

1 **EXPERIMENTAL STUDY ON THE INFLUENCE OF TERRAIN COMPLEXITY ON WIND
2 PRESSURE CHARACTERISTICS OF MID-RISE BUILDINGS**

3 Lee-Sak An¹, Nasrollah Alinejad² and Sungmoon Jung^{3*}

4 **Abstract**

5 This study investigates the influence of terrain complexity on wind pressure for mid-rise
6 buildings through wind tunnel tests using 50 actual terrain morphologies in the US. A quantitative
7 analysis of the impact of terrain complexity on pressure coefficients at tap lines, area-averaged
8 pressure coefficients, and gust effect factors is conducted by comparing results with homogeneous
9 terrains. A decrease in mean wind speed and an increase in turbulence intensity levels at eave
10 height (50 m) were observed in complex heterogeneous terrains when the effective roughness
11 length was estimated using a conventional anemometric method. Consequently, the magnitude of
12 mean pressure coefficients in homogeneous terrain is typically more conservative than in
13 heterogeneous terrain for all windward walls, roofs, and sidewalls. This trend was observed in both
14 tap lines and area-averaged pressure coefficients. Additionally, it is confirmed that both the gust
15 dynamic pressure factor and the gust response factor tend to increase with roughness length and
16 terrain complexity. For the gust effect factor, both the gust dynamic factor and the gust response
17 factor increase as roughness length increases, resulting in an insignificant change due to roughness
18 length alone. However, the gust effect factor in heterogeneous terrain shows considerable

¹ Postdoctoral Scholar, Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, 2035 E Paul Dirac Dr, Tallahassee, Florida 32310, United States. Email: lan@eng.famu.fsu.edu

² Ph.D. candidate, Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, 2035 E Paul Dirac Dr, Tallahassee, Florida 32310, United States. Email: na19j@fsu.edu

³ Professor, Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, 2035 E Paul Dirac Dr, Tallahassee, Florida 32310, United States. Email: sjung@eng.famu.fsu.edu (corresponding author)

19 variability, indicating that terrain complexity can amplify the gust effect factor of mid-rise
20 buildings.

21 **Keywords**

22 Wind tunnel testing; Terrain simulator; Terrain complexity; Complex heterogeneous terrain;
23 Mid-rise building; Pressure coefficient; Gust effect factor

24

25 **1. Introduction**

26 Terrain configuration significantly contributes to uncertainties in wind loads, as emphasized in
27 Davenport's wind loading chain [1]. Terrain roughness, especially impactful for shorter buildings
28 near the ground surface, exposes them to heightened turbulence. In practical applications,
29 engineers often simplify the treatment of terrains with topological complexity by considering them
30 as uniform. Terrains are typically categorized based on an 'exposure category,' and this exposure-
31 based approach has gained widespread acceptance [2]. Nevertheless, some studies have suggested
32 that upstream terrain configurations directly impact peak wind loads on building envelopes [3].
33 The influence of terrain complexity on wind load assessment remains insufficiently explored.

34 Following Jensen's wind tunnel experiment, which established the similarity in using a turbulent
35 boundary layer to obtain pressure coefficients in agreement with full-scale values [4], numerous
36 wind tunnel measurements have been conducted to assess wind loads on buildings. The focus has
37 predominantly centered on urban or suburban exposures, emphasizing the impact on building
38 structures. To avoid undersized building models when replicating the entire atmospheric boundary
39 layer (ABL) in a wind tunnel, it is customary to simulate the lower portion commonly known as
40 the atmospheric surface layer (ASL). This approach allows for the use of large-scale building
41 models scaled between 1:25 to 1:100 [5, 6]. The ASL is modelled based on roughness length (z_0)

42 to simulate the underlying surface's influence on turbulent mixing. An effective roughness value
43 for the entire area has been found to be sufficient in areas with moderately homogeneous terrains
44 and smaller-scale inhomogeneity (such as vegetation patches and built structures) [7, 8]. Regarding
45 the concern over lower Reynolds numbers (Re) stemming from scaling effects in wind tunnel
46 testing, there is a consensus that Re can be relaxed at larger values above a certain threshold (i.e.,
47 $Re > 1.0 \times 10^5$) [2].

48 ASCE 7-22 [2] explicitly defines low-rise buildings as those with a height ratio (the ratio of the
49 mean roof height to the least horizontal plan dimension) smaller than 1. This implies two building
50 classes: low-rise buildings (Height ratio < 1) and all other tall buildings with height ratio ≥ 1 . Wang
51 and Kopp [9, 10] additionally classified tall buildings based on aerodynamic considerations,
52 indicating that those with a height ratio > 4 can be considered high-rise, with buildings falling
53 between these bounds being classified as mid-rise. Many previous studies have investigated the
54 pressure behaviors of tall building surfaces on boundary-layer flows. Sachs [11] conducted an
55 extensive series of wind pressure measurements in a uniform flow, and these results formed the
56 basis for most modern building codes and standards. Kao [12] found that the impinging turbulent
57 velocity fluctuations were strongly and positively correlated with the fluctuating pressures in the
58 stagnation region on the front face of a rectangular prism. Akins [13] and Akins et al. [14]
59 investigated the mean and fluctuating pressure coefficients on 15 buildings with height ratios
60 ranging from 1 to 8 under the four boundary layers, and their experimental data were used as the
61 aerodynamic basis for the wind loads on tall buildings in ASCE 7. Lin et al. [15] studied the
62 characteristics of wind force on tall buildings with height ratios of 3-5 and plan aspect ratio of
63 0.33-3.00, confirming that the side wall pressure coefficients became constant as the plan aspect
64 ratio exceeds 2. Kareem [16] represented the experimental measurements and analysis for tall

65 buildings to identify the influence of turbulence on the space-time structure of random pressure
66 field. They observed that increasing turbulence intensity induces early reattachment and associated
67 pressure recovery on the side face. Wang and Kopp investigated the effects of building geometry
68 on tall-building aerodynamic mechanisms for windward walls [17] and separated flow regions [18]
69 based on an experimental database.

70 Despite extensive studies, the majority of current knowledge is confined to homogeneous (i.e.,
71 uniform) terrain, such as roughness length (z_0) of 0.03 m (open) or 0.3 m (suburban). However,
72 real-world terrains have complex morphologies and abrupt roughness changes, and significant
73 knowledge gaps persist regarding the influence of the complex heterogeneous terrain on the
74 pressure experienced by buildings. Only a few studies have discussed the effect of terrain
75 complexity on wind loads. Yu et al. [19] conducted wind tunnel tests using two real city terrain
76 models and proposed a minimum upstream fetch length for wind tunnel testing. Wang and
77 Stathopoulos [3] emphasized the significance of local, small-scale roughness changes in affecting
78 the variation of the wind speed profile above heterogeneous terrain. An et al. [20] conducted
79 extensive wind tunnel testing to explore wind characteristics over complex heterogeneous terrains.
80 They quantified the relationship between the variance of geometric morphology and wind
81 characteristics, ultimately concluding that terrain complexity significantly increased turbulence
82 intensity levels. It is anticipated that statistics of pressure coefficients and reattachment length over
83 complex heterogeneous terrains will differ from those over homogeneous terrains due to the
84 substantial influence of turbulence properties in the approaching wind flow [21, 22]. Moreover,
85 those changes can subsequently influence the area-averaged pressure coefficients and gust effect
86 factors [18].

87 For the calculation of peak wind loads, the gust effect factor, developed by Solari [23, 24], is
88 currently incorporated into ASCE 7 [2] and the European standard [25]. Quasi-steady theory (QST)
89 is widely employed as the foundational concept for these wind load provisions. QST assumes that
90 pressure fluctuations are a function of the upstream wind speed and provides an approximate
91 solution for pressures at a stagnation point. This can be considered by examining the unsteady
92 Bernoulli equation applied to the stagnation streamline [26]. The flow fields over roofs and around
93 side walls are more complex than the flow near stagnation points on windward walls, with various
94 flow patterns and vortical structures that alter the Gaussian statistics even though QST is
95 reasonably accurate for regions of separated and reattaching flow [27]. The derivation of the gust
96 effect factor for rigid buildings relies on numerous theoretical and parametric assumptions,
97 considering only the effects of non-contemporaneous gust actions over the structures while
98 ignoring the effects of body-generated turbulence. This may lead to deviations in the estimated
99 peak values from the true values [28]. Experimental approaches can compensate for such
100 shortcomings. Therefore, it is of practical importance to investigate the influence of terrain
101 complexity on peak loads using direct measurement data.

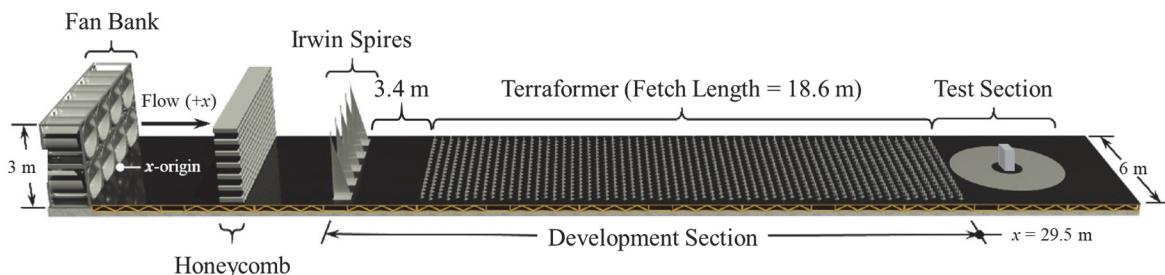
102 This study investigates the impact of complex heterogeneous terrain on wind loads for a typical
103 mid-rise building with a height of 50 m at full-scale. Extensive wind tunnel testing was conducted
104 using real terrain morphologies from 50 sites in the US. To compare pressure results from complex
105 heterogeneous terrains, additional wind tunnel testing was conducted under homogeneous
106 conditions. By comparing the wind pressure coefficients from heterogeneous and homogeneous
107 terrains with similar roughness lengths, the study quantifies the potential errors that may occur
108 when ignoring terrain complexity and assuming a homogeneous terrain. These experimental

109 investigations provide valuable insight into the complex flow fields and the relationships between
110 these flow fields and the surface pressures on the buildings.

111 This paper is structured as follows: Section 2 details the test setup, covering the wind tunnel,
112 terrain simulator, building model, and the terrain selection process. Section 3 outlines the
113 determination of aerodynamic roughness parameters and exposure categories for selected
114 heterogeneous terrains. Section 4, the wind characteristics are examined by comparing results from
115 heterogeneous terrains with homogeneous terrains. Section 5 presents a comparative analysis of
116 pressure coefficients between homogeneous and complex heterogeneous terrains. Finally, Section
117 6 provides conclusions.

118

119 **2. Test Setup and Methodology**


120 In this section, we provided a concise overview of the test setup, including an overview of the
121 facility, the building model, and the site selection process. The DesignSafe-CI repository [29]
122 provides detailed information on the test setup, and Alinejad et al. [30] describes the data collection,
123 validation, and storage procedures on the mentioned repository. For further details on the site
124 selection and the reproduction of heterogeneous terrains from the real sites, refer to An et al. [20]
125 and Alinejad et al. [31].

126

127 **2.1. Wind Tunnel and Terraformer**

128 Wind tunnel experiments took place at the Natural Hazard Engineering Research Infrastructure
129 (NHERI) facility at the University of Florida [32]. Fig. 1 depicts an open-circuit tunnel with
130 dimensions of 6 m (width) \times 3 m (height) \times 38 m (length), featuring eight vane axial fans, each

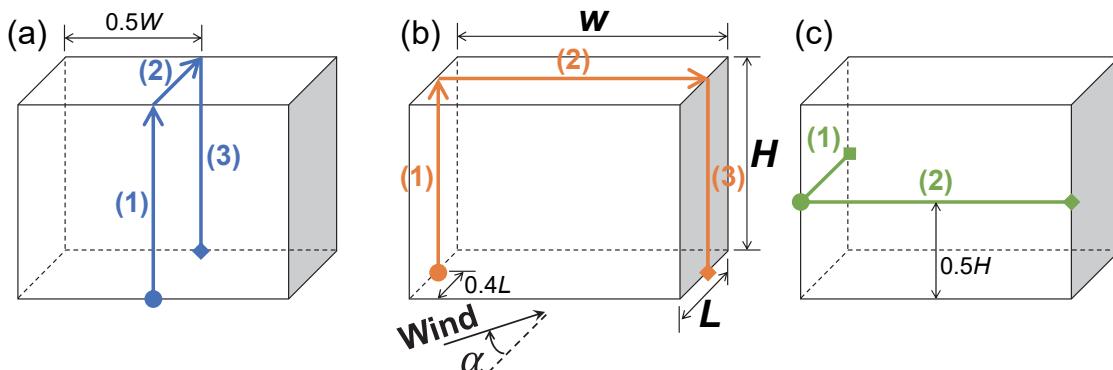
131 powered by a 56-kW electric motor. The flow generated by these fans conditioned by the
132 honeycombs positioned approximately 3 m downwind from the fan bank to reduce fan-generated
133 turbulence and ensure horizontal homogeneity of the velocity profile. This facility accommodates
134 an automated terrain simulator named the "Terraformer." This technology facilitates rapid and
135 precise terrain simulation, addressing the time-consuming and labor-intensive challenges inherent
136 in wind tunnel testing. The Terraformer comprises a configuration of 18×62 (totaling 1116
137 elements) computer-controlled roughness elements arranged in a staggered layout, covering a fetch
138 size of $6 \text{ m} \times 18.6 \text{ m}$. The Terraformer allows for independent height adjustments (0 to 160 mm)
139 of each $100 \text{ mm} \times 50 \text{ mm}$ roughness element using an actuator beneath them. LabVIEW software
140 controls the height of each element, and the reconfiguration of all 1116 elements can be
141 accomplished in less than 60 seconds. Thus, the Terraformer effectively replicates diverse upwind
142 terrains. Furthermore, a turntable situated at the end of the upwind fetch allows for the simulation
143 of wind effects on structures at various incidence angles.

