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Abstract 13 
For a number of years since their introduction to hydrology, recurrent neural networks like long 14 

short-term memory (LSTM) networks have proven remarkably difficult to surpass in terms of daily 15 

hydrograph metrics on community-shared benchmarks. Outside of hydrology, Transformers have 16 

now become the model of choice for sequential prediction tasks, making it a curious architecture 17 

to investigate for application to hydrology. Here, we first show that a vanilla (basic) Transformer 18 

architecture is not competitive against LSTM on the widely benchmarked CAMELS streamflow 19 

dataset, and lagged especially prominently for the high-flow metrics, perhaps due to the lack of 20 

memory mechanisms. However, a recurrence-free variant of the Transformer model can obtain 21 

mixed comparisons with LSTM, producing very slightly higher Kling-Gupta efficiency coefficients 22 

(KGE), along with other metrics. The lack of advantages for the vanilla Transformer network is 23 

linked to the nature of hydrologic processes. Additionally, similar to LSTM, the Transformer can 24 

also merge multiple meteorological forcing datasets to improve model performance. Therefore, 25 

the modified Transformer represents a rare competitive architecture to LSTM in rigorous 26 

benchmarks. Valuable lessons were learned: (1) the basic Transformer architecture is not suitable 27 

for hydrologic modeling; (2) the recurrence-free modification is beneficial so future work should 28 

continue to test such modifications; and (3) the performance of state-of-the-art models may be 29 

close to the prediction limits of the dataset. As a non-recurrent model, the Transformer may bear 30 

scale advantages for learning from bigger datasets and storing knowledge. This work lays the 31 

groundwork for future explorations into pretraining models, serving as a foundational benchmark 32 

that underscores the potential benefits in hydrology. 33 

 34 
  35 
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Introduction 36 

Rainfall-runoff modeling is essential for flood prediction, water resource management, and 37 

environmental protection (Hrachowitz & Clark, 2017). Rainfall-runoff modeling is a critical aspect 38 

of hydrology, as it models the intricate relationships between precipitation, watershed 39 

characteristics, and streamflow. The introduction of long short-term memory (LSTM) networks 40 

marked a significant advancement in this field for numerous variables of interest including soil 41 

moisture (Fang et al., 2017; J. Liu et al., 2022, 2023), streamflow (Botterill & McMillan, 2023; Feng 42 

et al., 2020, 2021; Konapala et al., 2020; Kratzert et al., 2019; Sun et al., 2021; Xiang & Demir, 43 

2020), water temperature (Rahmani, Lawson, et al., 2021; Rahmani, Shen, et al., 2021), and 44 

groundwater levels (Afzaal et al., 2020; Wunsch et al., 2022). For these applications, LSTM 45 

consistently outperformed traditional models and process-based models (Feng et al., 2020; 46 

Papacharalampous et al., 2018). LSTM's ability to learn many-step dependencies and handle 47 

variable-length input sequences has proven particularly advantageous in capturing the inherent 48 

complexity of hydrological processes (Hochreiter & Schmidhuber, 1997). 49 

 50 

As a recurrent neural network (RNN), LSTM processes data sequentially through time steps, 51 

updating its internal states at each step based on the current input and the previous states. This 52 

iterative process, which involves repeatedly applying its internal neural network mechanisms, 53 

leads to some limitations. The recurrent nature means RNNs are prone to an issue called the 54 

vanishing gradient (Hochreiter, 1991; Hochreiter et al., 2001), where the gradient of the loss with 55 

respect to the network weights becomes very small, making network training extremely slow. This 56 

issue limits the length of the training sequence, and reduces the impact of inputs from the longer-57 

term past on present predictions. This could be one of the reasons why baseflow was previously 58 

identified as a limitation (Feng et al., 2020). Even though LSTM was developed to mitigate this 59 

issue and can suppress it better than the original RNNs, it is not immune to it (Dai et al., 2019; 60 
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Zhang et al., 2016). Furthermore, recurrence means these time steps must be taken in sequence 61 

--- the time steps cannot be run in parallel. This imposes a restriction on the efficiency of parallel 62 

processing, and thus the scale of data on which the model can be trained. 63 

 64 

In many applications outside hydrology, the Transformer architecture (Vaswani et al., 2017) has 65 

demonstrated superior performance over LSTM networks in various domains, including machine 66 

translation, speech recognition (Karita et al., 2019), natural language processing and sentiment 67 

analysis (Devlin et al., 2019), question answering (Rajpurkar et al., 2018), computer vision (Carion 68 

et al., 2020), protein structure prediction (Rives et al., 2021), and music generation (Huang et al., 69 

