORK

A substantial portion of precision tuners relies on dynamic anal-
ysis. Precimonious [54] is a search-based precision tuner that
uses the delta-debugging algorithm to explore mixed-precision pro-
grams. Blame Analysis [53] uses shadow execution to prune its
search space. HIFPTuner [25] extends Precimonious to improve
the search efficiency via hierarchy construction. Gathering dynamic
program behavior as feedback, Promise [23] uses Discrete Stochas-
tic Arithmetic, while PyFloT [7] uses call stack information and
temporal locality. AMPT-GA [36] performs precision optimization
for GPU kernels in a genetic algorithm-based search. All of the
above face scalability limitations given the exponential nature of
the search space. ADAPT [45] provides a precision sensitivity anal-
ysis as a guide for precision tuning, but it still relies on program
execution. Different from all the above work, we are the first to
utilize a DL-based approach to replace program execution with a
model prediction to improve the efficiency of precision tuning.

To capture code structure, there have been an increasing number
of research work that utilizes GNNs to learn graph representations
of programs. Allamanis et al. [2] predict variable names and mis-
usage by learning from a syntax tree with data-flow information.
Dinella et al. [17] use GGNNs to detect and fix bugs in JavaScript
programs. TehraniJamsaz et al. [59] leverage code region graphs
to learn intermediate representations for NUMA/prefetcher opti-
mizations. Several works [9, 62, 70] target vulnerability detection
and their graph representations typically contain control-flow and
data-flow information. In contrast, FPLearner is the first to predict
both performance and accuracy of numerical software that uses
mixed precision. Moreover, we proposed a distinct graph represen-
tation, PIG, specialized for such programs by modeling precision
interactions among FP variables across the program.

A large body of work has applied ML to perform various SE tasks
such as program repair [41, 44], functional code clone detection [18],

defect prediction [12], patch correctness prediction [60], name-
based bug detection [51], and type inference [28]. Our work fills
the gap by utilizing an ML-based method to learn features from
mixed-precision programs in the numerical software domain.

6 CONCLUSION

We presented FPLearner, a novel approach for predicting the per-
formance and accuracy of mixed-precision programs. We proposed
an effective graph representation PIG formixed-precision programs,
and utilized GNNs, an advanced ML technique, to learn features
from their graph representation. By incorporating our prediction
models into the dynamic precision-tuning process, we are able to
save time that would otherwise be spent on running programs. Our
evaluation demonstrated that FPLearner models produce highly
accurate predictions and significantly enhance the efficiency of pre-
cision tuners. Through the creation of a diverse dataset containing
1228 mixed-precision programs from five HPC applications, our
models achieved a 96.34% F1 score in performance prediction and
a 97.03% F1 score in accuracy prediction. Moreover, FPLearner
substantially improved time efficiency in two dynamic precision
tuners, Precimonious and HiFPTuner, boasting an average en-
hancement of 25.54% and reaching up to 61.07%, all while maintain-
ing precision tuning results of comparable or superior quality. Our
code, documentation and experimental data are publicly available
at https://github.com/ucd-plse/FPLearner.

ACKNOWLEDGMENTS

This workwas supported in part by the National Science Foundation
under award CCF-1750983, and the U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research, under
awards DE-SC0020286 and DE-SC0022182.

REFERENCES

[1] Miltiadis Allamanis, Earl T. Barr, Soline Ducousso, and Zheng Gao. 2020. Typilus:
neural type hints. In Proceedings of the 41st ACM SIGPLAN International Conference

on Programming Language Design and Implementation, PLDI 2020, London, UK,

June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 91–105.
https://doi.org/10.1145/3385412.3385997

[2] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2018. Learning
to Represent Programs with Graphs. In 6th International Conference on Learning

Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Con-

ference Track Proceedings. OpenReview.net. https://openreview.net/forum?id=
BJOFETxR-

[3] Marc Baboulin, Alfredo Buttari, Jack J. Dongarra, Jakub Kurzak, Julie Langou,
Julien Langou, Piotr Luszczek, and Stanimire Tomov. 2009. Accelerating scientific
computations with mixed precision algorithms. Comput. Phys. Commun. 180, 12
(2009), 2526–2533. https://doi.org/10.1016/j.cpc.2008.11.005

[4] David Bailey, Tim Harris, William Saphir, Rob van der Wijngaart, Alex Woo, and
Maurice Yarrow. 1995. The NAS Parallel Benchmarks 2.0.

