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DATA-DRIVEN PREDICTION OF WIND PRESSURE ON LOW-RISE BUILDINGS IN

COMPLEX HETEROGENEOUS TERRAINS

Lee-Sak An'? and Sungmoon Jung?*

Abstract

This study presents a data-driven methodology for predicting the pressure coefficient statistics
on the windward wall, roof, and leeward wall of low-rise buildings situated downwind of complex
heterogeneous terrains. Two types of artificial neural network models were developed: the
empirical parameter-based ANN (PANN) and the morphology-based ANN (MANN). Pressure
data from wind tunnel tests on the Wind Engineering Research Field Laboratory (WERFL)
building model (building height # =4 m) in complex heterogeneous terrain were used to develop
the ANN models. These models were evaluated against a non-linear fitted model to assess their
predictive performances. PANN and MANN demonstrated superior performance in capturing the
effects of terrain complexity on the mean (Cp,mean) and the root-mean-square (Cp,rms) wind pressure
coefficients for the windward wall, roof, and leeward wall. Optimal prediction was achieved with
a terrain patch size of WXL=4X2, equating to a full-scale area of approximately 72 m X 23 m.
This suggests that the morphology within approximately 100 m X 50 m (25H X 12.5H) in front of
a low-rise building has the greatest correlation with the wind pressure coefficient. Despite lower
R? values for max Cprus on the leeward wall across all models, both PANN and MANN showed

promising accuracy for the six outputs studied. Moreover, a global sensitivity analysis confirmed
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the impact of terrain roughness and complexity on the prediction models particularly on max Cp,rus,

and underscored the dominance of effective roughness length z,.rr and the coefficient of

variation of roughness length COV,, in influencing model outcomes.

Keywords
Low-rise building; Wind pressure coefficient; Complex heterogeneous terrain; Artificial Neural

Network; Bayesian optimization

1. Introduction

Terrain configuration is a critical factor in introducing uncertainties in wind loads, as underscored
in the Davenport's wind loading chain [1]. The influence of terrain roughness becomes particularly
pronounced for low-rise buildings situated near the ground surface, as they are exposed to
increased turbulence. Although the majority of current knowledge is confined to homogeneous
(i.e., uniform) terrain, terrains in the real world are often complex and have abrupt changes in
surface roughness. Especially, upstream terrain configurations within a short distance upwind of a

site have a direct impact on wind loads on building envelopes [2].

Significant knowledge gaps still remain regarding the influence of the complex heterogeneous
terrain on the pressure experienced by low-rise buildings. Only a few studies have discussed the
effect of terrain complexity on wind loads. Yu et al. [3] conducted wind tunnel tests using two real
city terrain models and proposed a minimum upstream patch length for wind tunnel testing. They
experimentally revealed that mean velocity profiles in urban areas are influenced by an upstream
patch length up to 750 m, and are not affected by the patch that exceeds 1250 m. Wang and
Stathopoulos [2] emphasized the significance of local, small-scale roughness changes in affecting

the variation of the wind speed profile above heterogeneous terrain. Kim et al. [4] investigated the
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effect of a large group of surrounding buildings on a typical low-rise building by measuring wind
pressure. They observed that, although the mean pressure coefficient decreased, the peak pressure
coefficient could increase due to the enhancement of the turbulence component. An et al. [5]
conducted extensive wind tunnel testing to explore wind characteristics over complex
heterogeneous terrains. They quantified the relationship between the variance of geometric
morphology and wind characteristics, ultimately concluding that terrain complexity significantly
increased turbulence intensity levels. Subsequently, An and Jung [6] investigated the wind
pressure coefficients on the windward wall and roof and quantified the influence of terrain
complexity on the pressure behaviors of low-rise buildings. Kim et al. [7] experimentally delved
into the complex dynamics of upwind terrain transition from open country to suburban areas and
its effects on wind pressures and forces on low-rise buildings. It is anticipated that pressure
coefficients over complex heterogeneous terrains will differ from those over homogeneous terrains
due to the substantial influence of turbulence properties in the approaching wind flow on the
pressure field [8, 9]. However, it is still challenging to predict the highly variable wind pressure
on low-rise buildings over complex heterogeneous terrains due to the lack of field-measured and
experimental data. Until recently, there has been no field-measured or experimental data on the
variability of wind pressure that can be caused by the wide variety of terrain that exists in the real

world.