2018). The Transformer model uses an attention mechanism, where each word (or “input token”) 70 

is transformed into three different kinds of information: a 'query' that asks how relevant other 71 

words are to it, a 'key' that responds to others' queries about its relevance, and a 'value' that 72 

carries the word's actual meaning. The model calculates the relevancies between the query and 73 

keys of all words, then combines the values of the most relevant words to understand the current 74 

word better. With LSTM, the most recent input tokens are always more important than further-75 

away ones, whereas a Transformer could learn to put more focus on further-away tokens 76 

(Dehghani et al., 2019; Raganato & Tiedemann, 2018), which makes it ideal for language 77 

modeling. Moreover, as it does not have recurrence, a Transformer can run the time steps in 78 

parallel and can scale up in parallel computation when more data and more GPUs are available. 79 

Considering such benefits, there should be a heightened interest in harnessing Transformers for 80 

hydrologic applications. Transformers are increasingly being used in hydrologic and water quality 81 

modeling  (Castangia et al., 2023; Koya & Roy, 2023; Li & Yang, 2019; Xu et al., 2021; H. Yang 82 

et al., 2023), especially for near-term forecasting. However, the scale of application tends to be 83 

limited and their benchmarking on standardized, well-understood datasets, such as the 84 

Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) dataset (Addor et al., 85 

2017; Newman et al., 2014), remains limited in the literature. It is thus intriguing whether the 86 
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Transformer’s advantages over recurrent networks will apply in the case of natural systems, which 87 

can be argued to lack the irregular sequential structure found in human languages. 88 

 89 

While some past hydrologic studies have claimed superior performance for some other 90 

architectures compared to LSTM, many times, a rigorous comparison was not carried out due to 91 

the different modeling objectives. The conclusions were often conditional on using a small dataset 92 

for benchmarking, e.g., see (Abed et al., 2022; Amanambu et al., 2022; Ghobadi & Kang, 2022), 93 

using procedures and configurations (training and test periods, sites, and forcing data) that are 94 

different from published benchmarks (Yin et al., 2022, 2023), or on a case study which was not 95 

easy to compare to the work of other independent teams (Koya & Roy, 2023; C. Liu et al., 2022). 96 

Specifically, Yin et al. (2022) proposed the RR-Former model (a transformer variant) and 97 

conducted experiments with 7-day forecasts on the CAMELS dataset. They modeled 673 distinct 98 

basins independently and calculated performance metrics for each, and they also assessed a 99 

selected set of 448 basins using a single model. In contrast, our research primarily focuses on 100 

long-term prediction problems rather than forecasting. Forecasting typically involves predicting 101 

results within a relatively short period based on historical data, whereas our study concentrates 102 

on the long-term rainfall-runoff relationship to better understand its underlying patterns. Building 103 

on the work by Yin et al. (2022), Yin et al. (2023) introduced the RRS-Former model, which 104 

conducted a one-day-ahead runoff experiment. A similar study by (Feng et al., 2020) applied a 105 

data integration approach to an LSTM model. Although direct comparison is challenging, Feng et 106 

al. (2020) reported a median NSE of 0.86, which was superior to the RRS-Former model's 107 

performance in Yin et al. (2023). Koya and Roy (2023) evaluated the Temporal Fusion 108 

Transformer (TFT) model on the Caravan dataset (Kratzert et al., 2023) and reported median 109 

Kling Gupta efficiency (KGE) of 0.705. However, Feng et al., (2023) benchmarked LSTM on a 110 

similarly large dataset and showed median KGEs of 0.74 for 3753 global basins and 0.78 for 1675 111 

basins with long-term records. Furthermore, while more benchmarking is welcomed, the model in 112 
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Koya and Roy (2023) is not purely  attention-based, as it incorporates some LSTM layers in its 113 

encoder, making it difficult to determine whether the performance improvements are due to the 114 

attention mechanism or the LSTM layers. This approach also brought back time recurrence and 115 

did not leverage the time parallelism of the transformer network as advocated in the original 116 

transformer model. In the interest of reproducibility and comparability, which underpin scientific 117 

progress, it is useful to benchmark under similar conditions, on the same (reasonably large) 118 

dataset. Data-driven deep learning models enjoy the feature of “data synergy”, where larger and 119 

more diverse data leads to stronger and more robust models (Fang et al., 2022; Kratzert et al., 120 