[5] Dorra Ben Khalifa and Matthieu Martel. 2023. Everything you Need to Know
About Reduced Mixed Precision Computation in Numerical Programs. (2023).
https://hal.science/hal-03978176 preprint.

[6] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC benchmark suite: characterization and architectural implications. In
17th International Conference on Parallel Architectures and Compilation Techniques,

PACT 2008, Toronto, Ontario, Canada, October 25-29, 2008, Andreas Moshovos,
David Tarditi, and Kunle Olukotun (Eds.). ACM, 72–81. https://doi.org/10.1145/
1454115.1454128

[7] Hugo Brunie, Costin Iancu, Khaled Z. Ibrahim, Philip Brisk, and Brandon Cook.
2020. Tuning floating-point precision using dynamic program information and
temporal locality. In Proceedings of the International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, SC 2020, Virtual Event /

Atlanta, Georgia, USA, November 9-19, 2020, Christine Cuicchi, Irene Qualters,
and William T. Kramer (Eds.). IEEE/ACM, 50. https://doi.org/10.1109/SC41405.
2020.00054

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Yutong Wang and Cindy Rubio-González

[8] James Bucek, Klaus-Dieter Lange, and Jóakim von Kistowski. 2018. SPEC
CPU2017: Next-Generation Compute Benchmark. In Companion of the 2018

ACM/SPEC International Conference on Performance Engineering, ICPE 2018, Berlin,

Germany, April 09-13, 2018, Katinka Wolter, William J. Knottenbelt, André van
Hoorn, and Manoj Nambiar (Eds.). ACM, 41–42. https://doi.org/10.1145/3185768.
3185771

[9] Sicong Cao, Xiaobing Sun, Lili Bo, Rongxin Wu, Bin Li, and Chuanqi Tao. 2022.
MVD: Memory-Related Vulnerability Detection Based on Flow-Sensitive Graph
Neural Networks. In 44th IEEE/ACM 44th International Conference on Software

Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM, 1456–1468.
https://doi.org/10.1145/3510003.3510219

[10] Maurizio Capra, Beatrice Bussolino, Alberto Marchisio, Guido Masera, Maurizio
Martina, and Muhammad Shafique. 2020. Hardware and Software Optimizations
for Accelerating Deep Neural Networks: Survey of Current Trends, Challenges,
and the Road Ahead. IEEE Access 8 (2020), 225134–225180. https://doi.org/10.
1109/ACCESS.2020.3039858

[11] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, JeremyW. Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In Proceedings of the 2009 IEEE International Symposium on Workload

Characterization, IISWC 2009, October 4-6, 2009, Austin, TX, USA. IEEE Computer
Society, 44–54. https://doi.org/10.1109/IISWC.2009.5306797

[12] Jinyin Chen, Keke Hu, Yue Yu, Zhuangzhi Chen, Qi Xuan, Yi Liu, and Vladimir
Filkov. 2020. Software Visualization and Deep Transfer Learning for Effective
Software Defect Prediction. In Proceedings of the 42nd International Conference

on Software Engineering, ICSE 2020, Seoul, Republic of Korea, May 23-29, 2020,
Laura K. Dillon, Willem Visser, and Laurie Williams (Eds.). ACM. https://doi.
org/10.1145/1122445.1122456

[13] Stefano Cherubin and Giovanni Agosta. 2021. Tools for Reduced Precision
Computation: A Survey. ACM Comput. Surv. 53, 2 (2021), 33:1–33:35. https:
//doi.org/10.1145/3381039

