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Abstract: We study extremal non-BPS black holes and strings arising in M-theory
compactifications on Calabi–Yau threefolds, obtained by wrapping M2 branes on non-
holomorphic 2-cycles and M5 branes on non-holomorphic 4-cycles. Using the attractor
mechanism we compute the black hole mass and black string tension, leading to a con-
jectural formula for the asymptotic volumes of connected, locally volume-minimizing
representatives of non-holomorphic, even-dimensional homology classes in the three-
fold, without knowledge of an explicit metric. In the case of divisors we find examples
where the volume of the representative corresponding to the black string is less than the
volume of the minimal piecewise-holomorphic representative, predicting recombination
for those homology classes and leading to stable, non-BPS strings. We also compute the
central charges of non-BPS strings in F-theory via a near-horizon Ad S3 limit in 6dwhich,
upon compactification on a circle, account for the asymptotic entropy of extremal non-
supersymmetric 5d black holes (i.e., the asymptotic count of non-holomorphic minimal
2-cycles).
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1. Introduction

Supersymmetric compactifications of string theory have led to deep insights for both
physics and mathematics, as well as the relation between the fields. These typically
involve the choice of a special holonomy manifold, with Calabi–Yau manifolds being
a primary example. Supersymmetric compactifications are the only known examples
where there are stable solutions to quantum gravity. It is thus perhaps not surprising
that this is the arena where there are connections to different kinds of mathematical
invariants. For example, wrapping branes of various dimensions on calibrated cycles
in such geometries have led to BPS objects, including BPS black holes. Moreover the
count of such black holes (which can also be phrased as mathematical invariants) has
led to a microscopic origin of Bekenstein–Hawking black hole entropy, beginning with
the work [1], marking the start of many successful examples of holography in quantum
gravity in the framework of string theory.

However, we know that our universe is not supersymmetric at low energies. Therefore
we need to develop tools to study non-supersymmetric configurations in string theory.
This has turned out to be notoriously difficult and there are very few solid results in
this direction. In particular non-supersymmetric configurations are always unstable.
Nevertheless, there is a happy middle ground: we can study non-supersymmetric objects
in a supersymmetric compactification! This has the advantage that the theory itself is
stable and any instability would be associated to the decay of the non-supersymmetric
object in an otherwise stable background. Indeed, the Weak Gravity Conjecture (WGC)
[2], which postulates that gravity is always the weakest force, is motivated from the
assumption that, except for BPS ones, all macroscopic black holes with large enough
charge decay to microscopic objects (which may or may not be BPS). The WGC, which
is one of the powerful Swampland conjectures, is still at the conjectural level and thus
any further studies of non-BPS black holes within string theory would be extremely
important for a better understanding of it.

The mathematical perspective parallels the physical one: the theory of calibrated
cycles in manifolds of special holonomy is a long studied subject, with many concrete
results. On the other hand, it is also known that many of the cycle classes in a special
holonomy manifold do not admit calibrated representatives. In such cases one would
naturally studyminimal volume cycles,which is a notoriously difficult subject in general.
One would expect that at least in the case of special holonomy manifolds the study of
non-calibrated minimal cycles should be easier. Even for such cases, there are very
few known results. It is thus of great mathematical importance if one can improve our
understanding for this class.

A special case of interest is Calabi–Yau 3-folds. M-theory compactified on such
spaces leads to N = 2 supersymmetric theories in 5 dimensions. Black holes can be
constructed by wrapping M2 branes on 2-cycles and black strings can be constructed



Non-Holomorphic Cycles and Non-BPS Black Branes 1993

by wrapping M5 branes on 4-cycles. It turns out that in these cases known techniques
(the “attractor mechanism” [3–6]) available from study of macroscopic black holes and
black strings for large charges (where we rescale the cycle class by a large integer) can
give reliable predictions about properties of non-BPS objects and these, in turn, lead to
predictions about existence, stability, and asymptotic count for for minimal volume 2-
and 4-cycles in the Calabi–Yau. We now summarize our main results in order to provide
the reader with a guide to this work. We attempt to keep this brief and leave the details
to the main text.

1.1. Black branes, minimal cycles, and counting. We consider non-BPS black holes and
strings obtained from compactification of M-theory on a Calabi–Yau threefold X . The
non-BPS 5d black holes correspond to M2 branes wrapped on non-holomorphic curves
in X , and the black strings to M5 branes wrapped on non-holomorphic divisors. The
main physical toolwe use is the black hole/string effective potential, whoseminimization
determines the values of the moduli at the horizon. We consider cycles for which the
minimization procedure fixes the moduli strictly interior to the Kähler cone, and so by
fixing the asymptotic moduli to be the same as those on the horizon we are able to read
off the black hole mass/black string tension, which gives a conjectural formula for the
volume of the non-holomorphic cycle wrapped by the brane. This prediction is expected
to be exact in the limit of the asymptotically large charges (Q → N Q with N >> 1).

The wrapped cycle � is conjectured to be a connected, locally volume-minimizing
representative of its homology class [�]. In the case of black holes, in the examples we
consider we find that the black holes correspond to local, but not global, volume mini-
mizers of the corresponding curve classes, as there is always a disconnected, piecewise-
calibrated representative �∪ with smaller volume. The piecewise-calibrated representa-
tive (union of holomorphic and anti-holomorphic curves) corresponds to the BPS-anti-
BPS constituents of the black hole, and the fact that vol(�∪) < vol(�) shows that the
Weak Gravity Conjecture (WGC) [2] is satisfied in these examples; that is, the non-BPS
black holes can decay, and an allowed decay channel is into widely-separated BPS and
anti-BPS particles.

In the case of black strings (divisors), we find that in some examples vol(�∪) <

vol(�), and so the WGC is satisfied by BPS and anti-BPS states, but in other examples
we find vol(�∪) > vol(�) for all piecewise-calibrated �∪. Geometrically, the latter
case indicates that the holomorphic and anti-holomorphic constituents of the class [�]
fuse to make a smaller cycle; that is, [�] undergoes “recombination”. Here the WGC
makes a non-trivial prediction: there should be a stable, non-BPS string in the spectrum.
The stable non-BPS string is expected, based on the WGC, to have a small charge. In
other words, a non-BPS� with a large chargewill decay to non-BPS strings with smaller
charges, which ultimately lead to stable non-BPS low charge string remnant(s).

We also compute the entropy of non-BPS black holes. Morally, this should be related
to the asymptotic count of non-holomorphic curves associated to the non-BPS black
holes. In addition to the charge (i.e., the homology class of M2 brane) such black holes
also carry an SO(4) spin. To comparewith theBPScase, note that in theBPScase, theGV
invariants [7,8] count the SU (2)L ⊂ SO(4) spin content of the supersymmetric spinning
BPS black holes. In these cases the asymptotic expansions of the GV invariants are
expected to give rise to the semi-classical predictions of the entropy of supersymmetric
spinning BPS black holes [9]. For simplicity here we limit ourselves to the non-spinning
non-BPS extremal black holes. We expect the extension to spinning case should not be
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difficult (see e.g., [10] for some progress relating the attractor mechanism to spinning
non-BPS black holes).

1.2. The central charge of non-BPS strings and black hole entropy. Our second main
result is the calculation of the central charge of non-BPS strings and its relation to non-
BPS extremal black holes. For elliptic CY 3-folds, we calculate the string central charge
in two different ways, that is, using both 5d and 6d supergravity theories, and the results
agree. In 6d, obtained by compactifying IIb on an F-theory base B, we can construct
black strings from D3 branes wrapping a curve C ⊂ B. In both the BPS and non-BPS
strings we can obtain the central charge from the attractor values of the moduli, by
evaluating the Brown-Henneaux formula [11] in the near-horizon Ad S3 geometry of the
strings.

One can then further reduce on an S1 to arrive at a 5d black hole, with n units of
momentum along the S1. If one starts from a BPS string in 6d, one can arrive at a BPS
or non-BPS black hole depending on the sign of n. In both cases this is just a (non)-BPS
excitation of a BPS string. However, instead one can start with a non-BPS string in 6d,
which then reduces to a non-BPS string in 5d for all n �= 0. We can read off the central
charge from the black hole entropy by comparing with the Cardy formula, and in all
cases the answer agrees with the central charge computed in the 6d calculation. The
relationships between the various black objects are indicated in Fig. 1. In both cases the
5d non-BPS black hole entropy is accounted for by the Cardy formula of the 6d string.

The organization for the rest of this paper is as follows: In Sect. 2 we discuss the
techniques we use. In Sect. 3 we present examples of black holes for M-theory com-
pactified on CY 3-folds. In Sect. 4 we present examples of black strings. In Sect. 5 we
show how the non-BPS black holes can arise as BPS and non-BPS black strings in 6d
wrapped on a circle and check that this leads to a consistent prediction for its entropy.
In Sect. 6 we end the paper with some concluding remarks.

2. Techniques

In this section we detail the techniques used to study non-BPS black branes. We first
summarize the necessary details of 5d theories obtained from compactification of M-
theory on a Calabi–Yau threefold, and introduce the effective potential for black holes
and strings. We then relate these black objects to minimal cycles, which is a subject
of interest in geometric measure theory. Finally, we propose a physical test for when
recombination should occur, by considering the formation of the black brane from its
constituent objects.