Recent evidence suggests that artificial neural network (ANN) methods, as a data-driven
approach, are particularly effective in addressing problems in wind engineering due to their
robustness in solving multivariate and nonlinear regression problems. Numerous studies have
demonstrated the efficacy of ANN methods for predicting wind pressure on building structures.

Gavalda et al. [10] studied variable plan dimensions and roof slope in a set of parameters
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considered in earlier interpolation studies using ANN. Chen et al. [11] attempted predict wind
pressure on low-rise buildings using an ANN approach. They proposed using ANN for the
prediction of wind pressure time series. Bre et al. [12] adopted an ANN to predict the surface-
average pressure coefficients for each wall and roof according to the building geometries and the
wind directions. Fernandez-Caban et al. [13] applied an ANN to predict roof pressures on low-rise
structures based on freestream turbulence conditions. The ANN model was trained and tested using
a comprehensive dataset from a recent boundary layer wind tunnel pressure dataset for
homogeneous terrain cases. Tian et al. [14] also applied an ANN for predicting mean and peak
wind pressure coefficients on the surface of low-rise, gable roof buildings. They suggested that
with a large enough database, the ANN-based method could significantly enhance knowledge yield
and reduce experimental effort. Ding et al. [15] developed and optimized ANN models for
predicting wind pressures on low-rise buildings using genetic algorithms and Bayesian
optimization. They evaluated the influences of the hyperparameters, the number of data pairs, and
the ANN structures on their performances. Lang et al. [16] proposed and verified the performance
of an improved random forest algorithm for predicting the mean and fluctuating wind pressure
coefficients of high-rise buildings. Although such studies have used data-driven approaches for
predicting wind pressure on buildings, these studies have been limited for homogeneous terrains
due to the lack of wind pressure dataset over complex heterogeneous terrains. Neither ANN nor
any other data-driven approaches can be found in the literature to predict the statistics of Cp on
buildings over complex heterogeneous terrains, and understanding the features that can be used to
assess the variability of wind pressure according to the degree of terrain complexity is still

insufficient. Due to cost and time constraints, the full-scale or wind tunnel experiments commonly
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entail a limited number of approach flow conditions, and such limitations of the dataset prevented

the application of data-driven approaches.

This study developed ANN models for predicting the peak values of mean pressure coefficients
(Cp,mean) and root-mean-square pressure coefficients (Cprms) on low-rise buildings. The recently
released wind tunnel testing dataset over complex heterogeneous terrains was used for training the
ANN models. As the very first study on the data-driven approach for predicting wind pressure
over complex heterogeneous terrains, the best input features that can represent the terrain
complexity level were investigated. The two different types of input features were applied to train
the ANN models: empirical parameters (indirect information) and morphology (direct
information). Sensitivity analysis was performed on each model to analyze the degree of influence
on the wind pressure coefficient. Moreover, we proposed the most appropriate patch size for
predicting the wind pressure coefficient by comparing the prediction performance of ANN models
using different patch sizes of the terrain. The ANN models, the proposed input features, and the
patch size will be valuable preliminary research for future research on wind pressure in complex

heterogeneous terrains.

2. Methodology
2.1. Wind Tunnel Test Dataset

In this section, we provide a brief overview of the wind tunnel test dataset used for developing
the ANN models. Alinejad et al. [17] offers comprehensive details about the test setup. For further
details on the site selection, reproducing heterogeneous terrains from the real sites, and an in-depth
investigation into the wind pressure coefficients refer to An et al. [5], An and Jung [6], and Alinejad

etal. [18].
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The wind tunnel testing was carried out at the Natural Hazard Engineering Research
Infrastructure (NHERI) experimental facility situated at the University of Florida [19]. Fig. 1
illustrates the schematic layout of the wind tunnel facility, which is an open circuit tunnel with
dimensions of 6 m (width) x 3 m (height) x 38 m (length). The tunnel inlet incorporates eight vane
axial fans, each driven by a 56-kW electric motor. The flow generated by these fans is conditioned

by honeycombs positioned approximately 3 m downwind from the fan bank.

Vaneaxial Probe locations
Honeycomb x =29500 mm
Fan Bank Irwi =
Array rwin y=0mm
p Spires z = 5-1500 mm
* Downwind
Automated terrain generator (Terraformer) test section

‘ | 18.6m

Fig. 1. Schematic plan of the wind tunnel facility at the University of Florida [20].