144

145 Fig. 1. Schematic plan of the wind tunnel facility at the University of Florida [33].

146

147 **2.2. Building Model and Measurement Instruments**

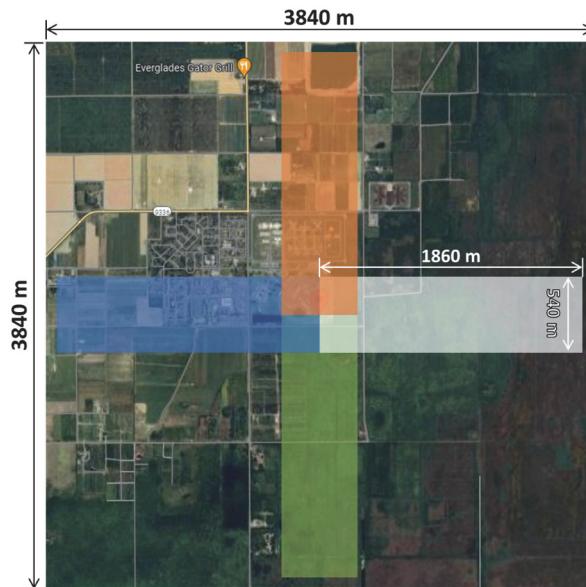

148 The building model employed in this study had dimensions of 600 mm (Width) \times 300 mm
149 (Length) \times 500 mm (Height) in testing scale (60 m (Width) \times 30 m (Length) \times 50 m (Height) in

150 full-scale) with a flat roof as shown Fig. 2. The building height is taller than 18 m which is the
151 boundary for low-rise building (defined in Chapter 26 in ASCE 7), and the height ratio (about 1.6)
152 is between 1.0 to 4.0. Thus, this building model is categorized as a mid-rise building.

153 Wind velocity measurements were conducted at a sampling rate of 1250 Hz using three Turbulent
154 Flow Instrumentation Cobra Probes positioned at the midpoint of Terraformer's far end. To obtain
155 the profile, wind speeds were measured at 36 different heights, ranging from 5 mm to 1500 mm
156 above the ground. To minimize adverse scale effects, model length scales in wind tunnel testing
157 are typically within the range of 1:10 to 1:100 [34]. We adopted a 1:100 scale, meaning the
158 maximum vertical measurement height of 1500 mm in test scale corresponds to 150 m in full-scale
159 representation. The speed scale is 3.5 ($\frac{V_{full}}{V_{test}} = \frac{35 \text{ m/s}}{10 \text{ m/s}}$), where V_{full} represents approximate
160 hurricane conditions at full scale [35], and V_{test} represents the wind speed in the wind tunnel at a
161 full-scale height of 10 m. Since the minimum test duration required to achieve an equivalent 10-
162 minutes full-scale measurement is 42 seconds, wind speed measurements in this experiment were
163 taken over a period of 45 seconds.

164 Pressure measurements were collected using eight high-speed electronic scanning modules from
165 Scanivalve ZOC33 [36]. The pressure taps were connected to the modules via 122 cm long
166 urethane tubing, and the sampling frequency was set at 625 Hz. Tubing effects on pressure
167 measurements were adjusted [37], to minimize the distortion on amplitude and phase shift. The
168 building model was outfitted with a total of 216 pressure taps, comprising 102 roof taps and 114
169 wall taps. Fig. 2 provides a visual representation of the building model and target tap lines that
170 will be investigated. Tap lines will be selectively used to examine the main pressure behavior at
171 each incident wind angle. The tap lines in Fig. 2 (a) and (b) run parallel and perpendicular to the
172 long building dimensions and are used to examine the pressure behavior for 0° and 90° wind angles,

173 respectively. Fig. 2 (c) is used to examine changes in wind pressure behavior in the horizontal
174 direction on the windward and side walls. Each line are further classified into (1)~(3) depending
175 on the region. Line number and surface number are used to refer to the target area. For example,
176 the (1) of Line 1 is indicated as Line 1-(1).


177

178 Fig. 2. Layout of pressure tap lines on the building model: (a) Line 1; (b) Line 2; and (c) Line 3.

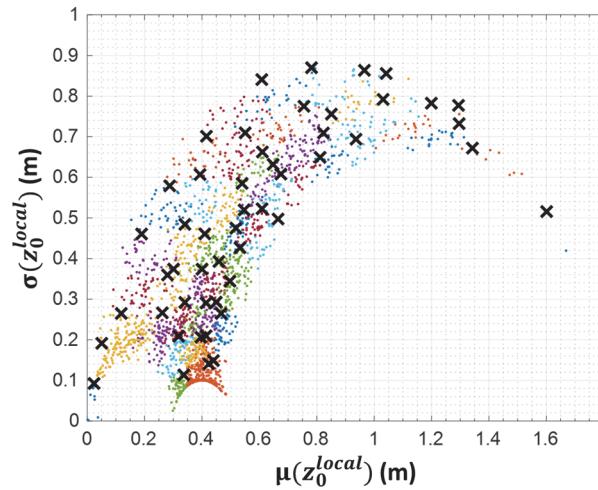
179

180 2.3. Selection of Heterogeneous Terrains

181 Complex heterogeneous terrain configurations sourced from real terrains were compiled for wind
182 tunnel testing. The primary data source was the National Land Cover Database (NLCD) [38]
183 provided by the US Geological Survey. A total of 529 sites from 32 US states prone to hurricanes
184 were selected. Each site image obtained from the NLCD dataset had dimensions of $3840 \text{ m} \times 3840$
185 m. To create more comprehensive cases, each image was divided into four smaller images facing
186 north, south, west, and east, with dimensions of $1860 \text{ m} \times 540 \text{ m}$ each as shown in Fig. 3. This
187 division resulted in a total of 2116 images for analysis.

188

189 Fig. 3. Visual explanation of how one NLCD dataset was separated into four directions at Site ID 1 (Miami Florida,
190 [Latitude, Longitude] = [25.41191, -80.4964]). Google map was used instead of NLCD for high-resolution
191 visualization.

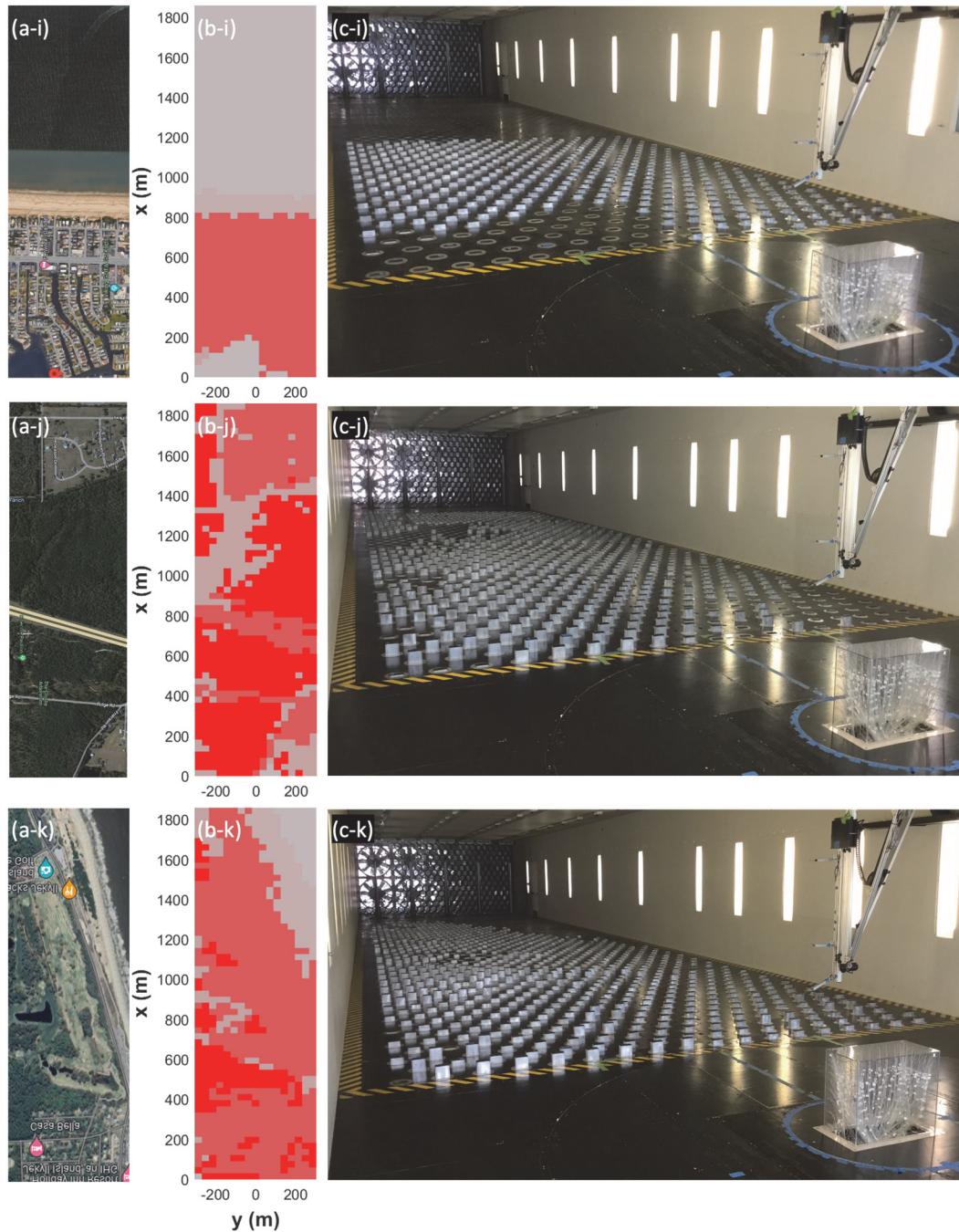

192 The NLCD dataset furnished land coverage information for each pixel of the image, with a
193 resolution of 30 m (each pixel covering 30 m \times 30 m of land). By utilizing specific land coverage
194 types and their corresponding local roughness length z_0^{local} values, as shown in Table 1, each pixel
195 in the image was assigned an appropriate z_0^{local} value. Therefore, an image containing an area of
196 1860 m \times 540 m has z_0^{local} information of $62 \times 18 = 1116$.

197 Table 1. Land coverage classification in NLCD images (z_0 range is based on Wieringa [8], Wang and Stathopoulos
198 [3], Davenport [39], Vihma and Savijärvi [40], and He et al. [41])

Land cover	z_0^{Local} (full-scale, m)	Block height (test-scale, m)
Open Water, Perennial Ice, Snow	0.0003	0.0050
Woody Wetlands, Emergent Herbaceous Wetland	0.0025	0.0085
Barren Land	0.0055	0.0105
Dwarf Scrub, Shrub Scrub	0.0105	0.0125
Pasture, Hay	0.0155	0.0145
Grassland, Herbaceous, Cultivated Corps	0.0205	0.0155
Low-rise building	0.5	0.0545
Mid- to high-rise	1	0.0770
Deciduous Forest, Evergreen Forest, Mixed Forest	1.65	0.1000

199 To select representative terrains among 2116 sites with distinct stochastic properties of z_0^{local} ,
200 the k-means algorithm [42]—a commonly used clustering technique minimizing the average

201 squared distance between points within the same cluster—was applied in the 2D space defined by
202 the mean $\mu(z_0^{local})$ and standard deviation $\sigma(z_0^{local})$ as illustrated in Fig. 4. $\mu(z_0^{local})$ and
203 $\sigma(z_0^{local})$ can be calculated from the 1116 z_0^{local} information of each image. Thus, each dot in Fig.
204 4 indicates a site among 2116 sites, and each color represents 50 distinct clusters obtained through
205 the k-means algorithm. Then, the cluster centroids were identified as 50 representative sites. More
206 details on this process are kindly introduced in previous studies [20, 31].


207

208 Fig. 4. The clustering results using $\mu(z_0^{local})$ and $\sigma(z_0^{local})$ for 2116 sites. Dots represent the investigated sites, and
209 cross marks indicate the selected 50 sites. (Reproducing from An et al. [20])

210

211 In the wind tunnel, the z_0^{local} values were correlated with the corresponding block heights using
212 the method fully described by Alinejad et al. [31]. Fig. 5 provides examples of the selected sites
213 and their corresponding block height maps in the Terraformer, along with the simulated terrain
214 morphology generated for sites (i) 13; (j) 21; and (k) 29. Even though NLCD also provided aerial
215 photos, the resolution was very low. Thus, the images of the locations from Google Maps are re-
216 captured and shown in Fig. 5 (a). As shown in Fig. 5 (b), each complex heterogeneous terrain
217 contains 1116 block heights, which is corresponding the z_0^{local} .

218 An et al. [20] used the coefficient of variation of logarithmic z_0^{local} ($COV_{\ln(z_0)} = \sigma(\ln(z_0^{local})) /$
219 $\mu(\ln(z_0^{local}))$) as a measure of the terrain complexity of each complex heterogeneous terrain. They
220 took the logarithmic due to the wide distribution of z_0 values spanning multiple orders of
221 magnitude and the substantial impact of $\ln(z_0)$ on wind speed according to the logarithmic wind
222 law. Thus, $COV_{\ln(z_0)}$ was used as the parameter when checking the influence of terrain complexity
223 on the wind pressure on the mid-rise buildings.

