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DATA-DRIVEN PREDICTION OF WIND PRESSURE ON LOW-RISE BUILDINGS IN 1 

COMPLEX HETEROGENEOUS TERRAINS  2 
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Abstract 4 

This study presents a data-driven methodology for predicting the pressure coefficient statistics 5 

on the windward wall, roof, and leeward wall of low-rise buildings situated downwind of complex 6 

heterogeneous terrains. Two types of artificial neural network models were developed: the 7 

empirical parameter-based ANN (PANN) and the morphology-based ANN (MANN). Pressure 8 

data from wind tunnel tests on the Wind Engineering Research Field Laboratory (WERFL) 9 

building model (building height H = 4 m) in complex heterogeneous terrain were used to develop 10 

the ANN models. These models were evaluated against a non-linear fitted model to assess their 11 

predictive performances. PANN and MANN demonstrated superior performance in capturing the 12 

effects of terrain complexity on the mean (Cp,mean) and the root-mean-square (Cp,RMS) wind pressure 13 

coefficients for the windward wall, roof, and leeward wall. Optimal prediction was achieved with 14 

a terrain patch size of WൈL=4ൈ2, equating to a full-scale area of approximately 72 m ൈ 23 m. 15 

This suggests that the morphology within approximately 100 m ൈ 50 m (25H ൈ 12.5H) in front of 16 

a low-rise building has the greatest correlation with the wind pressure coefficient. Despite lower 17 

R2 values for max Cp,RMS on the leeward wall across all models, both PANN and MANN showed 18 

promising accuracy for the six outputs studied. Moreover, a global sensitivity analysis confirmed 19 
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the impact of terrain roughness and complexity on the prediction models particularly on max Cp,RMS, 20 

and underscored the dominance of effective roughness length z଴,௘௙௙  and the coefficient of 21 

variation of roughness length COV௭బ in influencing model outcomes.  22 

Keywords  23 

Low-rise building; Wind pressure coefficient; Complex heterogeneous terrain; Artificial Neural 24 
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1. Introduction 26 

Terrain configuration is a critical factor in introducing uncertainties in wind loads, as underscored 27 

in the Davenport's wind loading chain [1]. The influence of terrain roughness becomes particularly 28 

pronounced for low-rise buildings situated near the ground surface, as they are exposed to 29 

increased turbulence. Although the majority of current knowledge is confined to homogeneous 30 

(i.e., uniform) terrain, terrains in the real world are often complex and have abrupt changes in 31 

surface roughness. Especially, upstream terrain configurations within a short distance upwind of a 32 

site have a direct impact on wind loads on building envelopes [2].  33 

Significant knowledge gaps still remain regarding the influence of the complex heterogeneous 34 

terrain on the pressure experienced by low-rise buildings. Only a few studies have discussed the 35 

effect of terrain complexity on wind loads. Yu et al. [3] conducted wind tunnel tests using two real 36 

city terrain models and proposed a minimum upstream patch length for wind tunnel testing. They 37 

experimentally revealed that mean velocity profiles in urban areas are influenced by an upstream 38 

patch length up to 750 m, and are not affected by the patch that exceeds 1250 m. Wang and 39 

Stathopoulos [2] emphasized the significance of local, small-scale roughness changes in affecting 40 

the variation of the wind speed profile above heterogeneous terrain. Kim et al. [4] investigated the 41 
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effect of a large group of surrounding buildings on a typical low-rise building by measuring wind 42 

pressure. They observed that, although the mean pressure coefficient decreased, the peak pressure 43 

coefficient could increase due to the enhancement of the turbulence component. An et al. [5] 44 

conducted extensive wind tunnel testing to explore wind characteristics over complex 45 

heterogeneous terrains. They quantified the relationship between the variance of geometric 46 

morphology and wind characteristics, ultimately concluding that terrain complexity significantly 47 

increased turbulence intensity levels. Subsequently, An and Jung [6] investigated the wind 48 

pressure coefficients on the windward wall and roof and quantified the influence of terrain 49 

complexity on the pressure behaviors of low-rise buildings. Kim et al. [7] experimentally delved 50 

into the complex dynamics of upwind terrain transition from open country to suburban areas and 51 

its effects on wind pressures and forces on low-rise buildings. It is anticipated that pressure 52 

coefficients over complex heterogeneous terrains will differ from those over homogeneous terrains 53 

due to the substantial influence of turbulence properties in the approaching wind flow on the 54 

pressure field [8, 9]. However, it is still challenging to predict the highly variable wind pressure 55 

on low-rise buildings over complex heterogeneous terrains due to the lack of field-measured and 56 

experimental data. Until recently, there has been no field-measured or experimental data on the 57 

variability of wind pressure that can be caused by the wide variety of terrain that exists in the real 58 

world. 59 

Recent evidence suggests that artificial neural network (ANN) methods, as a data-driven 60 

approach, are particularly effective in addressing problems in wind engineering due to their 61 

robustness in solving multivariate and nonlinear regression problems. Numerous studies have 62 

demonstrated the efficacy of ANN methods for predicting wind pressure on building structures. 63 