[14] Wei-Fan Chiang, Mark Baranowski, Ian Briggs, Alexey Solovyev, Ganesh
Gopalakrishnan, and Zvonimir Rakamaric. 2017. Rigorous floating-point mixed-
precision tuning. In Proceedings of the 44th ACM SIGPLAN Symposium on

Principles of Programming Languages, POPL 2017, Paris, France, January 18-

20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 300–315.
http://dl.acm.org/citation.cfm?id=3009846

[15] Savelie Cornegruta, Robert Bakewell, Samuel Withey, and Giovanni Montana.
2016. Modelling Radiological Language with Bidirectional Long Short-Term
Memory Networks. In Proceedings of the Seventh International Workshop on Health

Text Mining and Information Analysis, Louhi@EMNLP 2016, Austin, TX, USA,

November 5, 2016, Cyril Grouin, Thierry Hamon, Aurélie Névéol, and Pierre
Zweigenbaum (Eds.). Association for Computational Linguistics, 17–27. https:
//doi.org/10.18653/v1/W16-6103

[16] Eva Darulova, Einar Horn, and Saksham Sharma. 2018. Sound mixed-precision
optimization with rewriting. In Proceedings of the 9th ACM/IEEE International Con-

ference on Cyber-Physical Systems, ICCPS 2018, Porto, Portugal, April 11-13, 2018,
Chris Gill, Bruno Sinopoli, Xue Liu, and Paulo Tabuada (Eds.). IEEE Computer
Society / ACM, 208–219. https://doi.org/10.1109/ICCPS.2018.00028

[17] Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang.
2020. Hoppity: Learning Graph Transformations to Detect and Fix Bugs in
Programs. In 8th International Conference on Learning Representations, ICLR 2020,

Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. https://openreview.
net/forum?id=SJeqs6EFvB

[18] Chunrong Fang, Zixi Liu, Yangyang Shi, Jeff Huang, and Qingkai Shi. 2020.
Functional code clone detection with syntax and semantics fusion learning. In
ISSTA ’20: 29th ACM SIGSOFT International Symposium on Software Testing and

Analysis, Virtual Event, USA, July 18-22, 2020, Sarfraz Khurshid and Corina S.
Pasareanu (Eds.). ACM, 516–527. https://doi.org/10.1145/3395363.3397362

[19] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The Program
Dependence Graph and Its Use in Optimization. ACM Trans. Program. Lang. Syst.

9, 3 (1987), 319–349. https://doi.org/10.1145/24039.24041
[20] Matthias Fey and Jan Eric Lenssen. 2019. Fast Graph Representation Learning

with PyTorch Geometric. CoRR abs/1903.02428 (2019). arXiv:1903.02428 http:
//arxiv.org/abs/1903.02428

[21] Qichuan Geng, Zhong Zhou, and Xiaochun Cao. 2018. Survey of recent progress
in semantic image segmentation with CNNs. Sci. China Inf. Sci. 61, 5 (2018),
051101:1–051101:18. https://doi.org/10.1007/s11432-017-9189-6

[22] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich
Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.
In 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014,

Columbus, OH, USA, June 23-28, 2014. IEEE Computer Society, 580–587. https:
//doi.org/10.1109/CVPR.2014.81

[23] Stef Graillat, Fabienne Jézéquel, Romain Picot, François Févotte, and Bruno Lath-
uilière. 2019. Auto-tuning for floating-point precision with Discrete Stochastic
Arithmetic. J. Comput. Sci. 36 (2019). https://doi.org/10.1016/j.jocs.2019.07.004

[24] Hui Guo, Ignacio Laguna, and Cindy Rubio-González. 2020. pLiner: isolating
lines of floating-point code for compiler-induced variability. In Proceedings of the