224

225 Fig. 5. Example of complex heterogeneous terrains: (a) Aerial view (corresponding Google Map instead of NLCD
226 image was used for better visualization); (b) Block height map; and (c) Actual photo in the wind tunnel with (i) site
227 13; (j) site 21; and (k) site 29.

228

229 **2.4. Summary of Parameters for Wind Load**

230 In this subsection, we summarize the pressure coefficient and the gust effect factor derived
231 directly from the measured data in the time domain. Following the usual convention in wind
232 engineering, the pressure coefficient at a specific point of interest, denoted as C_P^i , is defined as the
233 ratio of the measured building surface gauge pressure to the dynamic pressure at roof height,
234 expressed in Eq. (1):

$$C_P^i(t) = \frac{P^i(t)}{0.5\rho\bar{u}^2} \quad (1)$$

235 Here, \bar{u} represents the mean wind speed at the roof height (50 m), and ρ denotes air density. $P^i(t)$
236 indicates the measured net wind pressure at the i -th tap, signifying the value obtained by
237 subtracting the reference pressure from the gauge-measured wind pressure. Internal reactions are
238 not considered, following St. Pierre et al. [43].

239 For wind loads, particular interest lies in the area-averaged pressure, integrating the pressures on
240 each wall simultaneously. The area-averaged pressure P can be determined using the tributary area
241 for each tap, as expressed in Eq. (2):

$$P(t) = \sum_{i=1}^N P^i(t) \frac{A_i}{A} \quad (2)$$

242 Where A_i is the tributary area of the i -th tap, A is the total surface area. The tributary area of a
243 tap was determined based on halving the distance between that tap and adjacent taps. Note that,
244 due to the non-uniform spacing of taps, these tributary areas are not uniform.

245 Gustiness in wind introduces dynamic loading effects on the structural system, which can be
246 assessed in terms of a gust effect factor G . To evaluate the peak response of the system, the peak
247 wind load must be considered. For estimating wind load, the peak pressure \hat{P} and the peak dynamic
248 pressure \hat{q} are utilized with the gust effect factor G as follows:

$$\hat{P} = G \hat{q} \bar{C}_P \quad (3)$$

249 The gust effect factor can be estimated using Eq. (4) directly from the measured data in the time
250 domain. The peak pressures were estimated using the Lieblein BLUE method [44], involving
251 dividing time series data into 16 equal segments, obtaining 16 maxima for each, and taking the
252 mean values of the Gumbel distribution as the estimated peak values. No pressure filters were
253 applied, allowing all coefficients to be considered instantaneous. By rearranging Eq. (3), G can be
254 expressed as follows:

$$G = \frac{\hat{P}}{\hat{q} \bar{C}_P} = \frac{\hat{P}}{\bar{P}} \times \frac{\bar{u}^2}{\hat{u}^2} = \frac{G_P}{G_u^2} \quad (4)$$

255 Here, \bar{P} and \hat{u} are the mean pressure and the peak wind speed at the roof height, respectively.
256 $G_P (= \hat{P}/\bar{P})$ and $G_u (= \hat{u}/\bar{u})$ indicate the gust response factor and gust dynamic pressure factor.
257 The peak wind speed \hat{u} can be determined as the 3-s gust wind speed, representing the peak wind
258 speed measured with a 3-s moving averaged wind speed data. Also, since the testing period is 45
259 seconds, equivalent to approximately 20 minutes (1200 seconds) in full-scale, the measured mean
260 wind speed \bar{u} was transformed into hourly mean wind speeds based on Fig. C26.5-1 in ASCE 7,
261 known as the Durst curve [45], i.e., $V_{1200}/V_{3600} = 1.05$.

262

263 3. Exposure Categorization

264 The concept of exposure categories is widely integrated into design standards globally, including
265 the US [2], Canada [46], and Europe [47], to streamline the design process. In the US, ASCE 7-22
266 classifies terrain into one of three exposure categories: B to D. Each category has a range of the
267 roughness length (z_0), serving as a representative measure of the aerodynamic characteristics of
268 the terrain, as outlined in Table 2 [2]. Exposure A was omitted in ASCE 7-02 due to the substantial

269 variability of wind in this terrain, arising from local channeling and wake-buffeting effects. For
 270 this reason, this study disregarded cases identified as exposure A.

271 Table 2. Range of z_0 by exposure category [2] (adopted from ASCE 7-22 Table C26.7-1).

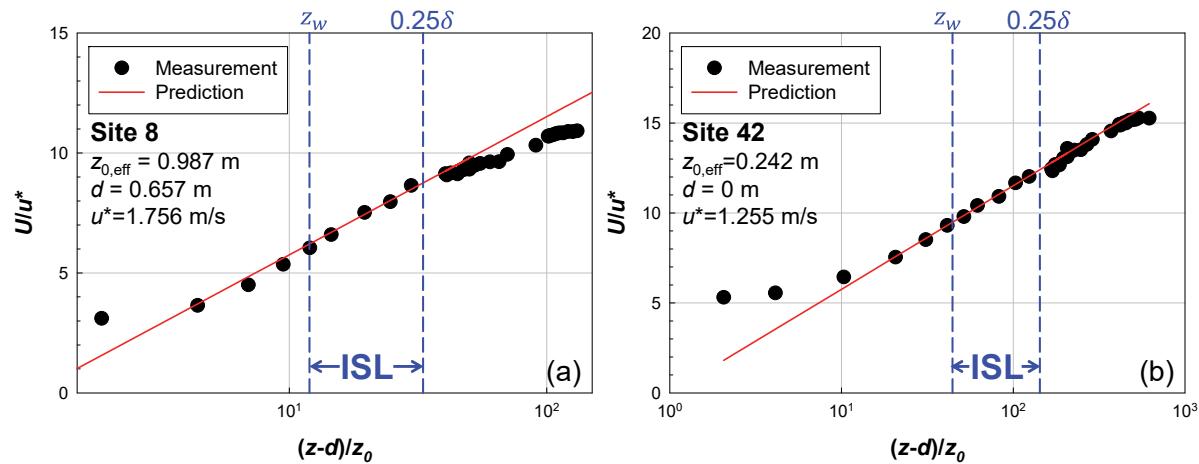
Exposure category	Lower limit of z_0 (m)	Typical value of z_0 (m)	Upper limit of z_0 (m)
A ^a	0.7	2	-
B ^b	0.15	0.3	0.7
C ^c	0.01	0.02	0.15
D ^d	-	0.005	0.01

^aCenters of large cities (eliminated since ASCE 7-02)

^bUrban and suburban terrain

^cOpen terrain

^dFlat, unobstructed area and water surfaces


272 To determine the exposure category of each complex heterogeneous terrain, the effective
 273 roughness length ($z_{0,eff}$) was obtained through an anemometric approach [48, 49]. For the
 274 anemometric approach, curve fitting techniques are employed to align the log law [50] with
 275 velocity profile measurements, as shown in Eq. (5). The log law is widely acknowledged for its
 276 accuracy in representing the theoretical mean wind speed within the lower portion of the ABL [51].

$$U(z) = \frac{u_*}{\kappa} \ln \left(\frac{z - d}{z_0} \right) \quad (5)$$

277 $U(z)$ represents the mean along-wind speed at height z , and κ is von Karman's constant ($=0.40$).
 278 This equation holds when the surface is aerodynamically fully-rough, meaning that the surface-
 279 roughness Reynolds number $Re_* = u_* z_0 / \nu > 2.5$ [52], where ν is the kinematic viscosity of air.
 280 All wind tunnel testing results in this study exhibited Re_* values larger than 2.5. Since wind
 281 profiles in the ASL are crucial for designing buildings [53], we estimated aerodynamic roughness
 282 parameters (ARP), including friction velocity (u_*), zero-displacement height (d), and z_0 , within
 283 inertial sublayer (ISL) [49]. The ISL nominally exists between $z_w < z < 0.25\delta$, where z_w is a
 284 wake diffusion height, turbulent mixing sufficiently blends individual element wakes to produce
 285 laterally homogeneous flow, and δ is a gradient height. z_w was assumed to be $1.9H$ [54], where H
 286 is the average height of the block elements in 2/3 of the width direction (x -axis) \times 1/6 of the length

287 direction (y-axis) (12 lines \times 11 lines = 132 block elements) in front of measurement points. δ can
 288 be determined by using quadratic function fitting. The outer layer of the wind profile, which is
 289 approximately parabolic in shape, is fitted by the quadratic function as described by Guo [55].
 290 Then, the value δ is found by setting $\partial U/\partial z = 0$. It is noteworthy that the anemometric method
 291 must be distinguished from the morphologic method. The anemometric method uses wind profile
 292 measurements, while the morphologic method uses the terrain morphologic information to
 293 determine the $z_{0,\text{eff}}$.

294 Fig. 6 showcases the semi-logarithmic profiles of measured and predicted mean wind speed at
 295 sites 8 and 42. The profiles are presented in the dimensionless form U/u^* and $(z - d)/z_0$ so that
 296 the slope of the fits equals to $1/\kappa$ (i.e., 2.5). ARP estimates obtained from the anemometric
 297 approach are utilized to plot the predicted wind profiles. The predicted wind profile aligns well
 298 with the measured wind profiles within the ISL range, indicating that $z_{0,\text{eff}}$ based on the
 299 anemometric approach accurately represents the wind profiles of the corresponding complex
 300 heterogeneous terrains.

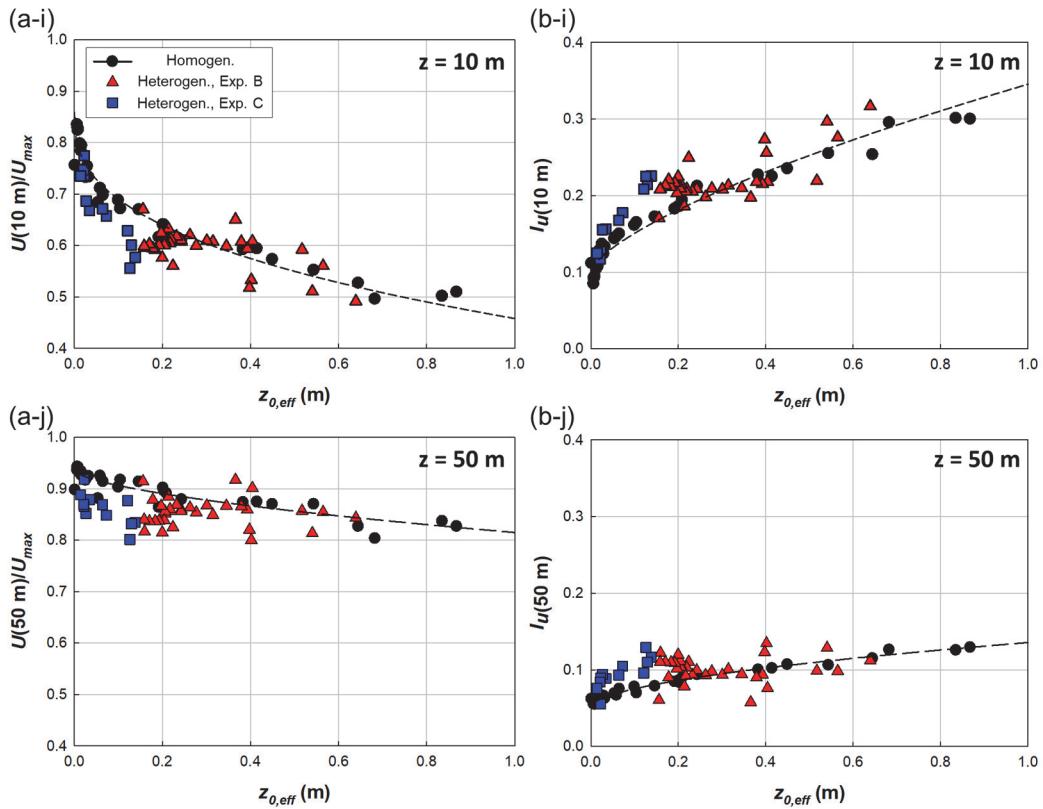
301

302 Fig. 6. Examples of the ARP calibration based on anemometric approach: (a) Site 8; and (b) Site 42.

303

304 Table A 1 in Appendix A presents the calculated $z_{0,eff}$ values along with their corresponding
305 exposure categories for heterogeneous terrains. Exposure B contains the highest number of sites
306 (34 of 50 sites), as expected, given that exposure B encompasses a relatively wider range of z_0
307 values compared to exposure C and D, making it the most common exposure category.
308 Additionally, as reference cases for comparison with the complex heterogeneous terrains,
309 preliminary wind tunnel testing was conducted for homogeneous terrains. All block heights in the
310 Terraformer were uniformly changed to achieve a various range of $z_{0,eff}$, as shown in Table A 2.