Gavalda et al. [10] studied variable plan dimensions and roof slope in a set of parameters 64 
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considered in earlier interpolation studies using ANN. Chen et al. [11] attempted predict wind 65 

pressure on low-rise buildings using an ANN approach. They proposed using ANN for the 66 

prediction of wind pressure time series. Bre et al. [12] adopted an ANN to predict the surface-67 

average pressure coefficients for each wall and roof according to the building geometries and the 68 

wind directions. Fernández-Cabán et al. [13] applied an ANN to predict roof pressures on low-rise 69 

structures based on freestream turbulence conditions. The ANN model was trained and tested using 70 

a comprehensive dataset from a recent boundary layer wind tunnel pressure dataset for 71 

homogeneous terrain cases. Tian et al. [14] also applied an ANN for predicting mean and peak 72 

wind pressure coefficients on the surface of low-rise, gable roof buildings. They suggested that 73 

with a large enough database, the ANN-based method could significantly enhance knowledge yield 74 

and reduce experimental effort. Ding et al. [15] developed and optimized ANN models for 75 

predicting wind pressures on low-rise buildings using genetic algorithms and Bayesian 76 

optimization. They evaluated the influences of the hyperparameters, the number of data pairs, and 77 

the ANN structures on their performances. Lang et al. [16] proposed and verified the performance 78 

of an improved random forest algorithm for predicting the mean and fluctuating wind pressure 79 

coefficients of high-rise buildings. Although such studies have used data-driven approaches for 80 

predicting wind pressure on buildings, these studies have been limited for homogeneous terrains 81 

due to the lack of wind pressure dataset over complex heterogeneous terrains. Neither ANN nor 82 

any other data-driven approaches can be found in the literature to predict the statistics of 𝐶௉ on 83 

buildings over complex heterogeneous terrains, and understanding the features that can be used to 84 

assess the variability of wind pressure according to the degree of terrain complexity is still 85 

insufficient. Due to cost and time constraints, the full-scale or wind tunnel experiments commonly 86 
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entail a limited number of approach flow conditions, and such limitations of the dataset prevented 87 

the application of data-driven approaches. 88 

This study developed ANN models for predicting the peak values of mean pressure coefficients 89 

(Cp,mean) and root-mean-square pressure coefficients (Cp,RMS) on low-rise buildings. The recently 90 

released wind tunnel testing dataset over complex heterogeneous terrains was used for training the 91 

ANN models. As the very first study on the data-driven approach for predicting wind pressure 92 

over complex heterogeneous terrains, the best input features that can represent the terrain 93 

complexity level were investigated. The two different types of input features were applied to train 94 

the ANN models: empirical parameters (indirect information) and morphology (direct 95 

information). Sensitivity analysis was performed on each model to analyze the degree of influence 96 

on the wind pressure coefficient. Moreover, we proposed the most appropriate patch size for 97 

predicting the wind pressure coefficient by comparing the prediction performance of ANN models 98 

using different patch sizes of the terrain. The ANN models, the proposed input features, and the 99 

patch size will be valuable preliminary research for future research on wind pressure in complex 100 

heterogeneous terrains. 101 

 102 

2. Methodology 103 

2.1. Wind Tunnel Test Dataset 104 

In this section, we provide a brief overview of the wind tunnel test dataset used for developing 105 

the ANN models. Alinejad et al. [17] offers comprehensive details about the test setup. For further 106 

details on the site selection, reproducing heterogeneous terrains from the real sites, and an in-depth 107 

investigation into the wind pressure coefficients refer to An et al. [5], An and Jung [6], and Alinejad 108 

et al. [18]. 109 
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The wind tunnel testing was carried out at the Natural Hazard Engineering Research 110 

Infrastructure (NHERI) experimental facility situated at the University of Florida [19]. Fig. 1 111 

illustrates the schematic layout of the wind tunnel facility, which is an open circuit tunnel with 112 

dimensions of 6 m (width) × 3 m (height) × 38 m (length). The tunnel inlet incorporates eight vane 113 

axial fans, each driven by a 56-kW electric motor. The flow generated by these fans is conditioned 114 

by honeycombs positioned approximately 3 m downwind from the fan bank. 115 

 116 

Fig. 1. Schematic plan of the wind tunnel facility at the University of Florida [20]. 117 

This facility houses a fully automated terrain simulator named the "Terraformer." This state-of-118 

the-art technology enables the swift and precise simulation of terrain, addressing the time-119 

consuming and labor-intensive challenges associated with wind tunnel testing. The Terraformer 120 

consists of an 18 × 62 array of computer-controlled roughness blocks (total 1116 elements) in a 121 

staggered layout, covering a patch size of 6.1 m × 18.6 m. Each roughness element is equipped 122 

with an actuator, allowing for independent height adjustments. These elements have a plan 123 

dimension of 100 mm × 50 mm and adjustable heights ranging from 0 to 160 mm. The 124 

reconfiguration of all 1116 elements typically takes less than 60 s, making the Terraformer an 125 

efficient tool for simulating a wide range of homogeneous and heterogeneous upwind terrains. 126 