International Conference for High Performance Computing, Networking, Storage

and Analysis, SC 2020, Virtual Event / Atlanta, Georgia, USA, November 9-19, 2020,
Christine Cuicchi, Irene Qualters, and William T. Kramer (Eds.). IEEE/ACM, 49.
https://doi.org/10.1109/SC41405.2020.00053

[25] Hui Guo and Cindy Rubio-González. 2018. Exploiting community structure
for floating-point precision tuning. In Proceedings of the 27th ACM SIGSOFT

International Symposium on Software Testing and Analysis, ISSTA 2018, Amsterdam,

The Netherlands, July 16-21, 2018, Frank Tip and Eric Bodden (Eds.). ACM, 333–343.
https://doi.org/10.1145/3213846.3213862

[26] Jin Guo, Jinghui Cheng, and Jane Cleland-Huang. 2017. Semantically enhanced
software traceability using deep learning techniques. In Proceedings of the 39th In-

ternational Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina,

May 20-28, 2017, Sebastián Uchitel, Alessandro Orso, and Martin P. Robillard
(Eds.). IEEE / ACM, 3–14. https://doi.org/10.1109/ICSE.2017.9

[27] Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Tajana Rosing,
and Rogério Schmidt Feris. 2019. SpotTune: Transfer Learning Through Adaptive
Fine-Tuning. In IEEE Conference on Computer Vision and Pattern Recognition,

CVPR 2019, Long Beach, CA, USA, June 16-20, 2019. Computer Vision Foundation
/ IEEE, 4805–4814. https://doi.org/10.1109/CVPR.2019.00494

[28] Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis Allamanis. 2018.
Deep learning type inference. In Proceedings of the 2018 ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of

Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, No-

vember 04-09, 2018, Gary T. Leavens, Alessandro Garcia, and Corina S. Pasareanu
(Eds.). ACM, 152–162. https://doi.org/10.1145/3236024.3236051

[29] Michael A. Heroux. 2007. HPCCG Solver Package, Version 00. https://www.osti.
gov//servlets/purl/1230960

[30] Nhut-Minh Ho, Himeshi De Silva, and Weng-Fai Wong. 2021. GRAM: A Frame-
work for Dynamically Mixing Precisions in GPU Applications. ACM Trans. Archit.

Code Optim. 18, 2 (2021), 19:1–19:24. https://doi.org/10.1145/3441830
[31] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.

Neural Comput. 9, 8 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
[32] Jeremy Howard and Sebastian Ruder. 2018. Universal Language Model Fine-

tuning for Text Classification. In Proceedings of the 56th Annual Meeting of the

Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July

15-20, 2018, Volume 1: Long Papers, Iryna Gurevych and Yusuke Miyao (Eds.).
Association for Computational Linguistics, 328–339. https://doi.org/10.18653/
v1/P18-1031

[33] Ian Karlin, Jeff Keasler, and Rob Neely. 2013. LULESH 2.0 Updates and Changes.
Technical Report LLNL-TR-641973. 1–9 pages.

[34] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In 3rd International Conference on Learning Representations, ICLR 2015,

San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio
and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6980

[35] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning

Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track

Proceedings. OpenReview.net. https://openreview.net/forum?id=SJU4ayYgl
[36] Pradeep V. Kotipalli, Ranvijay Singh, Paul Wood, Ignacio Laguna, and Saurabh

Bagchi. 2019. AMPT-GA: automatic mixed precision floating point tuning for
GPU applications. In Proceedings of the ACM International Conference on Super-

computing, ICS 2019, Phoenix, AZ, USA, June 26-28, 2019, Rudolf Eigenmann, Chen
Ding, and Sally A. McKee (Eds.). ACM, 160–170. https://doi.org/10.1145/3330345.
3330360

[37] Michael O. Lam, Jeffrey K. Hollingsworth, Bronis R. de Supinski, and Matthew P.
LeGendre. 2013. Automatically adapting programs for mixed-precision floating-
point computation. In International Conference on Supercomputing, ICS’13, Eugene,