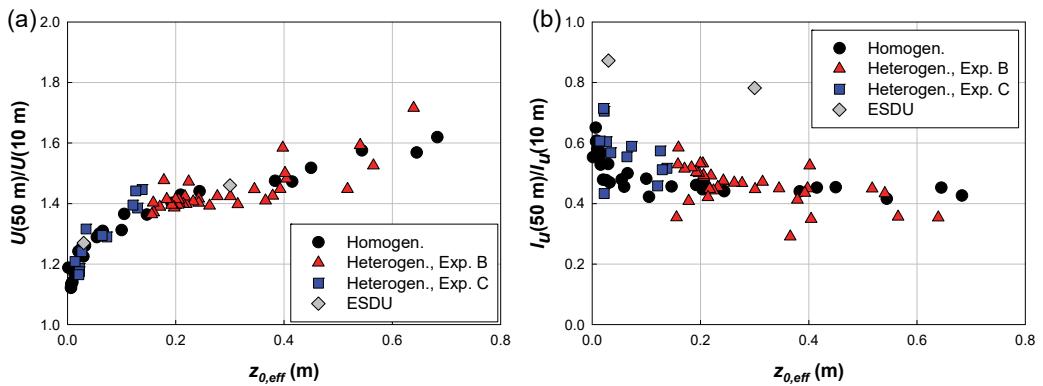
311


312 **4. Wind Characteristics**

313 Along the wind load chain, the terrain affects the wind profile approaching the structure.
314 Therefore, it is essential to examine changes in wind characteristics due to heterogeneous terrain
315 compared to homogeneous terrains. The ARPs were calibrated using the ISL, particularly in the
316 relatively lower regions. Therefore, even though some homogeneous and complex heterogeneous
317 terrains show a similar $z_{0,eff}$ level, the wind characteristics can differ at higher height. Fig. 7 shows
318 (a) normalized mean wind speed $U(z)/U_{max}$ and (b) turbulence intensity $I_u(z)$ with varying $z_{0,eff}$ at
319 two heights: (i) 10 m and (j) 50 m (i.e., roof height). For homogeneous terrain, unlike the test
320 measuring wind pressure shown in Table A 2, the test measuring only the wind profile while
321 varying block height was performed on more cases. Consequently, the number of data points for
322 homogeneous terrain is much richer than in Table A 2. For complex heterogeneous terrain,
323 exposure B and C were plotted separately for visibility, while the identical marker was used for
324 the homogeneous cases since it is a reference. Each marker represents a result obtained from an
325 experiment at one site. Thus, for heterogeneous terrains, exposure B and C contain 34 and 12
326 scatters, respectively. As $z_{0,eff}$ increases, $U(z)/U_{max}$ decreases, and $I_u(z)$ increases at both 10 m and

327 50 m heights. However, relatively lower $U(z)/U_{max}$ and higher $I_u(z)$ are observed in heterogeneous
328 terrain. This is consistent for both 10 m and 50 m heights. The greater energy dispersions due to
329 terrain complexity on heterogeneous terrains may result in lower mean wind speeds and higher
330 turbulence intensity compared to homogeneous terrain even though $z_{0,eff}$ was calculated similarly.

331 The quantitative difference in wind profiles with similar roughness lengths is further illustrated
332 in Fig. 8. It displays the ratio of (a) mean wind speed ($U(50 \text{ m})/U(10 \text{ m})$) and (b) turbulence
333 intensity ($I_u(50 \text{ m})/I_u(10 \text{ m})$) measured over both complex heterogeneous and homogeneous
334 terrains. It should be noted that wind tunnel testing on homogeneous terrain was performed for a
335 wide variety of block heights to identify wind speed characteristics, but the test cases in which
336 pressure was measured in the mid-rise building were limited, as shown in Table A 2.


337 Additionally, $U(50 \text{ m})/U(10 \text{ m})$ and $I_u(50 \text{ m})/I_u(10 \text{ m})$ from the field measurement data of
338 Engineering Sciences Data Unit (ESDU) [56, 57] is presented for comparison in Fig. 8. $U(50$
339 $\text{m})/U(10 \text{ m})$ from ESDU is relative with testing results, but $I_u(50 \text{ m})/I_u(10 \text{ m})$ shows some
340 discrepancies. Considering that complex heterogeneous terrain is a more realistic case than
341 homogeneous terrain, it is a reasonable result that $I_u(50 \text{ m})/I_u(10 \text{ m})$ of heterogeneous terrain is
342 mainly distributed between the result of homogeneous terrain and ESDU. However, as $z_{0,eff}$
343 increases and the terrain becomes increasingly rough, the difference between homogeneous
344 terrains and complex heterogeneous terrains almost disappears. This is consistent with the results
345 in previous study [20]. They observed that the difference between heterogeneous and
346 homogeneous terrains is significant for lower $z_{0,eff}$ values, indicating relatively smooth terrains.
347 In these cases, the influence of terrain complexity on wind characteristics becomes more prominent.
348 As $z_{0,eff}$ increases, a general trend of decreasing difference can be observed. If the terrain itself is
349 already rough enough, terrain complexity has little effect on wind characteristics.

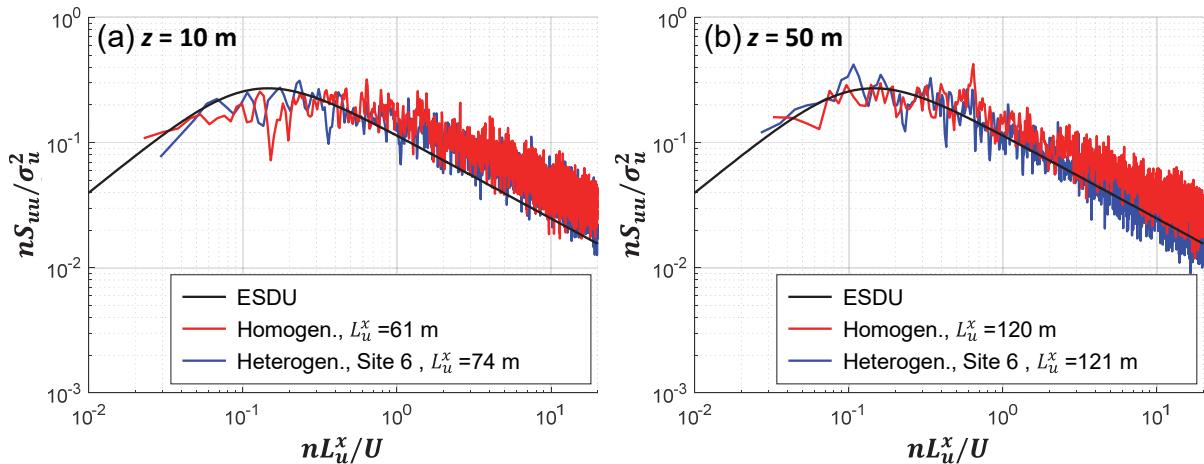
350

351 Fig. 7. Comparison of wind characteristics over homogeneous and heterogeneous terrains: (a) Mean wind speed; and
 352 (b) Turbulence intensity at (i) 10 m; and (j) 50 m heights.

353

354

355 Fig. 8. Ratio of wind characteristics between 10 m to 50 m heights: (a) Mean wind speed; and (b) Turbulence
 356 intensity.


357 Ensuring feasibility in the turbulence property of the inflow wind is crucial for estimating and
 358 comparing unsteady wind loads. Fig. 9 presents the wind power spectrum at 10 m and 50 m (eave

359 height) for both complex heterogeneous and homogeneous terrains, featuring similar $z_{0,\text{eff}}$ values
360 (≈ 0.2 m). The power spectrum was calculated using the Fast Fourier Transform (FFT) and the
361 Welch method [58]. The complete full-scale time series were divided into 1-minute sub-segments
362 with a 50% overlap. To reduce side-lobe leakage, a Hamming window was employed. Moreover,
363 the plots include the empirical model from ESDU [59], as defined by Eq. (6), for comparison.

$$\frac{nS_{uu}}{\sigma_u^2} = \frac{4f}{(1 + 70.8f^2)^{5/6}} \quad (6)$$

364 Here, S_{uu} signifies the power spectrum for the longitudinal turbulence component, n is the
365 frequency (Hz), σ_u represents the standard deviation of the fluctuating wind components, and $f =$
366 nL_u^x/U , where L_u^x stands for the longitudinal integral length scale, and U is the mean wind speed.

367 For both heights and types of terrain, the measured spectrum demonstrates good agreement with
368 the ESDU empirical model. Since the wind flow at lower heights is strongly influenced by surface
369 roughness, there is a slight difference between the measurements at 10 m height and ESDU data,
370 while the spectra at 50 m are more similar to ESDU. At a height of 50 m, the homogeneous site
371 contains more energy at higher frequencies compared to the heterogeneous case, and the measured
372 power spectrum over heterogeneous terrain is closer to ESDU. Heterogeneous terrain may induce
373 more shear and mixing in the boundary layer, which aligns well with the assumptions made in the
374 ESDU model. However, both terrains follow Kolmogorov's -5/3 law well at a height of 50 m and
375 simulate the inertial subrange of turbulent flow well.

376

377 Fig. 9. Wind power spectrum for homogeneous terrain and complex heterogeneous terrain: (a) $z=10$ m; (b) $z=50$ m
378 (roof height).

379

380 **5. Results and Discussion**

381 **5.1. Pressure Coefficient along Tap Lines**

382 Fig. 10 illustrates the (i) mean (\bar{C}_P), (j) root mean square (\widetilde{C}_P), (k) maximum (\widehat{C}_P), and (l) 383 minimum (\widetilde{C}_P) pressure coefficients at the target tap lines over exposure B. Selected wind angles
384 that showed significant results were presented for each tap line. For Line 1 and 2, the incident wind
385 angle is (a) 0° and (b) 90° , respectively. For Line 3, the results for two wind angles are presented:
386 (c) 0° and (d) 90° . The statistics derived from complex heterogeneous terrains are presented as
387 boxplots. The line inside each box represents the median of the pressure coefficient statistics. The
388 top and bottom edges of each box denote the upper and lower quartiles (the 0.75 and 0.25 quantiles,
389 respectively). The distance between these edges is the interquartile range (IQR). The whiskers
390 extend to the non-outlier minimum and maximum values, which are the lowest and highest data
391 points that are not considered outliers. Outliers are defined as values that lie more than $1.5 \times \text{IQR}$

392 away from either the top or bottom of the box. For comparison, the results from homogeneous
393 cases within exposure B ($z_{0,\text{eff}}$ of 0.2 m and 0.7 m) are presented as lines.

394 As shown in Fig. 10 (i), the \bar{C}_P in all tap lines does not vary much within exposure B. In detail,
395 not only is there little difference between homogeneous terrain and complex heterogeneous terrain,
396 but there is no significant change within heterogeneous cases, i.e., the boxplots are distributed in
397 narrow ranges. Similar results were also observed in Wu and Kopp [60] and Wang and Kopp [9].
398 It is worth mentioning that the mean pressure coefficient does not vary with terrain in ASCE 7,
399 such that terrain is assumed to only affect the gust wind speeds but not the building aerodynamics.

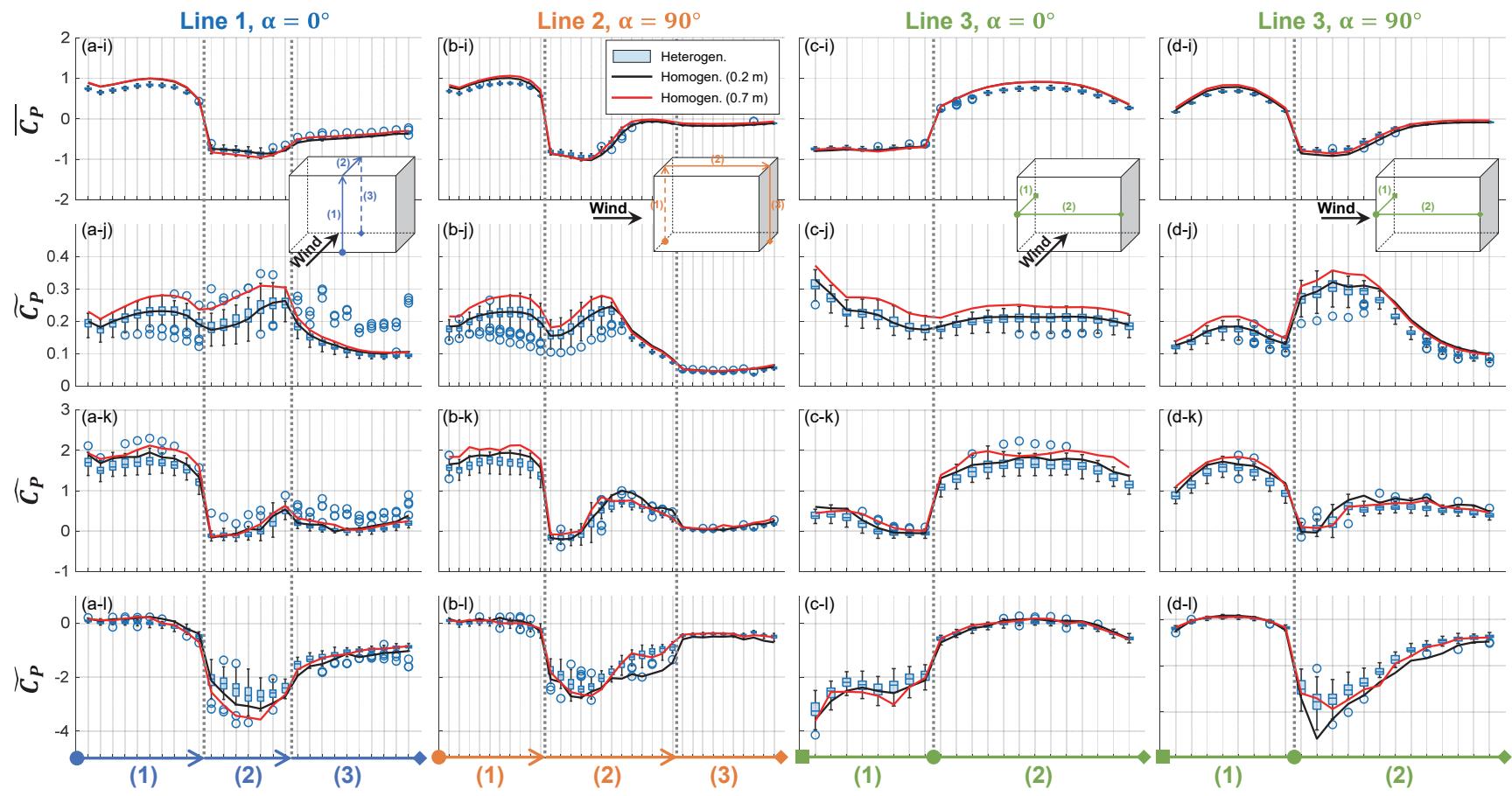
400 Also, the statistics with a $z_{0,\text{eff}}$ of 0.7 m in the homogeneous terrain (red line) show similar results
401 to the upper bound in the magnitude of the heterogeneous terrain. Given that 0.7 m of $z_{0,\text{eff}}$
402 corresponds to the upper boundary in exposure B (See Table 2), terrain complexity over
403 heterogeneous terrains does not add significant variability to statistics of C_P when having similar
404 $z_{0,\text{eff}}$. Based on these observations, it can be suggested that the change in \bar{C}_P within the same
405 exposure category can be ignored even though the roughness length or terrain complexity has been
406 changed.