Additionally, a turntable located at the end of the upwind patch enables the simulation of wind 127 
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effects on structures at various wind incidence angles. Wind tunnel experiments varied the wind 128 

incident angle (𝛼) to 0°, 15°, 30°, 45°, 60°, 75°, and 90°. 129 

Previous research on low-rise structures in boundary layer wind tunnels has indicated that 130 

accurately replicating full-scale turbulence characteristics (such as integral length scale) at or near 131 

the height of the building model is crucial for precisely quantifying extreme aerodynamic loads, 132 

especially in regions of flow separation. As Stathopoulos [21] summarized, simulating only the 133 

lower region of the atmospheric surface layer (ASL) with larger model scales (such as 1:50 to 134 

1:100) is an effective approach for addressing the length scale problem encountered in wind tunnel 135 

testing. Numerous previous wind tunnel tests for low-rise buildings were conducted using model 136 

scales within this range [22-25]. This test adopted a 1:50 scale, indicating the maximum vertical 137 

measurement height of 1500 mm in test scale corresponds to 75 m in full-scale representation. 138 

Similarly, the Terraformer simulates terrain of 930 m on a full-scale. This satisfies the upstream 139 

fetch considered significant (1 km) when assessing wind loads on lower buildings (building 140 

height<50 m) [26, 27]. The low-rise building model has dimensions of 274 mm × 182 mm × 80 141 

mm in testing scale (13.7 m ൈ 9.1 m ൈ 4 m in full-scale) with a 1/4:12 gable roof slope, mirroring 142 

the design of the Wind Engineering Research Field Laboratory (WERFL) building at Texas Tech 143 

University [28].  144 

Pressure measurements were acquired using eight high-speed electronic scanning modules from 145 

Scanivalve ZOC33 [29]. Pressure taps are connected to the modules via 122 cm long urethane 146 

tubing, and the sampling frequency was set at 625 Hz. Adjustments were made to minimize tubing 147 

effects on pressure measurements, reducing distortion on amplitude and phase shift [30]. Pressure 148 

data were recorded based on the time series.  149 
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Fig. 2 provides a visual representation of the pressure tap layout on the low-rise building model. 150 

The building model was outfitted with a total of 206 pressure taps, comprising 92 roof taps and 151 

114 wall taps. The tap positions adhered to the layout used in the WERFL model of the NIST 152 

aerodynamic database [31].  153 

Our aim was to predict peak values of wind pressure coefficient statistics. The pressure 154 

coefficient at a point of interest, denoted as Cp, is defined as the ratio between the measured 155 

building surface gauge pressure and the roof-height dynamic pressure, expressed by the formula: 156 

 𝐶௣ሺ𝑡ሻ ൌ
𝑝ሺ𝑡ሻ െ 𝑝଴
0.5𝜌𝑈ு

ଶ  (1) 

Here, UH represents the wind speed at the eave height of the low-rise building (4 m), and ρ 157 

denotes the air density. The term 𝑝ሺ𝑡ሻ െ 𝑝଴ signifies the net wind pressure at the point of interest, 158 

with 𝑝଴ referring to the reference pressure. The representative tap line was selected to capture the 159 

peak of Cp statistics, particularly peak mean (Cp,mean) and maximum root-mean-square (Cp,RMS) of 160 

Cp. This tap line, comprising the series of taps closest to the center of the low-rise building in the 161 

perpendicular direction of the ridge, has been consistently employed in previous studies to examine 162 

flow separation and reattachment behavior on the building surfaces [8, 31]. Fig. 3 showcases the 163 

definition of peak Cp,mean and max Cp,RMS.  164 
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 165 

Fig. 2. The low-rise building model and tap information: (a) Plan view, and (b) 3D view. 166 

 167 

Fig. 3. Definition of peak Cp,mean and max Cp,RMS.  168 

Complex heterogeneous terrain configurations drawn from real terrains were compiled for wind 169 

tunnel testing. The primary data source was the National Land Cover Database (NLCD) [32] 170 

provided by the US Geological Survey. A total of 529 sites from 32 US states prone to hurricanes 171 

were selected. The k-means algorithm [33] was used in the 2D space defined by the mean and 172 

standard deviation to select representative terrains with distinct stochastic properties of local 173 

roughness length, leading to the identification and classification of 50 distinct clusters. Thus, the 174 



This file is the final accepted version of the manuscript, published in 
https://doi.org/10.1016/j.buildenv.2024.112022 

10 
 

50 representative terrains were conclusively selected from 529 sites in the US. In the wind tunnel, 175 

these roughness lengths were correlated with the corresponding block heights [34]. The details of 176 

producing heterogeneous terrains in the wind tunnel were described by Alinejad et al. [35]. Fig. 4 177 

provides examples of the selected sites and their corresponding block height maps in the 178 

Terraformer, along with the simulated terrain morphology generated for site 8. Since wind tunnel 179 

experiments varied the wind incident angle (𝛼) to seven cases, a total of 350 datasets (7 angles ൈ 180 

50 terrains) was provided for the development of the prediction model.  181 

 182 

Fig. 4. Example of complex heterogeneous terrains (site 8): (a) Aerial view (from Google Earth); (b) Block height 183 
map; and (c) Actual photo in the wind tunnel. 184 

