

DATA-DRIVEN PREDICTION OF WIND PRESSURE ON LOW-RISE BUILDINGS IN COMPLEX HETEROGENEOUS TERRAINS

Lee-Sak An^{1,2} and Sungmoon Jung^{2*}

Abstract

5 This study presents a data-driven methodology for predicting the pressure coefficient statistics
6 on the windward wall, roof, and leeward wall of low-rise buildings situated downwind of complex
7 heterogeneous terrains. Two types of artificial neural network models were developed: the
8 empirical parameter-based ANN (PANN) and the morphology-based ANN (MANN). Pressure
9 data from wind tunnel tests on the Wind Engineering Research Field Laboratory (WERFL)
10 building model (building height $H = 4$ m) in complex heterogeneous terrain were used to develop
11 the ANN models. These models were evaluated against a non-linear fitted model to assess their
12 predictive performances. PANN and MANN demonstrated superior performance in capturing the
13 effects of terrain complexity on the mean ($C_{p,mean}$) and the root-mean-square ($C_{p,RMS}$) wind pressure
14 coefficients for the windward wall, roof, and leeward wall. Optimal prediction was achieved with
15 a terrain patch size of $W \times L = 4 \times 2$, equating to a full-scale area of approximately $72\text{ m} \times 23\text{ m}$.
16 This suggests that the morphology within approximately $100\text{ m} \times 50\text{ m}$ ($25H \times 12.5H$) in front of
17 a low-rise building has the greatest correlation with the wind pressure coefficient. Despite lower
18 R^2 values for $\max C_{p,RMS}$ on the leeward wall across all models, both PANN and MANN showed
19 promising accuracy for the six outputs studied. Moreover, a global sensitivity analysis confirmed

¹ Korea Floating Infrastructure Research Center, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, South Korea.

² Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, 2035 E Paul Dirac Dr, Tallahassee, Florida 32310, United States.

* Corresponding author (Email: sjung@eng.famu.fsu.edu)

20 the impact of terrain roughness and complexity on the prediction models particularly on max $C_{p,RMS}$,
21 and underscored the dominance of effective roughness length $z_{0,eff}$ and the coefficient of
22 variation of roughness length COV_{z_0} in influencing model outcomes.

23 **Keywords**

24 Low-rise building; Wind pressure coefficient; Complex heterogeneous terrain; Artificial Neural
25 Network; Bayesian optimization

26 **1. Introduction**

27 Terrain configuration is a critical factor in introducing uncertainties in wind loads, as underscored
28 in the Davenport's wind loading chain [1]. The influence of terrain roughness becomes particularly
29 pronounced for low-rise buildings situated near the ground surface, as they are exposed to
30 increased turbulence. Although the majority of current knowledge is confined to homogeneous
31 (i.e., uniform) terrain, terrains in the real world are often complex and have abrupt changes in
32 surface roughness. Especially, upstream terrain configurations within a short distance upwind of a
33 site have a direct impact on wind loads on building envelopes [2].

34 Significant knowledge gaps still remain regarding the influence of the complex heterogeneous
35 terrain on the pressure experienced by low-rise buildings. Only a few studies have discussed the
36 effect of terrain complexity on wind loads. Yu et al. [3] conducted wind tunnel tests using two real
37 city terrain models and proposed a minimum upstream patch length for wind tunnel testing. They
38 experimentally revealed that mean velocity profiles in urban areas are influenced by an upstream
39 patch length up to 750 m, and are not affected by the patch that exceeds 1250 m. Wang and
40 Stathopoulos [2] emphasized the significance of local, small-scale roughness changes in affecting
41 the variation of the wind speed profile above heterogeneous terrain. Kim et al. [4] investigated the

42 effect of a large group of surrounding buildings on a typical low-rise building by measuring wind
43 pressure. They observed that, although the mean pressure coefficient decreased, the peak pressure
44 coefficient could increase due to the enhancement of the turbulence component. An et al. [5]
45 conducted extensive wind tunnel testing to explore wind characteristics over complex
46 heterogeneous terrains. They quantified the relationship between the variance of geometric
47 morphology and wind characteristics, ultimately concluding that terrain complexity significantly
48 increased turbulence intensity levels. Subsequently, An and Jung [6] investigated the wind
49 pressure coefficients on the windward wall and roof and quantified the influence of terrain
50 complexity on the pressure behaviors of low-rise buildings. Kim et al. [7] experimentally delved
51 into the complex dynamics of upwind terrain transition from open country to suburban areas and
52 its effects on wind pressures and forces on low-rise buildings. It is anticipated that pressure
53 coefficients over complex heterogeneous terrains will differ from those over homogeneous terrains
54 due to the substantial influence of turbulence properties in the approaching wind flow on the
55 pressure field [8, 9]. However, it is still challenging to predict the highly variable wind pressure
56 on low-rise buildings over complex heterogeneous terrains due to the lack of field-measured and
57 experimental data. Until recently, there has been no field-measured or experimental data on the
58 variability of wind pressure that can be caused by the wide variety of terrain that exists in the real
59 world.

60 Recent evidence suggests that artificial neural network (ANN) methods, as a data-driven
61 approach, are particularly effective in addressing problems in wind engineering due to their
62 robustness in solving multivariate and nonlinear regression problems. Numerous studies have
63 demonstrated the efficacy of ANN methods for predicting wind pressure on building structures.
64 Gavalda et al. [10] studied variable plan dimensions and roof slope in a set of parameters

65 considered in earlier interpolation studies using ANN. Chen et al. [11] attempted predict wind
66 pressure on low-rise buildings using an ANN approach. They proposed using ANN for the
67 prediction of wind pressure time series. Bre et al. [12] adopted an ANN to predict the surface-
68 average pressure coefficients for each wall and roof according to the building geometries and the
69 wind directions. Fernández-Cabán et al. [13] applied an ANN to predict roof pressures on low-rise
70 structures based on freestream turbulence conditions. The ANN model was trained and tested using
71 a comprehensive dataset from a recent boundary layer wind tunnel pressure dataset for
72 homogeneous terrain cases. Tian et al. [14] also applied an ANN for predicting mean and peak
73 wind pressure coefficients on the surface of low-rise, gable roof buildings. They suggested that
74 with a large enough database, the ANN-based method could significantly enhance knowledge yield
75 and reduce experimental effort. Ding et al. [15] developed and optimized ANN models for
76 predicting wind pressures on low-rise buildings using genetic algorithms and Bayesian
77 optimization. They evaluated the influences of the hyperparameters, the number of data pairs, and
78 the ANN structures on their performances. Lang et al. [16] proposed and verified the performance
79 of an improved random forest algorithm for predicting the mean and fluctuating wind pressure
80 coefficients of high-rise buildings. Although such studies have used data-driven approaches for
81 predicting wind pressure on buildings, these studies have been limited for homogeneous terrains
82 due to the lack of wind pressure dataset over complex heterogeneous terrains. Neither ANN nor
83 any other data-driven approaches can be found in the literature to predict the statistics of C_P on
84 buildings over complex heterogeneous terrains, and understanding the features that can be used to
85 assess the variability of wind pressure according to the degree of terrain complexity is still
86 insufficient. Due to cost and time constraints, the full-scale or wind tunnel experiments commonly

87 entail a limited number of approach flow conditions, and such limitations of the dataset prevented
88 the application of data-driven approaches.

89 This study developed ANN models for predicting the peak values of mean pressure coefficients
90 ($C_{p,mean}$) and root-mean-square pressure coefficients ($C_{p,RMS}$) on low-rise buildings. The recently
91 released wind tunnel testing dataset over complex heterogeneous terrains was used for training the
92 ANN models. As the very first study on the data-driven approach for predicting wind pressure
93 over complex heterogeneous terrains, the best input features that can represent the terrain
94 complexity level were investigated. The two different types of input features were applied to train
95 the ANN models: empirical parameters (indirect information) and morphology (direct
96 information). Sensitivity analysis was performed on each model to analyze the degree of influence
97 on the wind pressure coefficient. Moreover, we proposed the most appropriate patch size for
98 predicting the wind pressure coefficient by comparing the prediction performance of ANN models
99 using different patch sizes of the terrain. The ANN models, the proposed input features, and the
100 patch size will be valuable preliminary research for future research on wind pressure in complex
101 heterogeneous terrains.

102

103 **2. Methodology**

104 **2.1. Wind Tunnel Test Dataset**

105 In this section, we provide a brief overview of the wind tunnel test dataset used for developing
106 the ANN models. Alinejad et al. [17] offers comprehensive details about the test setup. For further
107 details on the site selection, reproducing heterogeneous terrains from the real sites, and an in-depth
108 investigation into the wind pressure coefficients refer to An et al. [5], An and Jung [6], and Alinejad
109 et al. [18].

110 The wind tunnel testing was carried out at the Natural Hazard Engineering Research
111 Infrastructure (NHERI) experimental facility situated at the University of Florida [19]. Fig. 1
112 illustrates the schematic layout of the wind tunnel facility, which is an open circuit tunnel with
113 dimensions of 6 m (width) \times 3 m (height) \times 38 m (length). The tunnel inlet incorporates eight vane
114 axial fans, each driven by a 56-kW electric motor. The flow generated by these fans is conditioned
115 by honeycombs positioned approximately 3 m downwind from the fan bank.



116

117 Fig. 1. Schematic plan of the wind tunnel facility at the University of Florida [20].

118 This facility houses a fully automated terrain simulator named the "Terraformer." This state-of-
119 the-art technology enables the swift and precise simulation of terrain, addressing the time-
120 consuming and labor-intensive challenges associated with wind tunnel testing. The Terraformer
121 consists of an 18×62 array of computer-controlled roughness blocks (total 1116 elements) in a
122 staggered layout, covering a patch size of $6.1 \text{ m} \times 18.6 \text{ m}$. Each roughness element is equipped
123 with an actuator, allowing for independent height adjustments. These elements have a plan
124 dimension of $100 \text{ mm} \times 50 \text{ mm}$ and adjustable heights ranging from 0 to 160 mm. The
125 reconfiguration of all 1116 elements typically takes less than 60 s, making the Terraformer an
126 efficient tool for simulating a wide range of homogeneous and heterogeneous upwind terrains.
127 Additionally, a turntable located at the end of the upwind patch enables the simulation of wind

128 effects on structures at various wind incidence angles. Wind tunnel experiments varied the wind
129 incident angle (α) to 0°, 15°, 30°, 45°, 60°, 75°, and 90°.