OR, USA - June 10 - 14, 2013, Allen D. Malony, Mario Nemirovsky, and Samuel P.
Midkiff (Eds.). ACM, 369–378. https://doi.org/10.1145/2464996.2465018

[38] Michael O. Lam, Jeffrey K. Hollingsworth, and G. W. Stewart. 2013. Dynamic
floating-point cancellation detection. Parallel Comput. 39, 3 (2013), 146–155.
https://doi.org/10.1016/j.parco.2012.08.002

[39] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324. https://doi.org/10.1109/5.726791

[40] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. 2016. Gated
Graph Sequence Neural Networks. In 4th International Conference on Learning

Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track

Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1511.
05493

[41] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. DLFix: context-based code
transformation learning for automated program repair. In ICSE ’20: 42nd In-

ternational Conference on Software Engineering, Seoul, South Korea, 27 June

- 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 602–614.
https://doi.org/10.1145/3377811.3380345

[42] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and Zhaoxuan Chen. 2022.
SySeVR: A Framework for UsingDeep Learning toDetect Software Vulnerabilities.
IEEE Trans. Dependable Secur. Comput. 19, 4 (2022), 2244–2258. https://doi.org/
10.1109/TDSC.2021.3051525

Predicting Performance and Accuracy of Mixed-Precision Programs for Precision Tuning ICSE ’24, April 14–20, 2024, Lisbon, Portugal

[43] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun
Deng, and Yuyi Zhong. 2018. VulDeePecker: A Deep Learning-Based System for
Vulnerability Detection. In 25th Annual Network and Distributed System Security

Symposium, NDSS 2018, San Diego, California, USA, February 18-21, 2018. The
Internet Society. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/
25/2018/02/ndss2018_03A-2_Li_paper.pdf

[44] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and
Lin Tan. 2020. CoCoNuT: combining context-aware neural translation models
using ensemble for program repair. In ISSTA ’20: 29th ACM SIGSOFT International

Symposium on Software Testing and Analysis, Virtual Event, USA, July 18-22,

2020, Sarfraz Khurshid and Corina S. Pasareanu (Eds.). ACM, 101–114. https:
//doi.org/10.1145/3395363.3397369

[45] Harshitha Menon, Michael O. Lam, Daniel Osei-Kuffuor, Markus Schordan, Scott
Lloyd, Kathryn Mohror, and Jeffrey Hittinger. 2018. ADAPT: algorithmic differ-
entiation applied to floating-point precision tuning. In Proceedings of the Inter-

national Conference for High Performance Computing, Networking, Storage, and

Analysis, SC 2018, Dallas, TX, USA, November 11-16, 2018. IEEE / ACM, 48:1–48:13.
http://dl.acm.org/citation.cfm?id=3291720

[46] Dolores Miao, Ignacio Laguna, and Cindy Rubio-González. 2023. Expression Iso-
lation of Compiler-Induced Numerical Inconsistencies in Heterogeneous Code. In
High Performance Computing - 38th International Conference, ISCHigh Performance

2023, Hamburg, Germany, May 21-25, 2023, Proceedings (Lecture Notes in Computer

Science, Vol. 13948), Abhinav Bhatele, Jeff R. Hammond, Marc Baboulin, and Carola
Kruse (Eds.). Springer, 381–401. https://doi.org/10.1007/978-3-031-32041-5_20

[47] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. In 1st International Con-

ference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May

2-4, 2013, Workshop Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).
http://arxiv.org/abs/1301.3781

[48] Roweida Mohammed, Jumanah Rawashdeh, and Malak Abdullah. 2020. Machine
learning with oversampling and undersampling techniques: overview study and
experimental results. In 2020 11th international conference on information and

communication systems (ICICS). IEEE, 243–248.
[49] Konstantinos Parasyris, Ignacio Laguna, Harshitha Menon, Markus Schordan,