2.2. Artificial Neural Network 185 

Artificial Neural Network (ANN) operates by processing information through interconnected 186 

nodes in layers; input data is fed into the network, processed through one or more hidden layers 187 

where each node computes weighted sums of its inputs followed by an activation function, and 188 

finally produces an output through the output layer. This architecture enables the network to learn 189 

complex nonlinear relations between the input and output pairs by adjusting the weights during 190 

the training process. Fig. 5 shows the architecture of an ANN, which typically includes n-input 191 

nodes, an output node, and one or more hidden layers. ANN models for predicting peak Cp,mean 192 

and max Cp,RMS on the windward wall, roof, and leeward wall (total 6 models) were independently 193 
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developed. The objective function incorporated the mean squared error (MSE) loss function and 194 

the ridge (L2) penalty term, and backpropagation was used to adjust the weights. The loss function 195 

in an ANN measures the difference between the predicted output and the actual target value. It 196 

guides the optimization process by quantifying how well or poorly the model performs, with the 197 

purpose of minimizing this error to improve the model's accuracy. 198 

We developed two types of ANN models using different input features related to the level of 199 

terrain complexity. The first type is a parameter-based ANN model (PANN). The empirical 200 

parameterseffective roughness length 𝑧଴,௘௙௙ and the coefficient of variation for the 𝑧଴ values in 201 

the terrain 𝐶𝑂𝑉௭బused as input features were determined based on the investigations from the 202 

author's previous studies [5, 6]. In our prior work, An et al. [5] investigated the influence of terrain 203 

complexity on the mean wind profile and turbulence intensity. They found that the 𝑧଴,௘௙௙, widely 204 

used in atmospheric surface layer modeling for moderately homogeneous terrain or smaller-scale 205 

inhomogeneity, was insufficient for complex heterogeneous terrain. Additional consideration of 206 

the morphological variation of the terrain was necessary. It was found that the 𝑧଴,௘௙௙ and the 𝐶𝑂𝑉௭బ 207 

are dominant parameters affecting wind characteristics over complex heterogeneous terrains. 208 

Subsequently, An and Jung [6] found that wind characteristics influenced by terrain complexity 209 

affected the variability of wind pressure on low-rise buildings, even though the 𝑧଴,௘௙௙ was similar. 210 

Thus, PANN used three input features: 𝑧଴,௘௙௙, 𝐶𝑂𝑉௭బ, and wind incident angle 𝛼.  211 

𝑧଴,௘௙௙ was calculated using a grid-squared average-based approach, utilizing the 𝑧଴ maps of the 212 

terrains [36, 37]. This approach relied on the linear approximation of the Rossby number similarity 213 

theory and derived the following formula [36]: 214 

 ln൫𝑧଴,௘௙௙൯ ൌ 〈ln ሺ𝑧଴ሻ〉 ൅ 𝑎𝜎௟௡ሺ௭బሻ
ଶ  (2) 
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Here, a represents the Rossby value, typically set to 0.09, and 𝜎௟௡ሺ௭బሻ
ଶ  indicates the variance 215 

within the area. The 〈 〉 notation represents the area-weighted logarithmic average operation. 𝐶𝑂𝑉௭బ 216 

can be calculated as the standard deviation/average of 𝑧଴ values in a given map. The 𝑧଴ maps can 217 

be attained by transforming the block height map, shown in Fig. 4 (b). The relationship between 218 

block height and 𝑧଴ is outlined in Appendix B of An et al. [5]. They performed a wind tunnel 219 

experiment by uniformly changing the block height and then used an anemometric approach [38] 220 

to estimate 𝑧଴ caused by each block height. By using the block height vs 𝑧଴ relationship obtained 221 

from the estimated results, a 𝑧଴ map of the given terrain can be obtained. 222 

The second type is a morphology-based ANN model (MANN). Direct use of morphology in wind 223 

loading estimation was shown to be effective in a previous study [39]. Here, the values of the 𝑧଴ 224 

maps were directly used as input features, along with 𝛼. The number of input features equals the 225 

product of the number of x-direction blocks (L) and the number of y-direction blocks (W).  226 

For both approaches, the model development was iteratively conducted, while changing patch 227 

size to determine the optimal patch size that showed the best prediction performance. As 228 

investigated in previous studies, the roughness of the terrain at a certain distance from the building 229 

does not have a significant effect on the wind pressure [2, 3]. Thus, considering information from 230 

a wider patch does not guarantee higher wind pressure prediction accuracy. In the case of PANN, 231 