2021; Pasquiou et al., 2022; E. Yang et al., 2023). Thus small-data comparison results may not 121 

be valid for a case with more data. Thus far, on the CAMELS dataset (Addor et al., 2017; Newman 122 

et al., 2014), both Kratzert et al. (2019) and Feng et al. (2021) reported very similar metric Nash-123 

Sutcliffe model efficiency coefficient (NSE) (Nash & Sutcliffe, 1970) for LSTM --- 0.72 for 571 124 

basins with the NLDAS forcing alone, making this a reliable benchmark that has thus far not been 125 

exceeded by other models. Sun et al. (2021) reported comparable results using GraphWaveNet, 126 

although with different training periods and ensemble setups. Furthermore, Kratzert 127 

simultaneously employed multiple forcing dataset (NLDAS, Maurer, and Daymet) for LSTM and 128 

obtained a Kling-Gupta model efficiency coefficient (KGE) (Gupta et al., 2009) of 0.80, which is 129 

the record on this dataset that no other model has matched. 130 

 131 

In this study, we investigate the performance of the Transformer architecture in rainfall-runoff 132 

modeling compared to LSTM using the CAMELS dataset. We analyze the performance of single 133 

models and ensembles for both architectures, and examine the models' ability to handle multiple 134 

forcings and mixed forcing cases. This approach aims to establish a reference point for future 135 

studies to compare, enhancing our understanding of these models in complex scenarios. Our 136 

findings contribute to the understanding of the strengths and limitations of both LSTM and 137 
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Transformer models in hydrological predictions, and highlight the potential of the Transformer as 138 

an alternative and scalable solution for hydrologic modeling. 139 

 140 
Data and Methods 141 
 142 
Datasets 143 

In this paper, we utilized the Catchment Attributes and Meteorology for Large-sample Studies 144 

(CAMELS) dataset (Addor et al., 2017; Newman et al., 2014), which includes basin-averaged 145 

daily data from 671 catchments across the conterminous United States (CONUS) characterized 146 

by minimal anthropogenic disturbances. The catchment attributes encompass an array of 147 

characteristics such as topography, soil properties, and geological aspects. Furthermore, 148 

CAMELS provides daily meteorological forcing inputs derived from three distinct gridded data 149 

products, namely Daymet (Thornton et al., 1997), Maurer (Maurer et al., 2002), and the North 150 

American Land Data Assimilation System (NLDAS) (Xia et al., 2012).  151 

 152 

Vanilla (basic) Transformer models 153 

The Transformer model, as first introduced in the paper “Attention is all you need” by Vaswani et 154 

al. (2017), is a neural network architecture for sequential data processing. The Transformer model 155 

consists of an encoder and a decoder. The encoder has a number (nlayer) of stacked encoding 156 

layers (“stacked” means the output of one layer becomes the input to the next one), each of which 157 

consists of a self-attention layer and a position-wise fully connected layer, while the decoder has 158 

only a simple position-wise linear layer. The critical mechanism within the encoder is self-attention, 159 

which computes the weighted sum of all input features. The equations for one of the stacked 160 

encoding layers are shown below and explain the calculations one by one.  161 

 162 

https://www.zotero.org/google-docs/?oG9sGY
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𝑄𝑄 = 𝑥𝑥 ∗ 𝐷𝐷(𝑊𝑊𝑞𝑞) (1) 

𝐾𝐾 = 𝑥𝑥 ∗ 𝐷𝐷(𝑊𝑊𝑘𝑘) (2) 

𝑉𝑉 = 𝑥𝑥 ∗ 𝐷𝐷(𝑊𝑊𝑣𝑣) (3) 

𝑎𝑎 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑄𝑄𝐾𝐾𝑇𝑇

�𝑑𝑑𝑘𝑘
� 

(4) 

𝑐𝑐 = 𝑎𝑎 ∗  𝑉𝑉 (5) 

𝑢𝑢′ =  𝑐𝑐 ∗ 𝑊𝑊𝑜𝑜 (6) 

𝑢𝑢 =  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥 + 𝐷𝐷(𝑢𝑢′)) (7) 

𝑧𝑧′ = 𝑊𝑊2 ∗  𝐷𝐷(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑊𝑊1 ∗ 𝑢𝑢)) (8) 

𝑧𝑧 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑢𝑢 + 𝑧𝑧′) (9) 