130 Previous research on low-rise structures in boundary layer wind tunnels has indicated that
131 accurately replicating full-scale turbulence characteristics (such as integral length scale) at or near
132 the height of the building model is crucial for precisely quantifying extreme aerodynamic loads,
133 especially in regions of flow separation. As Stathopoulos [21] summarized, simulating only the
134 lower region of the atmospheric surface layer (ASL) with larger model scales (such as 1:50 to
135 1:100) is an effective approach for addressing the length scale problem encountered in wind tunnel
136 testing. Numerous previous wind tunnel tests for low-rise buildings were conducted using model
137 scales within this range [22-25]. This test adopted a 1:50 scale, indicating the maximum vertical
138 measurement height of 1500 mm in test scale corresponds to 75 m in full-scale representation.
139 Similarly, the Terraformer simulates terrain of 930 m on a full-scale. This satisfies the upstream
140 fetch considered significant (1 km) when assessing wind loads on lower buildings (building
141 height<50 m) [26, 27]. The low-rise building model has dimensions of 274 mm × 182 mm × 80
142 mm in testing scale (13.7 m × 9.1 m × 4 m in full-scale) with a 1/4:12 gable roof slope, mirroring
143 the design of the Wind Engineering Research Field Laboratory (WERFL) building at Texas Tech
144 University [28].

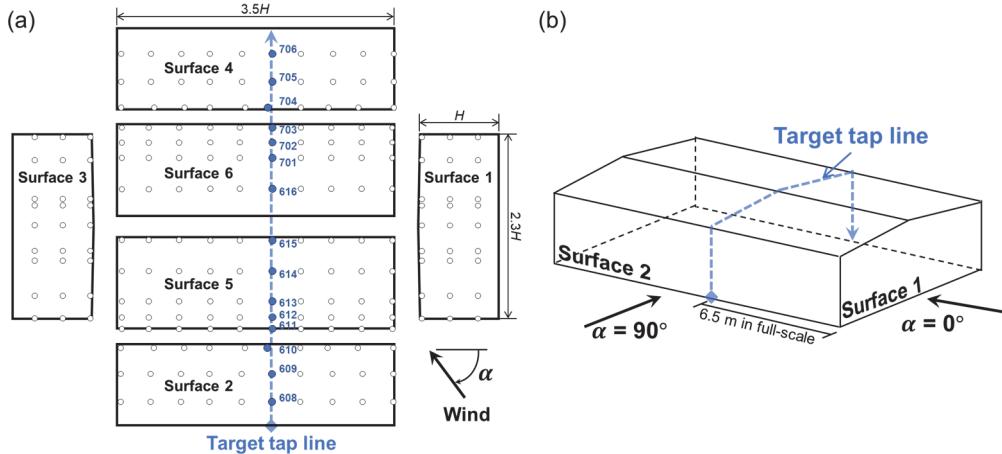
145 Pressure measurements were acquired using eight high-speed electronic scanning modules from
146 Scanivalve ZOC33 [29]. Pressure taps are connected to the modules via 122 cm long urethane
147 tubing, and the sampling frequency was set at 625 Hz. Adjustments were made to minimize tubing
148 effects on pressure measurements, reducing distortion on amplitude and phase shift [30]. Pressure
149 data were recorded based on the time series.

150 Fig. 2 provides a visual representation of the pressure tap layout on the low-rise building model.
151 The building model was outfitted with a total of 206 pressure taps, comprising 92 roof taps and
152 114 wall taps. The tap positions adhered to the layout used in the WERFL model of the NIST
153 aerodynamic database [31].

154 Our aim was to predict peak values of wind pressure coefficient statistics. The pressure
155 coefficient at a point of interest, denoted as C_p , is defined as the ratio between the measured
156 building surface gauge pressure and the roof-height dynamic pressure, expressed by the formula:

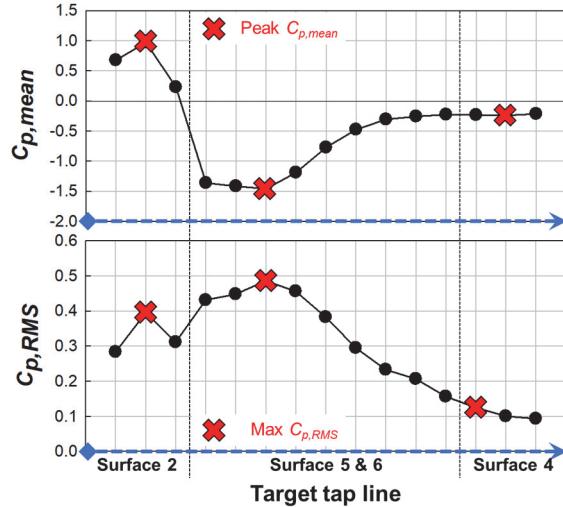
$$C_p(t) = \frac{p(t) - p_0}{0.5\rho U_H^2} \quad (1)$$

157 Here, U_H represents the wind speed at the eave height of the low-rise building (4 m), and ρ
158 denotes the air density. The term $p(t) - p_0$ signifies the net wind pressure at the point of interest,
159 with p_0 referring to the reference pressure. The representative tap line was selected to capture the
160 peak of C_p statistics, particularly peak mean ($C_{p,mean}$) and maximum root-mean-square ($C_{p,RMS}$) of
161 C_p . This tap line, comprising the series of taps closest to the center of the low-rise building in the
162 perpendicular direction of the ridge, has been consistently employed in previous studies to examine
163 flow separation and reattachment behavior on the building surfaces [8, 31]. Fig. 3 showcases the
164 definition of peak $C_{p,mean}$ and max $C_{p,RMS}$.



165

166 Fig. 2. The low-rise building model and tap information: (a) Plan view, and (b) 3D view.

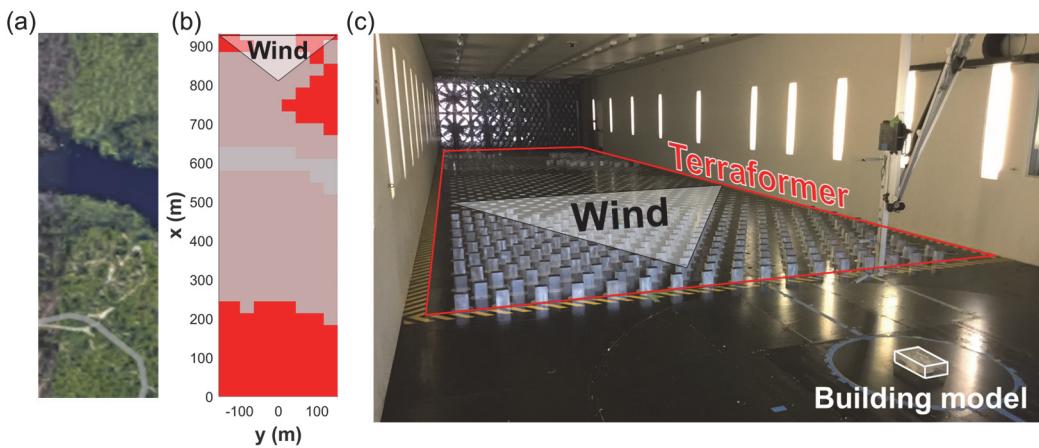


167

168 Fig. 3. Definition of peak $C_{p,mean}$ and max $C_{p,RMS}$.

169 Complex heterogeneous terrain configurations drawn from real terrains were compiled for wind
170 tunnel testing. The primary data source was the National Land Cover Database (NLCD) [32]
171 provided by the US Geological Survey. A total of 529 sites from 32 US states prone to hurricanes
172 were selected. The k-means algorithm [33] was used in the 2D space defined by the mean and
173 standard deviation to select representative terrains with distinct stochastic properties of local
174 roughness length, leading to the identification and classification of 50 distinct clusters. Thus, the

175 50 representative terrains were conclusively selected from 529 sites in the US. In the wind tunnel,
176 these roughness lengths were correlated with the corresponding block heights [34]. The details of
177 producing heterogeneous terrains in the wind tunnel were described by Alinejad et al. [35]. Fig. 4
178 provides examples of the selected sites and their corresponding block height maps in the
179 Terraformer, along with the simulated terrain morphology generated for site 8. Since wind tunnel
180 experiments varied the wind incident angle (α) to seven cases, a total of 350 datasets (7 angles \times
181 50 terrains) was provided for the development of the prediction model.



182
183 Fig. 4. Example of complex heterogeneous terrains (site 8): (a) Aerial view (from Google Earth); (b) Block height
184 map; and (c) Actual photo in the wind tunnel.

185 2.2. Artificial Neural Network

186 Artificial Neural Network (ANN) operates by processing information through interconnected
187 nodes in layers; input data is fed into the network, processed through one or more hidden layers
188 where each node computes weighted sums of its inputs followed by an activation function, and
189 finally produces an output through the output layer. This architecture enables the network to learn
190 complex nonlinear relations between the input and output pairs by adjusting the weights during
191 the training process. Fig. 5 shows the architecture of an ANN, which typically includes n -input
192 nodes, an output node, and one or more hidden layers. ANN models for predicting peak $C_{p,mean}$
193 and max $C_{p,RMS}$ on the windward wall, roof, and leeward wall (total 6 models) were independently

194 developed. The objective function incorporated the mean squared error (MSE) loss function and
195 the ridge (L2) penalty term, and backpropagation was used to adjust the weights. The loss function
196 in an ANN measures the difference between the predicted output and the actual target value. It
197 guides the optimization process by quantifying how well or poorly the model performs, with the
198 purpose of minimizing this error to improve the model's accuracy.

199 We developed two types of ANN models using different input features related to the level of
200 terrain complexity. The first type is a parameter-based ANN model (PANN). The empirical
201 parameters—effective roughness length $z_{0,eff}$ and the coefficient of variation for the z_0 values in
202 the terrain COV_{z_0} —used as input features were determined based on the investigations from the
203 author's previous studies [5, 6]. In our prior work, An et al. [5] investigated the influence of terrain
204 complexity on the mean wind profile and turbulence intensity. They found that the $z_{0,eff}$, widely
205 used in atmospheric surface layer modeling for moderately homogeneous terrain or smaller-scale
206 inhomogeneity, was insufficient for complex heterogeneous terrain. Additional consideration of
207 the morphological variation of the terrain was necessary. It was found that the $z_{0,eff}$ and the COV_{z_0}
208 are dominant parameters affecting wind characteristics over complex heterogeneous terrains.
209 Subsequently, An and Jung [6] found that wind characteristics influenced by terrain complexity
210 affected the variability of wind pressure on low-rise buildings, even though the $z_{0,eff}$ was similar.
211 Thus, PANN used three input features: $z_{0,eff}$, COV_{z_0} , and wind incident angle α .