𝑧଴,௘௙௙ and 𝐶𝑂𝑉௭బ change depending on the patch size being considered, so if the morphology of an 232 

excessively wide patch is considered, the correlation with wind pressure may decrease and 233 

prediction performance may deteriorate. Moreover, for MANN, patch size is a dominant factor 234 

affecting the effectiveness of the model training since the number of input features is the number 235 

of blocks in the considered patch sizes. By comparing the prediction performance with changing 236 
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the patch size, the best patch size that showed the greatest correlation with the characteristics of 237 

wind pressure was explored.  238 

 239 

Fig. 5. Architecture of ANN and input features of PANN and MANN. 240 

In developing ANN models, architecture optimization can significantly improve accuracy since 241 

a more efficient and carefully designed architecture achieves good generalization and avoids 242 

overfitting. Optimal network structure is mostly determined by the data nature rather than the 243 

sample size, suggesting a data-driven approach to choosing the ANN architecture [40]. To 244 

determine the optimal hyperparameters, Bayesian optimization (BO) is applied in this study. BO 245 

has been recognized as an excellent tool to find the global optimum with a minimum number of 246 

steps and has outperformed other state-of-the-art global optimization algorithms on some 247 

challenging optimization benchmarks [41]. The strategy of BO assumes the unknown objective 248 

function as a random function and places a prior over it, which captures beliefs about the behavior 249 

of the objective function. Ding et al. [15] reported that the BO-based neural network (BONN) was 250 

most efficient, saving 88-94% computational time compared with the traditional trial-and-error 251 

neural network. The effectiveness of BONN for wind pressure prediction has already been 252 

validated in previous studies [41, 42]. The number of layers and the number of nodes ranged from 253 
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1-2 and 1-50, respectively. The optimization options for the activation function were none, relu, 254 

tanh, and sigmoid. Out of a total of 50 terrains, 10 (20%) randomly selected terrains were used as 255 

the test set, and data from the remaining 40 (80%) terrains were used as the training set. The 256 

numbers of the total training set and test set were 280 and 70, respectively. A validation set was 257 

not separately divided since the BO method was applied to determine optimal architecture to 258 

prevent overfitting.  259 

As indicators of prediction performance, coefficient of determination (R2), root-mean-square 260 

error (RMSE), and maximum absolute error (MAE) were applied. R2 is commonly used to assess 261 

the goodness of fit of surrogate models. If the model perfectly predicts the variance of the data, R2 262 

equals 1. This metric provides an overall indication of how well the model fits the data but can 263 

sometimes fail to reflect overfitting. RMSE directly measures the accuracy of predictions, and 264 

lower RMSE values indicate higher accuracy. It is sensitive to outliers, providing a measure of the 265 

magnitude of large errors. The MAE metric is also sensitive to outliers. Additionally, this can be 266 

beneficial to directly evaluate the worst case. 267 

𝑅ଶ ൌ 1 െ
∑ ሺ𝑂௜ െ 𝑃௜ሻଶ
௡
௜ୀଵ

∑ ሺ𝑂௜ െ 𝑂തሻଶ௡
௜ୀଵ

 (3) 

𝑅𝑀𝑆𝐸 ൌ ඩ
1
𝑛
෍ሺ𝑂௜ െ 𝑃௜ሻଶ
௡

௜ୀଵ

 (4) 

𝑀𝐴𝐸 ൌ max ሺ|𝑂 െ 𝑃|ሻ (5) 

 268 

3. Results  269 

3.1. Non-Linear Fitting Model  270 
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If general non-linear regression shows better prediction performance, using the ANN method as 271 

a surrogate model might not be necessary. As a prelimanary anlaysis for computational 272 

effectiveness, the non-linear fit (NLF) using a 2nd order-polynomial function was conduted with 273 

the same parameters as PANN, i.e., 𝑧଴,௘௙௙, 𝐶𝑂𝑉௭బ, and 𝛼. Similar to the ANN models, 80% of the 274 

dataset was used for NLF and the other 20% of the data was used as the test set. 275 

The prediction performance of NLF models with varying patch window sizes is depected in Fig. 276 

6, showcasing (i) R2, (j) RMSE, and (k) MAE metrics. Fig. 6 (a) and (b) illustrate the performance 277 

for peak Cp,mean and max Cp,RMS, respectively. The further to the bottom right of the heatmap, the 278 

larger the area that was considered when calculating 𝑧଴,௘௙௙ and 𝐶𝑂𝑉௭బ. For example, the cell at the 279 

most bottom right indicates that 18 blocks in y-direction and 62 blocks in x-direction were used to 280 

calculate 𝑧଴,௘௙௙ and 𝐶𝑂𝑉௭బ. Fig. 6 (a) shows the prediction performance for Cp,mean. On the other 281 

hand, fewer blocks are considered toward the upper left. The number of blocks considered changes 282 

around the location closest to the building model, that is, the block corresponding to (x, y)=(29500 283 

mm, 0 mm) in Fig. 1. For example, the model of W×L=1×2 utilizes the two blocks located in the 284 

center of the row closest to the building model. 285 

The overall prediction performance was acceptable in terms of the three performance indicators. 286 

The worst R2 was still acceptable as 0.95 when WൈL=18ൈ62. It was clearly shown that the 287 

prediction performance improved with a smaller window size. When the patch size was within 288 