Daniel Osei-Kuffuor, Giorgis Georgakoudis, Michael O. Lam, and Tristan Van-
derbruggen. 2020. HPC-MixPBench: An HPC Benchmark Suite for Mixed-
Precision Analysis. In IEEE International Symposium on Workload Character-

ization, IISWC 2020, Beijing, China, October 27-30, 2020. IEEE, 25–36. https:
//doi.org/10.1109/IISWC50251.2020.00012

[50] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Köpf, Edward Z. Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems

32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS

2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett (Eds.). 8024–8035. https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html

[51] Michael Pradel and Koushik Sen. 2018. DeepBugs: a learning approach to name-
based bug detection. Proc. ACM Program. Lang. 2, OOPSLA (2018), 147:1–147:25.
https://doi.org/10.1145/3276517

[52] Lutz Prechelt. 2012. Early Stopping - But When? In Neural Networks: Tricks of the

Trade - Second Edition, Grégoire Montavon, Genevieve B. Orr, and Klaus-Robert
Müller (Eds.). Lecture Notes in Computer Science, Vol. 7700. Springer, 53–67.
https://doi.org/10.1007/978-3-642-35289-8_5

[53] Cindy Rubio-González, Cuong Nguyen, Benjamin Mehne, Koushik Sen, James
Demmel, William Kahan, Costin Iancu, Wim Lavrijsen, David H. Bailey, and
David Hough. 2016. Floating-point precision tuning using blame analysis. In
Proceedings of the 38th International Conference on Software Engineering, ICSE

2016, Austin, TX, USA, May 14-22, 2016, Laura K. Dillon, Willem Visser, and Laurie
Williams (Eds.). ACM, 1074–1085. https://doi.org/10.1145/2884781.2884850

[54] Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James Demmel,
William Kahan, Koushik Sen, David H. Bailey, Costin Iancu, and David Hough.
2013. Precimonious: tuning assistant for floating-point precision. In International

Conference for High Performance Computing, Networking, Storage and Analysis,

SC’13, Denver, CO, USA - November 17 - 21, 2013, William Gropp and Satoshi
Matsuoka (Eds.). ACM, 27:1–27:12. https://doi.org/10.1145/2503210.2503296

[55] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2009. The Graph Neural NetworkModel. IEEE Trans. Neural Networks
20, 1 (2009), 61–80. https://doi.org/10.1109/TNN.2008.2005605

[56] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg,
Ivan Titov, and Max Welling. 2018. Modeling Relational Data with Graph Convo-
lutional Networks. In The Semantic Web - 15th International Conference, ESWC

2018, Heraklion, Crete, Greece, June 3-7, 2018, Proceedings (Lecture Notes in Com-

puter Science, Vol. 10843), Aldo Gangemi, Roberto Navigli, Maria-Esther Vidal,
Pascal Hitzler, Raphaël Troncy, Laura Hollink, Anna Tordai, and Mehwish Alam

(Eds.). Springer, 593–607. https://doi.org/10.1007/978-3-319-93417-4_38
[57] Tushar Sharma, Maria Kechagia, Stefanos Georgiou, Rohit Tiwari, and Federica

Sarro. 2021. A Survey on Machine Learning Techniques for Source Code Analysis.
CoRR abs/2110.09610 (2021). arXiv:2110.09610 https://arxiv.org/abs/2110.09610

[58] Alexey Solovyev, Marek S. Baranowski, Ian Briggs, Charles Jacobsen, Zvonimir
Rakamaric, and Ganesh Gopalakrishnan. 2019. Rigorous Estimation of Floating-
Point Round-Off Errors with Symbolic Taylor Expansions. ACM Trans. Program.