This facility houses a fully automated terrain simulator named the "Terraformer." This state-of-
the-art technology enables the swift and precise simulation of terrain, addressing the time-
consuming and labor-intensive challenges associated with wind tunnel testing. The Terraformer
consists of an 18 x 62 array of computer-controlled roughness blocks (total 1116 elements) in a
staggered layout, covering a patch size of 6.1 m X 18.6 m. Each roughness element is equipped
with an actuator, allowing for independent height adjustments. These elements have a plan
dimension of 100 mm x 50 mm and adjustable heights ranging from 0 to 160 mm. The
reconfiguration of all 1116 elements typically takes less than 60 s, making the Terraformer an
efficient tool for simulating a wide range of homogeneous and heterogeneous upwind terrains.

Additionally, a turntable located at the end of the upwind patch enables the simulation of wind
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effects on structures at various wind incidence angles. Wind tunnel experiments varied the wind

incident angle («) to 0°, 15°, 30°, 45°, 60°, 75°, and 90°.

Previous research on low-rise structures in boundary layer wind tunnels has indicated that
accurately replicating full-scale turbulence characteristics (such as integral length scale) at or near
the height of the building model is crucial for precisely quantifying extreme aerodynamic loads,
especially in regions of flow separation. As Stathopoulos [21] summarized, simulating only the
lower region of the atmospheric surface layer (ASL) with larger model scales (such as 1:50 to
1:100) is an effective approach for addressing the length scale problem encountered in wind tunnel
testing. Numerous previous wind tunnel tests for low-rise buildings were conducted using model
scales within this range [22-25]. This test adopted a 1:50 scale, indicating the maximum vertical
measurement height of 1500 mm in test scale corresponds to 75 m in full-scale representation.
Similarly, the Terraformer simulates terrain of 930 m on a full-scale. This satisfies the upstream
fetch considered significant (1 km) when assessing wind loads on lower buildings (building
height<50 m) [26, 27]. The low-rise building model has dimensions of 274 mm x 182 mm x 80
mm in testing scale (13.7 m X 9.1 m X 4 m in full-scale) with a 1/4:12 gable roof slope, mirroring
the design of the Wind Engineering Research Field Laboratory (WERFL) building at Texas Tech

University [28].

Pressure measurements were acquired using eight high-speed electronic scanning modules from
Scanivalve ZOC33 [29]. Pressure taps are connected to the modules via 122 cm long urethane
tubing, and the sampling frequency was set at 625 Hz. Adjustments were made to minimize tubing
effects on pressure measurements, reducing distortion on amplitude and phase shift [30]. Pressure

data were recorded based on the time series.
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Fig. 2 provides a visual representation of the pressure tap layout on the low-rise building model.
The building model was outfitted with a total of 206 pressure taps, comprising 92 roof taps and
114 wall taps. The tap positions adhered to the layout used in the WERFL model of the NIST

aerodynamic database [31].

Our aim was to predict peak values of wind pressure coefficient statistics. The pressure
coefficient at a point of interest, denoted as Cp, is defined as the ratio between the measured

building surface gauge pressure and the roof-height dynamic pressure, expressed by the formula:

p(t) — po
C,(t) = —2——
(O 0.5pU2

(1)
Here, Un represents the wind speed at the eave height of the low-rise building (4 m), and p
denotes the air density. The term p(t) — p, signifies the net wind pressure at the point of interest,
with p, referring to the reference pressure. The representative tap line was selected to capture the
peak of Cp, statistics, particularly peak mean (Cpmean) and maximum root-mean-square (Cp,rus) of
Cp. This tap line, comprising the series of taps closest to the center of the low-rise building in the
perpendicular direction of the ridge, has been consistently employed in previous studies to examine

flow separation and reattachment behavior on the building surfaces [8, 31]. Fig. 3 showcases the

definition of peak Cpmean and max Cp,rus.
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Fig. 2. The low-rise building model and tap information: (a) Plan view, and (b) 3D view.
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Fig. 3. Definition of peak Cp,mean and max Cp, guss.

Complex heterogeneous terrain configurations drawn from real terrains were compiled for wind
tunnel testing. The primary data source was the National Land Cover Database (NLCD) [32]
provided by the US Geological Survey. A total of 529 sites from 32 US states prone to hurricanes
were selected. The k-means algorithm [33] was used in the 2D space defined by the mean and
standard deviation to select representative terrains with distinct stochastic properties of local

roughness length, leading to the identification and classification of 50 distinct clusters. Thus, the
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50 representative terrains were conclusively selected from 529 sites in the US. In the wind tunnel,
these roughness lengths were correlated with the corresponding block heights [34]. The details of
producing heterogeneous terrains in the wind tunnel were described by Alinejad et al. [35]. Fig. 4
provides examples of the selected sites and their corresponding block height maps in the
Terraformer, along with the simulated terrain morphology generated for site 8. Since wind tunnel
experiments varied the wind incident angle («) to seven cases, a total of 350 datasets (7 angles X

50 terrains) was provided for the development of the prediction model.