WൈL=8ൈ3, R2 reached 0.99, and RMSE and MAE were also reduced to less than 0.04 and 0.16, 289 

showing excellent accuracy.  290 

As shown in Fig. 6 (b), the NLF model for max Cp,RMS also displayed higher prediction 291 

performance when the patch size was within WൈL=8ൈ3. However, its accuracy was relatively 292 

worse than the model for peak Cp,mean, showing an R2 of less than 0.8. Additionally, prediction 293 
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performance cannot be guaranteed on roofs or leeward walls where flow separation occurs and 294 

greater wind pressure variability is observed. Conclusively, there were significant limitations in 295 

achieving acceptable prediction accuracy using NLF for all statistics of Cp on all walls. However, 296 

based on the change in prediction performance with varying patch size, it can be inferred that the 297 

morphology information within WൈL=8ൈ3 had the highest correlation with the wind pressure.  298 
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 299 

Fig. 6. Prediction performance of NLF in windward wall: (a) Cp,mean, and (b) Cp,RMS; with (i) R2, (j) RMSE, and (k) 300 
MAE. 301 

3.2. PANN and MANN Models 302 

Figs. 7 and 8 showcase the prediction performances of PANN and MANN models. The ANN 303 

models were not developed for all patch sizes, and the considered patch sizes were limited within 304 

W×L=12×12. PANN demonstrated exceptional predictive accuracy for peak Cp,mean, achieving an 305 

R2 nearing 1 and an MAE lowered to 0.07.  306 
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MANN also showcased impressive prediction performance. For peak Cp,mean, R2 was improved 307 

to nearly 1.00, with RMSE and MAE reduced to 0.04 and 0.09, respectively. The predictions for 308 

max Cp,RMS also indicated strong performance, as R2 reached 0.92. However, the RMSE and MAE 309 

for MANN were slightly higher than those for PANN, highlighting that the empirical parameters 310 

in PANN capture terrain complexity more effectively. Moreover, with MANN, the increase in the 311 

number of input features with patch size could diminish computational efficiency, and its 312 

performance, in terms of MAE and RMSE, seems less optimal than that of PANN. 313 

For both models, the predictions for max Cp,RMS revealed a challenge, with lower R2 and higher 314 

RMSE and MAE than for peak Cp,mean. This discrepancy underscores the complexities in 315 

accurately estimating wind pressure variability, leading to greater data dispersion. 316 
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 317 

Fig. 7. Prediction performance of PANN models in windward wall: (a) Peak Cp,mean, and (b) Max Cp,RMS; with (i) R2, 318 
(j) RMSE, and (k) MAE. 319 

 320 

Fig. 8. Prediction performance of MANN models in windward wall: (a) Peak Cp,mean, and (b) Max Cp,RMS; with (i) R2, 321 
(j) RMSE, and (k) MAE. 322 
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Fig. 9 displays the training histories for PANN and MANN models with a patch size of 323 

WൈL=4ൈ2, which demonstrated the best overall prediction performance. Since no validation set 324 

was used, only the loss for the training set is presented. The backpropagation algorithm was 325 

utilized to minimize the loss (MSE), and by the end of the training process, both PANN and 326 

MANN models converged to satisfactory performance results.  327 

 328 

Fig. 9. Performance history of training sets: (a) Peak Cp,mean; and (b) Max Cp,RMS. 329 

3.3. Comparison 330 

Tables 1 and 2 detail the highest prediction accuracies for peak Cp,mean and max Cp,RMS for NLF, 331 

PANN, and MANN, along with the optimal patch sizes. NLF demonstrates robust prediction 332 

accuracy for Cp,mean on the windward wall, attributed to its lesser susceptibility to variability-333 

inducing phenomena like flow separation and vortices. This implies a lesser degree of nonlinearity, 334 

enabling NLF to achieve strong predictive outcomes. However, across the other five modelsെpeak 335 

Cp,mean for the roof and leeward wall, and max Cp,RMS for the windward wall, roof, and leeward 336 

wallെ the ANN models outperformed NLF in prediction accuracy. 337 

Both PANN and MANN exhibited outstanding predictive accuracy with R2 exceeding 0.9 in 338 

nearly all scenarios, barring max Cp,RMS predictions for the leeward wall. The reduced performance 339 

for max Cp,RMS on the leeward wall is attributed to significant wind pressure variability in this 340 
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region, likely due to vortices. This variability presented challenges in achieving comparable 341 

prediction accuracy to that of the windward wall and roof, using only a limited set of empirical 342 

parameters (𝑧଴,௘௙௙ and 𝐶𝑂𝑉௭బ) or solely terrain morphology data.  343 

Analysis of the optimal patch size for the best-performing model reveals that when terrain 344 

morphology information within a WൈL=4ൈ2 area was utilized, all three modelsെNLF, PANN, 345 

and MANNെshowed highly satisfactory predictive results. Differences in performance among 346 

these models within this specific range were negligible. The simulated full-scale terrain area by 347 

these blocks, WൈL=4ൈ2, approximates 72 m ൈ 23 m. Therefore, predictions of peak Cp,mean and 348 

max Cp,RMS with sufficiently high accuracy are possible if morphology information corresponding 349 

to at least a 100 m ൈ 50 m area is acquired for actual complex heterogeneous terrains. This is 350 

approximately equivalent to 25 and 12.5 times the building height H (= 4 m). This suggests that 351 

the morphology within approximately 25H × 12.5H in front of the WERFL low-rise building has 352 

the greatest correlation with the wind pressure coefficient, while terrain morphology at locations 353 

farther away from the low-rise building has a lower correlation with the wind characteristics and 354 

pressure experienced by the low-rise building. This is consistent with the results observed in 355 

previous studies [2, 5]. Consequently, when training an ANN model using information that 356 

includes distant terrain morphology, the model's performance may deteriorate. 357 

