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Abstract
For a number of years since their introduction to hydrology, recurrent neural networks like long

short-term memory (LSTM) networks have proven remarkably difficult to surpass in terms of daily
hydrograph metrics on community-shared benchmarks. Outside of hydrology, Transformers have
now become the model of choice for sequential prediction tasks, making it a curious architecture
to investigate for application to hydrology. Here, we first show that a vanilla (basic) Transformer
architecture is not competitive against LSTM on the widely benchmarked CAMELS streamflow
dataset, and lagged especially prominently for the high-flow metrics, perhaps due to the lack of
memory mechanisms. However, a recurrence-free variant of the Transformer model can obtain
mixed comparisons with LSTM, producing very slightly higher Kling-Gupta efficiency coefficients
(KGE), along with other metrics. The lack of advantages for the vanilla Transformer network is
linked to the nature of hydrologic processes. Additionally, similar to LSTM, the Transformer can
also merge multiple meteorological forcing datasets to improve model performance. Therefore,
the modified Transformer represents a rare competitive architecture to LSTM in rigorous
benchmarks. Valuable lessons were learned: (1) the basic Transformer architecture is not suitable
for hydrologic modeling; (2) the recurrence-free modification is beneficial so future work should
continue to test such modifications; and (3) the performance of state-of-the-art models may be
close to the prediction limits of the dataset. As a non-recurrent model, the Transformer may bear
scale advantages for learning from bigger datasets and storing knowledge. This work lays the
groundwork for future explorations into pretraining models, serving as a foundational benchmark

that underscores the potential benefits in hydrology.
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Introduction

Rainfall-runoff modeling is essential for flood prediction, water resource management, and
environmental protection (Hrachowitz & Clark, 2017). Rainfall-runoff modeling is a critical aspect
of hydrology, as it models the intricate relationships between precipitation, watershed
characteristics, and streamflow. The introduction of long short-term memory (LSTM) networks
marked a significant advancement in this field for numerous variables of interest including soil
moisture (Fang et al., 2017; J. Liu et al., 2022, 2023), streamflow (Botterill & McMillan, 2023; Feng
et al., 2020, 2021; Konapala et al., 2020; Kratzert et al., 2019; Sun et al., 2021; Xiang & Demir,
2020), water temperature (Rahmani, Lawson, et al., 2021; Rahmani, Shen, et al., 2021), and
groundwater levels (Afzaal et al., 2020; Wunsch et al., 2022). For these applications, LSTM
consistently outperformed traditional models and process-based models (Feng et al., 2020;
Papacharalampous et al., 2018). LSTM's ability to learn many-step dependencies and handle
variable-length input sequences has proven particularly advantageous in capturing the inherent

complexity of hydrological processes (Hochreiter & Schmidhuber, 1997).

As a recurrent neural network (RNN), LSTM processes data sequentially through time steps,
updating its internal states at each step based on the current input and the previous states. This
iterative process, which involves repeatedly applying its internal neural network mechanisms,
leads to some limitations. The recurrent nature means RNNs are prone to an issue called the
vanishing gradient (Hochreiter, 1991; Hochreiter et al., 2001), where the gradient of the loss with
respect to the network weights becomes very small, making network training extremely slow. This
issue limits the length of the training sequence, and reduces the impact of inputs from the longer-
term past on present predictions. This could be one of the reasons why baseflow was previously
identified as a limitation (Feng et al., 2020). Even though LSTM was developed to mitigate this

issue and can suppress it better than the original RNNs, it is not immune to it (Dai et al., 2019;
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Zhang et al., 2016). Furthermore, recurrence means these time steps must be taken in sequence
--- the time steps cannot be run in parallel. This imposes a restriction on the efficiency of parallel

processing, and thus the scale of data on which the model can be trained.