2.1. Black holes and strings in M-theory on a Calabi–Yau threefold. We consider M-
theory compactified on a Calabi–Yau threefold X , which yields a 5d effective super-
gravity theory with eight supercharges [12]. The field content is organized into a gravity
multiplet, vector multiplets, and hypermultiplets, whose scalars parametrize the geome-
try of X . The geometricmoduli of a Calabi–Yau threefold are theKählermoduli, counted
by the Hodge number h1,1(X), and the complex structure moduli, counted by h2,1(X).
The complex structure moduli will not play a role in this work as they decouple from
the black brane physics [13,14] and we will henceforth ignore them, focusing on the
Kähler moduli which are associated with the vector multiplets. The total number of
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Fig. 1. The connections between the various black objects we consider in 6d and 5d. An arrow represents a
dimensional reduction and matching of the central charge in the various pictures. A BPS black string in 6d
descends to either a BPS or a non-BPS black hole in 5d, depending on the relative orientation of themomentum
along the S1. A non-BPS black string in 6d descends to a non-BPS black hole in 5d regardless of the sign of
the S1 momentum

vectors is h1,1, but since one of the vectors belongs to the gravity multiplet, there are
only h1,1(X) − 1 vector multiplets. The overall volume V belongs to a hypermultiplet,
while the remaining Kähler moduli form the real scalar components of the vector mul-
tiplets. Together, these h1,1(X) − 1 scalars form a very special geometry [15], where
we can parametrize the moduli space by h1,1 real fields t I , subject to the constraint that
the overall volume is constant. Omitting the hypermultiplets, the bosonic portion of the
effective action takes the form

S5= 1

2κ2
5

∫ (
R ∗ 1−G I J dt I ∧ ∗dt J −G I J F I ∧ ∗F J − 1

3!CI J K F I ∧ F J ∧ Ak
)

,

(2.1)

where the t I are the Kähler moduli, parameterizing the Kähler form as J = t I ωI ,
ωI ∈ H1,1(X), the CI J K are the triple intersection numbers of the divisors DI , dual
to the ωI , and F I = d AI are the field strengths for the U (1) gauge fields. The gauge
kinetic function and metric on moduli space are written as

G I J = −1

2
∂I ∂J log(V) , (2.2)

and the overall volume is written as

V = 1

6

∫

X

J ∧ J ∧ J = 1

6
CI J K t I t J t K . (2.3)

To enforce the constraint that V is constant it is convenient to set V = 1, and so all curve
and divisor volumes aremeasured relative to the overall volume.Wewill switch between
explicitly and implicitly setting V = 1, as some formulas are more easily presented with
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V left unfixed. Let D denote the divisor dual to the Kähler form J . The gauge kinetic
function can then be expressed as

G I J = 1

2V2 (−AI JV + τI τJ ) , (2.4)

where

AI J = DI · DJ · D = CI J K t K , (2.5)

which can be thought of as the volume of the intersection of the divisor DI with the
divisor DJ , when they intersect transversely, and

τI = 1

2
DI · D2 = 1

2
CI J K t J t K , (2.6)

is the volume of the divisor DI . The inverse gauge kinetic function takes the form

G I J = 2

(
−VAI J +

t I t J

2

)
, (2.7)

where AI J is the inverse matrix of AI J .
The charged objects arise from M2 and M5 branes wrapping cycles of appropriate

dimension in X . Electrically charged particles arise from M2 branes wrapping curves,
or real two-cycles, in X , while magnetically charged strings arise fromM5 branes wrap-
ping surfaces, or real four-cycles, in X . When discussing black holes we will fix units
so that the mass of a BPS electrically charged particle is given by the volume of the
corresponding curve wrapped by the M2 brane, so the electric central charge takes the
form

Ze = qI t I , I = 1, . . . , h1,1 , (2.8)

where the qI are the quantized electric charges, given by the intersection number of the
curve with the divisor DI . Similarly, when we consider black strings we will fix units for
the magnetic central charge so that the tension of a BPS string is given by the volume of
the corresponding surface wrapped by the M5 brane, and so the magnetic central charge
takes the form

Zm = pI τI , I = 1, . . . , h1,1 , (2.9)

where the pI are the wrapping numbers of the M5 brane around the I -th divisor, which
reflects the underlying homology class.

Macroscopic black holes and black strings arise from introducing an appropriately
large amount of the respective charges. Extremal black holes, which have the minimum
amount of mass given their charge, have been studied extensively in the context of
string theory (see e.g., [1,16–18]). The presence of the large black object back-reacts
on the vector multiplet moduli, and forces the moduli to flow to fixed values at the
horizon determined only by the charges. This is known as the attractor mechanism. For
an attractor these moduli values are independent of those set at asymptotic infinity, and
the entropy of the black object is only sensitive to the attractor values themselves. For
extremal black holes, the attractor values are set by minimizing the black hole effective
potential [18–20], which can be written as

Vef f = G I J qI qJ . (2.10)
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Physically this can be thought of as minimizing the mass of the black hole with a given
set of charges, when the asymptotic moduli are set to the attractor values. We will focus
on attractor solutions in this work. The black hole effective potential can also be written
as

Vef f = 2

3
Z2

e + G I J (DI Ze)(DJ Ze) , (2.11)

where

DI Ze := (∂I − 1

3
∂I logV)Ze = (∂I − 1

3V τI )Ze = qI − 1

3V τI Ze . (2.12)

Let us first consider the BPS solutions. For a BPS solution from anM2 branewrapped
on a holomorphic curve we can solve DI Z = 0, and find

qI = 1

3V τI Z . (2.13)

A large BPS black hole admits a solution to the equations of motion inside the Kähler
cone, and is automatically an attractor [19]. Solving the black hole equations of motion
for the moduli t gives the values t0 fixed at the horizon. Here all BPS black holes
correspond to effective curves, whose class is proportional to the self-intersection of D,
the divisor dual to theKähler form (such curves are examples of strongly movable curves).
However, not every holomorphic curve corresponds to a BPS black hole. For instance,
rational curves cannot correspond to large BPS black holes, as they have negative self-
intersection (or excess intersection), and the self-intersection of a Kähler divisor always
has positive self-intersection. This is consistent with the fact that an M2 brane wrapping
a large integer multiple of a rational curve does not form a bound state and therefore
does not yield a macroscopic black hole.

The entropy of a BPS black hole is written as

SB P S = 2π × π

4G5

(
1

3
Ze|t=t0

)3/2

, (2.14)

where the central charge is evaluated at the attractor values. It is convenient tofixG5 = π
4 ,

which we will do from now on. However, the mass of the black hole is determined by
the values of the moduli at infinity, and for a BPS black hole is simply given by

M = Ze|t=t∞ . (2.15)

Non-BPS black holes do not admit a solution to DI Z = 0 inside the Kähler cone.
Instead, wemustminimize the full effective potential. A critical point is given by solving

DI Ve f f :=
(

∂I − 2

3V τI

)
Vef f = 0 . (2.16)

However, unlike the BPS case such critical points are not guaranteed to be minima, and
this must be checked example-by-example. A large non-BPS black hole then exists for
a given set of charges if we can find a minimum inside the Kähler cone. The entropy is
related to the black hole effective potential, evaluated at the attractor values:

S = 2π ×
(
1

6
Vef f |t=t0

)3/4

, (2.17)
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Again, like the BPS case the mass depends on the values of the asymptotic moduli, but
generally cannot be read off as easily as in the BPS case, as when the state is not BPS,
then the mass is not given by the central charge. Instead, for the most part we will fix
the asymptotic values of the moduli to the attractor ones, set by the charges. Such black
holes are called “double extremal”. Here the moduli do not flow, and the mass can be
read off from the minimized black hole potential [21,22], which reads

M =
√
3

2
Vef f |t=t0 . (2.18)

It will be equally interesting to consider black strings, obtained by wrapping an M5
brane on a divisor D ⊂ X . The procedure is analogous to the 5d black hole case [22,23].
The central charge for strings is given by [19]

Zm = pI τI , (2.19)

where the pI are the quantized magnetic charges, which can be interpreted as the wrap-
ping numbers of the M5 brane around the I -th divisor homology class. Similar to the
black hole case, the black string effective potential takes a simple form

V m
ef f = 4G I J pI pJ , (2.20)

where we have normalized the effective potential to be analogous to the black hole
potential, so that

V m
ef f = 2

3
Z2

m + +G I J (DI Zm)(DJ Zm) . (2.21)

Here we have

DI Zm := (∂I − 2

3
∂I logV)Zm = (∂I − 2

3V τI )Zm = AI J pJ − 2

3V τI Zm . (2.22)

For a BPS solution we have DI Zm = 0, and we find

t I = 3pI

Zm
. (2.23)

We then see that the BPS M5 branes must wrap an ample divisor. Here the solution is
automatically an attractor. For a non-BPS string we must instead solve

DI V m
ef f :=

(
∂I − 4

3
τI

)
V m

ef f = 0 . (2.24)

A large black string exists if these equations can be solved inside the Kähler cone. Sim-
ilarly to the non-BPS black holes, whether the solutions are attractors must be checked
case-by-case. Like in the black hole examples we will simply set the asymptotic moduli
to be the same as those fixed at the horizon t0, and so we can immediately read off the
black string tension as

T =
√
3

2
V m

ef f |t=t0 . (2.25)
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2.2. Minimal cycles and geometric measure theory. In this section we connect the pre-
vious black hole and string formulas to geometry, in particular to computing volumes of
cycles, both holomorphic and non-holomorphic. It was proposed in [24] that black hole
physics might be able to place bounds on the volumes of non-holomorphic cycles. This
idea was realized concretely in [25], where the WGC was used to predict parametric
recombination in a non-holomorphic class, providing the first prediction for geometric
measure theory using black hole physics reasoning. In this work we develop a more
direct approach, valid for “large” homology classes. Consider a single connected m-
brane compactified on an n-cycle �, with m ≥ n, leading to an (m − n)-brane in the
non-compact space. The tension of the (m − n)-brane (or mass if n = m) is given by
the volume of �. If we consider a single-centered black brane as we did in the previous
section, we then expect the black brane tension to coincide with the volume of the cycle
wrapped by the brane. This is directly verified in the BPS black brane case, where the
tension is given by the central charge, computed as the volume of a holomorphic cycle of
appropriate dimension. In the non-BPS black brane case we cannot compute the tension
with the central charge, but the black brane effective potential computes the tension, and
thus provides a prediction for the volume of the cycle. The equations of motion of the
brane require that the brane wraps a cycle that corresponds to a local critical point of the
volume functional on cycles in the corresponding homology class [�], and to be a stable
state � should be a local volume-minimizer in [�]. If � corresponds to a black brane
we expect it to be a local minimizer, as (large) black brane decays are expected to follow
a classically disallowed trajectory [26–29], and admit an interpretation as a tunneling
event, and we therefore expect the black brane to be a metastable configuration.

Let us then formulate the mathematical problem equivalent to our physical one. We
consider a Calabi–Yau threefold X , with Ricci-flat metric g, corresponding a complex
structure �, and Kähler form J . We then consider an even-dimensional homology class
� of dimension n, which is not necessarily holomorphic. Such a cycle admits a globally
voluming-minimizing representative�min,which is possibly disconnected.However,we
expect the black branes to correspond instead to a connected representative, which is a
local, but perhaps not global, volumeminimizer. The connectedness of the representative
is motivated by the fact that it is a solution to the black brane equations which represents
a bound state.We also observe that the predicted volume of the cycle is different from the
volume of the disconnected, piecewise-calibrated representatives of the cycle, as we will
show in numerous examples. This is similar to what one expects in the supersymmetric
case. Namely, BPS black holes correspond to strongly movable curves, which have
irreducible representatives, and BPS black strings correspond to ample divisors, which
also have irreducible representatives for large charge.