  
The inputs x to the attention layer have two dimensions --- the sequence length (n) and a hidden-163 

size dimension (dk). In Equations (1-3), the layer computes three sets of linear transformations, 164 

called Query, Key, and Value vectors (Q, K, V), and Wq, Wk, and Wv, all with the dimensions (dk, 165 

dk), represent the respective learnable weights. These position-wise transformations (or matrix 166 

multiplications) mix information along the hidden-size dimension, not along the sequence length 167 

dimension, while applying the dropout operator D(). To mitigate overfitting, a dropout mask with 168 

a ratio of 0.5 is applied to Wq, Wk, and Wv. Equation 4 computes the dot product of Query and 169 

Key, and obtains a matrix of the size (n, n) which tabulates the similarity between each Query-170 

Key pair. It then scales the calculations by �𝑑𝑑𝑘𝑘, before applying the softmax operation along the 171 

sequence dimension. The output 𝑎𝑎  is the above-mentioned attention weight while 𝑐𝑐  is the 172 

attention-weighted values, called “contexts”. The model is called “multiheaded” in that multiple 173 

sets of Q, K, V are computed and their results 𝑐𝑐 are concatenated as c before applying a linear 174 

layer in Equation 6. Equations 7-9 apply additional linear layers with activation functions and 175 

residual connections to enhance training. z’ is a feed-forward neural network (FFN) consisting of 176 

two linear transformations with a Gaussian Error Linear Unit (GELU) activation function in 177 

between. z includes a residual connection and batch normalization, where the elements along the 178 
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batch dimension is normalized. As described earlier, Equations 1-9 are repeated nlayer times and 179 

the outputs of one layer serves as the inputs to the subsequent layer. The dimensional 180 

descriptions here all ignore the batch dimension (a collection of instances to compute a loss value 181 

and update the weights) which is in practice computed in parallel. The sequence length (n), the 182 

number of heads (h) and the hidden size (dk) are hyperparameters to be tuned using the validation 183 

dataset. 184 

 185 

Equations (4-5) can be interpreted as weighing every token in the sequence to make a combined 186 

prediction at a given location. We observe that, unlike RNNs which would naturally put more 187 

weight to adjacent tokens, the sense of adjacency is lost for the attention layer --- for prediction 188 

location i, all input tokens are treated equally, regardless whether they are close or far from i. The 189 

larger focus to adjacent tokens, if it exists in the training dataset, is completely obtained from data. 190 

Furthermore, any relational structure in the sequence dimension is not modeled --- the softmax 191 

operator in Equation 4 is the only operator that mixes information over the sequence length, as 192 

all the other operators are calculated in parallel for each token in the sequence. This setup is 193 

reasonable in language modeling where inversion structures are common, but may not be optimal 194 

if the proximity is important as in natural physical processes. However, stacking many layers of 195 

attention sequentially as done in the Transformer could enable the modeling of some sequential 196 

structure.  197 

 198 

The initial input to the model, X, is of dimension (n, nX), which is transformed by an embedding 199 

function. It includes three parts: a linear layer transformation of the inputs, a “positional embedding” 200 

(Equation 10-11), and a “temporal embedding” (Equation 12-13). These three components are 201 

directly summed to obtain the input x in Equations 1-3 which is then fed into the attention layers 202 

described above. The embeddings are added because the Transformer does not inherently 203 

account for the positional information. The positional encoding uses sine and cosine functions to 204 
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create a unique encoding for each position, allowing the model’s self-attention mechanism to 205 

maintain the sequence order in context (Vaswani et al., 2017):  206 

 207 

𝑃𝑃𝑘𝑘,2𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑘𝑘

100002𝑖𝑖/𝑑𝑑
� (10) 

𝑃𝑃𝑘𝑘,2𝑖𝑖+1 = 𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑘𝑘

100002𝑖𝑖/𝑑𝑑
� (11) 

where k is the position in the sequence, i is the dimension, and d is the number of columns in the 208 

embedding matrix.  209 

 210 

Furthermore, in the time series data, positional embedding alone can hardly reflect the seasonality 211 

information. Hence, hierarchical global timestamp information (weekly, monthly, yearly) is used 212 

to encode seasonality and long-term ordinal information (Zhou et al., 2021). This temporal 213 

embedding calculates and normalizes the day of the week, day of the month, and day of the year 214 

for each time period to a range of -0.5 to 0.5: 215 

 216 

𝑑𝑑𝑖𝑖(𝑘𝑘)  =  𝑡𝑡𝑖𝑖(𝑘𝑘)/ 𝑁𝑁𝑖𝑖  −  0.5 (12) 

𝑇𝑇𝑒𝑒(𝑘𝑘)  = ⊕{𝑖𝑖 ∈ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓}  𝑑𝑑𝑖𝑖(𝑘𝑘) (13) 