Lang. Syst. 41, 1 (2019), 2:1–2:39.
[59] Ali TehraniJamsaz, Mihail Popov, Akash Dutta, Emmanuelle Saillard, and Ali

Jannesari. 2022. Learning Intermediate Representations using Graph Neural
Networks for NUMA and Prefetchers Optimization. In 2022 IEEE International

Parallel and Distributed Processing Symposium, IPDPS 2022, Lyon, France, May 30 -

June 3, 2022. IEEE, 1206–1216. https://doi.org/10.1109/IPDPS53621.2022.00120
[60] Haoye Tian, Kui Liu, Abdoul Kader Kaboré, Anil Koyuncu, Li Li, Jacques Klein,

and Tegawendé F. Bissyandé. 2020. Evaluating Representation Learning of Code
Changes for Predicting Patch Correctness in Program Repair. In 35th IEEE/ACM

International Conference on Automated Software Engineering, ASE 2020, Melbourne,

Australia, September 21-25, 2020. IEEE, 981–992. https://doi.org/10.1145/3324884.
3416532

[61] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In 6th International

Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30

- May 3, 2018, Conference Track Proceedings. OpenReview.net. https://openreview.
net/forum?id=rJXMpikCZ

[62] Huanting Wang, Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang Huang,
Dingyi Fang, Yansong Feng, Lizhong Bian, and Zheng Wang. 2021. Combining
Graph-Based Learning With Automated Data Collection for Code Vulnerability
Detection. IEEE Trans. Inf. Forensics Secur. 16 (2021), 1943–1958. https://doi.org/
10.1109/TIFS.2020.3044773

[63] Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dillig. 2020. LambdaNet: Proba-
bilistic Type Inference using Graph Neural Networks. In 8th International Con-

ference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,

2020. OpenReview.net. https://openreview.net/forum?id=Hkx6hANtwH
[64] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling

and Discovering Vulnerabilities with Code Property Graphs. In 2014 IEEE Sym-

posium on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014. IEEE
Computer Society, 590–604. https://doi.org/10.1109/SP.2014.44

[65] Yuzhe Yang, Kaiwen Zha, Ying-Cong Chen, Hao Wang, and Dina Katabi. 2021.
Delving into Deep Imbalanced Regression. In Proceedings of the 38th International

Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event (Pro-

ceedings of Machine Learning Research, Vol. 139), Marina Meila and Tong Zhang
(Eds.). PMLR, 11842–11851. http://proceedings.mlr.press/v139/yang21m.html

[66] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. 2014. How trans-
ferable are features in deep neural networks?. In Advances in Neural Infor-

mation Processing Systems 27: Annual Conference on Neural Information Pro-

cessing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, Zoubin
Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q.
Weinberger (Eds.). 3320–3328. https://proceedings.neurips.cc/paper/2014/hash/
375c71349b295fbe2dcdca9206f20a06-Abstract.html

[67] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
Inducing Input. IEEE Trans. Software Eng. 28, 2 (2002), 183–200. https://doi.org/
10.1109/32.988498

[68] Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. 2020. Graph-Bert: Only
Attention is Needed for Learning Graph Representations. CoRR abs/2001.05140
(2020). arXiv:2001.05140 https://arxiv.org/abs/2001.05140

[69] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI Open 1 (2020), 57–81. https://doi.org/
10.1016/j.aiopen.2021.01.001

[70] Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning Du, and Yang Liu. 2019. De-
vign: Effective Vulnerability Identification by Learning Comprehensive Program
Semantics via Graph Neural Networks. In Advances in Neural Information Process-

ing Systems 32: Annual Conference on Neural Information Processing Systems 2019,

NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and
Roman Garnett (Eds.). 10197–10207. https://proceedings.neurips.cc/paper/2019/
hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html

[71] Shichao Zhu, Chuan Zhou, Shirui Pan, Xingquan Zhu, and Bin Wang. 2019.
Relation Structure-Aware Heterogeneous Graph Neural Network. In 2019 IEEE

International Conference on Data Mining, ICDM 2019, Beijing, China, November 8-

11, 2019, JianyongWang, Kyuseok Shim, and XindongWu (Eds.). IEEE, 1534–1539.
https://doi.org/10.1109/ICDM.2019.00203