-

Building model

0
-100 O 100
y (m)

Fig. 4. Example of complex heterogeneous terrains (site 8): (a) Aerial view (from Google Earth); (b) Block height
map; and (c) Actual photo in the wind tunnel.

2.2. Artificial Neural Network

Artificial Neural Network (ANN) operates by processing information through interconnected
nodes in layers; input data is fed into the network, processed through one or more hidden layers
where each node computes weighted sums of its inputs followed by an activation function, and
finally produces an output through the output layer. This architecture enables the network to learn
complex nonlinear relations between the input and output pairs by adjusting the weights during
the training process. Fig. 5 shows the architecture of an ANN, which typically includes n-input
nodes, an output node, and one or more hidden layers. ANN models for predicting peak Cp,mean

and max Cprus on the windward wall, roof, and leeward wall (total 6 models) were independently

10
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developed. The objective function incorporated the mean squared error (MSE) loss function and
the ridge (L2) penalty term, and backpropagation was used to adjust the weights. The loss function
in an ANN measures the difference between the predicted output and the actual target value. It
guides the optimization process by quantifying how well or poorly the model performs, with the

purpose of minimizing this error to improve the model's accuracy.

We developed two types of ANN models using different input features related to the level of
terrain complexity. The first type is a parameter-based ANN model (PANN). The empirical
parameters—effective roughness length z, ¢ and the coefficient of variation for the z, values in
the terrain COV, —used as input features were determined based on the investigations from the
author's previous studies [5, 6]. In our prior work, An et al. [5] investigated the influence of terrain
complexity on the mean wind profile and turbulence intensity. They found that the zy o ¢ 5, widely

used in atmospheric surface layer modeling for moderately homogeneous terrain or smaller-scale
inhomogeneity, was insufficient for complex heterogeneous terrain. Additional consideration of

the morphological variation of the terrain was necessary. It was found that the z, . ¢ and the COV,

are dominant parameters affecting wind characteristics over complex heterogeneous terrains.
Subsequently, An and Jung [6] found that wind characteristics influenced by terrain complexity

affected the variability of wind pressure on low-rise buildings, even though the z; . was similar.

Thus, PANN used three input features: zy or¢, COV, , and wind incident angle a.

Zyerr Was calculated using a grid-squared average-based approach, utilizing the z, maps of the

terrains [36, 37]. This approach relied on the linear approximation of the Rossby number similarity

theory and derived the following formula [36]:
In(zgefr) = (In (20)) + aalzrl(zo) (2)

11
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Here, a represents the Rossby value, typically set to 0.09, and alzn(ZO) indicates the variance
within the area. The ( ) notation represents the area-weighted logarithmic average operation. COV,

can be calculated as the standard deviation/average of z, values in a given map. The z, maps can
be attained by transforming the block height map, shown in Fig. 4 (b). The relationship between
block height and z, is outlined in Appendix B of An et al. [5]. They performed a wind tunnel
experiment by uniformly changing the block height and then used an anemometric approach [38]
to estimate z, caused by each block height. By using the block height vs z, relationship obtained

from the estimated results, a z, map of the given terrain can be obtained.

The second type is a morphology-based ANN model (MANN). Direct use of morphology in wind
loading estimation was shown to be effective in a previous study [39]. Here, the values of the z,
maps were directly used as input features, along with a. The number of input features equals the

product of the number of x-direction blocks (L) and the number of y-direction blocks (W).

For both approaches, the model development was iteratively conducted, while changing patch
size to determine the optimal patch size that showed the best prediction performance. As
investigated in previous studies, the roughness of the terrain at a certain distance from the building
does not have a significant effect on the wind pressure [2, 3]. Thus, considering information from
a wider patch does not guarantee higher wind pressure prediction accuracy. In the case of PANN,
Zoerr and COV,  change depending on the patch size being considered, so if the morphology of an
excessively wide patch is considered, the correlation with wind pressure may decrease and
prediction performance may deteriorate. Moreover, for MANN, patch size is a dominant factor
affecting the effectiveness of the model training since the number of input features is the number

of blocks in the considered patch sizes. By comparing the prediction performance with changing

12
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the patch size, the best patch size that showed the greatest correlation with the characteristics of

wind pressure was explored.