In many applications outside hydrology, the Transformer architecture (Vaswani et al., 2017) has
demonstrated superior performance over LSTM networks in various domains, including machine
translation, speech recognition (Karita et al., 2019), natural language processing and sentiment
analysis (Devlin et al., 2019), question answering (Rajpurkar et al., 2018), computer vision (Carion
et al., 2020), protein structure prediction (Rives et al., 2021), and music generation (Huang et al.,
2018). The Transformer model uses an attention mechanism, where each word (or “input token”)
is transformed into three different kinds of information: a 'query' that asks how relevant other
words are to it, a 'key' that responds to others' queries about its relevance, and a 'value' that
carries the word's actual meaning. The model calculates the relevancies between the query and
keys of all words, then combines the values of the most relevant words to understand the current
word better. With LSTM, the most recent input tokens are always more important than further-
away ones, whereas a Transformer could learn to put more focus on further-away tokens
(Dehghani et al., 2019; Raganato & Tiedemann, 2018), which makes it ideal for language
modeling. Moreover, as it does not have recurrence, a Transformer can run the time steps in
parallel and can scale up in parallel computation when more data and more GPUs are available.
Considering such benefits, there should be a heightened interest in harnessing Transformers for
hydrologic applications. Transformers are increasingly being used in hydrologic and water quality
modeling (Castangia et al., 2023; Koya & Roy, 2023; Li & Yang, 2019; Xu et al., 2021; H. Yang
et al., 2023), especially for near-term forecasting. However, the scale of application tends to be
limited and their benchmarking on standardized, well-understood datasets, such as the
Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) dataset (Addor et al.,

2017; Newman et al., 2014), remains limited in the literature. It is thus intriguing whether the
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Transformer’s advantages over recurrent networks will apply in the case of natural systems, which

can be argued to lack the irregular sequential structure found in human languages.

While some past hydrologic studies have claimed superior performance for some other
architectures compared to LSTM, many times, a rigorous comparison was not carried out due to
the different modeling objectives. The conclusions were often conditional on using a small dataset
for benchmarking, e.g., see (Abed et al., 2022; Amanambu et al., 2022; Ghobadi & Kang, 2022),
using procedures and configurations (training and test periods, sites, and forcing data) that are
different from published benchmarks (Yin et al., 2022, 2023), or on a case study which was not
easy to compare to the work of other independent teams (Koya & Roy, 2023; C. Liu et al., 2022).
Specifically, Yin et al. (2022) proposed the RR-Former model (a transformer variant) and
conducted experiments with 7-day forecasts on the CAMELS dataset. They modeled 673 distinct
basins independently and calculated performance metrics for each, and they also assessed a
selected set of 448 basins using a single model. In contrast, our research primarily focuses on
long-term prediction problems rather than forecasting. Forecasting typically involves predicting
results within a relatively short period based on historical data, whereas our study concentrates
on the long-term rainfall-runoff relationship to better understand its underlying patterns. Building
on the work by Yin et al. (2022), Yin et al. (2023) introduced the RRS-Former model, which
conducted a one-day-ahead runoff experiment. A similar study by (Feng et al., 2020) applied a
data integration approach to an LSTM model. Although direct comparison is challenging, Feng et
al. (2020) reported a median NSE of 0.86, which was superior to the RRS-Former model's
performance in Yin et al. (2023). Koya and Roy (2023) evaluated the Temporal Fusion
Transformer (TFT) model on the Caravan dataset (Kratzert et al., 2023) and reported median
Kling Gupta efficiency (KGE) of 0.705. However, Feng et al., (2023) benchmarked LSTM on a
similarly large dataset and showed median KGEs of 0.74 for 3753 global basins and 0.78 for 1675