407 When comparing Line 1-(1) in Fig. 10 (a-i) and Line 2-(1) in Fig. 10 (b-i), no significant
408 difference was observed in the maximum magnitude of \bar{C}_P on the windward wall between 0° and
409 90° of the incident wind angles. Similarly, the level of pressure coefficient at the windward wall
410 in the lateral direction is also similar at any wind angle as shown in Line 3-(2) in Fig. 10 (c) and
411 Line 3-(1) in Fig. 10 (d). This consistency was also observed in previous studies [13, 14].

412 The roof and side wall also show similar trend. The minimum \bar{C}_P on the roof are about -1.0 for
413 both Line 1-(2) and Line 2-(2). In the case of side wall, the minimum \bar{C}_P was about -0.8 for both

414 Line 3-(1) of 0° and Line 3-(2) of 90° . It suggests that positive pressures on the windward wall and
415 the suction on the roof around leading-edge are not strongly dependent on the dimension of the
416 mid-building in this study.

417 However, the minimum magnitude of $\overline{C_p}$ in the flow-separated regions can change depending on
418 the along-wind dimension of the building because the pressures on the longer sides are less
419 negative due to flow reattachment and a more complete pressure recovery. For instance, Line 1-
420 (2) in Fig. 10 (a-i) shows the $\overline{C_p}$ of approximately -0.6 was observed at the downwind edge, while
421 Line 2-(2) in Fig. 10 (b-i) shows the $\overline{C_p}$ decreased to almost 0. In the case of side wall, comparing
422 Line 3-(2) when the incident wind angle is 0° (Fig. 10 (c-i)) and Line 3-(1) when the wind angle
423 is 90° (Fig. 10 (d-i)), the former maintains about -0.8 of $\overline{C_p}$, but in the latter, the magnitude of $\overline{C_p}$
424 decreases to close to 0.

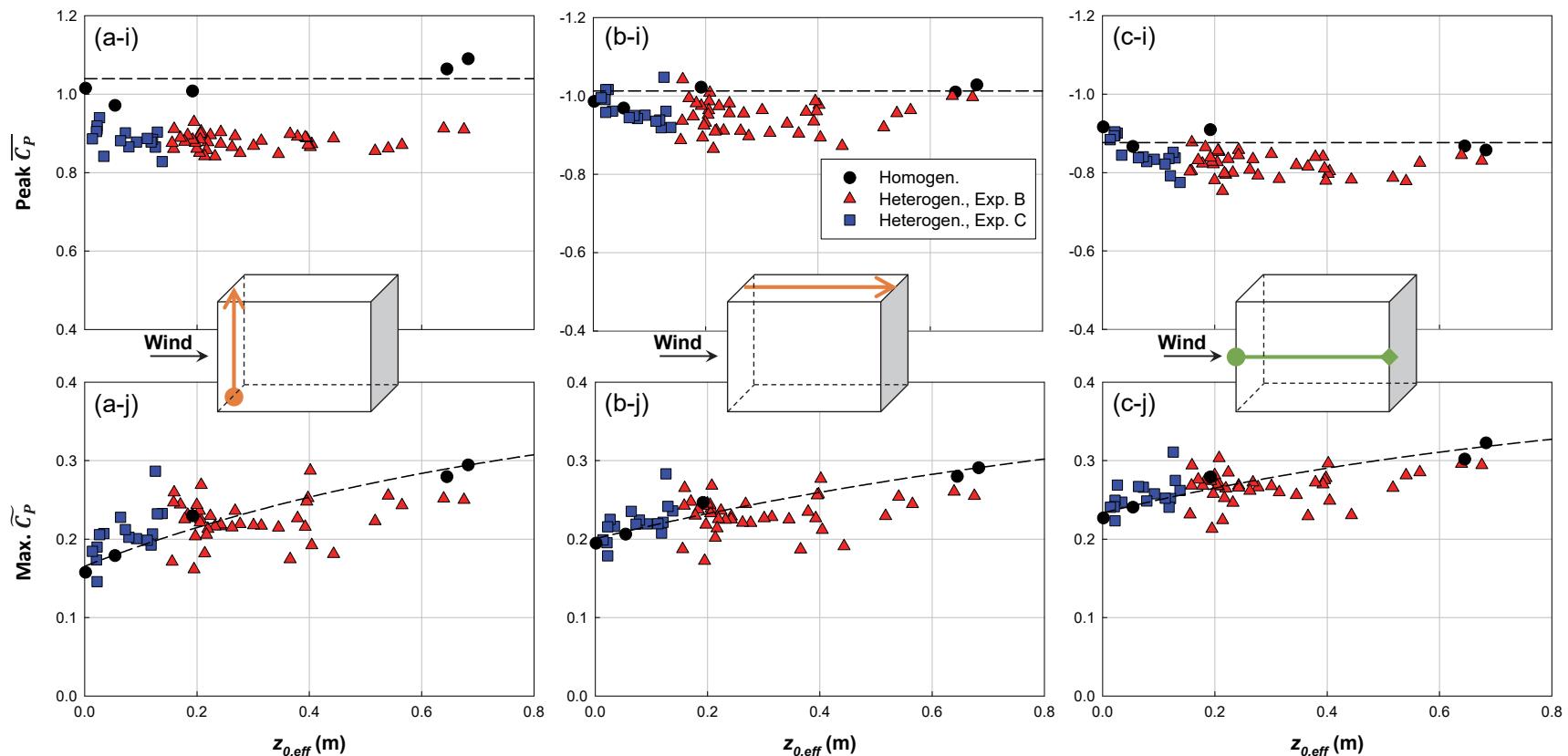

425 In contrast to $\overline{C_p}$, as depicted in Fig. 10 (j) to (l), $\widetilde{C_p}$, $\widehat{C_p}$, and $\overline{C_p}$ exhibit more pronounced
426 variance than $\overline{C_p}$ with changes in $z_{0,eff}$. However, there is still no significant difference observed
427 in the range of statistics between homogeneous terrain and complex heterogeneous terrain. The
428 red line closely aligns with the upper bound of the magnitude of $\widetilde{C_p}$, $\widehat{C_p}$, and $\overline{C_p}$ as well. Terrain
429 complexity does not exert a significant effect on the variance of pressure coefficients on the mid-
430 rise building.

431 Fig. 11 illustrates (i) the peak $\overline{C_p}$ and (j) the maximum $\widetilde{C_p}$ on the tap lines for (a) windward wall,
432 (b) roof, and (c) side wall, with an incident wind angle of 90° . The black dashes in Fig. 11 (i) and
433 (j) represent the average peak $\overline{C_p}$ and the regression results of maximum $\widetilde{C_p}$ over the homogeneous
434 terrains, respectively. As previously discussed in Fig. 10, $\overline{C_p}$ does not vary significantly with
435 changes in $z_{0,eff}$, and this trend is observed in Fig. 11 (i).

436 The average peak $\overline{C_p}$ for the windward wall, roof, and sidewall is 1.04, -1.01, and -0.88,
437 respectively. In heterogeneous terrain, these values are distributed between 0.83 and 0.94, -0.86
438 and -1.05, and -0.75 and -0.90, indicating a potential decrease of 15-20% due to terrain complexity.
439 It is evident that the peak $\overline{C_p}$ from the homogeneous terrain exhibits a larger magnitude than that
440 from heterogeneous terrains, approaching the upper bound of the complex heterogeneous terrain.
441 This is because the mean wind speed is lower in complex heterogeneous terrain when $z_{0,eff}$ is
442 similar.

443 On the other hands, the magnitude of the maximum $\widetilde{C_p}$ increases with the rise of $z_{0,eff}$ for both
444 homogeneous and complex heterogeneous terrains on all surfaces. Additionally, terrain
445 complexity amplifies the fluctuations of the maximum $\widetilde{C_p}$. For instance, with $z_{0,eff}$ around 0.2 m
446 on the windward wall, $\widetilde{C_p}$ fluctuates between approximately 0.16 and 0.27 for heterogeneous
447 terrain, while it remains around 0.24 for homogeneous terrain. Similarly, on the roof, the maximum
448 $\widetilde{C_p}$ ranges from 0.17 to 0.27 in heterogeneous terrains compared to 0.25 in homogeneous terrain.
449 This suggests a potential difference of about -10~30% attributable to terrain complexity for the
450 maximum $\widetilde{C_p}$.

451


452

453

454

455

456

457

458

459

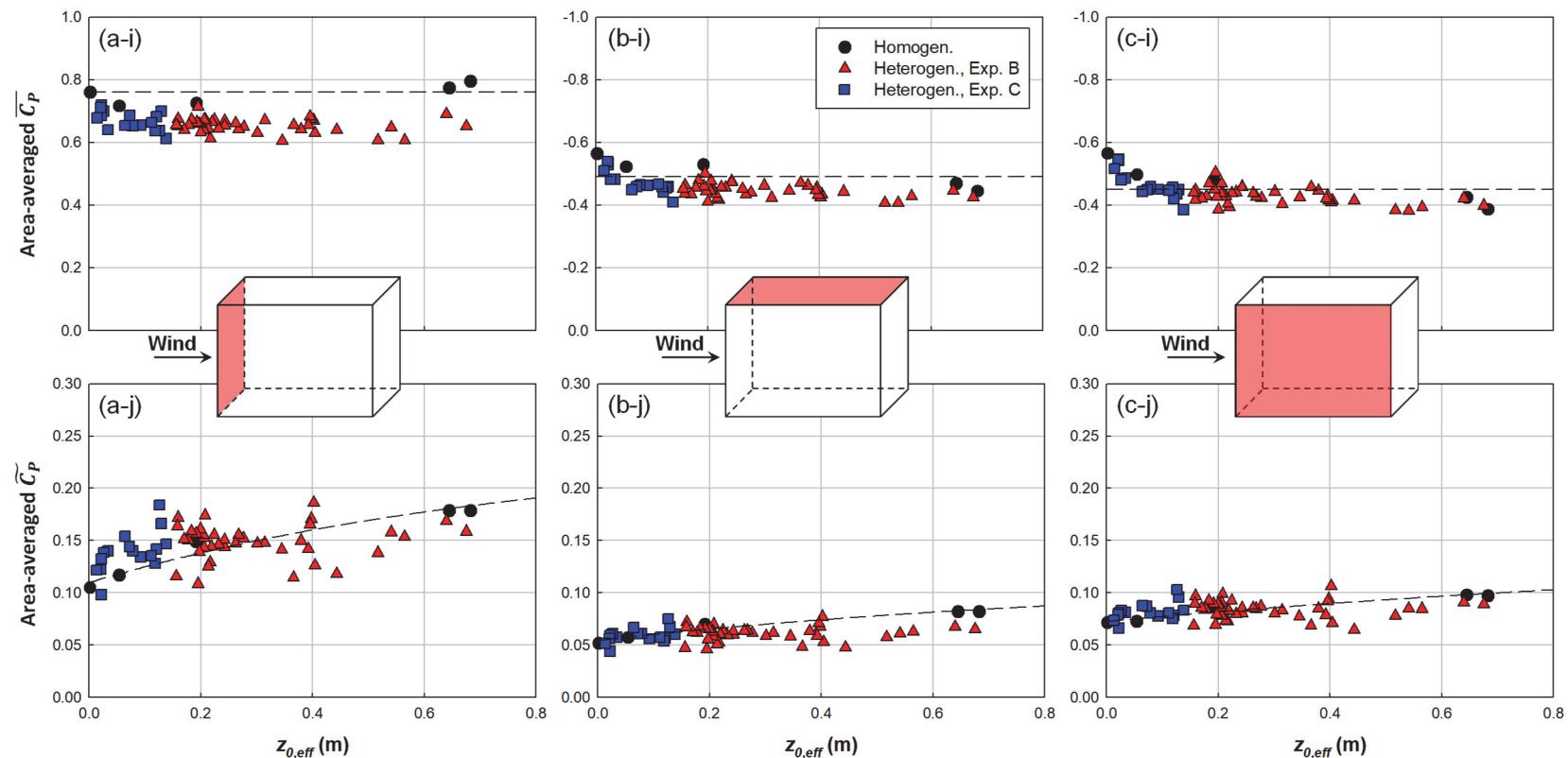
460

461

Fig. 11. Comparison of peak wind pressures over homogeneous and heterogeneous terrains at a wind incident angle of 90°: (a) Windward wall (Line 2-(1)); (b) Roof (Line 2-(2)); and (c) Side wall (Line 4-(1)): with (i) Peak \bar{C}_p and ;(j) Maximum \bar{C}_p . Peak \bar{C}_p means maximum \bar{C}_p for windward wall and minimum \bar{C}_p for roof and side wall.