[Feed-forward

Input layer Hidden layers Output layer

Parameter-based ANN
=N = 3 (29057, COVyy, @)

Morphology-based ANN Output
-n=LXW (z values) + 1 (a) - Pealt)C
L = the number of block in - Max C;;T,,esan

length direction
W = the number of block in
width direction

Fig. 5. Architecture of ANN and input features of PANN and MANN.

In developing ANN models, architecture optimization can significantly improve accuracy since
a more efficient and carefully designed architecture achieves good generalization and avoids
overfitting. Optimal network structure is mostly determined by the data nature rather than the
sample size, suggesting a data-driven approach to choosing the ANN architecture [40]. To
determine the optimal hyperparameters, Bayesian optimization (BO) is applied in this study. BO
has been recognized as an excellent tool to find the global optimum with a minimum number of
steps and has outperformed other state-of-the-art global optimization algorithms on some
challenging optimization benchmarks [41]. The strategy of BO assumes the unknown objective
function as a random function and places a prior over it, which captures beliefs about the behavior
of the objective function. Ding et al. [15] reported that the BO-based neural network (BONN) was
most efficient, saving 88-94% computational time compared with the traditional trial-and-error
neural network. The effectiveness of BONN for wind pressure prediction has already been
validated in previous studies [41, 42]. The number of layers and the number of nodes ranged from

13
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1-2 and 1-50, respectively. The optimization options for the activation function were none, relu,
tanh, and sigmoid. Out of a total of 50 terrains, 10 (20%) randomly selected terrains were used as
the test set, and data from the remaining 40 (80%) terrains were used as the training set. The
numbers of the total training set and test set were 280 and 70, respectively. A validation set was
not separately divided since the BO method was applied to determine optimal architecture to

prevent overfitting.

As indicators of prediction performance, coefficient of determination (R?), root-mean-square
error (RMSE), and maximum absolute error (MAE) were applied. R? is commonly used to assess
the goodness of fit of surrogate models. If the model perfectly predicts the variance of the data, R?
equals 1. This metric provides an overall indication of how well the model fits the data but can
sometimes fail to reflect overfitting. RMSE directly measures the accuracy of predictions, and
lower RMSE values indicate higher accuracy. It is sensitive to outliers, providing a measure of the
magnitude of large errors. The MAE metric is also sensitive to outliers. Additionally, this can be

beneficial to directly evaluate the worst case.

?:1(01' - Pi)z

2=1- =
M=l Sr 0 -0y ©)
1 n
RMSE = E;(Oi — P2 4)
MAE = max (|0 — P|) (5)

3. Results

3.1. Non-Linear Fitting Model

14
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If general non-linear regression shows better prediction performance, using the ANN method as
a surrogate model might not be necessary. As a prelimanary anlaysis for computational
effectiveness, the non-linear fit (NLF) using a 2™ order-polynomial function was conduted with

the same parameters as PANN, i.e., zy orr, COV, , and . Similar to the ANN models, 80% of the

dataset was used for NLF and the other 20% of the data was used as the test set.

The prediction performance of NLF models with varying patch window sizes is depected in Fig.
6, showcasing (i) R, (j) RMSE, and (k) MAE metrics. Fig. 6 (a) and (b) illustrate the performance
for peak Cpmean and max Cp,rus, respectively. The further to the bottom right of the heatmap, the
larger the area that was considered when calculating z . and COV, . For example, the cell at the
most bottom right indicates that 18 blocks in y-direction and 62 blocks in x-direction were used to
calculate zg o and COV, . Fig. 6 (a) shows the prediction performance for Cpmean. On the other
hand, fewer blocks are considered toward the upper left. The number of blocks considered changes
around the location closest to the building model, that is, the block corresponding to (x, ¥)=(29500
mm, 0 mm) in Fig. 1. For example, the model of WxL=1x2 utilizes the two blocks located in the

center of the row closest to the building model.

The overall prediction performance was acceptable in terms of the three performance indicators.
The worst R? was still acceptable as 0.95 when WXL=18x62. It was clearly shown that the
prediction performance improved with a smaller window size. When the patch size was within
WxL=8x3, R? reached 0.99, and RMSE and MAE were also reduced to less than 0.04 and 0.16,

showing excellent accuracy.