basins with long-term records. Furthermore, while more benchmarking is welcomed, the model in
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Koya and Roy (2023) is not purely attention-based, as it incorporates some LSTM layers in its
encoder, making it difficult to determine whether the performance improvements are due to the
attention mechanism or the LSTM layers. This approach also brought back time recurrence and
did not leverage the time parallelism of the transformer network as advocated in the original
transformer model. In the interest of reproducibility and comparability, which underpin scientific
progress, it is useful to benchmark under similar conditions, on the same (reasonably large)
dataset. Data-driven deep learning models enjoy the feature of “data synergy”, where larger and
more diverse data leads to stronger and more robust models (Fang et al., 2022; Kratzert et al.,
2021; Pasquiou et al., 2022; E. Yang et al., 2023). Thus small-data comparison results may not
be valid for a case with more data. Thus far, on the CAMELS dataset (Addor et al., 2017; Newman
et al., 2014), both Kratzert et al. (2019) and Feng et al. (2021) reported very similar metric Nash-
Sutcliffe model efficiency coefficient (NSE) (Nash & Sutcliffe, 1970) for LSTM --- 0.72 for 571
basins with the NLDAS forcing alone, making this a reliable benchmark that has thus far not been
exceeded by other models. Sun et al. (2021) reported comparable results using GraphWaveNet,
although with different training periods and ensemble setups. Furthermore, Kratzert
simultaneously employed multiple forcing dataset (NLDAS, Maurer, and Daymet) for LSTM and
obtained a Kling-Gupta model efficiency coefficient (KGE) (Gupta et al., 2009) of 0.80, which is

the record on this dataset that no other model has matched.

In this study, we investigate the performance of the Transformer architecture in rainfall-runoff
modeling compared to LSTM using the CAMELS dataset. We analyze the performance of single
models and ensembles for both architectures, and examine the models' ability to handle multiple
forcings and mixed forcing cases. This approach aims to establish a reference point for future
studies to compare, enhancing our understanding of these models in complex scenarios. Our

findings contribute to the understanding of the strengths and limitations of both LSTM and
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Transformer models in hydrological predictions, and highlight the potential of the Transformer as

an alternative and scalable solution for hydrologic modeling.

Data and Methods

Datasets

In this paper, we utilized the Catchment Attributes and Meteorology for Large-sample Studies
(CAMELS) dataset (Addor et al., 2017; Newman et al., 2014), which includes basin-averaged
daily data from 671 catchments across the conterminous United States (CONUS) characterized
by minimal anthropogenic disturbances. The catchment attributes encompass an array of
characteristics such as topography, soil properties, and geological aspects. Furthermore,
CAMELS provides daily meteorological forcing inputs derived from three distinct gridded data
products, namely Daymet (Thornton et al., 1997), Maurer (Maurer et al., 2002), and the North

American Land Data Assimilation System (NLDAS) (Xia et al., 2012).

Vanilla (basic) Transformer models

The Transformer model, as first introduced in the paper “Attention is all you need” by Vaswani et
al. (2017), is a neural network architecture for sequential data processing. The Transformer model
consists of an encoder and a decoder. The encoder has a number (niayer) Of stacked encoding
layers (“stacked” means the output of one layer becomes the input to the next one), each of which
consists of a self-attention layer and a position-wise fully connected layer, while the decoder has
only a simple position-wise linear layer. The critical mechanism within the encoder is self-attention,
which computes the weighted sum of all input features. The equations for one of the stacked

encoding layers are shown below and explain the calculations one by one.
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Q = x x D(W,) (1)

K = x * D(W,) 2)
V =xx*D(W,) 3)

KT 4

a = softmax (37) @
c=axV )

U= cxW, (6)

u = BatchNorm(x + D(u")) 7)
7z =W, * D(GELU(W; * u)) (8)
z = BatchNorm(u + z') 9)