 217 

where  𝑡𝑡𝑖𝑖 is the value of time feature i at position k in the sequence; for example, day of the week, 218 

day of the month, or day of the year. 𝑁𝑁𝑖𝑖 is the total number of values for the time feature i; for 219 

example, for the day of the year i, 𝑁𝑁𝑖𝑖  would be 365. 𝑑𝑑𝑖𝑖  is the normalized value for each time 220 

feature. Te(k) indicates the temporal embedding at position k. The '⊕' symbol denotes 221 

concatenation, meaning it concatenates the time features into a single vector at the last dimension.  222 

 223 
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Positional and temporal embeddings are added to the input embeddings to form the input to the 224 

transformer layer. 225 

𝑥𝑥 = 𝐸𝐸𝑋𝑋(𝑋𝑋) + 𝐸𝐸𝑃𝑃(𝑃𝑃) + 𝐸𝐸𝑇𝑇(T) (14) 

where 𝐸𝐸𝑋𝑋  , 𝐸𝐸𝑃𝑃 , 𝐸𝐸𝑃𝑃  are the learned linear embedding layers projecting the inputs to the model 226 

hidden dimension, respectively. 227 

 228 
Figure 1. The base Transformer model structure (adapted from Figure 1 in Vaswani et al., 2017) 229 
used in this paper. 230 
 231 

 232 

The Modified Transformer Model with Convolutional Embeddings 233 

As a variant of the Transformer model, we added a one-dimensional convolutional embedding 234 

layer just before the attention layer to produce relational features in the time dimension. In this 235 

embedding layer, two stacked convolution sub-layers were introduced, with residual 236 

connections between them, and their outputs are fed into a linear layer. In each convolutional 237 

sub-layer, the time sequence length dimension gets convolved and, as such convolutions are 238 

non-recurrent, the model does not need to go through time steps in order to represent the 239 

https://www.zotero.org/google-docs/?BnUCPW
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temporal relational structures. The convolutional sub-layers have a dilation of 1, a stride of 1, 240 

ReLU as the activation functions, and a backward-focusing kernel to ensure that inputs from the 241 

future do not get used to make a prediction of the current time step. The kernel width, hidden 242 

sizes and the number of convolutional layers were set as hyperparameters that were tuned 243 

along with the hyperparameters of the attention layers. The outputs of the whole convolutional 244 

embedding layer are, along with the time positional and temporal embeddings, added to the 245 

input embeddings just as in Equation (14). 246 

 247 

LSTM Models and SAC-SMA Models 248 
 249 

In order to impartially evaluate the Transformer model’s performance, we compared its results 250 

with those of LSTM and the Sacramento Soil Moisture Accounting (SAC-SMA) conceptual model 251 

(Anderson & McDonnell, 2005; Burnash et al., 1973), and used the latter two as benchmarks. We 252 

downloaded the SCA-SMA dataset from HydroShare (Kratzert et al., 2019), and set the same test 253 

time for all models to ensure a balanced comparison. This approach helps provide a thorough 254 

and fair assessment of each model’s performance capabilities. The LSTM model’s configurations 255 

were based on Kratzert et al. (2021), with the models’ hyperparameters set to 30 epochs, a 256 

sequence length of 365, a hidden size of 256, and a dropout rate of 0.4. 257 

 258 

The LSTM model from Kratzert et al., 2019 was originally evaluated on 531 basins. To broaden 259 

our insights into the impacts of a single forcing dataset on the entire CAMELS dataset and ensure 260 

a fair comparison, we retrained their model on the full set of 671 basins with the single NLDAS 261 

forcing dataset. We further attempted to incorporate time stamp information as inputs into the 262 

LSTM model (data not shown). However, this did not lead to any improved performance, 263 

suggesting it does not introduce new information to LSTM.  264 

 265 
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Experiments and Model Evaluation 266 

 267 

To enable a comprehensive comparison with various benchmarks, we utilized data from all 671 268 

CAMELS basins. To be consistent with previous benchmark experiments, we employ both single 269 

and multi-forcing datasets, in the same manner as the benchmark (Kratzert et al., 2021). Initially, 270 

we applied a single forcing dataset derived from NLDAS, referred to as the 'single-forcing' 271 

experiment. Subsequently, we conducted a multi-forcing analysis using forcing data from Daymet, 272 

Maurer, and NLDAS. For this analysis, our scope was narrowed to 531 basins. It should be noted 273 

that the variable selection and settings for the model input data were chosen to be consistently 274 

aligned with those employed by Kratzert et al. (2021).  275 

 276 

For all models, the data used for the training period was from 1 October 1999 to 30 September 277 