462 **5.2. Area-Averaged Pressure Coefficient**

463 Fig. 12 illustrates (i) area-averaged \bar{C}_P and (j) area-averaged \widetilde{C}_P with varying $z_{0,eff}$ for (a)
464 windward wall, (b) roof, and (c) side wall, with an incident wind angle of 90°. Note that the area-
465 averaged pressure integrates the pressures on each wall simultaneously. Black dash presents the
466 average of the area-averaged \bar{C}_P and the regression results of the area-averaged \widetilde{C}_P over the
467 homogeneous terrains, respectively.


468 The averaged value of the area-averaged \bar{C}_P for homogeneous cases is 0.76, -0.49, and -0.45 for
469 the windward wall, roof, and side wall, respectively. The results from heterogeneous terrains are
470 distributed between 0.60~0.72, -0.41~-0.54, and -0.38~-0.55 for windward wall, roof, and side
471 wall, respectively. Similar to the peak \bar{C}_P on the tap lines, the results from homogeneous terrains
472 are close to the upper bound of the area-averaged \bar{C}_P . The magnitude of the area-averaged \bar{C}_P in
473 heterogeneous terrains can decrease up to 20% compared to that in homogeneous terrains. The
474 cause of these results is expected to be the low mean wind speed in complex heterogeneous terrain.

475 For area-averaged \widetilde{C}_P , similar to the maximum \widetilde{C}_P on the tap lines, the result from heterogeneous
476 terrains shows significant variability. When $z_{0,eff}$ is about 0.2 m on windward wall, the area-
477 averaged \widetilde{C}_P was approximately 0.15 for homogeneous terrain, while those of 0.11 to 0.18 were
478 observed for heterogeneous terrain. The area-averaged \widetilde{C}_P can increase up to 20% due to the terrain
479 complexity.

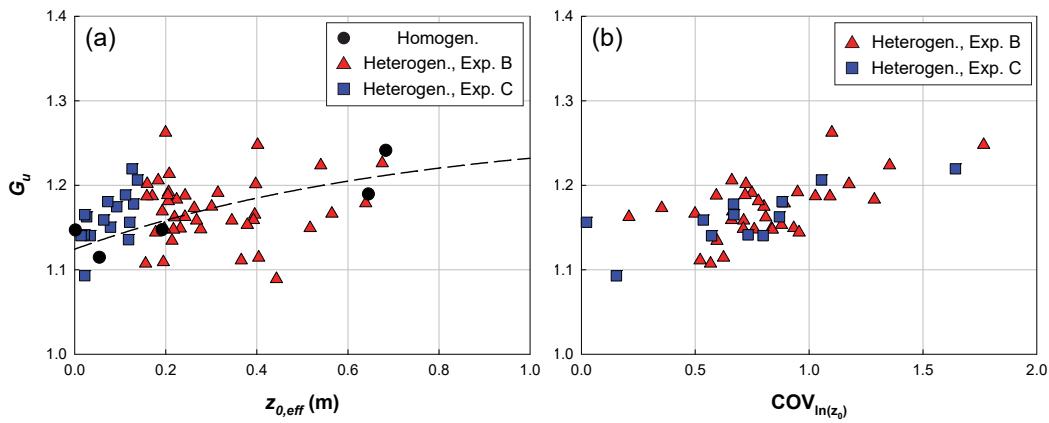
480 Through these observations, it can be concluded that area-averaged \bar{C}_P on homogeneous terrain
481 is more conservative than the results on heterogeneous terrain. Therefore, the influence of terrain
482 complexity can be ignored for estimation of the area-averaged \bar{C}_P of the mid-rise building.
483 However, as shown in the case of the area-averaged \widetilde{C}_P , terrain complexity causes greater

484 variability in pressure coefficients than in homogeneous terrain, and it can lead to even larger area-
485 averaged \widetilde{C}_P than homogeneous terrains. This would naturally be an effect of wind gustiness.
486 Nevertheless, as shown in Eq. (3), only \overline{C}_P is generally used to estimate the wind load on the
487 building. Therefore, the possible variability of wind load due to the wind gustiness must be further
488 investigated.

489

490

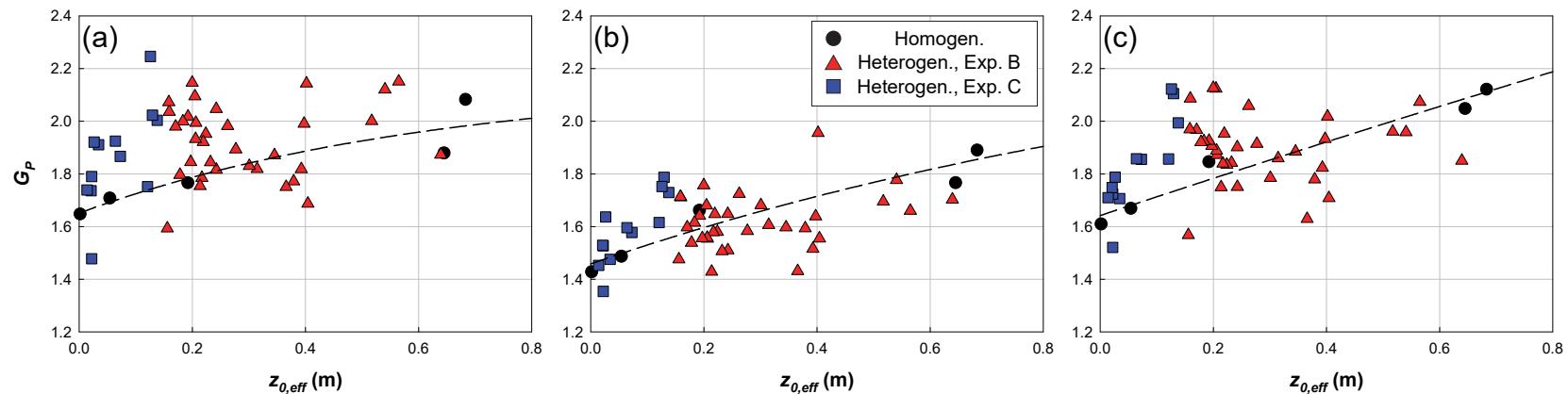
491 Fig. 12. Comparison of the statistics of area-averaged pressure coefficient over homogeneous and heterogeneous terrains: (a) Windward wall; (b) Roof; and (c)
 492 Side wall: with (i) Area-averaged \bar{C}_P and ;(j) Area-averaged \bar{C}_P .


493

494 **5.3. Gust Effect Factor**

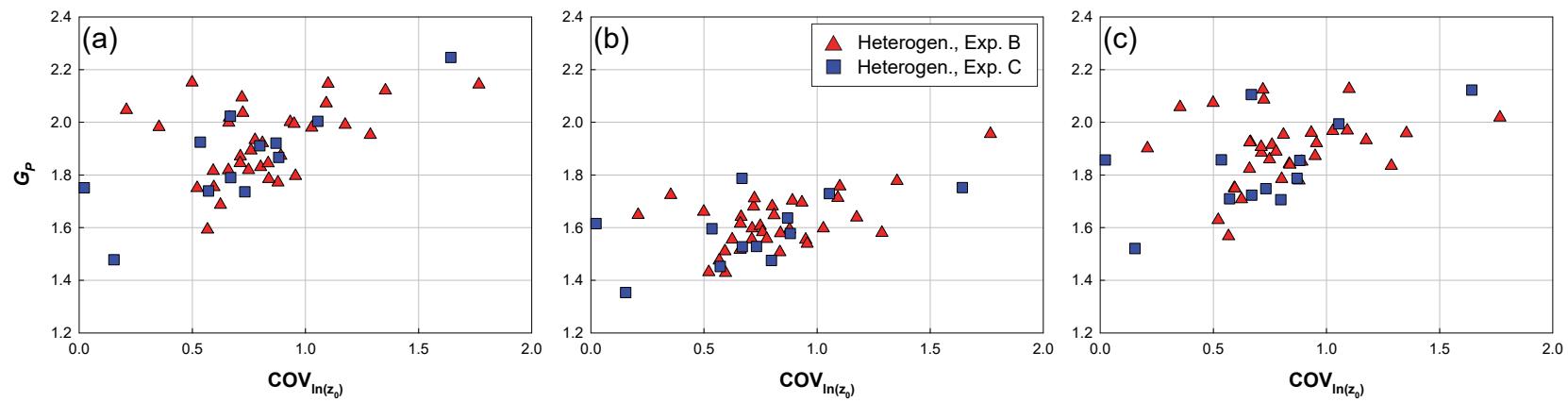
495 The assessment of the gust dynamic pressure factor G_u and gust response factor G_P is crucial for
496 calculating the gust effect factor G , as defined in Eq. (4). Fig. 13 illustrates the impact of (a) $z_{0,eff}$
497 and (b) $COV_{ln(z_0)}$ on G_u at the roof height. The black dash in Fig. 13 (a) is the regression result of
498 G_u for homogeneous terrains. G_u demonstrates an increase with the rise of $z_{0,eff}$, and
499 heterogeneous terrains exhibit larger variability. For instance, at $z_{0,eff}$ of 0.2 m, G_u on
500 homogeneous terrain is approximately 1.15, while G_u on heterogeneous terrains ranges from 1.10
501 to 1.27. The influence of terrain complexity can cause an increase of up to 15% in G_u . Complex
502 heterogeneous terrains introduce intricate flow patterns around buildings, contributing to the
503 observed variability in G_u . Fig. 13 (b) elucidates the relationship between $COV_{ln(z_0)}$ and G_u . As
504 $COV_{ln(z_0)}$ increases, G_u also exhibits a corresponding increase, a trend consistent across both
505 exposures B and C.

506 Overall, G_u for exposure B and C ranges from 1.08 to 1.27 and 1.10 to 1.22, respectively. This
507 affirmation underscores that, even within the same exposure category, variations of up to 20% can
508 arise due to the changes in $z_{0,eff}$ and the degree of terrain complexity.


509

510

511 Fig. 13. Gust dynamic pressure factors at roof height: (a) Effect of $z_{0,eff}$; and (b) Effect of $COV_{\ln(z_0)}$.


512 Fig. 14 illustrates the variation in G_p with changing $z_{0,eff}$ for (a) windward wall, (b) roof, and (c)
 513 side wall. Terrain complexity consequently amplifies the variance of G_p . At a $z_{0,eff}$ of 0.2 m, a G_p
 514 of about 1.8 was observed on the windward wall of homogeneous terrain. In contrast, around the
 515 same $z_{0,eff}$ value, a much higher G_p up to 2.2 was observed on heterogeneous terrain, indicating a
 516 potential difference of approximately -22 to 17%. Despite both the roof and side wall being flow-
 517 separation region, the amplification of G_p on the roof is smaller than that on the side wall. For
 518 instance, when $z_{0,eff}$ was 0.2 m, a G_p of approximately 1.65 was observed on the roof in
 519 homogeneous terrain, whereas in heterogeneous terrain, it was amplified to around 1.8. Conversely,
 520 on the side wall, a G_p of about 1.85 was observed in the homogeneous terrain, and this
 521 amplification reached around 2.13 in the heterogeneous terrain. This difference of amplification
 522 may be attributed to the fact that the roof is influenced by wind characteristics at a higher height
 523 than the side wall, where turbulence properties are relatively weak. Moreover, G_p is influenced by
 524 $COV_{\ln(z_0)}$, as shown in Fig. 15, where the trend of G_p increasing with higher $COV_{\ln(z_0)}$ is observed
 525 in both exposure B and C.

526

527

Fig. 14. Gust response factors for varying $z_{0,eff}$: (a) Windward wall; (b) Roof; and (c) Side wall.

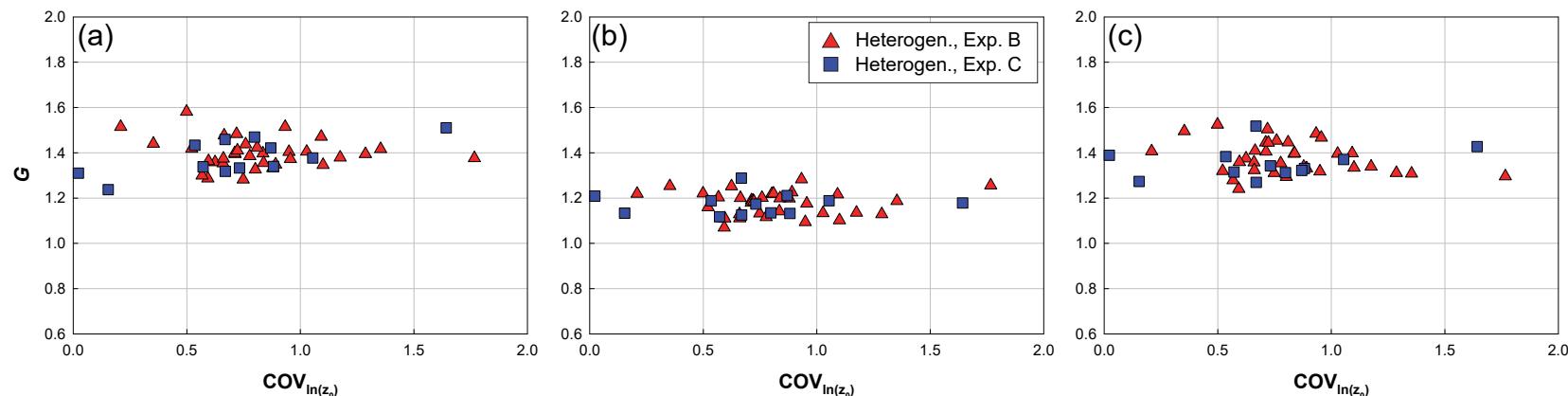
528

529

Fig. 15. Gust response factors for varying $COV_{\ln(z_0)}$: (a) Windward wall; (b) Roof; and (c) Side wall.