212 $z_{0,eff}$ was calculated using a grid-squared average-based approach, utilizing the z_0 maps of the
213 terrains [36, 37]. This approach relied on the linear approximation of the Rossby number similarity
214 theory and derived the following formula [36]:

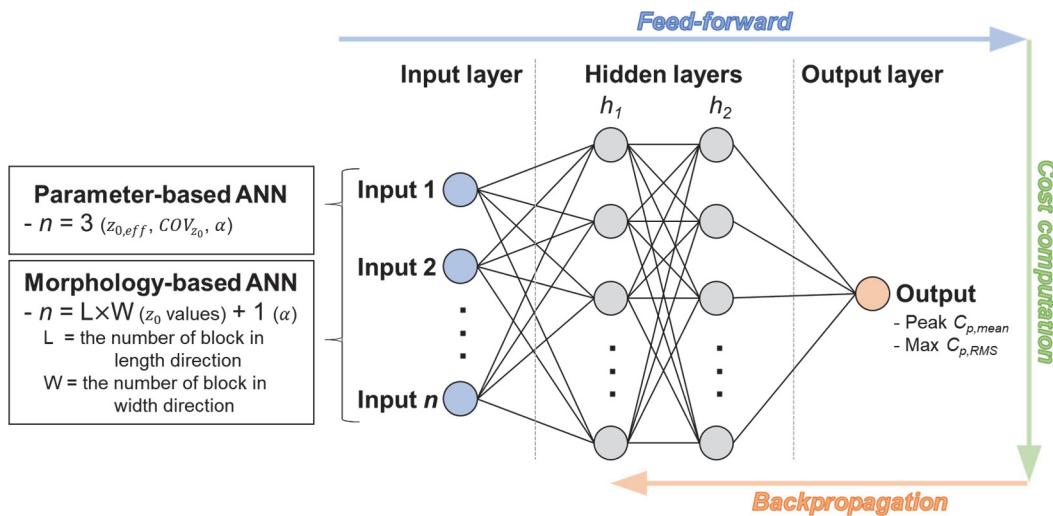
$$\ln(z_{0,eff}) = \langle \ln(z_0) \rangle + \alpha \sigma_{\ln(z_0)}^2 \quad (2)$$

215 Here, α represents the Rossby value, typically set to 0.09, and $\sigma_{ln(z_0)}^2$ indicates the variance
216 within the area. The $\langle \rangle$ notation represents the area-weighted logarithmic average operation. COV_{z_0}
217 can be calculated as the standard deviation/average of z_0 values in a given map. The z_0 maps can
218 be attained by transforming the block height map, shown in Fig. 4 (b). The relationship between
219 block height and z_0 is outlined in Appendix B of An et al. [5]. They performed a wind tunnel
220 experiment by uniformly changing the block height and then used an anemometric approach [38]
221 to estimate z_0 caused by each block height. By using the block height vs z_0 relationship obtained
222 from the estimated results, a z_0 map of the given terrain can be obtained.

223 The second type is a morphology-based ANN model (MANN). Direct use of morphology in wind
224 loading estimation was shown to be effective in a previous study [39]. Here, the values of the z_0
225 maps were directly used as input features, along with α . The number of input features equals the
226 product of the number of x -direction blocks (L) and the number of y -direction blocks (W).

227 For both approaches, the model development was iteratively conducted, while changing patch
228 size to determine the optimal patch size that showed the best prediction performance. As
229 investigated in previous studies, the roughness of the terrain at a certain distance from the building
230 does not have a significant effect on the wind pressure [2, 3]. Thus, considering information from
231 a wider patch does not guarantee higher wind pressure prediction accuracy. In the case of PANN,
232 $z_{0,eff}$ and COV_{z_0} change depending on the patch size being considered, so if the morphology of an
233 excessively wide patch is considered, the correlation with wind pressure may decrease and
234 prediction performance may deteriorate. Moreover, for MANN, patch size is a dominant factor
235 affecting the effectiveness of the model training since the number of input features is the number
236 of blocks in the considered patch sizes. By comparing the prediction performance with changing

237 the patch size, the best patch size that showed the greatest correlation with the characteristics of
238 wind pressure was explored.



239

240 Fig. 5. Architecture of ANN and input features of PANN and MANN.

241 In developing ANN models, architecture optimization can significantly improve accuracy since
242 a more efficient and carefully designed architecture achieves good generalization and avoids
243 overfitting. Optimal network structure is mostly determined by the data nature rather than the
244 sample size, suggesting a data-driven approach to choosing the ANN architecture [40]. To
245 determine the optimal hyperparameters, Bayesian optimization (BO) is applied in this study. BO
246 has been recognized as an excellent tool to find the global optimum with a minimum number of
247 steps and has outperformed other state-of-the-art global optimization algorithms on some
248 challenging optimization benchmarks [41]. The strategy of BO assumes the unknown objective
249 function as a random function and places a prior over it, which captures beliefs about the behavior
250 of the objective function. Ding et al. [15] reported that the BO-based neural network (BONN) was
251 most efficient, saving 88-94% computational time compared with the traditional trial-and-error
252 neural network. The effectiveness of BONN for wind pressure prediction has already been
253 validated in previous studies [41, 42]. The number of layers and the number of nodes ranged from

254 1-2 and 1-50, respectively. The optimization options for the activation function were none, relu,
255 tanh, and sigmoid. Out of a total of 50 terrains, 10 (20%) randomly selected terrains were used as
256 the test set, and data from the remaining 40 (80%) terrains were used as the training set. The
257 numbers of the total training set and test set were 280 and 70, respectively. A validation set was
258 not separately divided since the BO method was applied to determine optimal architecture to
259 prevent overfitting.

260 As indicators of prediction performance, coefficient of determination (R^2), root-mean-square
261 error (RMSE), and maximum absolute error (MAE) were applied. R^2 is commonly used to assess
262 the goodness of fit of surrogate models. If the model perfectly predicts the variance of the data, R^2
263 equals 1. This metric provides an overall indication of how well the model fits the data but can
264 sometimes fail to reflect overfitting. RMSE directly measures the accuracy of predictions, and
265 lower RMSE values indicate higher accuracy. It is sensitive to outliers, providing a measure of the
266 magnitude of large errors. The MAE metric is also sensitive to outliers. Additionally, this can be
267 beneficial to directly evaluate the worst case.

$$R^2 = 1 - \frac{\sum_{i=1}^n (O_i - P_i)^2}{\sum_{i=1}^n (O_i - \bar{O})^2} \quad (3)$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^n (O_i - P_i)^2} \quad (4)$$

$$MAE = \max (|O - P|) \quad (5)$$

268

269 **3. Results**

270 **3.1. Non-Linear Fitting Model**

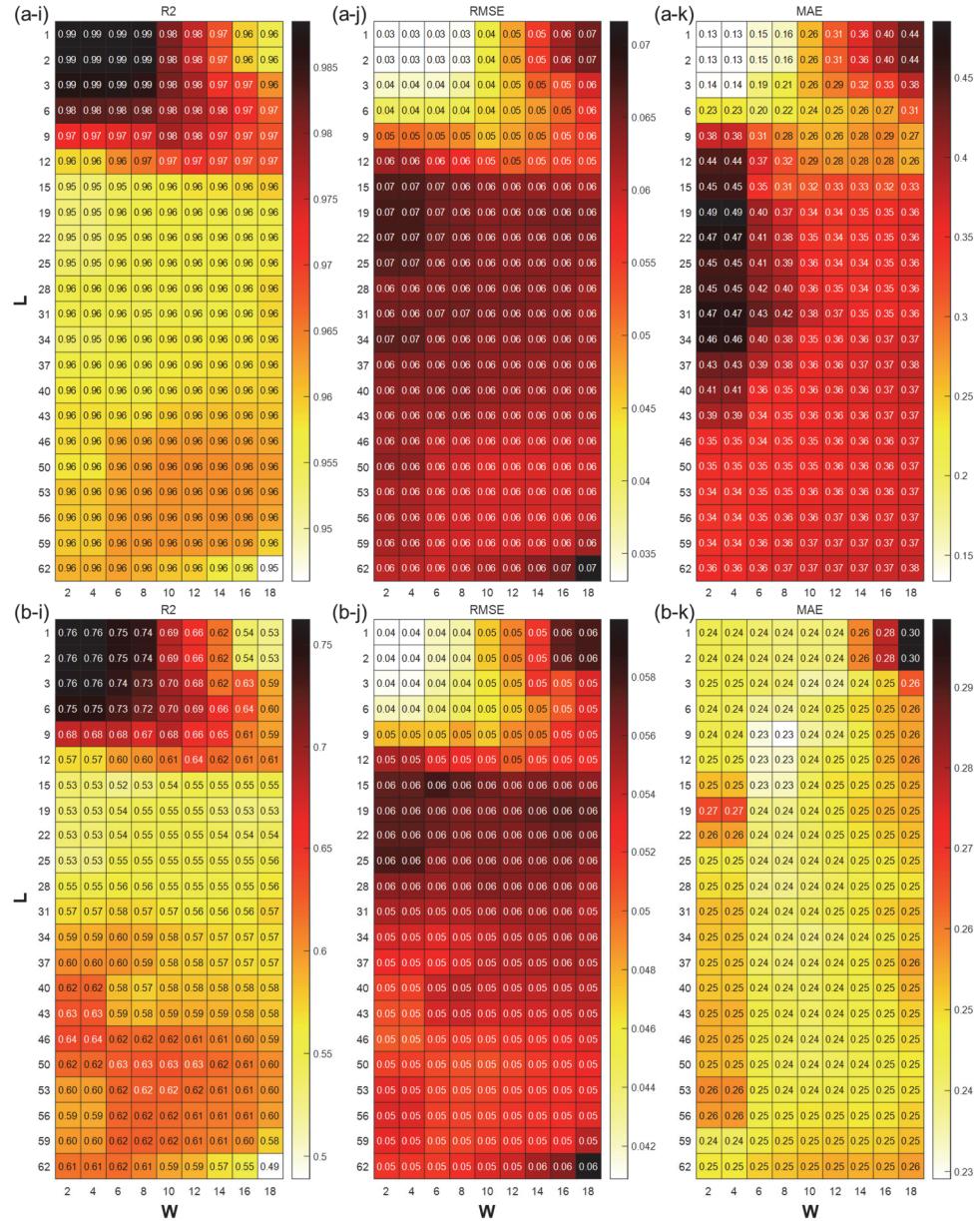
271 If general non-linear regression shows better prediction performance, using the ANN method as
272 a surrogate model might not be necessary. As a preliminary analysis for computational
273 effectiveness, the non-linear fit (NLF) using a 2nd order-polynomial function was conducted with
274 the same parameters as PANN, i.e., $z_{0,eff}$, COV_{z_0} , and α . Similar to the ANN models, 80% of the
275 dataset was used for NLF and the other 20% of the data was used as the test set.