2008, while the data used for the testing period was from 1 October 1989 to 30 September 1999. 278 

During the training period, the weights were optimized using the Adam optimizer with a learning 279 

rate of 0.0001.  280 

 281 

To accurately compare different model architectures and hyperparameters, we used one specific 282 

seed in Figure 2. Thus any differences in model performance can be fully attributed to the specific 283 

architectural or hyperparameter variations. To increase the robustness of the analysis, we 284 

employed an ensemble approach, using ten simulations with different random seeds for each of 285 

the  model architectures. The ensemble-averaged discharge for each model architecture is what 286 

is presented in the results here, as it not only helps to capture the variation in results due to 287 

randomness, but also provides more stable performance estimates. 288 

 289 

We evaluated model performance using several metrics, including the Nash-Sutcliffe model 290 

efficiency coefficient (NSE) (Nash & Sutcliffe, 1970) and the Kling-Gupta model efficiency 291 
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coefficient (KGE) (Gupta et al., 2009). We also considered the percent bias of the top 2% peak 292 

flow range (FHV) and the bottom 30% low flow range (FLV), which respectively highlight model 293 

performance for peak flows and baseflow (Yilmaz et al., 2008). 294 

 295 
 296 
Results and Discussion 297 
 298 

 299 
Figure 2. Comparative analysis of Cumulative Density Function (CDF) across various models 300 
including Long Short-Term Memory (LSTM) and modified Transformer deep learning models, and 301 
the conceptual Sacramento Soil Moisture Accounting (SAC-SMA), with units in mm/day and one 302 
specific seed (rather than a random seed). The model encompasses single and multi-forcing data 303 
for models. The figure depicts the following comparisons: (a) Nash-Sutcliffe Efficiency (NSE) vs 304 
CDF, (b) Kling-Gupta Efficiency (KGE) vs CDF, (c) Low flow percent bias (FLV) vs CDF, and (d) 305 
High flow percent bias (FHV) vs CDF. Single-forcing models were implemented on a set of 671 306 
basins in the CAMELS dataset, whereas multi-forcing models were applied to a subset of 531 307 
basins from that dataset.  308 
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 309 
Table 1. Comparative performance metrics for single and multi-forcing experiments with LSTM, 310 
vanilla Transformer, and modified Transformer models. We conducted an evaluation of single 311 
forcing on 671 basins and multi-forcing on 531 basins, employing the LSTM model results from 312 
Kratzert et al., 2019, originally evaluated on 531 basins. To broaden our insights into the impacts 313 
of single-forcing on the entire CAMELS dataset and make a fair comparison, we retrained their 314 
model on an expanded set of 671 basins with single NLDAS dataset. These numbers are only 315 
very slightly different from Kratzert et al., 2019. The means for Kling-Gupta Efficiency (KGE), high 316 
flow percent bias (FHV), and low flow percent bias (FLV) are averages from the 10 different 317 
ensemble members, each with a different random seed, while the standard deviations (std) for 318 
KGE, FHV and FLV are calculated for the ensemble members. 319 

 Forcing: NLDAS Forcing: Multi-forcing 

LSTM  Vanilla 
Transformer 

Modified 
Transformer 

LSTM Vanilla 
Transformer 

Modified 
Transformer 

KGE 
(mean±std) 

0.73 
±0.003 

0.71 
±0.007 

0.74 
±0.007 

0.80 
±0.004 

0.77 
±0.016 

0.80 
±0.007 

FHV 
(mean±std) 

-17.49 
±0.58 

-26.66 
±2.83 

-18.00 
±2.94 

-11.91 
±0.549 

-21.54 
±2.64 

-9.19 
±4.01 

FLV 
(mean±std) 

-2.82 
±8.15 

3.31 
±2.34 

2.28 
±4.24 

2.57 
±4.072 

0.77 
±1.65 

2.72 
±2.41 

 320 
 321 

 322 
The SCA-SMA model had the lowest performance across all experiments, and aligns consistently 323 

with the results of Feng et al. (2020) and Kratzert et al. (2021). For the single-forcing CAMELS 324 

benchmark (671 basins), the vanilla Transformer was outperformed by LSTM (Table 1; Figure 2). 325 

Overall, the vanilla Transformer fell behind LSTM in all metrics, although not by much. Looking at 326 