Denote the (possibly non-unique) connected volume minimizing representative of �

as �c
min (whose identity might depend on the position in moduli space), with volume

vol(�c
min) =

∫
dn x

√|g|�min
, (2.26)

where g|�min is the pullback of the Ricci-flat Calabi–Yau metric to �c
min. The problem

that we are solving by minimizing the black brane potential is to minimize vol(�c
min),

in the strict interior of the Kähler cone, subject to the constraint

vol(X) = 1

3!
∫

X

J ∧ J ∧ J = 1 . (2.27)
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This immediately leads to a number of surprises. First, thismethod of computing non-
holomorphic volumes does not require explicit knowledge of theCalabi–Yaumetric, only
the moduli. This is familiar in the BPS case when the branes wrap calibrated cycles, but
is perhaps unexpected for non-calibrated cycles. Second, the complex structure moduli
completely decouple, and so the computation of the non-holomorphic volume corre-
sponding to macroscopic black brane does not depend on the complex structure moduli.
This fact is then a physics proof of the following conjecture:

Definition 1. Consider an electric ormagnetic charge, corresponding to an even-dimensi
onal homology class [�] in a Calabi–Yau threefold X . We assume the class [�] is
“large” which can be accomplished for example by assuming [�] = N [�0] for an
integer N >> 1. If the corresponding black brane equations of motion are solved in the
strict interior of the Kähler cone, and furthermore the solution is an attractor, we call
the associated (locally) volume-minimizing connected representative � a “large black
brane cycle” (LBBC).

Conjecture 1. Consider an LBBC, �, in a Calabi–Yau threefold X, and let the moduli
take the corresponding attractor values t0. For these values, the volume of � is asymptoti-
cally independent of the complex structure moduli. More precisely limN→∞vol([�])/N
is independent of the complex structure moduli (and N).

This should also remains true in IIa, and the same idea for 3-cycles in IIb follows
from the same reasoning (and mirror symmetry). In fact, this should also imply some
mirror symmetry relations between non-holomorphic cycles on one CY threefold, and
non-special Lagrangian 3-cycles on the mirror.

We define an LBBC as one for which the attractor mechanism fixes the moduli
strictly in the interior of the Kähler cone, in which case we conjecture the existence of
a connected, locally volume minimizing representative of the corresponding homology
class. However, for classes that do not correspond to LBBCs we do not make a statement
about the existence of such a representative either way. In fact, allowing for topology
changing transitions or for non-geometric phases in the flow might enlarge the space of
black objects, both BPS and not, but we will not consider such effects. In the case that
the minimum is located on the boundary of the Kähler cone we still expect the solution
to be marginally under control from the string theory perspective.

We emphasize that an LBBC � is a local volume minimizer of the homology class
[�], but is not necessarily the global volume minimizer, though in some cases we ex-
pect it to be. We will see candidates for both local and global volume minimizers in
the examples. In addition, since LBBCs correspond to macroscopic black branes we
expect our conclusions to hold only at asymptotically large charge; that is, for “large”
homology classes, or large wrapping numbers. The behavior of small cycles, in the sense
of homology, can and will be quite different and in particular it could (and most likely
does) depend on the complex structure moduli.

For the examples of curve LBBCs we consider, we will always be able to identify
a disconnected representative of [�] that has volume smaller than � itself; this rep-
resentative is a piecewise-calibrated representative of [�], which we will denote �∪.
Physically this simply corresponds to the fact that the non-BPS black branes can decay
to BPS-anti-BPS constituents, as predicted by the WGC. Mathematically, we are pre-
dicting the existence of a connected, locally volume minimizing representative of [�],
distinct from the disconnected piecewise-calibrated representatives of [�].

For black strings, corresponding to M5 branes on divisors, we will observe different
behavior. Via the black string tension formula for divisors we will identify examples of
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� that have volume smaller than any �∪, making the physical prediction of a stable
non-BPS string that the black string can decay into. We can always write such a class
as [�] = [�1 − �2], where both [�1], [�2] are holomorphic, but [�1 − �2] is not.
A (non-unique) piecewise-calibrated representative of [�] can always be written as
(�1) ∪ (−�2). When, for all choices of piecewise-calibrated representatives, we have

vol(�) < vol(�1) + vol(�2) , (2.28)

we say the cycle � has recombined. The physical significance of recombination is that
a brane wrapped on � is non-BPS, but cannot completely decay into BPS-anti-BPS
constituents. Recombined cycles are also associated with non-BPS instantons inN = 1
theories, which can provide significant corrections to the Kähler potential [25].

A demonstration of recombination is of particular general interest in geometric mea-
sure theory. There has been a great deal of progress in understanding properties of
minimal cycles, such as the existence of a minimizer [30] and the degree of singularity
of the minimizer [31]. However, for the Ricci-flat setting that we are most interested in,
the only progress in concretely understanding recombination has been in the K3 sur-
face. In a near-orbifold limit Micallef and Wolfson [32] demonstrated recombination of
curves in K3 by identifying a minimal two-sphere in a class with self-intersection −4,
which does not admit a holomorphic representative. In fact, earlier Sen [33] considered
the same setup from a physics perspective, and found the same result via a tachyon
condensation analysis. However, Sen also found that away from the near-orbifold limit
the minimal representative of the class was the piecewise-calibrated one.

The recombination results for non-holomorphic curves in K3 via Sen and Micallef-
Wolfson generally seem to circumvent a direct black brane analysis. In fact, we will
find no examples of curve recombination in a Calabi–Yau threefold using a black brane
analysis, suggesting that if curve LBBCs do exhibit recombination, such an effect is rare.
However,we do expect curve classes inCalabi–Yau threefolds that exhibit recombination
more generally; a trivial example is K3 × T 2, and less trivial is an appropriate K3
fibration to realize Sen’s example. It is entirely possible though that the only curves
that recombine are small curves (in the homological sense), like the Micallef-Wolfson
and Sen example, and do not correspond to black holes. On the other hand, we will
find divisor LBBCs for which the black string tension formula predicts recombination,
suggesting the difference between the curve and divisor case is related to codimension:
curves, which are codimension-two cycles in a threefold generically do not intersect,
but divisors can generically intersect. Such intersections could lead to the existence
of physical modes localized there, which can condense and lead to recombination and
smoothing of the BPS-anti-BPS constituents.

In any case, the black brane calculation makes a prediction for the volume of a
connected representative of a non-holomorphic, even-dimensional homology class in
X . However, this computation does not shed light on why the volume is larger or smaller
than a piecewise representative of that class in any given example. In the next subsection
we will propose a simple explanation for this phenomenon based on the black hole
formation process.

2.3. Force as a recombination test. In this section we propose a more physical test of
whether recombination should or should not occur, which will lead us to a conjectural
test for the possibility of recombination even when a non-holomorphic cycle is not an
LBBC.
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We will use the black hole formation process, in particular the forces between the
charged constituents arranged in an appropriatemanner before forming the black hole, to
understand whether recombination should occur. Consider decomposing the black hole
into its BPS and anti-BPS constituents, separated by a large but finite distance. We will
attempt to form the black hole by repeatedly bringing together a BPS constituent and an
anti-BPS constituent, in the attractor background. When the black hole has a larger mass
than the sum of the masses of its BPS-anti-BPS constituents, we expect that this force
is repulsive, as we will need to put energy into the system to form the black hole. We
will find this is true for all but one of the black hole examples that we study, which will
lead to a conjecture of recombination for small curves in that example. For black strings
whose tension is greater than the sum of its parts, we will again find a repulsive force,
but for black strings that exhibit recombination we will find that the force is instead
attractive.

Let us calculate the force for 5d particles. The total force between them P includes
gravity, force from theU (1) gauge fields, and the exchange between themassless scalars,
and can be written as [34,35]

r3vol(S3)P = G I J q1
I q2

J − G I J (DI m1)(DJ m2) − 2

3
m1m2 , (2.29)

where the q1
I , q2

I are the charges of the two particles, and m1, m2 are the masses, which
generally depend on the values of the moduli. The first term is due to the U (1) gauge
forces, the second to the exchange of scalars, and the third to gravity. In the case that
the particles are mutually BPS then their masses are given by the central charge, and
so we have m1 = Z1 = q1 · t and m2 = Z2 = q2 · t , and we find that the total force
vanishes between mutually BPS particles. If instead we consider a BPS particle with
mass m1 = Z1 = q1 · t and an anti-BPS particle with mass m2 = −Z2 = −q2 · t , we
find a total force of the form

r3vol(S3)P = 2G I J q1I q2J , (2.30)

which does not in general vanish.We expect that if this force is positive, energy will have
to be put into the system to form an extremal black hole, and so the curve corresponding
to the black hole will have greater volume than the piecewise-calibrated representative
given by the BPS-anti-BPS constituents. On the other hand, if the force is negative, then
the system will radiate energy as the extremal black hole forms, and so we expect black
hole curve to have smaller volume than the piecewise-calibrated representative; that is,
we expect non-trivial recombination. An analogous formula holds for the force between
BPS and anti-BPS strings, of the form

P ∼ G I J pI
1 pJ

2 . (2.31)

Consider two effective divisors, D1 and D2. If we obtain a BPS string from an M5
brane on D1, and an anti-BPS string from an M5 brane on −D2, the force between the
strings can be written as

P ∼ V vol(D1 ∩ D2) − vol(D1) × vol(D2) , (2.32)

where vol(D1∩D2) is the volumeof the intersection of D1 and D2 when their intersection
is effective, and in general is calculated as

vol(D1 ∩ D2) := D · D1 · D2 , (2.33)
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where D is the Kähler divisor. In particular, we see that for non-intersecting D1 and D2,
the force between the BPS and anti-BPS constituents is always attractive:

P ∼ −vol(D1) × vol(D2) . (2.34)

The Micallef-Wolsfon and Sen analyses of recombination in K3 provide instructive
examples. In both setups, the curve under consideration was a (−4)-curve in a non-
holomorphic class [�] = [�1 − �2], where both �1 and �2 are holomorphic curves,
and �1 ∩ �2 = 0. If we also compactify on a T 2 to arrive at a 5d theory, the force
between a BPS M2 brane on �1 and an anti-BPS M2 brane on −�2 is

P ∼ −vol(�1) × vol(�2) , (2.35)

which is attractive everywhere inside theKähler cone. This is indicative that�1 and−�2
might recombine. However, whether or not they actually recombine depends on other
moduli. While �1 ∩�2 = 0, there is another class �3 such that �1 ·�3 = �2 ·�3 = 1.
Let the volume of �3 be ε. Both Micallef-Wolfson and Sen showed that in the case that
ε 
 1, the class � exhibited recombination; however, Sen showed that when ε become
larger, and the K3 moved away from a near-orbifold limit, the volume-minimizer of the
class [�] was the disconnected, piecewise-calibrated representative (�1) ∪ (−�2). In
that case, the attractive force does not indicate recombination, but instead the presence
of a bound state of particles in the non-compact spacetime. Therefore, we expect that
the force test to be a check for the possibility of recombination, but not a guarantee, as
it might indicate a bound state instead.