Fig. 10 demonstrates the test set prediction results for NLF, PANN, and MANN models. With 358 

the exception of peak Cp,mean for the windward wall, NLF frequently surpassed the 10% error 359 

margin, even revealing data points exceeding the 25% error bound. Conversely, both PANN and 360 

MANN maintained acceptable prediction accuracies. 361 

Fig. 11 displays prediction results using NLF, PANN, and MANN at three specific sitesെ5, 31, 362 

and 43െrandomly chosen from the test set. The morphologies of these three sites are shown in Fig. 363 
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12. Although the selection process for the test set was random, the chosen terrains successfully 364 

exhibit a wide range of real-world terrain complexity. As shown in Fig. 11, variations in terrain 365 

can significantly influence the pressure coefficient. Specifically, at site 43, which is characterized 366 

by relatively high terrain complexity as shown in Fig. 12 (c), there was a noticeable increase in 367 

larger values of Cp,mean and Cp,RMS due to increased turbulence intensity. This phenomenon has 368 

been detailed by An and Jung [6]. PANN and MANN accurately captured the trends of peak Cp,mean 369 

and max Cp,RMS as the wind incident angle varied. The nonlinearity of peak Cp,mean on the windward 370 

wall was notably less than in the other five cases, which enables NLF to exhibit high prediction 371 

performance. However, for scenarios with enhanced nonlinearity, such as max Cp,RMS on the 372 

windward wall and both peak Cp,mean and max Cp,RMS on the roof and leeward wall, NLF's 373 

performance lagged behind the ANN models.  374 

  375 



This file is the final accepted version of the manuscript, published in 
https://doi.org/10.1016/j.buildenv.2024.112022 

23 
 

 376 

Table 1. Comparison of best prediction performance for peak Cp,mean. 377 

Wall Model 
Patch size Prediction performance 

W L R2 RMSE MAE 

Windward wall 
NLF 4 2 0.988 0.033 0.134 

PANN 4 2 0.996 0.019 0.093 

MANN 2 2 0.996 0.048 0.111 

Roof 
NLF 4 2 0.941 0.081 0.348 

PANN 4 2 0.986 0.039 0.315 

MANN 2 2 0.992 0.069 0.161 

Leeward wall 
NLF 4 2 0.811 0.079 0.236 

PANN 4 2 0.986 0.021 0.116 

MANN 2 2 0.992 0.039 0.112 

 378 

Table 2. Comparison of best prediction performance for max Cp,RMS. 379 

Wall Model 
Window size Prediction performance 
W L R2 RMSE MAE 

Windward wall 
NLF 4 2 0.762 0.041 0.244 

PANN 2 1 0.934 0.022 0.223 
MANN 2 2 0.921 0.055 0.223 

Roof 
NLF 4 2 0.849 0.041 0.185 

PANN 2 1 0.970 0.018 0.105 
MANN 2 1 0.934 0.064 0.137 

Leeward wall 
NLF 4 2 0.763 0.034 0.258 

PANN 2 1 0.834 0.028 0.267 
MANN 2 1 0.815 0.070 0.269 

 380 
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 381 

Fig. 10. Comparison of prediction results for NLF, PANN, and MANN for test set: (a) Windward wall, (b) Roof, 382 
and (c) Leeward wall; with (i) Peak Cp,mean, and (j) Max Cp,RMS. 383 
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 384 

Fig. 11. Comparison of prediction results for specific sites in test set with varying wind incident angles: (a) 385 
Windward wall, (b) Roof, and (c) Leeward wall; with (i) Peak Cp,mean, and (j) Max Cp,RMS. 386 
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 387 

Fig. 12. Morphology of selected terrains used in test sets: (a) Site 5; (b) Site 31; and (c) Site 43. 388 

Fig. 13 illustrates the differences between the predicted and actual values of peak Cp,mean and max 389 

Cp,RMS as a function of changes in 𝑧଴,௘௙௙ . The 𝑧଴,௘௙௙  was calculated using the morphology 390 

information within a WൈL=4ൈ2 area. To avoid the potential misrepresentation of small difference 391 

values as disproportionately large errors when expressed as percentages, these difference values 392 

are presented. Across all 𝑧଴,௘௙௙ ranges, similar prediction accuracies are observed for both peak 393 

Cp,mean and max Cp,RMS, with no significant differences identified within any specific 𝑧଴,௘௙௙ range. 394 

Histograms of the differences showcase that the majority of the distribution is tightly clustered 395 

around zero. Cp,RMS values are typically smaller than Cp,mean values. Consequentaly, it was observed 396 

that the scatter would be more concentrated within a narrower range of differences for Cp,RMS 397 

compared to Cp,mean. This pattern is consistent with the MAE results presented in Tables 1 and 2. 398 