Kling-Gupta Efficiency, the vanilla Transformer achieved a value of 0.71, compared to 0.73 for 327 

the LSTM. These results suggest that, without modification, the vanilla Transformer is missing 328 

some critical ability to simulate hydrologic processes.  329 

 330 

The vanilla Transformer’s under-performance is a curious case as it has been widely recognized 331 

that “attention is all you need” (Vaswani et al., 2017) in sequential modeling, and we have several 332 
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interpretations of the results presented here. First, it is possible that the dataset size is too small 333 

here and advantages for the Transformer could emerge for larger quantities of data. Second, the 334 

natural hydrologic process is a “Markovian” system (Grey Nearing, personal communication) 335 

where the states at the current time step, rather than more remotely-in-the-past steps, completely 336 

determine the system’s trajectory for future time steps (along with the forcings). To be more 337 

concrete, the soil moisture today, rather than that from any previous days, would have far more 338 

of an impact on tomorrow’s streamflow discharge. This is in strong contrast to human languages 339 

where the order of the words can often be inverted without changing the context, which would 340 

favor the attention-based Transformer architecture. Third, the accumulation of water and its 341 

nonlinear interactions makes memory effects important, but the Transformer does not have 342 

memory and is not necessarily strong at capturing the effects of memory. Regardless of the 343 

reason, the results mean that the vanilla Transformer is not optimal for streamflow predictions at 344 

the very least, and further changes are likely needed in order to use it for modeling natural 345 

systems. 346 

 347 

On the other hand, the modified Transformer demonstrates performance metrics that are 348 

comparable to or slightly surpass those of the LSTM. However, it exhibits greater variability 349 

among ensemble members, indicated by the standard deviation of the KGE metric: ±0.003 for the 350 

LSTM and ±0.007 for the modified Transformer. Its KGE (0.74) is slightly higher than LSTM (0.73), 351 

and the differences in FLV and FHV from LSTM’s values are too small to call an advantage 352 

considering their variability. As to be discussed below, while these differences are small, we 353 

simply should not expect larger differences as the possible room of improvement may be very 354 

small at this stage. The ensemble standard deviation of KGE is 0.003 with LSTM and 0.007 with 355 

the modified Transformer. The LSTM has a smaller ensemble standard deviation for FHV than 356 

the modified Transformer, while the opposite is true for FLV. The ensemble standard deviation of 357 

median FHV is 0.58 for LSTM and 2.94 for the modified Transformer, while this value for the FLV 358 
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is 8.15 for the LSTM and 4.24 for the modified Transformer. This suggests that while we obtain 359 

very similar overall metrics, the LSTM and the modified Transformer preferentially address 360 

different parts of the hydrograph in this experiment. LSTM more reliably focuses on the high-flow 361 

regime (quantified by the smaller ensemble standard deviation of FHV) than the modified 362 

Transformer, but the latter can better capture the long-term dependence (quantified by ensemble 363 

standard deviation of FLV representing groundwater baseflow). It seems there is some tradeoff 364 

for the different flow regimes.  365 

 366 

The multi-forcing experiment generally shows similar patterns: the vanilla Transformer falls behind 367 

the other two models, which have very similar ensemble-mean performance metrics but different 368 

ensemble standard deviations. The high KGE (0.80) and slightly better-than-LSTM FHV (9.19) for 369 

the modified Transformer demonstrates that it, too, is able to fuse different forcing datasets as 370 

can LSTM, which no other model architecture has shown. Just as in the single-forcing NLDAS 371 

experiment, the modified Transformer has a larger stochastic variability (quantified by ensemble 372 

standard deviation) for FHV but smaller variability for FLV. Because both FHV and FLV have 373 

improved compared to the single-forcing experiment, the modified Transformer was able to utilize 374 

the short-term and long-term dependencies of multiple forcing datasets. For one particular 375 

ensemble member (based on different random seeds), the cumulative density plot shows very 376 

similar curves between the modified Transformer and LSTM models. 377 

 378 

The high agreement between the two model architectures, both of which are state of the art, 379 

suggests that we are likely at or very close to the predictive limit of the CAMELS dataset for this 380 

test (temporal test, training in one time period and testing in another). We suspect that unless we 381 

bring in new information, it is highly unlikely for any other models to produce noticeable 382 

advantages beyond these two models on this dataset, for the tests presented here. Errors with 383 

forcing, basin shapes, attribute, and discharge data are likely the remaining factors preventing 384 
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higher performance. It should be mentioned that for another test, e.g., prediction in ungauged 385 

regions or spatial extrapolation, physics-informed hybrid models (called differentiable models 386 