The inputs x to the attention layer have two dimensions --- the sequence length (n) and a hidden-
size dimension (dk). In Equations (1-3), the layer computes three sets of linear transformations,
called Query, Key, and Value vectors (Q, K, V), and W, Wi, and W,, all with the dimensions (dx,
d«), represent the respective learnable weights. These position-wise transformations (or matrix
multiplications) mix information along the hidden-size dimension, not along the sequence length
dimension, while applying the dropout operator D(). To mitigate overfitting, a dropout mask with
a ratio of 0.5 is applied to Wq, W, and W,. Equation 4 computes the dot product of Query and
Key, and obtains a matrix of the size (n, n) which tabulates the similarity between each Query-
Key pair. It then scales the calculations by \/d— before applying the softmax operation along the
sequence dimension. The output a is the above-mentioned attention weight while ¢ is the
attention-weighted values, called “contexts”. The model is called “multiheaded” in that multiple
sets of Q, K, V are computed and their results ¢ are concatenated as ¢ before applying a linear
layer in Equation 6. Equations 7-9 apply additional linear layers with activation functions and
residual connections to enhance training. z’ is a feed-forward neural network (FFN) consisting of
two linear transformations with a Gaussian Error Linear Unit (GELU) activation function in

between. z includes a residual connection and batch normalization, where the elements along the
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batch dimension is normalized. As described earlier, Equations 1-9 are repeated niyer times and
the outputs of one layer serves as the inputs to the subsequent layer. The dimensional
descriptions here all ignore the batch dimension (a collection of instances to compute a loss value
and update the weights) which is in practice computed in parallel. The sequence length (n), the
number of heads (h) and the hidden size (d«) are hyperparameters to be tuned using the validation

dataset.

Equations (4-5) can be interpreted as weighing every token in the sequence to make a combined
prediction at a given location. We observe that, unlike RNNs which would naturally put more
weight to adjacent tokens, the sense of adjacency is lost for the attention layer --- for prediction
location /, all input tokens are treated equally, regardless whether they are close or far from i. The
larger focus to adjacent tokens, if it exists in the training dataset, is completely obtained from data.
Furthermore, any relational structure in the sequence dimension is not modeled --- the softmax
operator in Equation 4 is the only operator that mixes information over the sequence length, as
all the other operators are calculated in parallel for each token in the sequence. This setup is
reasonable in language modeling where inversion structures are common, but may not be optimal
if the proximity is important as in natural physical processes. However, stacking many layers of
attention sequentially as done in the Transformer could enable the modeling of some sequential

structure.

The initial input to the model, X, is of dimension (n, nx), which is transformed by an embedding
function. Itincludes three parts: a linear layer transformation of the inputs, a “positional embedding”
(Equation 10-11), and a “temporal embedding” (Equation 12-13). These three components are
directly summed to obtain the input x in Equations 1-3 which is then fed into the attention layers
described above. The embeddings are added because the Transformer does not inherently

account for the positional information. The positional encoding uses sine and cosine functions to
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create a unique encoding for each position, allowing the model’s self-attention mechanism to

maintain the sequence order in context (Vaswani et al., 2017):

P (10)
Piai = sin (100002i/d)
k (11)
Piaivs = cos (100002i/d)

where k is the position in the sequence, i is the dimension, and d is the number of columns in the

embedding matrix.

Furthermore, in the time series data, positional embedding alone can hardly reflect the seasonality
information. Hence, hierarchical global timestamp information (weekly, monthly, yearly) is used
to encode seasonality and long-term ordinal information (Zhou et al., 2021). This temporal
embedding calculates and normalizes the day of the week, day of the month, and day of the year

for each time period to a range of -0.5 to 0.5:

di(k) = t;(k)/ N; — 0.5 (12)

Te(k) = ea{i € time_features} d;(k) (13)

where t; is the value of time feature i at position k in the sequence; for example, day of the week,
day of the month, or day of the year. N; is the total number of values for the time feature J; for
example, for the day of the year i, N; would be 365. d; is the normalized value for each time
feature. Te(k) indicates the temporal embedding at position k. The '@' symbol denotes

concatenation, meaning it concatenates the time features into a single vector at the last dimension.
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Positional and temporal embeddings are added to the input embeddings to form the input to the

transformer layer.
x =Ex(X)+ Ep(P) + Er(T) (14)

where Ey , Ep, Ep are the learned linear embedding layers projecting the inputs to the model

hidden dimension, respectively.