3. Black Hole Examples

Wewill now explore some examples of 5d black holes, viaM2 branes wrapped on curves
in Calabi–Yau threefolds, discussing aspects of measure theory and entropy through-
out. We will find that none of the examples studied by black hole techniques exhibit
recombination, but instead the LBBC corresponds to a connected local, but not global,
volume-minimizing representative of the corresponding homology class. The cases we
examine are some of those for which we know the integral generators of the semigroup
of effective (holomorphic) curves.

In all of the Calabi–Yau threefolds that we consider we will identify the curves that
correspond to large blackholes, bothBPSandnon-BPS.Wewill plot these regions,where
yellow denotes the region of macroscopic BPS black holes, blue denotes the region of
macroscopic non-BPS black holes, and white denotes the region where no macroscopic
black holes exist. Note that the first quadrant in these plots always corresponds to the
cone generated by holomorphic curves, as the positive x and y axes correspond to the
generators of the semigroup of holomorphic curves. An example of such a plot is given
in Fig. 2, which is the first example that we explore. We will see that the BPS black holes
always correspond to a proper subset of holomorphic curves. These regions without
macroscopic black holes but with holomorphic curves are familiar from examples such
as the conifold. We do not find any overlap of the BPS and non-BPS black hole regions
in our examples.
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3.1. Hypersurfaces in smooth Fano toric fourfolds. We will start with examples real-
ized as hypersurfaces in smooth Fano toric varieties. In these examples we can infer
the generators of the semigroup of effective curves in the Calabi–Yau X from those
of the ambient toric variety V . In [36] the integral Hodge conjecture was proved for
anticanonical hypersurfaces of smooth Fano toric n-folds, with n ≥ 4. In particular for
our purposes, it was shown in this work that the integral generators of the semigroup
of algebraic curves in Y all have algebraic representatives in X , and that these curves
generate the semigroup of algebraic curves in X . Therefore, to find the integral effective
curves in X we need only to perform the task for the ambient space Y , for which there
is a well-known algorithm, as the semigroup is generated by the torus-invariant curves
[37].

We will now focus on minimizing the effective potential for an M2 brane wrapping
an arbitrary, non-calibrated curve in X , where X is a Calabi–Yau threefold. Let us start
with a simple example we can solve exactly, namely an h1,1 = 2, K3 fibered example.

3.1.1. A K3 Fibration. We consider a generic anticanonical hypersurface X ⊂ P
3 ×

P
1, with corresponding hyperplane divisor classes D1 and D2, given by the ambient

hyperplane classes restricted to the hypersurface. This example is K3 fibered, with the
typical fiber given by the class D2. Expanding the Kähler form as1

J = t1[D1] + t2[D2] , (3.1)

where [. . . ] denotes the dual (1, 1)-form, the volume of X takes the form

V = 1

3
t21 (t1 + 6t2) . (3.2)

As the ambient space is smooth Fano, the Kähler cone of the hypersurface is inherited
from the ambient space, and the Kähler cone conditions are that the parameters tI are
positive.

Let us first determine the charges qI . Denoting divisors in the ambient space V =
P
3 × P

1 with hats, the cone of curves in V is generated by

C1 = D̂3
2 , C2 = D̂2

2 D̂1 . (3.3)

C2 is actually proportional to the complete intersection in X of D1 and D2. One way
to realize C1 in X is to specialize the hypersurface equation F = 0 to have no x44 term,
where the xα , α = 1, 2, 3, 4 are the projective coordinates on P

3. In this case setting
x1 = x2 = x3 = 0 gives a P1 in V that automatically lies in X , and is the base of the K3
fibration. Regardless of any specialization, C1 is the base P1 of the K3 fibration, and C2
the fibral curve.

For a general curve class C = αC1 + βC2, the charges can be computed as

q1 = D1 · C = D̂1 · (αC1 + βC2) = β ,

q2 = D2 · C = D̂2 · (αC1 + βC2) = α . (3.4)

We have

Vef f = −1

3
αβt21 + β2t21 +

1

12
α2

(
t21 + 8t1t2 + 24t22

)
, (3.5)

1 Indices on t I are raised and loweredwith aKronecker delta function,whichweuse for ease of presentation.
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subject to the constraint V = 1. Define

x = t1
t2

. (3.6)

The conditions that DI Ve f f = 0 can then be written as

(α(x + 4) − 2βx)(α(x + 12) + 6βx) = 0 . (3.7)

Let us first determine the conditions for a BPS black hole, which corresponds to the
vanishing of the first factor in Eq. 3.7. We have

x = 4α

2β − α
, (3.8)

and enforcing that V = 1 we find

1

3
x2(6 + x)t32 = 1 . (3.9)

In order to have t1, t2 > 0 we need to enforce that x > 0, t2 > 0, which leads to the
conditions

{β < 0 and 2β < α < 0} or {β > 0 and 2β > α > 0} . (3.10)

The entropy of the BPS black holes is then written as

S = π
√

α(6β − α)

6
√
2

. (3.11)

Let us next determine the conditions for a non-supersymmetric black hole, which
corresponds to the vanishing of the second factor in Eq. 3.7. We have

x = − 12α

α + 6β
, (3.12)

Again, in order to have t1, t2 > 0 we need to enforce that x > 0, t2 > 0, which leads to
the conditions

{β < 0 and 0 < α < −6β} or {β > 0 and − 6β < α < 0} . (3.13)

These solutions all correspond to attractors. The entropy of the non-BPS black hole takes
the form

S = π
√|α||6β − α|

6
√
2

, (3.14)

which is simply the BPS entropy with appropriate sign flips.
To examine the mass of the non-BPS black holes, define the ratio of the non-BPS

black hole mass to the minimal piecewise-calibrated representative of the corresponding
homology class as R. In this example we have, in the non-BPS black hole region of
parameters,

R = 1 − 4α

α + 18β
, (3.15)
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Fig. 2. The regions of curve space with large black holes for a generic CY hypersurface in P3 ×P
1. The axes

indicate the homology class, specified by α and β. The white region indicates that there is no large black hole
for that particular homology class

which is always larger than unity in this region. Therefore these black holes are unstable
to decay to their holomorphic-anti-holomorphic constituents. We conclude that the non-
BPS black holes correspond to M2 branes wrapping connected representatives of the
corresponding homology class which are local, but not global, volume minimizers.

In Fig. 2 we show the regions where large black holes exist for both the BPS and
non-BPS cases. Note that certain curve homology classes, namely the white regions, do
not correspond to large black holes.

While it is not the main focus of this work, for this particular example we can
determine a fake superpotential [38–43], denoted W �= Z , that satisfies

Vef f = 2

3
W2 + G I JDIWDJW , (3.16)

whose critical pointsDI W = 0 then give non-BPS black holes. If the correct fake super-
potential can be identified, the mass of of the black hole can be read off for asymptotic
moduli that differ from the attractor values:

M = W(t∞) . (3.17)

To find W , we can make a linear transformation on the Kähler parameters to bring the
volume to a factorized form, where the gauge kinetic function is diagonal, which will
allow us to read off the fake superpotential [43]. Defining

t3 = 1

3
(t1 + 6t2) , (3.18)

we have

t2 = 1

6
(3t3 − t1) . (3.19)
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The volume then takes the form

V = t21 t3 . (3.20)

To read off the charges in the new basis, we note that the central charge is invariant under
the coordinate transformation. We then require

Z = t1q1 + t2q2 = t1qa + t3qb . (3.21)

This leads to

qa = q1 − q2
6

= β − α

6
, qb = q2

2
= α

2
. (3.22)

In the basis Kähler moduli basis of {t1, t3} the gauge kinetic function is diagonal, and
so we can immediately read off the fake superpotential as

W = t1|qa | + t3|qb| . (3.23)

Transforming back to the original geometric basis, we have

W = t1|q1 − q2
6

| + 1

6
(t1 + 6t2)|q2| = t1

∣∣∣β − α

6

∣∣∣ + 1

6
|α|(t1 + 6t2) . (3.24)

It is straightforward to verify that

Vef f = 2

3
W2 + G I J (DIW)(DJW) . (3.25)

Let us nowexamine the volumepredicted by this fake superpotential.We can compare
the predicted volume in Eq. 3.24 to that of a piecewise-calibrated representative of this
class. The unique volume minimizing piecewise-calibrated representative has a volume
given by

vol∪(α, β) = t1|β| + t2|α| , (3.26)

Inside the Kähler cone we always have vol∪V (α, β) < W for the region of non-BPS
charges given in Eq. 3.13, and so for any choice of the asymptotic moduli (subject to
consistency of the solution along the flow), this black hole is unstable to decay to its
holomorphic-anti-holomorphic constituents.