As shown in Fig. 6 (b), the NLF model for max Cprums also displayed higher prediction
performance when the patch size was within WXL=8x3. However, its accuracy was relatively

worse than the model for peak Cp,mean, showing an R? of less than 0.8. Additionally, prediction

15
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performance cannot be guaranteed on roofs or leeward walls where flow separation occurs and
greater wind pressure variability is observed. Conclusively, there were significant limitations in
achieving acceptable prediction accuracy using NLF for all statistics of Cp on all walls. However,
based on the change in prediction performance with varying patch size, it can be inferred that the

morphology information within WxL=8X3 had the highest correlation with the wind pressure.

16
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300 Fig. 6. Prediction performance of NLF in windward wall: (a) Cymean, and (b) Cp,russ; with (i) R%, (j) RMSE, and (k)
301 MAE.

302 3.2. PANN and MANN Models

303 Figs. 7 and 8 showcase the prediction performances of PANN and MANN models. The ANN
304 models were not developed for all patch sizes, and the considered patch sizes were limited within
305 WxL=12x12. PANN demonstrated exceptional predictive accuracy for peak Cp,mean, achieving an

306 R?nearing 1 and an MAE lowered to 0.07.
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MANN also showcased impressive prediction performance. For peak Cpmean, R> was improved
to nearly 1.00, with RMSE and MAE reduced to 0.04 and 0.09, respectively. The predictions for
max Cp,rus also indicated strong performance, as R? reached 0.92. However, the RMSE and MAE
for MANN were slightly higher than those for PANN, highlighting that the empirical parameters
in PANN capture terrain complexity more effectively. Moreover, with MANN, the increase in the
number of input features with patch size could diminish computational efficiency, and its

performance, in terms of MAE and RMSE, seems less optimal than that of PANN.

For both models, the predictions for max Cp rus revealed a challenge, with lower R? and higher
RMSE and MAE than for peak Cpmean. This discrepancy underscores the complexities in

accurately estimating wind pressure variability, leading to greater data dispersion.
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321 Fig. 8. Prediction performance of MANN models in windward wall: (a) Peak Cj, mean, and (b) Max Cj, russ; with (i) R?,
322 (j) RMSE, and (k) MAE.
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Fig. 9 displays the training histories for PANN and MANN models with a patch size of
WxL=4x2, which demonstrated the best overall prediction performance. Since no validation set
was used, only the loss for the training set is presented. The backpropagation algorithm was
utilized to minimize the loss (MSE), and by the end of the training process, both PANN and

MANN models converged to satisfactory performance results.

(@) 101 (b) 100

—— Windward wall —— Windward wall
———- Roof === [Roof
gz mo s Leeward wall ——— Leeward wall
100 P\ 10° K
\_'\\ Black: PANN \ Black: PANN

Red: MANN

N Red: MANN

Loss (MSE)
Loss (MSE)

100 10! 102 103

Iteration Iteration

Fig. 9. Performance history of training sets: (a) Peak Cp, mean; and (b) Max Cp, russ.
3.3. Comparison

Tables 1 and 2 detail the highest prediction accuracies for peak Cpmean and max Cp,rus for NLF,
PANN, and MANN, along with the optimal patch sizes. NLF demonstrates robust prediction
accuracy for Cpmean on the windward wall, attributed to its lesser susceptibility to variability-
inducing phenomena like flow separation and vortices. This implies a lesser degree of nonlinearity,
enabling NLF to achieve strong predictive outcomes. However, across the other five models—peak
Cp.mean for the roof and leeward wall, and max Cprus for the windward wall, roof, and leeward

wall— the ANN models outperformed NLF in prediction accuracy.

Both PANN and MANN exhibited outstanding predictive accuracy with R? exceeding 0.9 in
nearly all scenarios, barring max Cp rus predictions for the leeward wall. The reduced performance

for max Cprums on the leeward wall is attributed to significant wind pressure variability in this
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region, likely due to vortices. This variability presented challenges in achieving comparable
prediction accuracy to that of the windward wall and roof, using only a limited set of empirical

parameters (Z sy and COV, ) or solely terrain morphology data.