(Shen et al., 2023)) can actually outperform LSTM (Aboelyazeed et al., 2023; Feng et al., 2022; 387 

Feng, Beck, Lawson, et al., 2023; Tsai et al., 2021). Moreover, several issues surrounding the 388 

CAMELS dataset include using basin-average attributes that cannot resolve subbasin-level 389 

spatial heterogeneity, using daily precipitation that does not represent hourly rainfall intensity, a 390 

fraction of basins having major reservoirs, and the inclusion of some overly large basins. 391 

 392 

Nevertheless, exactly because the Transformer algorithm does not have time integration, it can 393 

be trained in a highly parallel fashion and is suited to learning from large amounts of data. As the 394 

amount of data and the amount of neurons increase, it is possible to observe emergent behaviors 395 

of intelligence (Bubeck et al., 2023). This is a property that is worth further exploring in future 396 

studies in hydrology and geosciences. We leave to future work the question of how to incorporate 397 

more data with the modified Transformer, and testing this architecture on spatial extrapolation (for 398 

data-scarce scenarios) (Feng et al., 2021) and temporal extrapolation (for multidecadal projection 399 

of trends). 400 

 401 

While some studies claim that Transformer models surpass LSTM models in performance, their 402 

evaluations are often limited to small datasets (Abed et al., 2022; Amanambu et al., 2022; 403 

Ghobadi & Kang, 2022), forecasting experiments (Yin et al., 2022), or still incorporate a mix of 404 

recurrent neural networks and attention mechanisms (Koya & Roy, 2023) (hereafter called KR23). 405 

KR23 evaluated the global Caravan dataset using the TFT model, yet several aspects of their 406 

approach hinder direct comparison. Firstly, FR23’s comparison on a global dataset is valuable 407 

and welcomed, as they reported median KGE of 0.705 on 2610 basins for LSTM (basin-by-basin 408 

training) across the entire Caravan dataset, but did not provide results for the CAMELS dataset. 409 

When LSTM was benchmarked on a similar global dataset in another paper (Feng, Beck, de 410 
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Bruijn, et al., 2023) but was trained and tested for all basins simultaneously, it obtained a median 411 

KGE of 0.78 for 1675 basins with long-term records, far higher than the KGE of 0.647 reported in 412 

KR23, presumably due to using the practice of training on all basins simultaneously (Fang et al., 413 

2022; Kratzert et al., 2024). Secondly, with the addition of LSTM units in KR23’s TFT, it is unclear 414 

how much the attention mechanisms helped performance in contrast to the LSTM units. Moreover, 415 

their model, being a hybrid of RNN and attention, still faces challenges with parallelization issues. 416 

Finally, they employed cubic spline interpolation on the streamflow data, which smooths the target 417 

data and undermines the comparability of model results. To validate our perspective, we 418 

employed the TFT model from PyTorch Forecasting (Beitner, 2020) on the CAMELS dataset and 419 

observed that the model's training speed was significantly slower, with each epoch taking 30 times 420 

longer than LSTM. We welcome the community to benchmark on shared datasets with 421 

transparent basin list and input list.  422 

 423 

Conclusions 424 

In this work, we compared a vanilla Transformer encoder and a modified Transformer to the 425 

current state-of-the-art model, LSTM, on the CAMELS benchmark dataset. The vanilla 426 

Transformer seems to miss some critical functionality so that it is not optimal for simulating 427 

streamflow. The modified Transformer with no recurrent connection obtains slightly more 428 

favorable results (albeit only with a scale advantage) than LSTM. These results already represent 429 

rare competitive results to the LSTM in rigorous community-shared benchmarks. This means we 430 

can technically continue to search for better architecture to further improve its performance and 431 

suitability for natural physical systems, as the current setup may not yet be optimal. Nevertheless, 432 

the differences are overall small between the models, and we may already be very close to the 433 

optimum for this dataset with this test. On the one hand, we do not expect any architectural 434 

change to result in any significant improvement (to be more precise, on the order of 0.02 for KGE). 435 
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An expansion of the dataset, e.g., better descriptors or forcing dataset will be required to obtain 436 

substantial prediction improvements. On the other hand, the modified Transformer architecture is 437 

a viable alternative to LSTM and may find advantages for larger datasets in the future. The 438 

transformer architecture’s advantages may not reside with sequential information extraction but 439 

with serving as a foundational model to capture the joint distribution, accumulate knowledge and 440 

extract deep, abstract and complex concepts. These advantages should be explored in future 441 

hydrologic and geoscientific research. 442 
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