Let us perform the force test. The total force P (including gravitational, scalar, and
gauge) is given in Eq. 2.30, which in this example can be written as

P ∼ −1

3
t21αβ , (3.27)

which is repulsive in the non-BPS case, where α and β are of opposite sign. Therefore, to
form a black hole one need to put additional energy into the system to bring the particles
together, and so the mass of the black hole is larger than the masses of the constituent
particles. This is consistent with the representative corresponding to the black hole being
a local, but not global, volume minimizer.
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3.1.2. The bi-cubic in P
2 × P

2. We now consider a generic anticanonical hypersurface
X ⊂ P

2×P
2 := V . Let D̂1, D̂2 correspond to the hyperplane sections of each P2 factor,

and let D1, D2 denote the hyperplanes restricted to X . Expanding the Kähler form as
J = t1[D1] + t2[D2], the volume of X takes the form

V = 3

2
t1t2(t1 + t2) . (3.28)

The semigroup of effective curves in V , and thus X , is generated by C1 := D̂2
1 · D̂2 and

C2 := D̂2
2 · D̂1. A general curve C can then be expressed as

C = αC1 + βC2 , (3.29)

and the charges are

q1 = D1 · C = D̂1 · (α D̂2
1 · D̂2 + β D̂2

2 · D̂1) = β ,

q2 = D2 · C = D̂2 · (α D̂2
1 · D̂2 + β D̂2

2 · D̂1) = α . (3.30)

We have

Vef f = α2t22
(
2t21 + 2t1t2 + t22

) − 2αβt21 t22 + β2t21
(
t21 + 2t1t2 + 2t22

)
t21 + t1t2 + t22

, (3.31)

subject to the constraint V = 1. Again define

x = t1
t2

. (3.32)

Let us first determine the conditions for a supersymmetric black hole, which corresponds
to

α + 2αx = βx(x + 2) . (3.33)

Solving this gives

x =
√

α2 − αβ + β2 + α − β

β
, (3.34)

and enforcing that V = 1 we find

3

2
x(1 + x)t32 = 1 . (3.35)

In order to have t1, t2 > 0 we need to enforce that x > 0, t2 > 0, which leads to the
conditions

{β < 0 and α < 0} or {β > 0 and α > 0} . (3.36)

We now calculate the entropy. Define y = α/β. The BPS black hole entropy takes
the form

S = 4

9
π

(
β2

(
y
(
5y + 4

√
(y − 1)y + 1 − 5

) − 2
√

(y − 1)y + 1 + 2
)

(
4y

(
y +

√
(y − 1)y + 1 − 1

) − 2
√

(y − 1)y + 1 + 2
)2/3

)3/4

. (3.37)
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Fig. 3. The regions of curve space with large black holes, for a generic CY hypersurface in P2 ×P
2. The axes

indicate the homology class, specified by α and β. All curves, except α = 0 or β = 0, correspond to large
black holes

In the limit that α � β, the entropy becomes

S �
√
2

3
πβ

√
α , (3.38)

while in the limit β � α, the entropy becomes

S �
√
2

3
πα

√
β . (3.39)

Let us next determine the conditions for a non-supersymmetric black hole, given by
a solution to

2βx5 + x4(4α + 3β) + x3(8α + 7β) + x2(7α + 8β) + x(3α + 4β) + 2α = 0 . (3.40)

Again, in order to have t1, t2 > 0 we need to enforce that x > 0, t2 > 0. Eq. 3.40 has a
positive root if

{β < 0 and α > 0} or {β > 0 and α < 0} , (3.41)

which covers all non-holomorphic curves. This is evident from the fact that the constant
term is 2α, and the highest power monomial coefficient is 2β, and so if α and β are
of differing sign there must be a zero for positive x . These solutions all correspond to
attractors. In Fig. 3 we show the regions where large black holes exist for both the BPS
and non-BPS cases. In this example all curve classes correspond to large black holes,
except when α = 0 or β = 0.

Let us examine the mass of the non-BPS black holes. We cannot solve Eq. 3.40
analytically, so we will instead investigate it numerically. Taking r = α/β, we plot the
ratio R of the black hole mass to the piecewise-calibrated volume of the corresponding
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|α/β|
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R

Fig. 4. The ratio of the black hole mass to the volume of the minimal piecewise-calibrated representative,
as a function of α/β, for a generic CY hypersurface in P

2 × P
2. This ratio is always greater than unity, but

approaches unity as the homology class becomes “mostly” holomorphic, and the corresponding black hole
solution approaches a BPS one

cycle in Fig. 4, with the asymptotic moduli set to the attractor values. We again find
R > 1 in the non-BPS case. Therefore these black holes are unstable to decay to their
BPS-anti-BPS constituents, and we conclude that the non-BPS black holes correspond
to M2 branes wrapping connected representatives of the corresponding homology class
which are local, but not global, volume minimizers.

The entropy can be calculated numerically as well for any given set of charges. Let
us compute the entropy in the case that one of the charges is much larger in magnitude
than the other, e.g., |α| � |β|. In this case, we have

2βx5 + 4αx4 + 8αx3 + 7αx2 + 3αx + 2α = 0 . (3.42)

Taking x ∼ α, we consistently find

x = −2α

β
, (3.43)

for which we find an entropy of the form

S �
√
2

3
π |β|√|α| . (3.44)

This entropy takes the same form as the BPS entropy, with appropriate sign flips in the
charges. Via symmetry the same hold for |β| � |α|, with α ↔ β in Eq. 3.44.

However, this matching to the BPS entropy is only true when one of the charges is
much larger in magnitude than the other. For instance, taking α = β, in the BPS case,
we find an entropy of

S = 1.97β3/2 , (3.45)

while if we take α = −β, in the non-BPS case, we find an entropy of

S = 2.68β3/2 . (3.46)



Non-Holomorphic Cycles and Non-BPS Black Branes 2011

We perform the same physical test of recombination as in the previous example,
where we set the moduli to the attractor values, and decompose the black hole into its
BPS and anti-BPS constituents, separated by some finite distance. Again, the force, P ,
between the constituents is repulsive inside the Kähler cone for mixed sign α and β:

P ∼ − 2t21 t22αβ

t21 + t1t2 + t22
, (3.47)

and so to form the black hole energy must be added to the system, again indicating
the connected representative of the corresponding homology class of the black hole is
locally, but not globally, voluming minimizing.

3.1.3. Other hypersurfaces. We will briefly discuss general features observed in per-
forming the same analysis for other Calabi–Yau hypersurfaces in smooth Fano toric
fourfolds. Let us start with the simplest non-trivial case, which is the case of Picard rank
two.

Including the two previous examples, there are nine smooth Fano toric fourfolds
with Picard rank two, and it is straightforward to perform the same analysis for each. In
Fig. 5, we show the homology regions that correspond to large black holes, where the
first quadrant always corresponds to the cone of holomorphic curves. Here the fourth and
ninth examples correspond to the examples studied above. In the non-BPS case, we find
that the black hole mass is always greater than the volume of the minimal piecewise-
calibrated representative of the corresponding homology class. For non-holomorphic
curves we find that the BPS-anti-BPS constituents always experience a repulsive force
inside the Kähler cone.

Examining the regions in Fig. 5, we see that in some cases the large non-BPS black
hole region covers some holomorphic curve classes, when the blue region covers some
of the first quadrants in the plots, but we still find that the mass of the black hole is
greater than the mass of the minimal piecewise-calibrated representative, which itself is
calibrated. Therefore, even for some holomorphic curves we predict the existence of a
connected local, but not global, volume minimizer. This may come as a surprise, as a
particle corresponding to an M2 brane on a holomorphic curve is a BPS state. However,
when we gather many of these particles in order to form a black hole, it may be that
there is actually no BPS solution to the black hole equations of motion, as is the case in
the conifold. For some cases instead there is a non-BPS black hole, which is interpreted
as an M2 brane wrapping a connected representative of a holomorphic curve class that
itself is not a global volume minimizer, and so is not calibrated.

For examples with higher Picard rank the analysis becomes more involved, and in
particular it is not always possible to obtain analytic results. However, we performed a
scan over the rest of the Calabi–Yau hypersurfaces in smooth Fano toric fourfolds, con-
sidering the following possibilities for non-effective curves: 1) all tuples of the generators
of the semigroup of effective curves with coefficients plus or minus one, 2) identifying
BPS black holes and flipping the sign of some of the constituent curve classes, and 3)
random combinations of rational curves of mixed sign. In all cases we found that the
black hole mass was always greater than the volume of the minimal piecewise-calibrated
representative of the corresponding homology class. We take this as suggestive evidence
that if curve recombination does occur in Calabi–Yau threefolds for LBBC’s, it is rare.

3.2. Elliptic fibrations. We will now consider smooth elliptic fibrations π : X → B
over simple bases B, with a section. These examples are particularly interesting because
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(a) first (b) second (c) third

(c) fourth (d) fifth (e) sixth

(c) seventh (d) eigth (e) ninth

Fig. 5. The regions of curve space with large black holes, in the nine h1,1 = 2 models corresponding to
anticanonical hypersurfaces in smooth Fano toric fourfolds. In each case the Mori cone (cone of effective
curves) corresponds to the positive quadrant. The yellow indicates BPS black holes, the blue non-BPS black
holes, and the white region indicates where a large black hole does not exist. The fourth and ninth examples
correspond to the examples studied above

we will be able to compare our results for the non-BPS black hole entropy with a
microscopic prediction based on the BPS calculation related to oscillator modes of a
string as in [16,44]. This will be discussed in more generality in Sect. 5.

Denote the section asσ , and its dual (1, 1)-formasω0. Theother divisors are pullbacks
of curves Cα in the base B, denoted Dα = π∗(Cα), and denote their dual (1, 1)-forms
as ωα . We expand the Kähler form as J = t0ω0 + tαωα . The triple intersection numbers
are [45]

C000 =
∫

B

c1(B)2 = 10 − h1,1(B) ,
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C00α = −c1(B) · Cα ,

C0αβ = Cα · Cβ := �αβ , (3.48)

where �αβ is the intersection matrix of the Cα ⊂ B. The volume of X then takes the
form

V = 1

6

(
C000t30 + 3C00αt20 tα + 3t0�αβ tαtβ

)
. (3.49)

For a smooth elliptic fibration over X → B, the algebraic curves are the curves inherited
from the base B, and the class of the fiber, which is generally thought to be a pullback
of an ample divisor on B [46].