276 The prediction performance of NLF models with varying patch window sizes is depicted in Fig.
277 6, showcasing (i) R^2 , (j) RMSE, and (k) MAE metrics. Fig. 6 (a) and (b) illustrate the performance
278 for peak $C_{p,mean}$ and max $C_{p,RMS}$, respectively. The further to the bottom right of the heatmap, the
279 larger the area that was considered when calculating $z_{0,eff}$ and COV_{z_0} . For example, the cell at the
280 most bottom right indicates that 18 blocks in y-direction and 62 blocks in x-direction were used to
281 calculate $z_{0,eff}$ and COV_{z_0} . Fig. 6 (a) shows the prediction performance for $C_{p,mean}$. On the other
282 hand, fewer blocks are considered toward the upper left. The number of blocks considered changes
283 around the location closest to the building model, that is, the block corresponding to $(x, y)=(29500$
284 mm, 0 mm) in Fig. 1. For example, the model of $W \times L=1 \times 2$ utilizes the two blocks located in the
285 center of the row closest to the building model.

286 The overall prediction performance was acceptable in terms of the three performance indicators.
287 The worst R^2 was still acceptable as 0.95 when $W \times L=18 \times 62$. It was clearly shown that the
288 prediction performance improved with a smaller window size. When the patch size was within
289 $W \times L=8 \times 3$, R^2 reached 0.99, and RMSE and MAE were also reduced to less than 0.04 and 0.16,
290 showing excellent accuracy.

291 As shown in Fig. 6 (b), the NLF model for max $C_{p,RMS}$ also displayed higher prediction
292 performance when the patch size was within $W \times L=8 \times 3$. However, its accuracy was relatively
293 worse than the model for peak $C_{p,mean}$, showing an R^2 of less than 0.8. Additionally, prediction

294 performance cannot be guaranteed on roofs or leeward walls where flow separation occurs and
295 greater wind pressure variability is observed. Conclusively, there were significant limitations in
296 achieving acceptable prediction accuracy using NLF for all statistics of C_p on all walls. However,
297 based on the change in prediction performance with varying patch size, it can be inferred that the
298 morphology information within $W \times L = 8 \times 3$ had the highest correlation with the wind pressure.



299

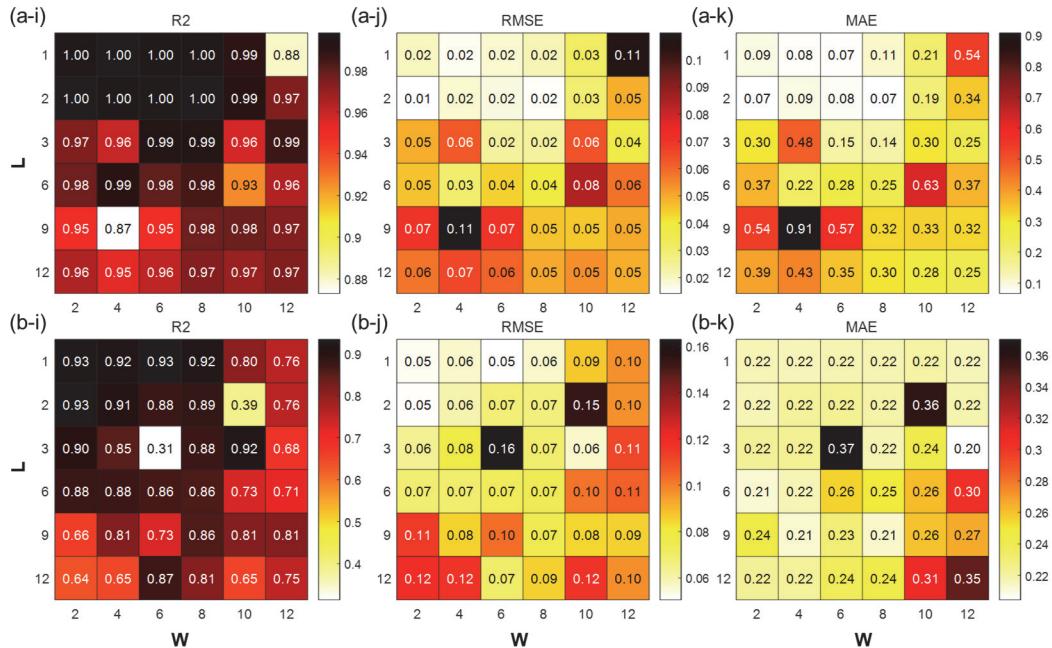
300 Fig. 6. Prediction performance of NLF in windward wall: (a) $C_{p,mean}$, and (b) $C_{p,RMS}$; with (i) R², (j) RMSE, and (k)
301 MAE.

302 3.2. PANN and MANN Models

303 Figs. 7 and 8 showcase the prediction performances of PANN and MANN models. The ANN
304 models were not developed for all patch sizes, and the considered patch sizes were limited within
305 W×L=12×12. PANN demonstrated exceptional predictive accuracy for peak $C_{p,mean}$, achieving an
306 R² nearing 1 and an MAE lowered to 0.07.

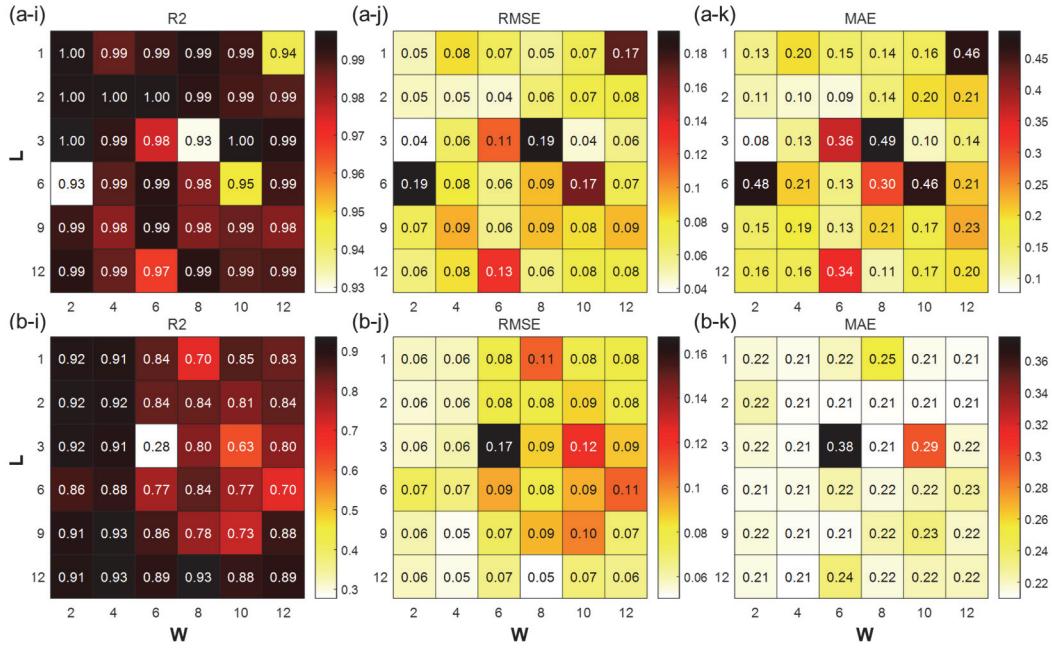
307 MANN also showcased impressive prediction performance. For peak $C_{p,mean}$, R^2 was improved
308 to nearly 1.00, with RMSE and MAE reduced to 0.04 and 0.09, respectively. The predictions for
309 $\max C_{p,RMS}$ also indicated strong performance, as R^2 reached 0.92. However, the RMSE and MAE
310 for MANN were slightly higher than those for PANN, highlighting that the empirical parameters
311 in PANN capture terrain complexity more effectively. Moreover, with MANN, the increase in the
312 number of input features with patch size could diminish computational efficiency, and its
313 performance, in terms of MAE and RMSE, seems less optimal than that of PANN.

314 For both models, the predictions for $\max C_{p,RMS}$ revealed a challenge, with lower R^2 and higher
315 RMSE and MAE than for peak $C_{p,mean}$. This discrepancy underscores the complexities in
316 accurately estimating wind pressure variability, leading to greater data dispersion.



317

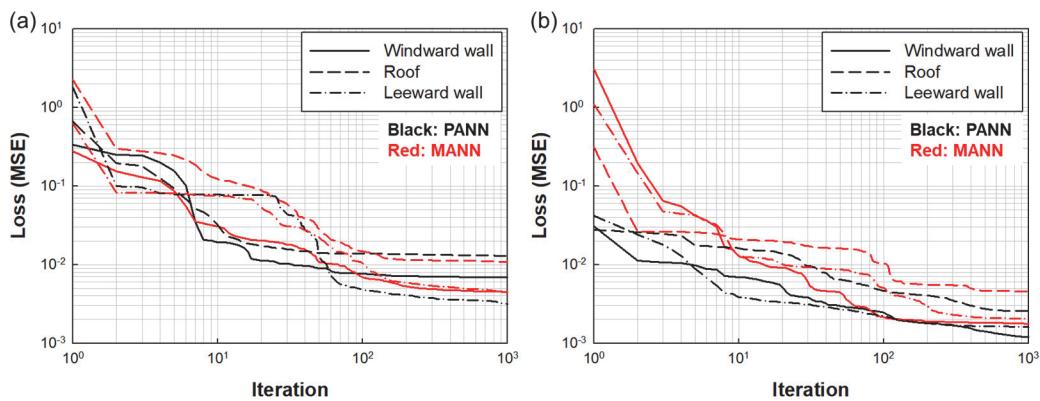
318 Fig. 7. Prediction performance of PANN models in windward wall: (a) Peak $C_{p,mean}$, and (b) Max $C_{p,RMS}$; with (i) R^2 ,
 319 (j) RMSE, and (k) MAE.