530

531 Figs. 16 and 17 depict the variations in G with changing $z_{0,eff}$ and $COV_{ln(z_0)}$, respectively, for (a)
532 windward wall, (b) roof, and (c) side wall. G demonstrates no significant change with alterations
533 in $z_{0,eff}$ and $COV_{ln(z_0)}$. Since G_u and G_P increased concurrently with the rise in $z_{0,eff}$, there is no
534 clear increasing trend in G . However, the variability noticeably increased due to terrain complexity.
535 In homogeneous terrain, the average of G is approximately 1.33 for windward wall, 1.20 for roof,
536 and 1.36 for side wall. In heterogeneous terrain, it ranges from 1.24 to 1.58 for windward wall,
537 1.07 to 1.28 for roof, and 1.22 to 1.52 for side wall. Consequently, when comparing G on
538 heterogeneous terrain with the average G on homogeneous terrain, terrain complexity can increase
539 the G of mid-rise building up to -7~19% for windward wall, -10~7% for roof, and -10~12% for
540 side wall.


541 Identifying the cause of this variation in G and precisely estimating the G of heterogeneous
542 terrain based on the terrain morphology could significantly enhance the accuracy of predicting
543 wind loads on mid-rise buildings, preventing both underestimation and overestimation. However,
544 as evident in Fig. 17, explaining the cause of such variability in G using $COV_{ln(z_0)}$ alone was
545 challenging. Unlike G_u and G_P , no clear relationship with $COV_{ln(z_0)}$ was observed in G . Therefore,
546 further research utilizing higher-dimensional terrain complexity measures, rather than $COV_{ln(z_0)}$,
547 must be applied.

548

550

Fig. 16. Gust effect factors for varying $z_{0,eff}$: (a) Windward wall; (b) Roof; and (c) Side wall.

552

Fig. 17. Gust effect factors for varying $COV_{ln(z_0)}$: (a) Windward wall; (b) Roof; and (c) Side wall.

553

554 **6. Conclusions**

555 This study conducted extensive wind tunnel tests using 50 actual terrain morphologies in the US
556 to investigate the impact of terrain complexity on the wind pressure of the 50 m-height mid-rise
557 building. The results were compared with testing on homogeneous terrain to analyze variations in
558 wind pressure characteristics and quantify the potential errors that may occur when ignoring terrain
559 complexity. Differences between homogeneous and complex heterogeneous terrains were
560 investigated in the statistics of C_p at tap line, the statistics of area-averaged C_p , and gust effect
561 factor G . The nominal values presented in this study are specific to the terrain morphology and
562 building geometry examined and should not be generalized to other contexts. However, the
563 underlying trends provide more significant, broadly applicable insights. The main findings are as
564 follows:

565 • In investigating the C_p on tap lines, variations in $z_{0,eff}$ were found to have an insignificant
566 effect on \bar{C}_p , while \widetilde{C}_p exhibited an increasing with $z_{0,eff}$. Moreover, within the same
567 exposure category, the ranges of C_p statistics for homogeneous terrain and complex
568 heterogeneous terrain coincided. For example, the C_p statistics for homogeneous terrain
569 with $z_{0,eff}$ of 0.7 m, corresponding to the upper bound of exposure B, closely aligned with
570 the upper bound of the results for complex heterogeneous terrain in exposure B.

571 • The examination of the peak \bar{C}_p and maximum \widetilde{C}_p at the tap lines highlighted that the
572 larger peak \bar{C}_p values were observed in homogeneous terrain compared to complex
573 heterogeneous terrain in windward wall, roof, and side wall due to the lower mean wind
574 speed on complex heterogeneous terrains. The magnitude of peak \bar{C}_p from homogeneous
575 terrain proved to be conservative, with no additional amplification due to terrain

576 complexity. Conversely, it was observed that the magnitude of maximum \widetilde{C}_P could
577 increase by up to 30% in heterogeneous terrain compared to the result from homogeneous
578 terrain, even with similar $z_{0,eff}$.

579 • Area-averaged C_P statistics displayed a pattern similar to C_P at tap lines. Area-averaged
580 \overline{C}_P for windward wall, roof, and side wall remained unaffected significantly by changes
581 in $z_{0,eff}$, while \widetilde{C}_P exhibited an increasing trend with $z_{0,eff}$. Moreover, it was affirmed that
582 \overline{C}_P in homogeneous terrain closely approached the upper bound of \widetilde{C}_P in heterogeneous
583 terrain, and that heterogeneous terrain could experience up to a 20% decrease compared
584 to homogeneous terrain. In contrast, for \widetilde{C}_P , it was observed that even with $z_{0,eff}$, it could
585 be amplified by up to 20% in heterogeneous terrain compared to homogeneous terrain.
586 Since \overline{C}_P is the primary statistic considered in wind load design, and its value on
587 homogeneous terrain surpasses that on heterogeneous terrain, it is deemed acceptable to
588 disregard terrain complexity only in \overline{C}_P for this building. However, a comprehensive
589 evaluation of the impact of wind gustiness resulting from terrain complexity necessitates
590 an examination of factors related to wind gustiness.

591 • Upon investigating G_u calculated using the 3-s average wind speed, a discernible trend
592 emerged that G_u increased with a rise in $z_{0,eff}$. Furthermore, it was substantiated that even
593 with similar $z_{0,eff}$, G_u could be amplified by approximately 15% in heterogeneous terrain.
594 Examination of the relationship between $COV_{ln(z_0)}$ and G_u revealed that G_u increased as
595 $COV_{ln(z_0)}$ increased. That is, an escalation in the degree of terrain complexity led to an
596 amplification of G_u . G_P was also observed to escalate with an increase in $z_{0,eff}$, with this
597 trend consistently observed for all windward walls, roofs, and side walls. However, on

598 the roof, the amplification of G_P is less pronounced than on the side wall. This difference
599 is attributed to the turbulence property disparity between homogeneous terrain and
600 heterogeneous terrain is less significant on the roof than on the side wall, owing to
601 differences in height.

602 • Upon investigating G , it was elucidated that G does not exhibit clear trends with $z_{0,eff}$
603 and $COV_{ln(z_0)}$, yet the observed G in heterogeneous terrain displayed considerable
604 variability when compared to the result from homogeneous terrain. As $z_{0,eff}$ or $COV_{ln(z_0)}$
605 increased, G_u and G_P increased simultaneously, contributing to G not responding
606 sensitively to these changes. However, in comparison to G on homogeneous terrain, G
607 for complex heterogeneous terrains could increase by about 19%, 7%, and 12% for
608 windward wall, roof, and side wall, respectively. The impact of terrain complexity on the
609 variability of G was challenging to assess strictly using $COV_{ln(z_0)}$ alone, necessitating
610 higher-dimensional measures. As a result, when evaluating wind load considering the
611 gust effect, if the influence of terrain complexity is ignored, a less conservative design
612 wind load can be calculated.

613 • To compare the results between the homogeneous terrain and heterogeneous terrain, $z_{0,eff}$
614 values were estimated using a conventional anemometric approach originally developed
615 for homogeneous terrains [48, 49]. Two limitations were observed when the anemometric
616 approach was applied to the complex heterogeneous terrains, which can be investigated
617 in future studies. First, the actual wind speed may differ even if $z_{0,eff}$ is calculated
618 similarly between homogeneous and heterogeneous terrains. This is because the
619 anemometric approach fits not only $z_{0,eff}$ but also d and u_* together in the log law.

620 Second, the anemometric approach may slightly underestimate the gradient height δ for
621 the heterogeneous terrains. In the anemometric approach, the upper bound of the fitting
622 range is determined from δ . Thus, such underestimation leads to the same effect as
623 estimating $z_{0,eff}$ on a smoother terrain. This limitation appears to be inherent in the
624 method of fitting the upper part of the wind profile obtained from a wind tunnel
625 experiment to a quadratic function. These observations suggest that additional boundary
626 conditions or restrictions may be required to apply conventional anemometric approaches
627 to complex heterogeneous terrains. Therefore, the comparison between the homogeneous
628 terrain and heterogeneous terrains in this paper needs careful interpretation until such
629 future studies improve the estimation method of the $z_{0,eff}$ for heterogeneous terrains.

630 **7. Appendix A**

631 Table A 1. $z_{0,eff}$ in full-scale and corresponding exposure categories for complex heterogeneous terrain.

Site	$z_{0,eff}$ (m)	Exposure category	Site	$z_{0,eff}$ (m)	Exposure category
34	0.014	C	17	0.217	
45	0.021		10	0.219	
49	0.022		5	0.224	
36	0.022		2	0.232	
12	0.026		41	0.242	
39	0.034		42	0.242	
27	0.064		19	0.262	
25	0.073		15	0.277	
9	0.121		38	0.301	
40	0.126		47	0.315	
24	0.129		46	0.345	B
14	0.138		1	0.366	
13	0.156		35	0.379	
28	0.158		23	0.393	
43	0.159		21	0.398	
30	0.171		18	0.402	
29	0.178		26	0.404	
44	0.183		20	0.517	
6	0.192		11	0.541	
22	0.197		37	0.565	
48	0.200		31	0.639	
4	0.205		33	0.748	A
32	0.206		7	0.776	
3	0.206		8	0.987	
16	0.214		50	1.300	

632

633 Table A 2. $z_{0,eff}$ in full-scale and corresponding exposure categories for homogeneous terrain.

H (testing scale, m)	$z_{0,eff}$ * (m)	Exposure category
0.018	0.002	D
0.028	0.054	C
0.043	0.192	B
0.064	0.645	B
0.077	0.683	B
0.111	1.952	A

*The initially targeted z_0 values were 0.03 m, 0.10 m, 0.30 m, 0.70 m, 1.00 m, and 1.85 m. Based on the Improved Lettau relationship [61], the block height H values were inversely determined. Presented $z_{0,eff}$ values were calculated by the anemometric approach, described in Chapter 3, using the measured wind profile.

634

635

636

637 **8. Acknowledgments**

638 This material is based upon work supported by the National Science Foundation under Grant No.
639 CMMI-1856205. Any opinions, findings, and conclusions or recommendations expressed in this
640 material are those of the authors and do not necessarily reflect the views of the National Science
641 Foundation.

642

643 **9. References**

644 [1] A.G. Davenport, Past, present and future of wind engineering, *J. Wind Eng. Ind. Aerodyn.* 90(12-15) (2002) 1371-1380. [https://doi.org/10.1016/S0167-6105\(02\)00383-5](https://doi.org/10.1016/S0167-6105(02)00383-5)

645 [2] ASCE, Minimum design loads and associated criteria for buildings and other structures, 7-22, American Society of Civil Engineers, 2022. <https://doi.org/10.1061/9780784415788>

646 [3] K. Wang, T. Stathopoulos, Exposure model for wind loading of buildings, *J. Wind Eng. Ind. Aerodyn.* 95(9-11) (2007) 1511-1525. <https://doi.org/10.1016/j.jweia.2007.02.016>

647 [4] M. Jensen, The model law for phenomena in natural wind, Reprint from *Ingenioren* (international edition) 2(4) (1958) 121-128.

648 [5] H.W. Tieleman, Model/full scale comparison of pressures on the roof of the TTU experimental building, *J. Wind Eng. Ind. Aerodyn.* 65(1-3) (1996) 133-142. [https://doi.org/10.1016/S0167-6105\(97\)00030-5](https://doi.org/10.1016/S0167-6105(97)00030-5)

649 [6] H. Tieleman, Wind tunnel simulation of wind loading on low-rise structures: a review, *J. Wind Eng. Ind. Aerodyn.* 91(12-15) (2003) 1627-1649. <https://doi.org/10.1016/j.jweia.2003.09.021>

650 [7] C. Grimmond, T.R. Oke, Aerodynamic properties of urban areas derived from analysis of surface form, *Journal of Applied Meteorology and Climatology* 38(9) (1999) 1262-1292. [https://doi.org/10.1175/1520-0450\(1999\)038%3C1262:APOUAD%3E2.0.CO;2](https://doi.org/10.1175/1520-0450(1999)038%3C1262:APOUAD%3E2.0.CO;2)

651 [8] J. Wiernga, Representative roughness parameters for homogeneous terrain, *Boundary-Layer Meteorology* 63(4) (1993) 323-363. <https://doi.org/10.1007/BF00705357>

652 [9] J. Wang, G.A. Kopp, Comparisons of aerodynamic data with the main wind force-resisting system provisions of ASCE 7-16. I: Low-rise buildings, *J. Struct. Eng.* 147(3) (2021) 04020347. [https://doi.org/10.1061/\(ASCE\)ST.1943-541X.0002925](https://doi.org/10.1061/(ASCE)ST.1943-541X.0002925)

653 [10] J. Wang, G.A. Kopp, Comparisons of Aerodynamic Data with the Main Wind Force-Resisting System Provisions of ASCE 7-16. II: Mid-and High-Rise Buildings, *J. Struct. Eng.* 147(3) (2021) 04020348. [https://doi.org/10.1061/\(ASCE\)ST.1943-541X.0002922](https://doi.org/10.1061/(ASCE)ST.1943-541X.0002922)

654 [11] P. Sachs, *Wind forces in engineering*, Elsevier2013.