3.2.1. B = P
2 Let us start with the simplest example. There is only a single generator

for divisors on P
2, and so the fiber class E must be proportional to D2, where D is

the inverse image of the hyperplane section on P
2. The intersection of the fiber class

with the section is σ · E = 1, and so we can identify the class of the typical fiber as
C1 := E = D2. The curve in the base is given by C2 = σ · D. A general curve can then
be written as

C = αC1 + βC2 . (3.50)

We have the intersection numbers

σ · C1 = 1 ,

σ · C2 = −c1(B) ·B π(D) = −3 ,

D · C1 = 0 ,

D · C2 = 1 , (3.51)

and so we can read off the charges as

q0 = α − 3β , q1 = β . (3.52)

The Kähler cone conditions read t1 − 3t0 > 0, t0 > 0, and the volume takes the form

V = 1

2
t0

(
3t20 − 3t0t1 + t21

)
. (3.53)

It is simplest to define new Kähler parameters b1 = t1 − 3t0 and b2 = t0, so that the
Kähler cone conditions read b1, b2 > 0. In this basis the volume takes the form

V = 1

2
b2

(
b21 + 3b1b2 + 3b22

)
. (3.54)

The black hole potential takes the form

Vef f = 1

b1(b1 + 3b2)
(β2b41 + 2b21b22

(
α2 − 3αβ + 9β2

)
+ 6β2b31b2

+ 6b1b32

(
α2 − 4αβ + 6β2

)
+ 3b42(α − 3β)2) , (3.55)

subject to the constraint V = 1. Define the ratio of Kähler parameters

x = b1
b2

. (3.56)
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Let us first determine the conditions for a BPS black hole, which corresponds to

β(x + 3)2 = α(2x + 3) . (3.57)

Solving this with x > 0 gives

x =
√

α2 − 3αβ + α − 3β

β
, (3.58)

and enforcing that V = 1 we find

1

2
(x(x + 3) + 3)b32 = 1 . (3.59)

In order to have b1, b2 > 0 we need to enforce that x > 0, b2 > 0, which leads to the
conditions

{α < 0 and
α

3
< β < 0} or {α > 0 and

α

3
> β > 0} . (3.60)

Let us next determine the conditions for a non-BPS black hole, which corresponds
to a solution of

2βx5 − 81β + x4(4α + 9β) + x3(24α − 9β) + x2(51α − 90β) + x(45α − 135β) + 27α = 0.

(3.61)

Again, in order to have b1, b2 > 0 we need to enforce that x > 0, b2 > 0. Eq. 3.61 has
a positive root when

{α < 3β and β > 0} or {α > 3β and β < 0} , (3.62)

which fills out the entire charge space except for codimension-one regions, which we
plot in Fig. 6. All of the solutions are attractors.

Let us examine the mass of the non-BPS black holes corresponding to M2 branes
on non-holomorphic curves. We cannot solve Eq. 3.61 analytically, so we will instead
investigate it numerically. We plot the ratio R of the black hole mass to the piecewise-
calibrated volume of the corresponding cycle in Fig. 7, with the asymptotic moduli set
to the attractor values. We again find R > 1 in the non-BPS case. Therefore these black
holes are unstable to decay to their BPS-anti-BPS constituents, and correspond to M2
branes wrapping connected representatives of the corresponding homology class which
are local, but not global, volume minimizers. This example has an interesting feature:
for |β| 
 |α|, we have R trending towards unity, indicating that as the curve becomes
“mostly holomorphic”, the volume approaches that of its piecewise-calibrated represen-
tative. However, for |α| 
 |β|, R does not approach one, indicating the corresponding
representative of the curve class is not trending towards a piecewise-calibrated repre-
sentative. This is explained by the observation that in the |β| 
 |α| case we presumably
approach a BPS black hole, but in the |β| � |α| we do not. This manifests itself in the
algebraic computation of the solutions to critical points of the potential. Consider the
quantized charges of the M2 brane on the curve, given by the intersection numbers:

(q1, q0) = (β, α − 3β) . (3.63)
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Fig. 6. The regions of curve space with large black holes, for a generic CY elliptic fibration over P2. The axes
indicate the homology class, specified by α and β. Yellow indicates BPS black holes, while blue indicates
non-BPS black holes

For a BPS black hole, the equations of motion in Eq. 2.13 give

τI ∼ qI . (3.64)

The divisor volumes take the form

(τ1, τ0) =
(

b2b1 +
3b22
2

,
b21
2

)
. (3.65)

In the case the |α| � |β|, the BPS equations of motion then be consistently solved in the
regime b2 
 b1, and taking a small magnitude negative β will simply be a perturbation
to the large BPS black hole. However, in the case that |β| � |α| we cannot approach a
large BPS black hole solution, since the BPS equations of motion would force a four-
cycle volume to become negative. Therefore taking |β| � |α| does not bring us close to
a large BPS black hole, which explains why R does not approach unity in that limit.

The non-BPS black hole region also covers some holomorphic curves, though these
curves do not correspond to BPS black holes. Here the mass of the black hole is still
larger than the minimal piecewise-calibrated representative of the corresponding curve
class, which itself is calibrated. Therefore even in the case of holomorphic cycles we
predict the existence of a connected local, but not global, volume minimizer, whose
volume is given by the black hole mass.

In this example the force between the BPS-anti-BPS constituents takes the form

P ∼ −6αβb22(b1 + b2)

b1
, (3.66)

which is repulsive everywhere inside the Kähler cone for mixed sign α and β.
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Fig. 7. The ratio of the black hole mass to the volume of the minimal piecewise-calibrated representative,
as a function of β/α, for a generic CY elliptic fibration over P2. This ratio is always greater than unity, but
approaches unity as the homology class becomes “mostly” holomorphic with β � α. It does not approach
unity for α � β, as this limit does not correspond to a BPS black hole

It will also be interesting to consider the large n limit of these non-BPS black holes,
where n is the wrapping number of the elliptic fiber above, corresponding to α = n. Let
us first work out the BPS case. In the large n limit we have

x = 2n

β
. (3.67)

Solving V = 1, we have

b1 = 22/3n1/3

β1/3 , b2 = β2/3

21/3n2/3 , (3.68)

and so we find

Vef f = 3 × 21/3n2/3β4/3 . (3.69)

We then find

S = √
2π

√
nβ . (3.70)

Let us now compare this to the microscopic formula for the entropy found in [44]. For
an M2 brane wrapped on the elliptic fibers n times, and a curve on the base C , the
microscopic entropy is computed as

Smicro = 2π

√
ncL

6
, (3.71)

where cL is the left-moving central charge written as

cL = 3C · C + 9c1(B) · C + 6 , (3.72)
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and c1(B) is the first Chern class of the base. For B = P
2 we have C = βC2, and in the

large β limit we have cL = 3β2C2 · C2 = 3β2, and so we find

Smicro = √
2π

√
nβ , (3.73)

which agrees with the black hole entropy.
In the non-BPS case, the equation of motion is given in Eq. 3.61, which in the limit

n � β reduces to

2β2x7 + 21β2x6 − 8n2x5 − 60n2x4 − 174n2x3 − 243n2x2 − 189n2x − 81n2 = 0.

(3.74)

Taking x ∼ n, we have

2β2x7 − 8n2x5 = 0 , (3.75)

for which we consistently find

x = −2n

β
. (3.76)

Enforcing V = 1 in the large α limit, we then find

b1 = 22/3
(

− n

β

)1/3

, b2 =
(

β2

2n2

)1/3

. (3.77)

Keeping the leading terms in n in Vef f , we then find

Vef f = 3 × 21/3n2/3β4/3 , (3.78)

which gives an entropy of the form

S = √
2π

√|n||β| , (3.79)

and so we can read off the central charge of the theory as

c = 3β2 = 3|C · C | , (3.80)

which is simply the absolute value of the analytic continuation of the leading-order BPS
central charge to non-holomorphic curves. We will return to this point in greater detail
in Sect. 5.
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3.2.2. B = Fn and curve recombination. Let us now consider the case that the base of
the elliptic fibration is a Hirzebruch surface Fn , where we take n = 0, 1, 2 so that the
generic π : X → B is smooth. We can describe Fn as a toric variety via a fan with rays

v1 = {0, 1} , v2 = {n,−1} , v3 = {1, 0} , v4 = {−1, 0} . (3.81)

The projective scaling weights of the corresponding toric coordinates are

x1 x2 x3 x4 c1
0 0 1 1 2
1 1 0 n 2 + n

where c1 is the first Chern class. From the fan we have the intersection structure

(1, 0) · (0, 1) = 1 , (0, 1) · (0, 1) = 0, (1, 0) · (1, n) = 0 , (3.82)

and so the generating set of divisor on Fn is {C1, C3}, and we can read off C2
1 = 0,

C1 · C3 = 1, and

C2
3 = (1, 0) · (1, 0) [(1, n) − n(0, 1)] · (1, 0) = −n . (3.83)

In addition, we have c1 = 2D3 + (2 + n)D1, and so we then have

c1 · C1 = 2 ,

c1 · C3 = −2n + (2 + n) = (2 − n) . (3.84)

We now consider the elliptic fibration over Fn . To determine the class of the elliptic fiber,
we note that the intersection of the fiber with the section is one. Defining Dα = π∗(Cα),
we then consider

σ · (aD1 + bD3)
2 = 2abσ · D1 · D3 + b2σ · D2

3 = 2ab − nb2 . (3.85)

Setting the above equation equal to one, we have

a = 1 + nb2

2b
. (3.86)

Choosing b = 1, we have a = (1 + n)/2.
To compute the intersection numbers we have c1(B) = (2, 2 + n), and so we have

C1 · c1 = (0, 1) · (2, 2 + n) = 2, and C3 · c1 = 2 − n. The volume of X then takes the
form

V = 1

6

(
8t30 − 6t20 t1 − 3(2 − n)t20 t3 + 3t0(2t1t3 − nt23 )

)
. (3.87)

A general curve can be written C = αC1 +βC3 +γ E , where E is the class of the elliptic
fiber. The intersection numbers with the basis of divisors is given by

D1 · C = αD2
1 · σ + βD1 · D3 · σ = β ,

D3 · C = αD3 · D1 · σ + βD2
3 = α − nβ, ,

σ · C = ασ 2D1 + βσ 2D2 + γ = −2α + (n − 2)β + γ , (3.88)

and so the Kähler cone conditions are

t0 > 0 , t1 − nt3 + (n − 2)t0 > 0 , t3 − 2t0 > 0 . (3.89)
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Fig. 8. The ratio of the black hole mass to the volume of the minimal piecewise-calibrated representative for
a generic CY elliptic fibration over P1 × P

1. Case 1 is the curve class C1 − C3 with p wrappings of the fiber.
Case 2 is the curve class C1 +C3 with −p wrappings of the fiber. Case 3 is the curve class p(C1 +C3) with a
single (negative) wrapping of the fiber. This ratio is always greater than unity, but approaches unity for Case
1 and Case 2. It does not approach unity for Case 3, as this case does not approach a BPS black hole

Let us examine some of the black hole masses for non-holomorphic curves. We focus
on the n = 0 case since it is simple and illustrative of the general behavior. We consider
three case: first, we can fix a non-holomorphic cycle in the base of the form C1 − C3,
and take p-times the fiber (for a black hole we really need to take a large multiple of this
charge, but that does not affect the analysis). Second, we fix an ample class in the base
of the form C1 +C3, and take−p times the fiber. Third, we can take a single wrapping of
the fiber class, and take p times an ample class in the base p(C1 +C3). In Fig. 8 we plot
the ratio R of the black hole mass to the volume of the minimal piecewise-calibrated
representative in each case, where all of the solutions correspond to attractors. For the
first two cases when p becomes large the black hole mass approaches the volume of
a piecewise-calibrated representative of the corresponding curve class. However, for
the third case R does not approach unity with large p, indicating the corresponding
representative of the curve is not approaching a piecewise-calibrated one. This is the
same behavior that we observed in the elliptic fibration over P2, as the third limit does
not approach a BPS black hole.