320

321 Fig. 8. Prediction performance of MANN models in windward wall: (a) Peak $C_{p,mean}$, and (b) Max $C_{p,RMS}$; with (i) R^2 ,
 322 (j) RMSE, and (k) MAE.

323 Fig. 9 displays the training histories for PANN and MANN models with a patch size of
324 $W \times L = 4 \times 2$, which demonstrated the best overall prediction performance. Since no validation set
325 was used, only the loss for the training set is presented. The backpropagation algorithm was
326 utilized to minimize the loss (MSE), and by the end of the training process, both PANN and
327 MANN models converged to satisfactory performance results.



328

329 Fig. 9. Performance history of training sets: (a) Peak $C_{p,mean}$; and (b) Max $C_{p,RMS}$.

330 3.3. Comparison

331 Tables 1 and 2 detail the highest prediction accuracies for peak $C_{p,mean}$ and max $C_{p,RMS}$ for NLF,
332 PANN, and MANN, along with the optimal patch sizes. NLF demonstrates robust prediction
333 accuracy for $C_{p,mean}$ on the windward wall, attributed to its lesser susceptibility to variability-
334 inducing phenomena like flow separation and vortices. This implies a lesser degree of nonlinearity,
335 enabling NLF to achieve strong predictive outcomes. However, across the other five models—peak
336 $C_{p,mean}$ for the roof and leeward wall, and max $C_{p,RMS}$ for the windward wall, roof, and leeward
337 wall—the ANN models outperformed NLF in prediction accuracy.

338 Both PANN and MANN exhibited outstanding predictive accuracy with R^2 exceeding 0.9 in
339 nearly all scenarios, barring max $C_{p,RMS}$ predictions for the leeward wall. The reduced performance
340 for max $C_{p,RMS}$ on the leeward wall is attributed to significant wind pressure variability in this

341 region, likely due to vortices. This variability presented challenges in achieving comparable
342 prediction accuracy to that of the windward wall and roof, using only a limited set of empirical
343 parameters ($z_{0,eff}$ and COV_{z_0}) or solely terrain morphology data.

344 Analysis of the optimal patch size for the best-performing model reveals that when terrain
345 morphology information within a $W \times L = 4 \times 2$ area was utilized, all three models—NLF, PANN,
346 and MANN—showed highly satisfactory predictive results. Differences in performance among
347 these models within this specific range were negligible. The simulated full-scale terrain area by
348 these blocks, $W \times L = 4 \times 2$, approximates $72 \text{ m} \times 23 \text{ m}$. Therefore, predictions of peak $C_{p,mean}$ and
349 $\max C_{p,RMS}$ with sufficiently high accuracy are possible if morphology information corresponding
350 to at least a $100 \text{ m} \times 50 \text{ m}$ area is acquired for actual complex heterogeneous terrains. This is
351 approximately equivalent to 25 and 12.5 times the building height H ($= 4 \text{ m}$). This suggests that
352 the morphology within approximately $25H \times 12.5H$ in front of the WERFL low-rise building has
353 the greatest correlation with the wind pressure coefficient, while terrain morphology at locations
354 farther away from the low-rise building has a lower correlation with the wind characteristics and
355 pressure experienced by the low-rise building. This is consistent with the results observed in
356 previous studies [2, 5]. Consequently, when training an ANN model using information that
357 includes distant terrain morphology, the model's performance may deteriorate.

358 Fig. 10 demonstrates the test set prediction results for NLF, PANN, and MANN models. With
359 the exception of peak $C_{p,mean}$ for the windward wall, NLF frequently surpassed the 10% error
360 margin, even revealing data points exceeding the 25% error bound. Conversely, both PANN and
361 MANN maintained acceptable prediction accuracies.

362 Fig. 11 displays prediction results using NLF, PANN, and MANN at three specific sites—5, 31,
363 and 43—randomly chosen from the test set. The morphologies of these three sites are shown in Fig.

364 12. Although the selection process for the test set was random, the chosen terrains successfully
365 exhibit a wide range of real-world terrain complexity. As shown in Fig. 11, variations in terrain
366 can significantly influence the pressure coefficient. Specifically, at site 43, which is characterized
367 by relatively high terrain complexity as shown in Fig. 12 (c), there was a noticeable increase in
368 larger values of $C_{p,mean}$ and $C_{p,RMS}$ due to increased turbulence intensity. This phenomenon has
369 been detailed by An and Jung [6]. PANN and MANN accurately captured the trends of peak $C_{p,mean}$
370 and max $C_{p,RMS}$ as the wind incident angle varied. The nonlinearity of peak $C_{p,mean}$ on the windward
371 wall was notably less than in the other five cases, which enables NLF to exhibit high prediction
372 performance. However, for scenarios with enhanced nonlinearity, such as max $C_{p,RMS}$ on the
373 windward wall and both peak $C_{p,mean}$ and max $C_{p,RMS}$ on the roof and leeward wall, NLF's
374 performance lagged behind the ANN models.

375

376

377 Table 1. Comparison of best prediction performance for peak $C_{p,mean}$.

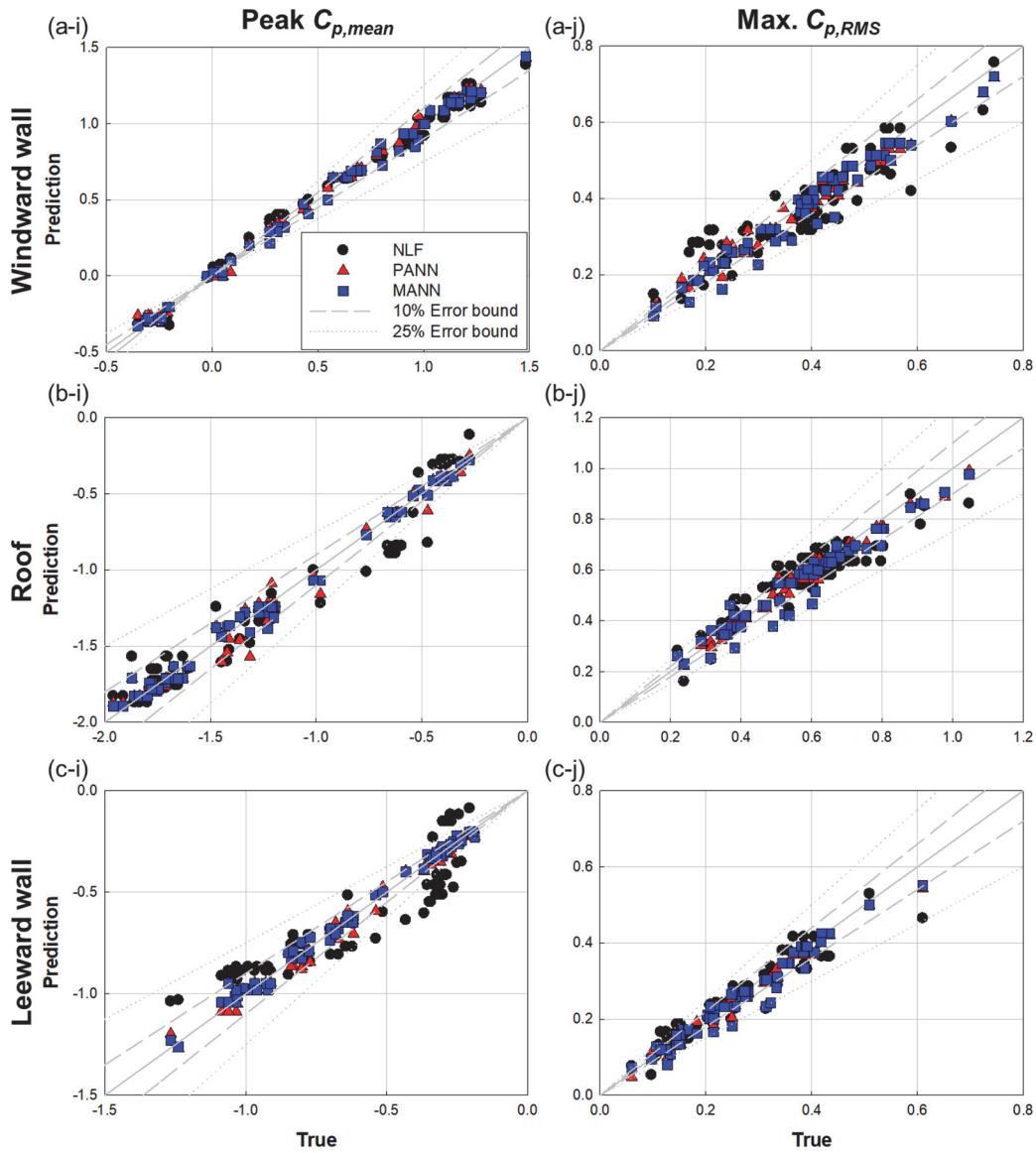
Wall	Model	Patch size		Prediction performance		
		W	L	R ²	RMSE	MAE
Windward wall	NLF	4	2	0.988	0.033	0.134
	PANN	4	2	0.996	0.019	0.093
	MANN	2	2	0.996	0.048	0.111
Roof	NLF	4	2	0.941	0.081	0.348
	PANN	4	2	0.986	0.039	0.315
	MANN	2	2	0.992	0.069	0.161
Leeward wall	NLF	4	2	0.811	0.079	0.236
	PANN	4	2	0.986	0.021	0.116
	MANN	2	2	0.992	0.039	0.112