This file is the final accepted version of the manuscript, published in 
https://doi.org/10.1016/j.buildenv.2024.112022 

27 
 

 399 

Fig. 13. The difference between predicted and true value of peak Cp,mean and max Cp,RMS. 400 

Sensitivity analysis evaluates how variations in a model's or system's inputs contribute to 401 

uncertainty in its outputs. Conducting sensitivity analysis on the developed ANN models allows 402 

us to identify the parameters that significantly influence wind pressure statistics. The Sobol 403 

method, a type of global sensitivity analysis, is particularly advantageous because it measures 404 

sensitivity across the entire input space, accommodates nonlinear responses, and assesses the 405 

effects of interactions in non-additive systems [43]. The Sobol index was calculated using the 406 

Saltelli method [44]. Fig. 14 outlines the global sensitivity analysis results. The PANN and MANN 407 
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models utilized terrain morphology information of WൈL=4ൈ2. The incident wind angle was 408 

omitted to concentrate on terrain complexity-related variables. 409 

As illustrated in Fig. 14 (a), z଴,௘௙௙ emerged as a more influential factor than COV௭బ in all instances 410 

except for peak Cp,mean at the Leeward wall, where, unlike other wall types, an increase in z଴,௘௙௙ 411 

did not correlated with heightened peak Cp,mean. This pattern, well-represented in the ANN models, 412 

aligns with observations by An and Jung [6]. Additionally, max CP,RMS was more significantly 413 

impacted by terrain roughness and complexity compared to peak Cp,mean, a finding consistent with 414 

the variable’s direct association with wind speed variability. These sensitivity outcomes from the 415 

PANN model corroborate existing wind engineering insights, affirming the model’s accurate 416 

reflection of physical phenomena.  417 

For MANN, given the broader impact scope of row units over individual blocks, sensitivity 418 

analysis results for blocks 1 to 4 were averaged as row 1, and those for blocks 5 to 8 as row 2. Due 419 

to MANN's extensive input features, each input's influence was diminished, resulting in lower 420 

sensitivity compared to PANN. Predominantly, row 2's morphology, being closer to the building 421 

model, held more sway over the peak pressure coefficient statistics, notably tripling the impact on 422 

max Cp,RMS for the windward wall and roof compared to row 1. 423 
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 424 

Fig. 14. Results of global sensitivity analysis for: (a) PANN, and (b) MANN. 425 

 426 

4. Conclusions 427 

This study introduced a data-driven approach to predicting peak values of pressure coefficient 428 

statistics for low-rise buildings situated in complex heterogeneous terrains. To address terrain 429 

complexity, we developed ANN models using two distinct sets of input features: empirical 430 

parameters-based ANN (PANN) and morphology-based ANN (MANN). We compared the 431 

prediction performance of these ANN models with that of a non-linear fitted (NLF) model and 432 

conducted global sensitivity analysis, yielding the following key insights:  433 

 The NLF model demonstrated adequate prediction performance for peak Cp,mean on the 434 

windward wall, attributed to the area’s relatively lower non-linearity compared to other 435 

walls. However, NLF’s efficacy diminished in other cases, such as max Cp,RMS on the 436 

windward wall and both peak Cp,mean and max Cp,RMS on the roof and leeward walls, where 437 

PANN and MANN exhibited superior predictive accuracy.  438 
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 An examination of varying patch sizes revealed optimal prediction performance within a 439 

WൈL=4ൈ2 patch size, corresponding to a full-scale terrain area of approximately 72 m ൈ 440 

23 m. This means that the terrain morphology corresponding to about 100 m ൈ 50 m (25H 441 

ൈ 12.5H) has the strongest correlation with the wind pressure on the WERFL low-rise 442 

building. Therefore, securing terrain information exceeding 100 m ൈ  50 m allows 443 

engineers to precisely predict wind pressure coefficients using the proposed ANN models.  444 

 For max Cp,RMS on the leeward wall, the R2 values for NLF, PANN, and MANN were below 445 

0.9, indicating reduced prediction performance for this area compared to the other five 446 

cases. The leeward wall experiences lower wind pressure and higher variability, often due 447 

to vortices, challenging the predictive accuracy of the models based on the input features 448 

utilized. 449 

 Both PANN and MANN reflected the influence of wind incident angle variations and 450 

terrain complexity changes with reasonable accuracy across six outputs. The marginal 451 

differences in R2, RMSE, and MAE between the two models suggest that the choice 452 

between PANN and MANN may depend on the available information during actual 453 

evaluations. 454 

 Global sensitivity analysis underscored the greater impact of terrain roughness and 455 

complexity on max Cp,RMS compared to peak Cp,mean within the PANN model. Furthermore, 456 

z଴,௘௙௙ was identified as having a more significant influence than COV௭బ across all cases 457 

except for peak Cp,mean at the leeward wall. In the MANN model, the block row nearest to 458 

the building model exerted a more pronounced effect on peak Cp,mean and max Cp,RMS than 459 

the subsequent row. 460 
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