Output z
Linear
Time series
~ Add & Norm Scaled Dot-Product h
Attention
Forward [ Linear ]_][ Linear ]_] [ Linear ]J Mask
Nx I (O | § 7 Dropout
~| Add & Norm /ﬂ v K Q
Multi-Head KT
Attention Attention(Q,K,V) = Softmax( ) v
N

Positional
Embedding ( 9 ’

1

® Time
Embedding

Figure 1. The base Transformer model structure (adapted from Figure 1 in Vaswani et al., 2017)
used in this paper.

The Modified Transformer Model with Convolutional Embeddings

As a variant of the Transformer model, we added a one-dimensional convolutional embedding
layer just before the attention layer to produce relational features in the time dimension. In this
embedding layer, two stacked convolution sub-layers were introduced, with residual
connections between them, and their outputs are fed into a linear layer. In each convolutional
sub-layer, the time sequence length dimension gets convolved and, as such convolutions are

non-recurrent, the model does not need to go through time steps in order to represent the

10
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temporal relational structures. The convolutional sub-layers have a dilation of 1, a stride of 1,
ReLU as the activation functions, and a backward-focusing kernel to ensure that inputs from the
future do not get used to make a prediction of the current time step. The kernel width, hidden
sizes and the number of convolutional layers were set as hyperparameters that were tuned
along with the hyperparameters of the attention layers. The outputs of the whole convolutional
embedding layer are, along with the time positional and temporal embeddings, added to the

input embeddings just as in Equation (14).

LSTM Models and SAC-SMA Models

In order to impartially evaluate the Transformer model’s performance, we compared its results
with those of LSTM and the Sacramento Soil Moisture Accounting (SAC-SMA) conceptual model
(Anderson & McDonnell, 2005; Burnash et al., 1973), and used the latter two as benchmarks. We
downloaded the SCA-SMA dataset from HydroShare (Kratzert et al., 2019), and set the same test
time for all models to ensure a balanced comparison. This approach helps provide a thorough
and fair assessment of each model’s performance capabilities. The LSTM model’s configurations
were based on Kratzert et al. (2021), with the models’ hyperparameters set to 30 epochs, a

sequence length of 365, a hidden size of 256, and a dropout rate of 0.4.

The LSTM model from Kratzert et al., 2019 was originally evaluated on 531 basins. To broaden
our insights into the impacts of a single forcing dataset on the entire CAMELS dataset and ensure
a fair comparison, we retrained their model on the full set of 671 basins with the single NLDAS
forcing dataset. We further attempted to incorporate time stamp information as inputs into the
LSTM model (data not shown). However, this did not lead to any improved performance,

suggesting it does not introduce new information to LSTM.

11
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Experiments and Model Evaluation

To enable a comprehensive comparison with various benchmarks, we utilized data from all 671
CAMELS basins. To be consistent with previous benchmark experiments, we employ both single
and multi-forcing datasets, in the same manner as the benchmark (Kratzert et al., 2021). Initially,
we applied a single forcing dataset derived from NLDAS, referred to as the 'single-forcing'
experiment. Subsequently, we conducted a multi-forcing analysis using forcing data from Daymet,
Maurer, and NLDAS. For this analysis, our scope was narrowed to 531 basins. It should be noted
that the variable selection and settings for the model input data were chosen to be consistently

aligned with those employed by Kratzert et al. (2021).

For all models, the data used for the training period was from 1 October 1999 to 30 September
2008, while the data used for the testing period was from 1 October 1989 to 30 September 1999.
During the training period, the weights were optimized using the Adam optimizer with a learning

rate of 0.0001.