378

379 Table 2. Comparison of best prediction performance for max $C_{p,RMS}$.

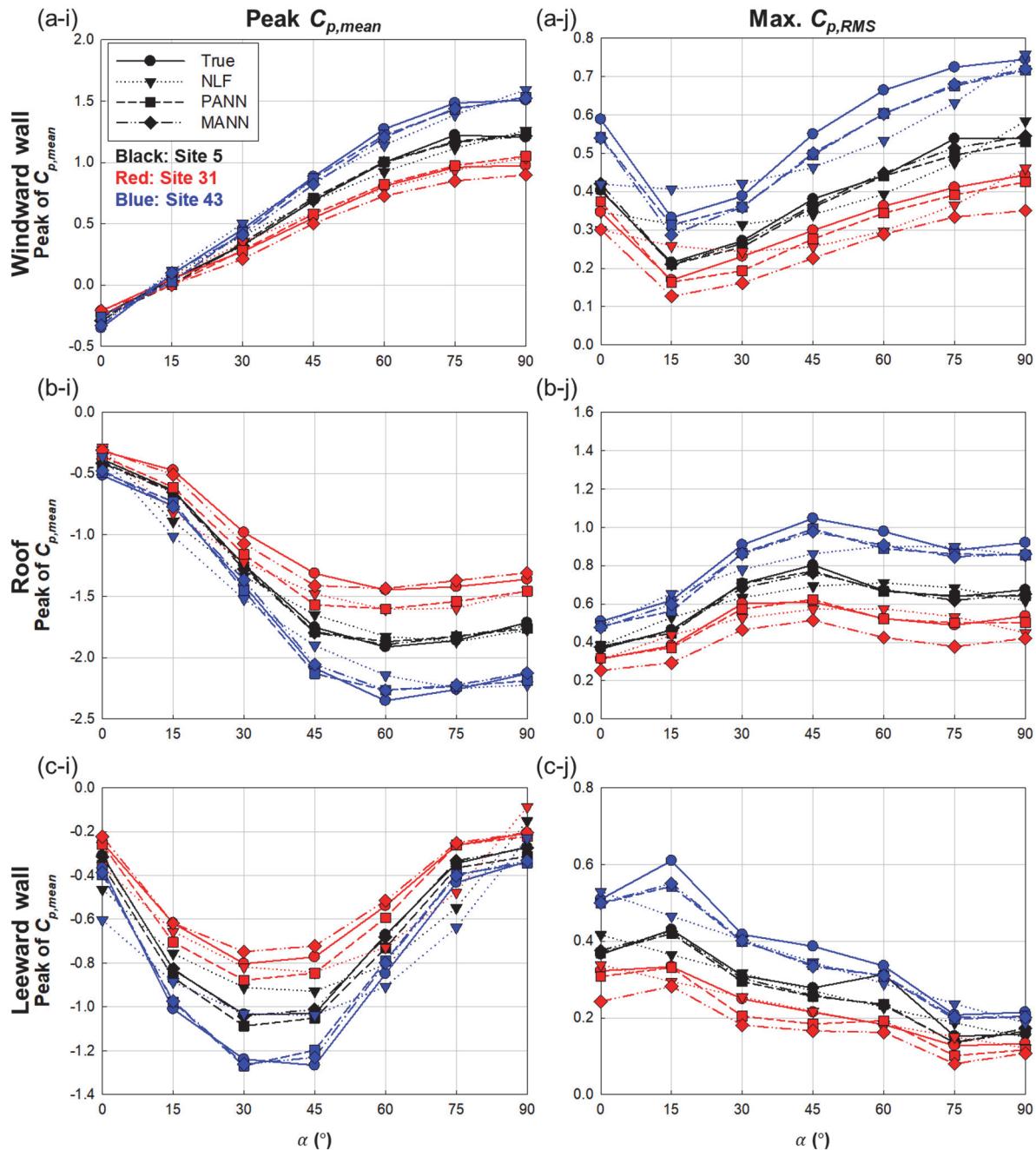
Wall	Model	Window size		Prediction performance		
		W	L	R ²	RMSE	MAE
Windward wall	NLF	4	2	0.762	0.041	0.244
	PANN	2	1	0.934	0.022	0.223
	MANN	2	2	0.921	0.055	0.223
Roof	NLF	4	2	0.849	0.041	0.185
	PANN	2	1	0.970	0.018	0.105
	MANN	2	1	0.934	0.064	0.137
Leeward wall	NLF	4	2	0.763	0.034	0.258
	PANN	2	1	0.834	0.028	0.267
	MANN	2	1	0.815	0.070	0.269

380



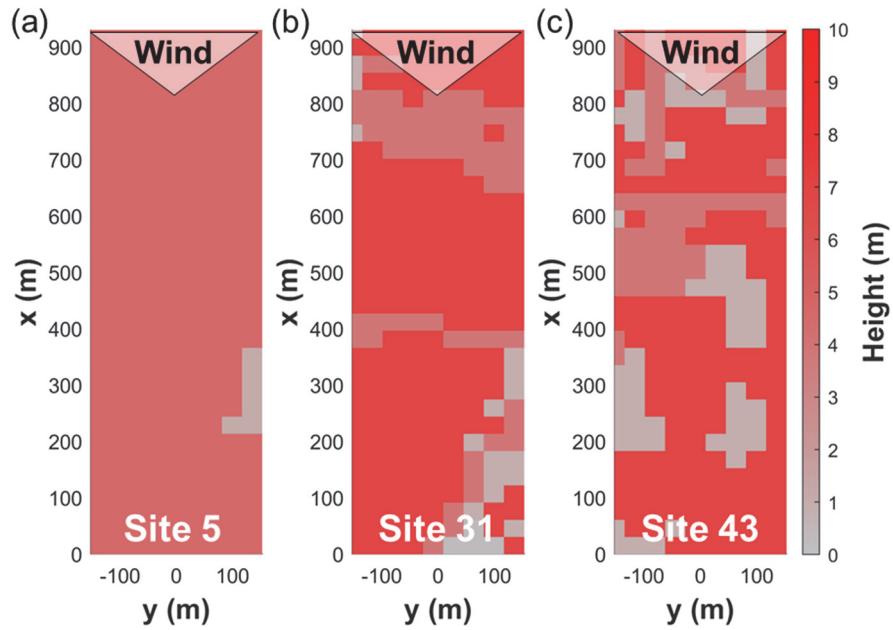
381

382 Fig. 10. Comparison of prediction results for NLF, PANN, and MANN for test set: (a) Windward wall, (b) Roof,
 383 and (c) Leeward wall; with (i) Peak $C_{p,mean}$, and (j) Max $C_{p,RMS}$.



384

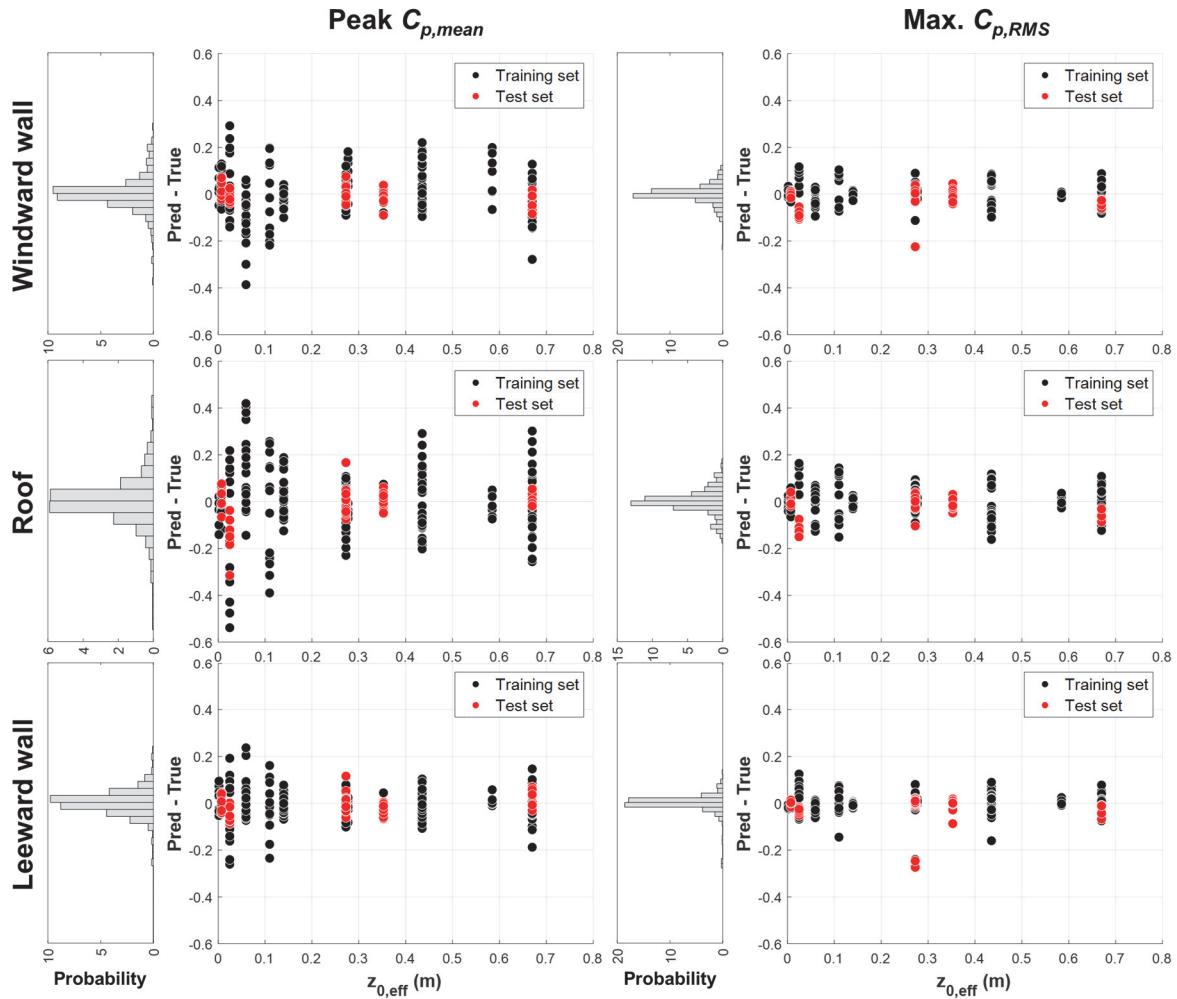
385 Fig. 11. Comparison of prediction results for specific sites in test set with varying wind incident angles: (a)
386 Windward wall, (b) Roof, and (c) Leeward wall; with (i) Peak $C_{p,mean}$, and (j) Max $C_{p,RMS}$.