Let us again examine the force between the BPS and anti-BPS constituents in these
cases. We again re-define our Kähler coordinates so that the Kähler cone conditions read
b1, b2, b3 > 0. For almost all examples we find that this force is repulsive inside the
Kähler cone; however, in one example we find that the force is attractive, but the black
hole mass is larger than the masses of the sum of the BPS and anti-BPS constituents.
We consider the case where the M2 brane wraps (a large multiple of) the curve class
C1 − C3 + E . In this case the force between the BPS-anti-BPS constituents takes the
form

P ∼ −2b23(b1(b2 + b3) + b3(3b2 + 4b3))

3(b1(b2 + b3) + b2b3)
, (3.90)
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and is therefore attractive for all values of the moduli inside the Kähler cone, including
the attractor background. However, we still find that the black holemass is larger than the
sum of its BPS and anti-BPS constituents. This can be resolved by considering the bound
states. That is, consider an M2 brane wrapped on C1 + E , and an M2 brane wrapped
on −C3, separated by a small spatial distance in the non-compact 5d spacetime. In the
attractor background set by the black hole, these two states are attractive, and we expect
them to form a bound state that respects the attractor background, from which we can
form the black hole. Let us write the mass of the bound states as

m = m1 + m2 − δ , (3.91)

where m1 = vol(C1 + E), m2 = vol(C3), and δ is a binding energy. If we ignore the
binding energy, we find that the gravitational and scalar attractive forces are large enough
to overcome the electric repulsion, so these bound states seem to be mutually attractive;
that is, if we collected a large cloud of the bound states they would be attracted to one
another, and would collapse and release energy in the process of forming a black hole.
However, we know that in this background there is an extremal black hole with the same
charge, and so this appears to be a contradiction: the bound states have an attractive
force, but the black hole mass is greater than the sum of the constituents. This can be
rectified by including binding energy: if the bound states are tightly bound enough to
lower the gravitational and scalar attraction so that the electric repulsion takes over, then
one must put in energy to the system to form the black hole. This idea is consistent with
the Repulsive Force Conjecture [35]. This binding energy can arise in two ways: first,
it can arise from a binding in the non-compact spacetime, with the particles separated
by a finite distance. Second, it can arise from non-trivial recombination of the cycles
C1 − C3 + E . We therefore expect this cycle to be a candidate for recombination. It
was shown in [47] that for P1 × P

1, endowed with the metric 2g1 + 3g2, where g1, g2
are the standard Fubini-Study metrics on the respective projective factors, the non-
holomorphic curve C1 − C3 does exhibit recombination. In our example above the base
Kähler parameters differ by a factor of 3 instead of 3/2, so we take this as a suggestion
of possible recombination.

One could also consider another initial configuration from which to form the black
hole. Instead of bringing together microscopic BPS and anti-BPS particles one at a time,
one could gather a large cloud of the BPS particles, and another large cloud of the anti-
BPS particles, and allow them to collide. However, from Eq. 3.90, we would expect
the BPS and anti-BPS clouds to have an attractive force between them, and therefore
lower the energy in forming the black hole! However, this does not work: in order to
form a macroscopic black hole we need a large amount of charge, and the BPS and
anti-BPS clouds will therefore back-react on the moduli. Near each of the clouds the
black hole equations of motion force one of the moduli to become formally negative,
and we therefore cannot reliably calculate the force between the clouds in this way, and
cannot make sense of the black hole formation process from this initial configuration.

Again, it will also be interesting to consider the large n limit of these non-BPS black
holes, where n = γ is the wrapping number of the elliptic fiber above. We will first work
out a simple BPS example, where the M2 brane wraps the fiber n-times, and the base
curve C = C1 +C3 β-times. This setup is symmetric in the base Kähler parameters and
so we can set them to be equal. In the large n limit we find

Vef f = 6β4/3n2/3 , (3.92)
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which gives an entropy of the form

S = 2πβ
√

n . (3.93)

Again we can compare to the microscopic entropy computed in [44]. We have

C · C = 2β2 , (3.94)

and so cL = 6β2 in the large charge regime. The microscopic entropy is then computed
as

S = 2π

√
ncL

6
= 2πβ

√
n , (3.95)

in agreement with the macroscopic entropy computed via the BPS black hole.
For the non-BPS case, we consider an M2 brane wrapped n times around the elliptic

fiber, and β times around the base curve C1 − C3. In the large n limit was can again set
the base Kähler parameters to be equal, though this is corrected by sub-leading terms in
n. Taking x = b2/b3, where b2 is the value of the base Kähler parameters and b3 is the
fiber volume, the non-BPS equations of motion in the large n limit become

12β2x7 + 84β2x6 − 12n2x5 − 60n2x4 − 116n2x3 − 108n2x2 − 56n2x − 16n2 = 0.

(3.96)

Taking x ∼ n, this reduces to

12β2x7 − 12n2x5 = 0 , (3.97)

which is solved by x = −n/β. Enforcing V = 1, and solving for b2 and b3, we find the
value for the effective potential

Vef f = 6β4/3n2/3 , (3.98)

giving an entropy of the form

Snon−B P S = 2π |β|√|n| . (3.99)

The central charge is again given by the absolute value of the analytic continuation of
the BPS central charge to non-holomorphic curves, of the form 3|C · C |.

Finally, in a similar fashion we can consider an M2 brane wrapped n times around
the elliptic fiber, and β times around the base curve C1 +C3, with β and n of mixed sign.
In this case we can consistently set b1 = b2 due to the symmetry in the base. We find
the entropy to be

Snon−B P S = 2π |β|√|n| , (3.100)

which is the same as the BPS entropy to with the sign of n flipped. We will explore this
further in Sect. 5.
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4. Black String Examples

We now consider 5d black strings, obtained from wrapping M5 branes on divisors in a
Calabi–Yau threefold. A major difference between the black string case and the black
hole case is that, in some examples, we will find that the tension of the non-BPS black
string is less than the volume of the minimal piecewise-calibrated representative of the
corresponding divisor class, which we interpret geometrically as recombination. Our
first two examples exhibit recombination.

4.1. The bi-cubic in P
2 × P

2. We again consider a generic anticanonical hypersurface
X ⊂ P

2 × P
2 := V , as in Sect. 3.1.2. The effective cone of divisors of a generic anti-

canonical hypersurface in P
2 × P

2 is generated by D1 and D2 [48]. The black string
effective potential can be written as

Vef f = 9

2

(
p21 t22

(
2t21 + 2t1t2 + t22

)
+ 2p1 p2t21 t22 + p22 t21

(
t21 + 2t1t2 + 2t22

))
, (4.1)

subject to the constraint V = 1. Again define the ratio of Kähler moduli

x = t1
t2

. (4.2)

Let us first determine the conditions for a BPS black string, which corresponds to

x = p1
p2

. (4.3)

Clearly in order to have t1, t2 > 0 we need to enforce that x > 0, t2 > 0, which leads to
the conditions

{p1 < 0 and p2 < 0} or {p1 > 0 and p2 > 0} . (4.4)

Let us next determine the conditions for a non-supersymmetric black string, whose
equation is given by

2p2x4 + x3(2p1 + 5p2) + x2(3p1 + 3p2) + x(5p1 + 2p2) + 2p1 = 0 . (4.5)

Again, in order to have t1, t2 > 0 we need to enforce that x > 0, t2 > 0. Eq. 4.5 has
a positive root in the case that p1 and p2 are of mixed sign, and so the non-BPS black
string region is the complement of the BPS black string region (except for p1 = 0 or
p2 = 0):

{p1 < 0 and p2 > 0} or {p1 > 0 and p2 < 0} . (4.6)

It can be explicitly checked that all solutions are attractors.
In Fig. 9 we show the regions where large black strings exist for both the BPS and

non-BPS cases. In this example all divisor classes correspond to large black strings,
except when p1 = 0 or p2 = 0.

The non-BPS equation of motion can be solved analytically, but the expression is
long, and so for the non-BPS case we can simply numerically minimize the effective po-
tential as a function of p2/p1. In this example we find that the black string tension is less
than the volume of a piecewise-calibrated representative, indicating that the non-BPS
black string is stable against complete decay into BPS-anti-BPS constituents, and that



Non-Holomorphic Cycles and Non-BPS Black Branes 2023

Fig. 9. The regions of divisor space with large black strings, for a generic CY hypersurface in P
2 × P

2. The
axes indicate the homology class, specified by p1 and p2. All divisors, except p1 = 0 or p2 = 0, correspond
to large black strings

the corresponding non-holomorphic divisor class undergoes recombination. In Fig. 10
we plot the ratio R of the black string tension the volume of the piecewise-calibrated
representative of the corresponding divisor class, against the ratio p2/p1, for negative
p2 and positive p1. Note that, as one of the charges becomes much larger in magnitude
than the other, the ratio approaches unity, suggesting that the volume minimizing repre-
sentative may approach an (anti)-holomorphic representative, as the solution approaches
a BPS one.