Analysis of the optimal patch size for the best-performing model reveals that when terrain
morphology information within a WXL=4X2 area was utilized, all three models—NLF, PANN,
and MANN-—showed highly satisfactory predictive results. Differences in performance among
these models within this specific range were negligible. The simulated full-scale terrain area by
these blocks, WXL=4x2, approximates 72 m X 23 m. Therefore, predictions of peak Cp,mean and
max Cp,rus with sufficiently high accuracy are possible if morphology information corresponding
to at least a 100 m X 50 m area is acquired for actual complex heterogeneous terrains. This is
approximately equivalent to 25 and 12.5 times the building height H (= 4 m). This suggests that
the morphology within approximately 25H x 12.5H in front of the WERFL low-rise building has
the greatest correlation with the wind pressure coefficient, while terrain morphology at locations
farther away from the low-rise building has a lower correlation with the wind characteristics and
pressure experienced by the low-rise building. This is consistent with the results observed in
previous studies [2, 5]. Consequently, when training an ANN model using information that

includes distant terrain morphology, the model's performance may deteriorate.

Fig. 10 demonstrates the test set prediction results for NLF, PANN, and MANN models. With
the exception of peak Cpmean for the windward wall, NLF frequently surpassed the 10% error
margin, even revealing data points exceeding the 25% error bound. Conversely, both PANN and

MANN maintained acceptable prediction accuracies.

Fig. 11 displays prediction results using NLF, PANN, and MANN at three specific sites—5, 31,

and 43—randomly chosen from the test set. The morphologies of these three sites are shown in Fig.
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12. Although the selection process for the test set was random, the chosen terrains successfully
exhibit a wide range of real-world terrain complexity. As shown in Fig. 11, variations in terrain
can significantly influence the pressure coefficient. Specifically, at site 43, which is characterized
by relatively high terrain complexity as shown in Fig. 12 (c), there was a noticeable increase in
larger values of Cp,mean and Cprus due to increased turbulence intensity. This phenomenon has
been detailed by An and Jung [6]. PANN and MANN accurately captured the trends of peak Cp,mean
and max Cp,rus as the wind incident angle varied. The nonlinearity of peak Cp,mean on the windward
wall was notably less than in the other five cases, which enables NLF to exhibit high prediction
performance. However, for scenarios with enhanced nonlinearity, such as max Cprms on the
windward wall and both peak Cpmean and max Cprms on the roof and leeward wall, NLF's

performance lagged behind the ANN models.
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Table 1. Comparison of best prediction performance for peak C,

mean-

Patch size Prediction performance
Wall Model W L R? RMSE MAE
NLF 4 2 0.988 0.033 0.134
Windward wall PANN 4 2 0.996 0.019 0.093
MANN 2 2 0.996 0.048 0.111
NLF 4 2 0.941 0.081 0.348
Roof PANN 4 2 0.986 0.039 0.315
MANN 2 2 0.992 0.069 0.161
NLF 4 2 0.811 0.079 0.236
Leeward wall PANN 4 2 0.986 0.021 0.116
MANN 2 2 0.992 0.039 0.112

Table 2. Comparison of best prediction performance for max C, zus.

Window size Prediction performance
Wall Model W L R RI\I/)ISE MAE
NLF 4 2 0.762 0.041 0.244
Windward wall PANN 2 1 0.934 0.022 0.223
MANN 2 2 0.921 0.055 0.223
NLF 4 2 0.849 0.041 0.185
Roof PANN 2 1 0.970 0.018 0.105
MANN 2 1 0.934 0.064 0.137
NLF 4 2 0.763 0.034 0.258
Leeward wall PANN 2 1 0.834 0.028 0.267
MANN 2 1 0.815 0.070 0.269
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Fig. 10. Comparison of prediction results for NLF, PANN, and MANN for test set: (a) Windward wall, (b) Roof,
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Fig. 12. Morphology of selected terrains used in test sets: (a) Site 5; (b) Site 31; and (¢) Site 43.

Fig. 13 illustrates the differences between the predicted and actual values of peak Cp,mean and max
Cp.rus as a function of changes in zg,.rr. The Zy.rr was calculated using the morphology
information within a WXL=4X2 area. To avoid the potential misrepresentation of small difference
values as disproportionately large errors when expressed as percentages, these difference values

are presented. Across all zy .rr ranges, similar prediction accuracies are observed for both peak
Cp.mean and max Cp,rus, with no significant differences identified within any specific zg . ¢ range.

Histograms of the differences showcase that the majority of the distribution is tightly clustered
around zero. Cp rus values are typically smaller than Cp,mean values. Consequentaly, it was observed
that the scatter would be more concentrated within a narrower range of differences for Cprus

compared to Cpmean. This pattern is consistent with the MAE results presented in Tables 1 and 2.
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Fig. 13. The difference between predicted and true value of peak C,, mean and max C, russ.