387

388 Fig. 12. Morphology of selected terrains used in test sets: (a) Site 5; (b) Site 31; and (c) Site 43.

389 Fig. 13 illustrates the differences between the predicted and actual values of peak $C_{p,mean}$ and max
390 $C_{p,RMS}$ as a function of changes in $z_{0,eff}$. The $z_{0,eff}$ was calculated using the morphology
391 information within a $W \times L = 4 \times 2$ area. To avoid the potential misrepresentation of small difference
392 values as disproportionately large errors when expressed as percentages, these difference values
393 are presented. Across all $z_{0,eff}$ ranges, similar prediction accuracies are observed for both peak
394 $C_{p,mean}$ and max $C_{p,RMS}$, with no significant differences identified within any specific $z_{0,eff}$ range.
395 Histograms of the differences showcase that the majority of the distribution is tightly clustered
396 around zero. $C_{p,RMS}$ values are typically smaller than $C_{p,mean}$ values. Consequentially, it was observed
397 that the scatter would be more concentrated within a narrower range of differences for $C_{p,RMS}$
398 compared to $C_{p,mean}$. This pattern is consistent with the MAE results presented in Tables 1 and 2.



399

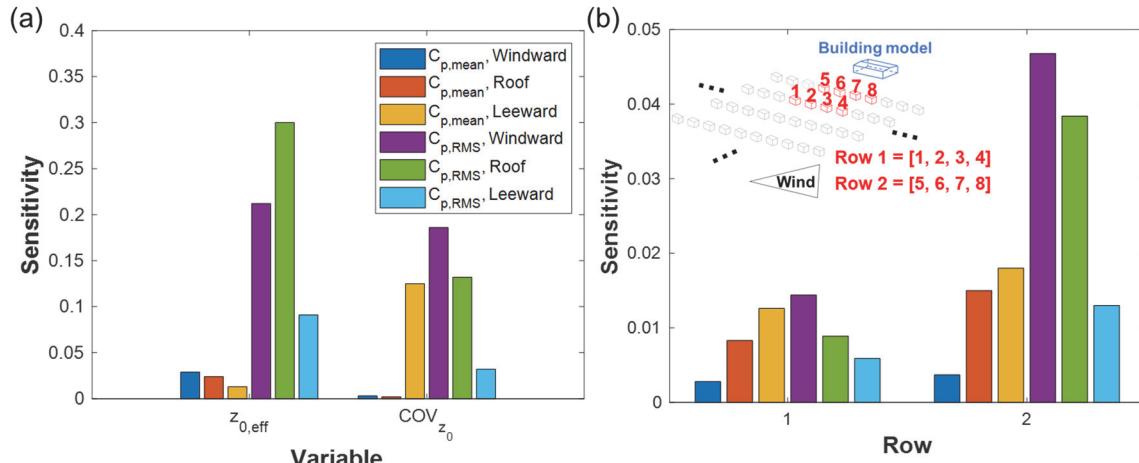
400 Fig. 13. The difference between predicted and true value of peak $C_{p,mean}$ and max $C_{p,RMS}$.

401 Sensitivity analysis evaluates how variations in a model's or system's inputs contribute to
402 uncertainty in its outputs. Conducting sensitivity analysis on the developed ANN models allows
403 us to identify the parameters that significantly influence wind pressure statistics. The Sobol
404 method, a type of global sensitivity analysis, is particularly advantageous because it measures
405 sensitivity across the entire input space, accommodates nonlinear responses, and assesses the
406 effects of interactions in non-additive systems [43]. The Sobol index was calculated using the
407 Saltelli method [44]. Fig. 14 outlines the global sensitivity analysis results. The PANN and MANN

408 models utilized terrain morphology information of $W \times L = 4 \times 2$. The incident wind angle was
409 omitted to concentrate on terrain complexity-related variables.

410 As illustrated in Fig. 14 (a), $z_{0,eff}$ emerged as a more influential factor than COV_{z_0} in all instances
411 except for peak $C_{p,mean}$ at the Leeward wall, where, unlike other wall types, an increase in $z_{0,eff}$
412 did not correlate with heightened peak $C_{p,mean}$. This pattern, well-represented in the ANN models,
413 aligns with observations by An and Jung [6]. Additionally, max $C_{p,RMS}$ was more significantly
414 impacted by terrain roughness and complexity compared to peak $C_{p,mean}$, a finding consistent with
415 the variable's direct association with wind speed variability. These sensitivity outcomes from the
416 PANN model corroborate existing wind engineering insights, affirming the model's accurate
417 reflection of physical phenomena.

418 For MANN, given the broader impact scope of row units over individual blocks, sensitivity
419 analysis results for blocks 1 to 4 were averaged as row 1, and those for blocks 5 to 8 as row 2. Due
420 to MANN's extensive input features, each input's influence was diminished, resulting in lower
421 sensitivity compared to PANN. Predominantly, row 2's morphology, being closer to the building
422 model, held more sway over the peak pressure coefficient statistics, notably tripling the impact on
423 max $C_{p,RMS}$ for the windward wall and roof compared to row 1.



424

425

Fig. 14. Results of global sensitivity analysis for: (a) PANN, and (b) MANN.

426

427

4. Conclusions

428 This study introduced a data-driven approach to predicting peak values of pressure coefficient
 429 statistics for low-rise buildings situated in complex heterogeneous terrains. To address terrain
 430 complexity, we developed ANN models using two distinct sets of input features: empirical
 431 parameters-based ANN (PANN) and morphology-based ANN (MANN). We compared the
 432 prediction performance of these ANN models with that of a non-linear fitted (NLF) model and
 433 conducted global sensitivity analysis, yielding the following key insights:

434 • The NLF model demonstrated adequate prediction performance for peak $C_{p,\text{mean}}$ on the
 435 windward wall, attributed to the area's relatively lower non-linearity compared to other
 436 walls. However, NLF's efficacy diminished in other cases, such as max $C_{p,\text{RMS}}$ on the
 437 windward wall and both peak $C_{p,\text{mean}}$ and max $C_{p,\text{RMS}}$ on the roof and leeward walls, where
 438 PANN and MANN exhibited superior predictive accuracy.

439 • An examination of varying patch sizes revealed optimal prediction performance within a
440 $W \times L = 4 \times 2$ patch size, corresponding to a full-scale terrain area of approximately $72 \text{ m} \times$
441 23 m . This means that the terrain morphology corresponding to about $100 \text{ m} \times 50 \text{ m}$ ($25H$
442 $\times 12.5H$) has the strongest correlation with the wind pressure on the WERFL low-rise
443 building. Therefore, securing terrain information exceeding $100 \text{ m} \times 50 \text{ m}$ allows
444 engineers to precisely predict wind pressure coefficients using the proposed ANN models.

445 • For max $C_{p,RMS}$ on the leeward wall, the R^2 values for NLF, PANN, and MANN were below
446 0.9, indicating reduced prediction performance for this area compared to the other five
447 cases. The leeward wall experiences lower wind pressure and higher variability, often due
448 to vortices, challenging the predictive accuracy of the models based on the input features
449 utilized.

450 • Both PANN and MANN reflected the influence of wind incident angle variations and
451 terrain complexity changes with reasonable accuracy across six outputs. The marginal
452 differences in R^2 , RMSE, and MAE between the two models suggest that the choice
453 between PANN and MANN may depend on the available information during actual
454 evaluations.

455 • Global sensitivity analysis underscored the greater impact of terrain roughness and
456 complexity on max $C_{p,RMS}$ compared to peak $C_{p,mean}$ within the PANN model. Furthermore,
457 $z_{0,eff}$ was identified as having a more significant influence than COV_{z_0} across all cases
458 except for peak $C_{p,mean}$ at the leeward wall. In the MANN model, the block row nearest to
459 the building model exerted a more pronounced effect on peak $C_{p,mean}$ and max $C_{p,RMS}$ than
460 the subsequent row.

461

462 **5. Acknowledgments**

463 This material is based upon work supported by the National Science Foundation under Grant No.
464 CMMI-1856205. Any opinions, findings, and conclusions or recommendations expressed in this
465 material are those of the authors and do not necessarily reflect the views of the National Science
466 Foundation.

467

468 **6. References**

469 [1] A.G. Davenport, Past, present and future of wind engineering, *Journal of Wind Engineering*
470 and *Industrial Aerodynamics* 90(12-15) (2002) 1371-1380. [https://doi.org/10.1016/S0167-6105\(02\)00383-5](https://doi.org/10.1016/S0167-6105(02)00383-5)

472 [2] K. Wang, T. Stathopoulos, Exposure model for wind loading of buildings, *Journal of Wind*
473 *Engineering and Industrial Aerodynamics* 95(9-11) (2007) 1511-1525.
474 <https://doi.org/10.1016/j.jweia.2007.02.016>

475 [3] J. Yu, M. Li, T. Stathopoulos, Q. Zhou, X. Yu, Urban exposure upstream fetch and its influence
476 on the formulation of wind load provisions, *Building and Environment* 203 (2021) 108072.
477 <https://doi.org/10.1016/j.buildenv.2021.108072>

478 [4] Y.C. Kim, A. Yoshida, Y. Tamura, Characteristics of surface wind pressures on low-rise
479 building located among large group of surrounding buildings, *Engineering Structures* 35 (2012)
480 18-28. <https://doi.org/10.1016/j.engstruct.2011.10.024>

481 [5] L. An, N. Alinejad, S. Kim, S. Jung, Experimental study on wind characteristics and prediction
482 of mean wind profile over complex heterogeneous terrain, *Building and Environment* (2023)
483 110719. <https://doi.org/10.1016/j.buildenv.2023.110719>

484 [6] L.-S. An, S. Jung, Experimental investigation on influence of terrain complexity for wind
485 pressure of low-rise building, *Journal of Building Engineering* (2024) 108350.
486 <https://doi.org/10.1016/j.jobe.2023.108350>

487 [7] S. Kim, N. Alinejad, S. Jung, H.-K. Kim, The effect of open-to-suburban terrain transition on
488 wind pressures on a low-rise building, *Journal of Building Engineering* (2024) 108651.
489 <https://doi.org/10.1016/j.jobe.2024.108651>

490 [8] A.F. Akon, G.A. Kopp, Mean pressure distributions and reattachment lengths for roof-
491 separation bubbles on low-rise buildings, *Journal of Wind Engineering and Industrial*
492 *Aerodynamics* 155 (2016) 115-125. <https://doi.org/10.1016/j.jweia.2016.05.008>

493 [9] M. Kiya, K. Sasaki, Free-stream turbulence effects on a separation bubble, *Journal of Wind*
494 *Engineering and Industrial Aerodynamics* 14(1-3) (1983) 375-386. [https://doi.org/10.1016/0167-6105\(83\)90039-9](https://doi.org/10.1016/0167-6105(83)90039-9)

496 [10] X. Gavalda, J. Ferrer-Gener, G.A. Kopp, F. Giralt, Interpolation of pressure coefficients for
497 low-rise buildings of different plan dimensions and roof slopes using artificial neural networks,
498 Journal of wind engineering and industrial aerodynamics 99(5) (2011) 658-664.