To accurately compare different model architectures and hyperparameters, we used one specific
seed in Figure 2. Thus any differences in model performance can be fully attributed to the specific
architectural or hyperparameter variations. To increase the robustness of the analysis, we
employed an ensemble approach, using ten simulations with different random seeds for each of
the model architectures. The ensemble-averaged discharge for each model architecture is what
is presented in the results here, as it not only helps to capture the variation in results due to

randomness, but also provides more stable performance estimates.

We evaluated model performance using several metrics, including the Nash-Sutcliffe model

efficiency coefficient (NSE) (Nash & Sutcliffe, 1970) and the Kling-Gupta model efficiency

12
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coefficient (KGE) (Gupta et al., 2009). We also considered the percent bias of the top 2% peak
flow range (FHV) and the bottom 30% low flow range (FLV), which respectively highlight model

performance for peak flows and baseflow (Yilmaz et al., 2008).

Results and Discussion
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Figure 2. Comparative analysis of Cumulative Density Function (CDF) across various models
including Long Short-Term Memory (LSTM) and modified Transformer deep learning models, and
the conceptual Sacramento Soil Moisture Accounting (SAC-SMA), with units in mm/day and one
specific seed (rather than a random seed). The model encompasses single and multi-forcing data
for models. The figure depicts the following comparisons: (a) Nash-Sutcliffe Efficiency (NSE) vs
CDF, (b) Kling-Gupta Efficiency (KGE) vs CDF, (c) Low flow percent bias (FLV) vs CDF, and (d)
High flow percent bias (FHV) vs CDF. Single-forcing models were implemented on a set of 671
basins in the CAMELS dataset, whereas multi-forcing models were applied to a subset of 5631
basins from that dataset.
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Table 1. Comparative performance metrics for single and multi-forcing experiments with LSTM,
vanilla Transformer, and modified Transformer models. We conducted an evaluation of single
forcing on 671 basins and multi-forcing on 531 basins, employing the LSTM model results from
Kratzert et al., 2019, originally evaluated on 531 basins. To broaden our insights into the impacts
of single-forcing on the entire CAMELS dataset and make a fair comparison, we retrained their
model on an expanded set of 671 basins with single NLDAS dataset. These numbers are only
very slightly different from Kratzert et al., 2019. The means for Kling-Gupta Efficiency (KGE), high
flow percent bias (FHV), and low flow percent bias (FLV) are averages from the 10 different
ensemble members, each with a different random seed, while the standard deviations (std) for
KGE, FHV and FLV are calculated for the ensemble members.

Forcing: NLDAS Forcing: Multi-forcing
LSTM Vanilla Modified LSTM Vanilla Modified
Transformer | Transformer Transformer | Transformer
KGE 0.73 0.71 0.74 0.80 0.77 0.80
(meanzstd) | +0.003 +0.007 +0.007 +0.004 +0.016 +0.007
FHV -17.49 -26.66 -18.00 -11.91 -21.54 -9.19
(meanzstd) +0.58 +2.83 +2.94 +0.549 +2.64 +4.01
FLV -2.82 3.31 2.28 2.57 0.77 2.72
(meanzstd) +8.15 +2.34 +4 .24 +4.072 +1.65 +2.41

The SCA-SMA model had the lowest performance across all experiments, and aligns consistently
with the results of Feng et al. (2020) and Kratzert et al. (2021). For the single-forcing CAMELS
benchmark (671 basins), the vanilla Transformer was outperformed by LSTM (Table 1; Figure 2).
Overall, the vanilla Transformer fell behind LSTM in all metrics, although not by much. Looking at
Kling-Gupta Efficiency, the vanilla Transformer achieved a value of 0.71, compared to 0.73 for
the LSTM. These results suggest that, without modification, the vanilla Transformer is missing

some critical ability to simulate hydrologic processes.