Sensitivity analysis evaluates how variations in a model's or system's inputs contribute to
uncertainty in its outputs. Conducting sensitivity analysis on the developed ANN models allows
us to identify the parameters that significantly influence wind pressure statistics. The Sobol
method, a type of global sensitivity analysis, is particularly advantageous because it measures
sensitivity across the entire input space, accommodates nonlinear responses, and assesses the
effects of interactions in non-additive systems [43]. The Sobol index was calculated using the

Saltelli method [44]. Fig. 14 outlines the global sensitivity analysis results. The PANN and MANN

27



408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

This file is the final accepted version of the manuscript, published in
https://doi.org/10.1016/].buildenv.2024.112022

models utilized terrain morphology information of WxL=4X2. The incident wind angle was

omitted to concentrate on terrain complexity-related variables.

As illustrated in Fig. 14 (a), Zg .y emerged as a more influential factor than COV,, in all instances
except for peak Cpmean at the Leeward wall, where, unlike other wall types, an increase in Zg ¢ ¢ ¢
did not correlated with heightened peak Cp mean. This pattern, well-represented in the ANN models,
aligns with observations by An and Jung [6]. Additionally, max Cprus was more significantly
impacted by terrain roughness and complexity compared to peak Cp mean, a finding consistent with
the variable’s direct association with wind speed variability. These sensitivity outcomes from the
PANN model corroborate existing wind engineering insights, affirming the model’s accurate

reflection of physical phenomena.

For MANN, given the broader impact scope of row units over individual blocks, sensitivity
analysis results for blocks 1 to 4 were averaged as row 1, and those for blocks 5 to 8 as row 2. Due
to MANN's extensive input features, each input's influence was diminished, resulting in lower
sensitivity compared to PANN. Predominantly, row 2's morphology, being closer to the building
model, held more sway over the peak pressure coefficient statistics, notably tripling the impact on

max Cp,rus for the windward wall and roof compared to row 1.
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Fig. 14. Results of global sensitivity analysis for: (a) PANN, and (b) MANN.

4. Conclusions

This study introduced a data-driven approach to predicting peak values of pressure coefficient
statistics for low-rise buildings situated in complex heterogeneous terrains. To address terrain
complexity, we developed ANN models using two distinct sets of input features: empirical
parameters-based ANN (PANN) and morphology-based ANN (MANN). We compared the
prediction performance of these ANN models with that of a non-linear fitted (NLF) model and

conducted global sensitivity analysis, yielding the following key insights:

e The NLF model demonstrated adequate prediction performance for peak Cpmean on the
windward wall, attributed to the area’s relatively lower non-linearity compared to other
walls. However, NLF’s efficacy diminished in other cases, such as max Cprus on the
windward wall and both peak Cp.mean and max Cp,rus on the roof and leeward walls, where

PANN and MANN exhibited superior predictive accuracy.
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An examination of varying patch sizes revealed optimal prediction performance within a
WxL=4x2 patch size, corresponding to a full-scale terrain area of approximately 72 m X
23 m. This means that the terrain morphology corresponding to about 100 m X 50 m (25H
X 12.5H) has the strongest correlation with the wind pressure on the WERFL low-rise
building. Therefore, securing terrain information exceeding 100 m X 50 m allows

engineers to precisely predict wind pressure coefficients using the proposed ANN models.

For max Cp,zums on the leeward wall, the R? values for NLF, PANN, and MANN were below
0.9, indicating reduced prediction performance for this area compared to the other five
cases. The leeward wall experiences lower wind pressure and higher variability, often due
to vortices, challenging the predictive accuracy of the models based on the input features

utilized.

Both PANN and MANN reflected the influence of wind incident angle variations and
terrain complexity changes with reasonable accuracy across six outputs. The marginal
differences in R%, RMSE, and MAE between the two models suggest that the choice
between PANN and MANN may depend on the available information during actual

evaluations.

Global sensitivity analysis underscored the greater impact of terrain roughness and
complexity on max Cp,rus compared to peak Cpmean Within the PANN model. Furthermore,
Zoerr Was identified as having a more significant influence than COV, across all cases
except for peak Cpmean at the leeward wall. In the MANN model, the block row nearest to
the building model exerted a more pronounced effect on peak Cp mean and max Cp rus than

the subsequent row.
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