499 [11] Y. Chen, G. Kopp, D. Surry, Interpolation of wind-induced pressure time series with an
500 artificial neural network, Journal of Wind Engineering and Industrial Aerodynamics 90(6) (2002)
501 589-615. [https://doi.org/10.1016/S0167-6105\(02\)00155-1](https://doi.org/10.1016/S0167-6105(02)00155-1)

502 [12] F. Bre, J.M. Gimenez, V.D. Fachinotti, Prediction of wind pressure coefficients on building
503 surfaces using artificial neural networks, Energy and Buildings 158 (2018) 1429-1441.
504 <https://doi.org/10.1016/j.enbuild.2017.11.045>

505 [13] P.L. Fernández-Cabán, F.J. Masters, B.M. Phillips, Predicting roof pressures on a low-rise
506 structure from freestream turbulence using artificial neural networks, Frontiers in Built
507 Environment 4 (2018) 68. <https://doi.org/10.3389/fbuil.2018.00068>

508 [14] J. Tian, K.R. Gurley, M.T. Diaz, P.L. Fernandez-Caban, F.J. Masters, R. Fang, Low-rise gable
509 roof buildings pressure prediction using deep neural networks, Journal of Wind Engineering and
510 Industrial Aerodynamics 196 (2020) 104026. <https://doi.org/10.1016/j.jweia.2019.104026>

511 [15] Z. Ding, W. Zhang, D. Zhu, Neural-network based wind pressure prediction for low-rise
512 buildings with genetic algorithm and Bayesian optimization, Eng. Struct. 260 (2022) 114203.
513 <https://doi.org/10.1016/j.engstruct.2022.114203>

514 [16] L. Lang, L. Tiancai, A. Shan, T. Xiangyan, An improved random forest algorithm and its
515 application to wind pressure prediction, International Journal of Intelligent Systems 36(8) (2021)
516 4016-4032. <https://doi.org/10.1002/int.22448>

517 [17] N. Alinejad, S. Kim, S. Jung, Wind-Tunnel Testing of Low-and Midrise Buildings under
518 Heterogeneous Upwind Terrains, Journal of Structural Engineering 150(5) (2024) 04724001.

519 [18] N. Alinejad, S. Jung, G. Kakareko, P.L. Fernández-Cabán, Wind-Tunnel Reproduction of
520 Nonuniform Terrains Using Local Roughness Zones, Bound. Layer Meteorol. (2023) 1-22.
521 <https://doi.org/10.1007/s10546-023-00822-0>

522 [19] F.J. Masters, Boundary Layer Wind Tunnel, Basic Operations Manual, University of Florida,
523 Gainesville, FL, 2017.

524 [20] R.A. Catarelli, P.L. Fernández-Cabán, B.M. Phillips, J.A. Bridge, F.J. Masters, K.R. Gurley,
525 D.O. Prevatt, Automation and new capabilities in the university of Florida NHERI Boundary Layer
526 Wind Tunnel, Frontiers in Built Environment 6 (2020) 558151.
527 <https://doi.org/10.3389/fbuil.2020.558151>

528 [21] T. Stathopoulos, Wind loads on low-rise buildings: a review of the state of the art, Engineering
529 Structures 6(2) (1984) 119-135.

530 [22] T.E. Ho, D. Surry, D. Morrish, G. Kopp, The UWO contribution to the NIST aerodynamic
531 database for wind loads on low buildings: Part 1. Archiving format and basic aerodynamic data, J.
532 Wind. Eng. Ind. Aerod. 93(1) (2005) 1-30.

533 [23] H.J. Ham, B. Bienkiewicz, Wind tunnel simulation of TTU flow and building roof pressure,
534 Journal of Wind Engineering and Industrial Aerodynamics 77 (1998) 119-133.

535 [24] Y. Guo, C.-H. Wu, G.A. Kopp, A method to estimate peak pressures on low-rise building
536 models based on quasi-steady theory and partial turbulence analysis, J. Wind. Eng. Ind. Aerod.
537 218 (2021) 104785.

538 [25] J. Wang, G.A. Kopp, Comparisons of aerodynamic data with the main wind force-resisting
539 system provisions of ASCE 7-16. I: Low-rise buildings, Journal of Structural Engineering 147(3)
540 (2021) 04020347. [https://doi.org/10.1061/\(ASCE\)ST.1943-541X.0002925](https://doi.org/10.1061/(ASCE)ST.1943-541X.0002925)

541 [26] Y. Tamura, K. Suda, A. Sasaki, K. Miyashita, Y. Iwatani, T. Maruyama, K. Hibi, R. Ishibashi,
542 Simultaneous wind measurements over two sites using Doppler sodars, *Journal of Wind*
543 *Engineering and Industrial Aerodynamics* 89(14-15) (2001) 1647-1656.
544 [https://doi.org/10.1016/S0167-6105\(01\)00149-0](https://doi.org/10.1016/S0167-6105(01)00149-0)

545 [27] A.N. .2, Australian/New Zealand standard, structural design actions. Part 2: wind actions,
546 Standards Australia International Ltd.-Standards New Zealand, 2011.

547 [28] D. Surry, Pressure measurements on the Texas Tech building: wind tunnel measurements and
548 comparisons with full scale, *J. Wind. Eng. Ind. Aerod.* 38(2-3) (1991) 235-247.
549 [https://doi.org/10.1016/0167-6105\(91\)90044-W](https://doi.org/10.1016/0167-6105(91)90044-W)

550 [29] Scanivalve, ZOC33 Miniature Pressure Scanner., 2023.
551 <http://scanivalve.com/products/pressure-measurement/miniature-analogpressure-scanners/zoc33-miniature-pressure-scanner/>. (Accessed April 13rd 2023).

553 [30] M. Kovaerk, L. Amatucci, K.A. Gillis, F. Potra, J. Ratino, M.L. Levitan, D. Yeo, Calibration
554 of dynamic pressure in a tubing system and optimized design of tube configuration: A numerical
555 and experimental study, in: NIST (Ed.) *Technical Note (NIST TN)*, National Institute of Standards
556 and Technology, Gaithersburg, MD, 2018. <https://doi.org/10.6028/NIST.TN.1994>

557 [31] T. Ho, D. Surry, D. Morrish, NIST/TTU cooperative agreement–windstorm mitigation
558 initiative: Wind tunnel experiments on generic low buildings, London, Canada: BLWTSS20–
559 2003, Boundary-Layer Wind Tunnel Laboratory, Univ. of Western Ontario (2003).

560 [32] C. Homer, J. Dewitz, L. Yang, S. Jin, P. Danielson, G. Xian, J. Coulston, N. Herold, J.
561 Wickham, K. Megown, Completion of the 2011 National Land Cover Database for the
562 conterminous United States—representing a decade of land cover change information,
563 *Photogrammetric Engineering & Remote Sensing* 81(5) (2015) 345-354.
564 <https://doi.org/10.14358/PERS.81.5.345>

565 [33] D. Arthur, S. Vassilvitskii, K-means++ the advantages of careful seeding, *Proceedings of the*
566 *eighteenth annual ACM-SIAM symposium on Discrete algorithms*, 2007, pp. 1027-1035.

567 [34] R. Macdonald, R. Griffiths, D. Hall, An improved method for the estimation of surface
568 roughness of obstacle arrays, *Atmospheric environment* 32(11) (1998) 1857-1864.
569 [https://doi.org/10.1016/S1352-2310\(97\)00403-2](https://doi.org/10.1016/S1352-2310(97)00403-2)

570 [35] N. Alinejad, S. Jung, G. Kakareko, P.L. Fernández-Cábán, Wind-tunnel reproduction of
571 nonuniform terrains using local roughness zones, *Bound. Layer Meteorol.* 188(3) (2023) 463-484.

572 [36] T. Vihma, H. Savijärvi, On the effective roughness length for heterogeneous terrain, *Quarterly*
573 *Journal of the Royal Meteorological Society* 117(498) (1991) 399-407.
574 <https://doi.org/10.1002/qj.49711749808>

575 [37] P.A. Taylor, Comments and further analysis on effective roughness lengths for use in
576 numerical three-dimensional models, *Boundary-layer meteorology* 39(4) (1987) 403-418.
577 <https://doi.org/10.1007/BF00125144>

578 [38] R. Catarelli, P. Fernández-Cabán, F. Masters, J. Bridge, K. Gurley, C. Matyas, Automated
579 terrain generation for precise atmospheric boundary layer simulation in the wind tunnel, *Journal*
580 *of Wind Engineering and Industrial Aerodynamics* 207 (2020) 104276.
581 <https://doi.org/10.1016/j.jweia.2020.104276>

582 [39] S. Jung, J. Ghaboussi, S.-D. Kwon, Estimation of aeroelastic parameters of bridge decks using
583 neural networks, *Journal of engineering mechanics* 130(11) (2004) 1356-1364.

584 [40] R.N. D’souza, P.-Y. Huang, F.-C. Yeh, Structural analysis and optimization of convolutional
585 neural networks with a small sample size, *Scientific reports* 10(1) (2020) 834.

586 [41] J. Snoek, H. Larochelle, R.P. Adams, Practical bayesian optimization of machine learning
587 algorithms, *Advances in neural information processing systems* 25 (2012).

588 [42] B. Shahriari, K. Swersky, Z. Wang, R.P. Adams, N. De Freitas, Taking the human out of the
589 loop: A review of Bayesian optimization, *Proceedings of the IEEE* 104(1) (2015) 148-175.
590 10.1109/JPROC.2015.2494218

591 [43] F. Cannavó, Sensitivity analysis for volcanic source modeling quality assessment and model
592 selection, *Computers & geosciences* 44 (2012) 52-59. <https://doi.org/10.1016/j.cageo.2012.03.008>

593 [44] A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, S. Tarantola, Variance based
594 sensitivity analysis of model output. Design and estimator for the total sensitivity index, *Computer
595 physics communications* 181(2) (2010) 259-270.

596