The vanilla Transformer’s under-performance is a curious case as it has been widely recognized

that “attention is all you need” (Vaswani et al., 2017) in sequential modeling, and we have several

14
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interpretations of the results presented here. First, it is possible that the dataset size is too small
here and advantages for the Transformer could emerge for larger quantities of data. Second, the
natural hydrologic process is a “Markovian” system (Grey Nearing, personal communication)
where the states at the current time step, rather than more remotely-in-the-past steps, completely
determine the system’s trajectory for future time steps (along with the forcings). To be more
concrete, the soil moisture today, rather than that from any previous days, would have far more
of an impact on tomorrow’s streamflow discharge. This is in strong contrast to human languages
where the order of the words can often be inverted without changing the context, which would
favor the attention-based Transformer architecture. Third, the accumulation of water and its
nonlinear interactions makes memory effects important, but the Transformer does not have
memory and is not necessarily strong at capturing the effects of memory. Regardless of the
reason, the results mean that the vanilla Transformer is not optimal for streamflow predictions at
the very least, and further changes are likely needed in order to use it for modeling natural

systems.

On the other hand, the modified Transformer demonstrates performance metrics that are
comparable to or slightly surpass those of the LSTM. However, it exhibits greater variability
among ensemble members, indicated by the standard deviation of the KGE metric: £0.003 for the
LSTM and £0.007 for the modified Transformer. Its KGE (0.74) is slightly higher than LSTM (0.73),
and the differences in FLV and FHV from LSTM'’s values are too small to call an advantage
considering their variability. As to be discussed below, while these differences are small, we
simply should not expect larger differences as the possible room of improvement may be very
small at this stage. The ensemble standard deviation of KGE is 0.003 with LSTM and 0.007 with
the modified Transformer. The LSTM has a smaller ensemble standard deviation for FHV than
the modified Transformer, while the opposite is true for FLV. The ensemble standard deviation of

median FHV is 0.58 for LSTM and 2.94 for the modified Transformer, while this value for the FLV
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is 8.15 for the LSTM and 4.24 for the modified Transformer. This suggests that while we obtain
very similar overall metrics, the LSTM and the modified Transformer preferentially address
different parts of the hydrograph in this experiment. LSTM more reliably focuses on the high-flow
regime (quantified by the smaller ensemble standard deviation of FHV) than the modified
Transformer, but the latter can better capture the long-term dependence (quantified by ensemble
standard deviation of FLV representing groundwater baseflow). It seems there is some tradeoff

for the different flow regimes.

The multi-forcing experiment generally shows similar patterns: the vanilla Transformer falls behind
the other two models, which have very similar ensemble-mean performance metrics but different
ensemble standard deviations. The high KGE (0.80) and slightly better-than-LSTM FHV (9.19) for
the modified Transformer demonstrates that it, too, is able to fuse different forcing datasets as
can LSTM, which no other model architecture has shown. Just as in the single-forcing NLDAS
experiment, the modified Transformer has a larger stochastic variability (quantified by ensemble
standard deviation) for FHV but smaller variability for FLV. Because both FHV and FLV have
improved compared to the single-forcing experiment, the modified Transformer was able to utilize
the short-term and long-term dependencies of multiple forcing datasets. For one particular
ensemble member (based on different random seeds), the cumulative density plot shows very

similar curves between the modified Transformer and LSTM models.

The high agreement between the two model architectures, both of which are state of the art,
suggests that we are likely at or very close to the predictive limit of the CAMELS dataset for this
test (temporal test, training in one time period and testing in another). We suspect that unless we
bring in new information, it is highly unlikely for any other models to produce noticeable
advantages beyond these two models on this dataset, for the tests presented here. Errors with

forcing, basin shapes, attribute, and discharge data are likely the remaining factors preventing
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higher performance. It should be mentioned that for another test, e.g., prediction in ungauged
regions or spatial extrapolation, physics-informed hybrid models (called differentiable models
(Shen et al., 2023)) can actually outperform LSTM (Aboelyazeed et al., 2023; Feng et al., 2022;
Feng, Beck, Lawson, et al., 2023; Tsai et al., 2021). Moreover, several issues surrounding the
CAMELS dataset include using basin-average attributes that cannot resolve subbasin-level
spatial heterogeneity, using daily precipitation that does not represent hourly rainfall intensity, a

fraction of basins having major reservoirs, and the inclusion of some overly large basins.