655 [12] K.H. Kao, Measurements of Pressure-Velocity Correlation on a Rectangular Prism in Turbulent Flow (microfilm), National Library of Canada1970.

656 [13] R.E. Akins, J.E. Cermak, Wind pressures on buildings, Colorado State University1976.

657 [14] R.E. Akins, J.A. Peterka, J.E. Cermak, Mean force and moment coefficients for buildings in turbulent boundary layers, *J. Wind Eng. Ind. Aerodyn.* 2(3) (1977) 195-209. [https://doi.org/10.1016/0167-6105\(77\)90022-8](https://doi.org/10.1016/0167-6105(77)90022-8)

675 [15] N. Lin, C. Letchford, Y. Tamura, B. Liang, O. Nakamura, Characteristics of wind forces
676 acting on tall buildings, *J. Wind Eng. Ind. Aerodyn.* 93(3) (2005) 217-242.
677 <https://doi.org/10.1016/j.jweia.2004.12.001>

678 [16] A. Kareem, Measurements of pressure and force fields on building models in simulated
679 atmospheric flows, *J. Wind Eng. Ind. Aerodyn.* 36 (1990) 589-599. [https://doi.org/10.1016/0167-6105\(90\)90341-9](https://doi.org/10.1016/0167-6105(90)90341-9)

681 [17] J. Wang, G.A. Kopp, Gust effect factors for windward walls of rigid buildings with various
682 aspect ratios, *J. Wind Eng. Ind. Aerodyn.* 212 (2021) 104603.
683 <https://doi.org/10.1016/j.jweia.2021.104603>

684 [18] J. Wang, G.A. Kopp, Gust effect factors for regions of separated flow around rigid low-, mid-
685 , and high-rise buildings, *J. Wind. Eng. Ind. Aerod.* 232 (2023) 105254.
686 <https://doi.org/10.1016/j.jweia.2022.105254>

687 [19] J. Yu, M. Li, T. Stathopoulos, Q. Zhou, X. Yu, Urban exposure upstream fetch and its
688 influence on the formulation of wind load provisions, *Building and Environment* 203 (2021)
689 108072. <https://doi.org/10.1016/j.buildenv.2021.108072>

690 [20] L. An, N. Alinejad, S. Kim, S. Jung, Experimental study on wind characteristics and
691 prediction of mean wind profile over complex heterogeneous terrain, *Building and Environment*
692 (2023) 110719. <https://doi.org/10.1016/j.buildenv.2023.110719>

693 [21] A.F. Akon, G.A. Kopp, Mean pressure distributions and reattachment lengths for roof-
694 separation bubbles on low-rise buildings, *J. Wind Eng. Ind. Aerodyn.* 155 (2016) 115-125.
695 <https://doi.org/10.1016/j.jweia.2016.05.008>

696 [22] M. Kiya, K. Sasaki, Free-stream turbulence effects on a separation bubble, *J. Wind Eng. Ind.*
697 *Aerodyn.* 14(1-3) (1983) 375-386. [https://doi.org/10.1016/0167-6105\(83\)90039-9](https://doi.org/10.1016/0167-6105(83)90039-9)

698 [23] G. Solari, Gust buffeting. I: Peak wind velocity and equivalent pressure, *J. Struct. Eng.* 119(2)
699 (1993) 365-382. [https://doi.org/10.1061/\(ASCE\)0733-9445\(1993\)119:2\(365\)](https://doi.org/10.1061/(ASCE)0733-9445(1993)119:2(365))

700 [24] G. Solari, Gust buffeting. II: Dynamic alongwind response, *J. Struct. Eng.* 119(2) (1993) 383-
701 398. [https://doi.org/10.1061/\(ASCE\)0733-9445\(1993\)119:2\(383\)](https://doi.org/10.1061/(ASCE)0733-9445(1993)119:2(383))

702 [25] EN, Eurocode 1: Actions on Structures—Part 1–4: General Actions—Wind Actions, EN1994-
703 1-4: 2005, 2005.

704 [26] D. Banks, R. Meroney, The applicability of quasi-steady theory to pressure statistics beneath
705 roof-top vortices, *J. Wind Eng. Ind. Aerodyn.* 89(6) (2001) 569-598.
706 [https://doi.org/10.1016/S0167-6105\(00\)00092-1](https://doi.org/10.1016/S0167-6105(00)00092-1)

707 [27] C.-H. Wu, G.A. Kopp, Examination of the physical assumptions of a quasi-steady vector
708 model using the integral momentum equation, *J. Wind. Eng. Ind. Aerod.* 187 (2019) 73-84.
709 <https://doi.org/10.1016/j.jweia.2019.02.003>

710 [28] Y. Liu, G.A. Kopp, S.-f. Chen, An examination of the gust effect factor for rigid high-rise
711 buildings, *Frontiers in Built Environment* 6 (2021) 620071.
712 <https://doi.org/10.3389/fbuil.2020.620071>

713 [29] N. Alinejad, S. Kim, S. Jung, Wind velocity measurement using heterogeneous terrain
714 representation by Terraformer, in: DesignSafe-CI (Ed.) 2023. <https://doi.org/10.17603/ds2-6hg9-r131>

716 [30] N. Alinejad, S. Kim, S. Jung, Wind-Tunnel Testing of Low- and Mid-rise Buildings Under
717 Heterogeneous Upwind Terrains, *J. Struct. Eng.* (2023).

718 [31] N. Alinejad, S. Jung, G. Kakareko, P.L. Fernández-Cábán, Wind-Tunnel Reproduction of
719 Nonuniform Terrains Using Local Roughness Zones, *Bound. Layer Meteorol.* (2023) 1-22.
720 <https://doi.org/10.1007/s10546-023-00822-0>

721 [32] F.J. Masters, Boundary Layer Wind Tunnel, Basic Operations Manual, University of Florida,
722 Gainesville, FL, 2017.

723 [33] R.A. Catarelli, P.L. Fernández-Cabán, B.M. Phillips, J.A. Bridge, F.J. Masters, K.R. Gurley,
724 D.O. Prevatt, Automation and new capabilities in the university of Florida NHERI Boundary Layer
725 Wind Tunnel, *Frontiers in Built Environment* 6 (2020) 558151.
726 <https://doi.org/10.3389/fbuil.2020.558151>

727 [34] R. Kargarmoakhar, A.G. Chowdhury, P.A. Irwin, Reynolds number effects on twin box girder
728 long span bridge aerodynamics, *Wind & structures* 20(2) (2015) 327-347.
729 <https://doi.org/10.12989/WAS.2015.20.2.327>

730 [35] T. Ho, D. Surry, D. Morrish, NIST/TTU cooperative agreement—windstorm mitigation
731 initiative: Wind tunnel experiments on generic low buildings, London, Canada: BLWTSS20–
732 2003, Boundary-Layer Wind Tunnel Laboratory, Univ. of Western Ontario (2003).

733 [36] Scanivalve, ZOC33 Miniature Pressure Scanner., 2023.
734 [http://scanivalve.com/products/pressure-measurement/miniature-analogpressure-scanners/zoc33-
735 miniature-pressure-scanner/](http://scanivalve.com/products/pressure-measurement/miniature-analogpressure-scanners/zoc33-miniature-pressure-scanner/). (Accessed April 13rd 2023).

736 [37] M. Kovaerk, L. Amatucci, K.A. Gillis, F. Potra, J. Ratino, M.L. Levitan, D. Yeo, Calibration
737 of dynamic pressure in a tubing system and optimized design of tube configuration: A numerical
738 and experimental study, in: NIST (Ed.) Technical Note (NIST TN), National Institute of Standards
739 and Technology, Gaithersburg, MD, 2018. <https://doi.org/10.6028/NIST.TN.1994>

740 [38] C. Homer, J. Dewitz, L. Yang, S. Jin, P. Danielson, G. Xian, J. Coulston, N. Herold, J.
741 Wickham, K. Megown, Completion of the 2011 National Land Cover Database for the
742 conterminous United States—representing a decade of land cover change information,
743 Photogrammetric Engineering & Remote Sensing 81(5) (2015) 345-354.
744 <https://doi.org/10.14358/PERS.81.5.345>

745 [39] A.G. Davenport, Rationale for determining design wind velocities, *Journal of the Structural
746 Division* 86(5) (1960) 39-68. <https://doi.org/10.1061/JSDEAG.0000521>

747 [40] T. Vihma, H. Savijärvi, On the effective roughness length for heterogeneous terrain, *Q. J. R.
748 Meteorol.* 117(498) (1991) 399-407. <https://doi.org/10.1002/qj.49711749808>

749 [41] Y. He, P. Chan, Q. Li, Estimation of roughness length at Hong Kong International Airport via
750 different micrometeorological methods, *J. Wind Eng. Ind. Aerodyn.* 171 (2017) 121-136.
751 <https://doi.org/10.1016/j.jweia.2017.09.019>

752 [42] D. Arthur, S. Vassilvitskii, K-means++ the advantages of careful seeding, *Proceedings of the
753 eighteenth annual ACM-SIAM symposium on Discrete algorithms*, 2007, pp. 1027-1035.

754 [43] L.S. Pierre, G. Kopp, D. Surry, T. Ho, The UWO contribution to the NIST aerodynamic
755 database for wind loads on low buildings: Part 2. Comparison of data with wind load provisions,
756 *J. Wind Eng. Ind. Aerodyn.* 93(1) (2005) 31-59. <https://doi.org/10.1016/j.jweia.2004.07.007>

757 [44] J. Lieblein, Efficient methods of extreme-value methodology, Nuclear Energy Agency of the
758 OECD (NEA), Washington, D.C., 1976.

759 [45] ASCE, Minimum Design Loads and Associated Criteria for Buildings and Other Structures,
760 American Society of Civil Engineers, 2022.
761 <https://ascelibrary.org/doi/book/10.1061/9780784415788>

762 [46] NRC, National building code of Canada, Associate Committee on the National Building
763 Code, National Research Council1990.

764 [47] BS, Eurocode 1: actions on structures—part1-4: general actions-wind actions; BS EN 1991-1-
765 4: 2005, British Standard Institution, London, British Standard, 2005.

766 [48] A. Karimpour, N. Kaye, Z. Baratian-Ghorghi, Modeling the neutrally stable atmospheric
767 boundary layer for laboratory scale studies of the built environment, *Build. Environ.* 49 (2012)
768 203-211. <https://doi.org/10.1016/j.buildenv.2011.09.026>

769 [49] R. Catarelli, P. Fernández-Cabán, F. Masters, J. Bridge, K. Gurley, C. Matyas, Automated
770 terrain generation for precise atmospheric boundary layer simulation in the wind tunnel, *J. Wind.*
771 *Eng. Ind. Aerod.* 207 (2020) 104276. <https://doi.org/10.1016/j.jweia.2020.104276>

772 [50] A.K. Blackadar, H. Tennekes, Asymptotic similarity in neutral barotropic planetary boundary
773 layers, *Journal of the Atmospheric Sciences* 25(6) (1968) 1015-1020.
774 [https://doi.org/10.1175/1520-0469\(1968\)025%3C1015:ASINBP%3E2.0.CO;2](https://doi.org/10.1175/1520-0469(1968)025%3C1015:ASINBP%3E2.0.CO;2)

775 [51] N.J. Cook, Designers guide to wind loading of building structures. Part 1, US, 1986.

776 [52] H. Schlichting, K. Gersten, *Boundary-layer theory*, Springer2016.

777 [53] Y. Uematsu, N. Isyumov, Wind pressures acting on low-rise buildings, *J. Wind Eng. Ind.*
778 *Aerodyn.* 82(1-3) (1999) 1-25. [https://doi.org/10.1016/S0167-6105\(99\)00036-7](https://doi.org/10.1016/S0167-6105(99)00036-7)

779 [54] R. Macdonald, Modelling the mean velocity profile in the urban canopy layer, *Boundary-*
780 *Layer Meteorology* 97 (2000) 25-45. <https://doi.org/10.1023/A:1002785830512>

781 [55] J. Guo, Turbulent velocity profiles in clear water and sediment-laden flows, Colorado State
782 University1998.

783 [56] ESDU, Data item 82026. Strong winds in the atmospheric boundary layer. Part 1: hourly-
784 mean wind speeds., Engineering Sciences Data Unit, London, 1993.

785 [57] ESDU, Data item 85020. Characteristics of atmospheric turbulence near the ground. Part II:
786 single point data for strong winds (neutral atmospheric), Engineering Sciences Data Unit, London,
787 1985.

788 [58] P. Welch, The use of fast Fourier transform for the estimation of power spectra: a method
789 based on time averaging over short, modified periodograms, *IEEE Transactions on audio and*
790 *electroacoustics* 15(2) (1967) 70-73. [10.1109/TAU.1967.1161901](https://doi.org/10.1109/TAU.1967.1161901)

791 [59] ESDU, Characteristics of atmospheric turbulence near the ground, Part I: Definitions and
792 general information, Engineering Sciences Data Unit 74030 (1974).

793 [60] C.-H. Wu, G.A. Kopp, A quasi-steady model to account for the effects of upstream turbulence
794 characteristics on pressure fluctuations on a low-rise building, *J. Wind Eng. Ind. Aerodyn.* 179
795 (2018) 338-357. <https://doi.org/10.1016/j.jweia.2018.06.014>

796 [61] R. Macdonald, R. Griffiths, D. Hall, An improved method for the estimation of surface
797 roughness of obstacle arrays, *Atmospheric environment* 32(11) (1998) 1857-1864.
798 [https://doi.org/10.1016/S1352-2310\(97\)00403-2](https://doi.org/10.1016/S1352-2310(97)00403-2)