Nevertheless, exactly because the Transformer algorithm does not have time integration, it can
be trained in a highly parallel fashion and is suited to learning from large amounts of data. As the
amount of data and the amount of neurons increase, it is possible to observe emergent behaviors
of intelligence (Bubeck et al., 2023). This is a property that is worth further exploring in future
studies in hydrology and geosciences. We leave to future work the question of how to incorporate
more data with the modified Transformer, and testing this architecture on spatial extrapolation (for
data-scarce scenarios) (Feng et al., 2021) and temporal extrapolation (for multidecadal projection

of trends).

While some studies claim that Transformer models surpass LSTM models in performance, their
evaluations are often limited to small datasets (Abed et al., 2022; Amanambu et al., 2022;
Ghobadi & Kang, 2022), forecasting experiments (Yin et al., 2022), or still incorporate a mix of
recurrent neural networks and attention mechanisms (Koya & Roy, 2023) (hereafter called KR23).
KR23 evaluated the global Caravan dataset using the TFT model, yet several aspects of their
approach hinder direct comparison. Firstly, FR23’s comparison on a global dataset is valuable
and welcomed, as they reported median KGE of 0.705 on 2610 basins for LSTM (basin-by-basin
training) across the entire Caravan dataset, but did not provide results for the CAMELS dataset.

When LSTM was benchmarked on a similar global dataset in another paper (Feng, Beck, de
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Bruijn, et al., 2023) but was trained and tested for all basins simultaneously, it obtained a median
KGE of 0.78 for 1675 basins with long-term records, far higher than the KGE of 0.647 reported in
KR23, presumably due to using the practice of training on all basins simultaneously (Fang et al.,
2022; Kratzert et al., 2024). Secondly, with the addition of LSTM units in KR23's TFT, it is unclear
how much the attention mechanisms helped performance in contrast to the LSTM units. Moreover,
their model, being a hybrid of RNN and attention, still faces challenges with parallelization issues.
Finally, they employed cubic spline interpolation on the streamflow data, which smooths the target
data and undermines the comparability of model results. To validate our perspective, we
employed the TFT model from PyTorch Forecasting (Beitner, 2020) on the CAMELS dataset and
observed that the model's training speed was significantly slower, with each epoch taking 30 times
longer than LSTM. We welcome the community to benchmark on shared datasets with

transparent basin list and input list.

Conclusions

In this work, we compared a vanilla Transformer encoder and a modified Transformer to the
current state-of-the-art model, LSTM, on the CAMELS benchmark dataset. The vanilla
Transformer seems to miss some critical functionality so that it is not optimal for simulating
streamflow. The modified Transformer with no recurrent connection obtains slightly more
favorable results (albeit only with a scale advantage) than LSTM. These results already represent
rare competitive results to the LSTM in rigorous community-shared benchmarks. This means we
can technically continue to search for better architecture to further improve its performance and
suitability for natural physical systems, as the current setup may not yet be optimal. Nevertheless,
the differences are overall small between the models, and we may already be very close to the
optimum for this dataset with this test. On the one hand, we do not expect any architectural

change to result in any significant improvement (to be more precise, on the order of 0.02 for KGE).
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An expansion of the dataset, e.g., better descriptors or forcing dataset will be required to obtain
substantial prediction improvements. On the other hand, the modified Transformer architecture is
a viable alternative to LSTM and may find advantages for larger datasets in the future. The
transformer architecture’s advantages may not reside with sequential information extraction but
with serving as a foundational model to capture the joint distribution, accumulate knowledge and
extract deep, abstract and complex concepts. These advantages should be explored in future

hydrologic and geoscientific research.
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