Without loss of generality, choose p1 > 0 and p2 < 0, and as usual fix the asymptotic
moduli to the attractor values. In general, the non-BPS string tension predicts that the
non-holomorphic homology class p1D1 + p2D2 has minimal volume less than that of
its minimal piecewise-calibrated representative, indicating that non-trivial recombina-
tion has occurred. This example also makes a non-trivial geometric prediction for the
WGC, namely that this black string should be able to decay. A particularly instructive
configuration is the black string with p1 = −p2 = n, with n � 1. In this case we find
that the ratio of the black string tension T to the minimal piecewise-calibrated volume
T ∪ is

T

T ∪ =
√
2

3
. (4.7)

We can also ask what decay channels are allowed for this black string. The simplest
possibility is for the black string to emit a BPS (or anti BPS) string, for instance taking
p1 → p1 − 1. The black string tension before the emission is given by

Tb = √
235/6n , (4.8)
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Fig. 10. The ratio of the black string tension to the volume of the minimal piecewise-calibrated representative,
as a function of p2/p1, for negative p2 and positive p1. This ratio is always less than one, indicating recom-
bination, and that the non-BPS black string is stable against complete decay into BPS-anti-BPS constituents

while the tension after emission is given by2

Ta = √
235/6

√
n(n − 1) . (4.9)

Taking the difference in the large-n limit, we have

δT = 35/6√
2

+O
(
1

n

)
. (4.10)

In this background, the tension of the BPS string with p1 = 1 is given by

TB P S = 34/3

2
, (4.11)

and so we have

δT ≈ 1.77 < TB P S ≈ 2.16 . (4.12)

Therefore the decay channel of emitting a BPS string, corresponding to a generating
divisor of the effective cone, is not allowed. On the other hand the WGC suggests that it
will decay to some strings carrying small (microscopic) charges. Since the black string
has charge (n,−n) the simplest possibility is that it will be able to decay by emitting a
non-BPS strings of charge (1,−1), or some small multiple. Let us bound the tension of
this string. The tension of the black string after emission is given by

Ta = √
235/6(n − 1) , (4.13)

2 We take n to be large, in which case the change in horizon moduli under the shift in black string charge
is negligible.
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and so we find

δT = √
235/6 , (4.14)

which gives an upper bound for the tension of the emitted string. Note that it is also
possible that recombination does not occur but rather the string with charge (1,−1) is
composed of two disconnected BPS-anti-BPS strings which form a bound state in the
5d non-compact spacetime, lowering its energy. Since the minimal piecewise-calibrated
volume of that cycle is 34/3, if D1 and −D2 do recombine, via Eq. 4.14 the black string
physics predicts a volume reduction of

T

T ∪ =
√
2

3
� 0.82 . (4.15)

The force between the strings with mixed sign p1 and p2 is attractive inside the
Kähler cone, and goes as

P ∼ p1 p2
(t1 + t2)2

. (4.16)

4.2. The tetraquadric. In this section we consider the tetraquadric, which is a generic
anti-canonical hypersurface in (P1)4 ofmulti-degree (2, 2, 2, 2).Herewehaveh1,1(X) =
4, and the Mori cone is inherited from that of the ambient product of projective spaces,
which is smooth Fano. Expand the Kähler form in terms of duals to the hyperplane
section restricted to X as J = t iωi , with t i > 0 inside the Kähler cone. The volume
takes the form

V = 2t1t2t3 + 2t1t2t4 + 2t1t3t4 + 2t2t3t4 . (4.17)

We will focus on a particularly simple example, which is that of an M5 brane on the
non-holomorphic divisor class {n, n,−n,−n}, where the vector indicates the wrapping
numbers around the restrictions of the four hyperplanes to X . In this case the moduli are
stabilized at the symmetric attractor point tI = 1/2, and the effective potential takes the
form

Vef f = 16n2 , (4.18)

and so the black string tension, and prediction for the minimal volume of the homology
class labeled by {n, n,−n,−n}, is

Tbs = vol({n, n,−n,−n}) =
√
3

2
Vef f = 2

√
6|n| . (4.19)

To determine whether this non-holomorphic representative is minimal in its class, we
need to identify the smallest piecewise-calibrated representative in that class. There is a
canonical piecewise-calibrated representative, whose volume is given by summing the
volumes of each (anti)-holomorphic hyperplane constituent of {n, n,−n,−n}, which is
given by

vol∪({n, n,−n,−n}) = |n|τ1 + |n|τ2 + |n|τ3 + |n|τ4 , (4.20)
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where τI is the volume of the I -th hyperplane class. Since for this set of charges the
moduli flow to a symmetric point tI = 1/2, we can write τI ≡ τ = 3/2, and we then
have

vol∪({n, n,−n,−n}) = 4|n|τ = 6|n| . (4.21)

Since 2
√
6 � 4.6 < 6, this example is a candidate for exhibiting recombination. How-

ever, the effective cone of X is infinitely generated [49], and more care is required. The
semigroup of effective divisors is generated by the hyperplanes, as well as permutations
of the line bundle with multi-degree {−1, 1, 1, 1} [49].3 The cone C generated by these
line bundles therefore contains the effective cone of X , and all effective divisors on X
can be expressed as linear combinations of the eight generators of C. We will look for
the smallest piecewise-calibrated representative of the class {n, n,−n,−n} using the
generators of C, which are

L1 = {1, 0, 0, 0} ,

L2 = {0, 1, 0, 0} ,

L3 = {0, 0, 1, 0} ,

L4 = {0, 0, 0, 1} ,

L5 = {−1, 1, 1, 1} ,

L6 = {1,−1, 1, 1} ,

L7 = {1, 1,−1, 1} ,

L8 = {1, 1, 1,−1} . (4.22)

Consider the corresponding divisors dual to these line bundles. At the symmetric locus
tI s = 1/2, the “volumes” of the generators of C are 3/2 for i = 1 . . . 4, and are 3
for i = 5 . . . 8. The volume of any piecewise-calibrated representative of the class
{n, n,−n,−n} can then be written as

vol∪ = 3

2
(|a1| + |a2| + |a3| + |a4| + 2|a5| + 2|a6| + 2|a7| + 2|a8|) , (4.23)

where the ai , i = 1 . . . 8, satisfy

a1 − a5 + a6 + a7 + a8 = n ,

a2 + a5 − a6 + a7 + a8 = n ,

a3 + a5 + a6 − a7 + a8 = −n ,

a4 + a5 + a6 + a7 − a8 = −n . (4.24)

Solving these equations to eliminate a5, a6, a7, a8, we are then left with the problem of
minimizing the function

vol∪ = 3

4
(|a1 − a2 − a3 − a4 − 2n|

+ |a1 + a2 + a3 − a4 − 2n|
+ |a1 + a2 − a3 + a4 − 2n|

3 These line bundles are not themselves effective [49], but when combined with the hyperplanes they
generate all effective line bundles.
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+ |a1 − a2 + a3 + a4 + 2n|
+ 2|a1| + 2|a2| + 2|a3| + 2|a4|) . (4.25)

The ai are bounded to the domain {−4n, 4n}, as if the values were larger or smaller,
vol∪ would be larger than the candidate minimum of 6|n| derived above. The objective
function vol∪ is linear away from the hyperplane loci defined by the vanishing of the
various absolute values in Eq. 4.25, and so we are left with a linear optimization problem
with a boundary. It is well known that the extrema are located at the vertices of the
boundary, and so we need only to check a finite number of points to find the minimal
piecewise-calibrated representative. We find a minimal value of 6|n|, confirming that
the piecewise-calibrated representative constructed from the hyperplane sections gives
the minimal piecewise-calibrated volume, and thus the minimal volume of the class
{n, n,−n,−n} given by the black string tension is smaller than the volume of any
piecewise-calibrated representative. This again is indicative of the presence of a stable
non-BPS string.

One can check that for the above wrapping numbers, the force between the BPS and
anti-BPS constituents is attractive inside the Kähler cone:

P ∼ − n2(t21 + t22 )((t23 + t24 )

t1t2t3 + t1t2t4 + t1t3t4 + t2t3t4)2
. (4.26)

4.3. A K3 fibration. This example includes non-effective divisor classes that do not
exhibit recombination, which differs from the previous two examples. We consider a
generic anticanonical hypersurface X ⊂ P

3×P
1, with corresponding hyperplane divisor

classes D1 and D2 (restricted to the hypersurface), as in Sect. 3.1.1.
A basis of effective divisors is given by {D1, D2}. However, in order to compare our

the tension of our black string to a piecewise-calibrated representative of the correspond-
ing homology class, we need to determine the effective cone of X . We utilize the results
of [48], which give the effective cone of hypersurfaces in products of projective spaces.
In particular, as we observed in the previous example, when there is a P1 factor in the
ambient space one often finds effective divisors on the hypersurface that are not inherited
from effective divisors on the ambient space (referred to as “autochthonous divisors” in
[50]). In this example, the effective cone is generated (over R) by the divisors D2 and
D3 := 4D1 − D2. D1, D2, D3 all correspond to integral divisors on X themselves.

The black string effective potential can be written as

Vef f = 16p21 t21 t22 +
16

3
p21 t31 t2 +

2p21 t41
3

+
8

3
p1 p2t41 + 8p22 t41 , (4.27)

subject to the constraint V = 1. Again define

x = t1
t2

. (4.28)

The BPS equations of motion give

x = p1
p2

. (4.29)

Clearly in order to have t1, t2 > 0 we need to enforce that x > 0, t2 > 0, which leads to
the conditions

{p1 < 0 and p2 < 0} or {p1 > 0 and p2 > 0} . (4.30)
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Fig. 11. The regions of divisor space with large black strings, for a generic CY hypersurface in P3 × P
1. The

axes indicate the homology class, specified by p1 and p2. The white region indicates divisor classes that do
not correspond to large black strings

Let us next determine the conditions for a non-supersymmetric black string, whose
equation is given by

p1(x + 3) + 3p2x = 0 , (4.31)

for which the solution is

x = − 3p1
p1 + 3p2

. (4.32)

Again, in order to have t1, t2 > 0 we need to enforce that x > 0, t2 > 0, which gives
the conditions

{p1 < 0 and p2 > − p1
3

} or {p1 > 0 and p2 < − p1
3

} . (4.33)

These regions of non-BPS solutions all correspond to attractors.
In Fig. 11 we show the regions where large black strings exist for both the BPS and

non-BPS cases. There are some regions that do not correspond to large black strings,
including the ray along the “extra” generator of the effective cone 4D1 − D2.

We check for recombination by computing the tension of the black strings, and
comparing to the piecewise-calibrated representatives of the corresponding class. Here
we have three generators of integral effective divisors. Since this example has Picard
rank two the effective cone is simplicial, but we need to be careful that we only con-
sider piecewise-calibrated representatives that correspond to integral classes. Take, for
example, p1 = n, p2 = −n, for n � 1. In order to find the volume-minimizing
piecewise-calibrated representative of n(D1 − D2), we need to consider a general fam-
ily of piecewise-calibrated representatives

aD1 + bD2 + cD3 , (4.34)
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Fig. 12. The volume of the piecewise-calibrated representative as a function of the parameter c, with n = 5000.
At large charges the presence of the extra effective divisor allows the black string to decay in BPS-anti-BPS
constituents

with

a + 4c = p1 = p b + c = p2 = −p , (4.35)

from which we can solve for a and b, leaving c as a free parameter parameterizing
the choice of piecewise-calibrated representative. We find that the black string ten-
sion is 3.56n. Taking e.g., n = 5000, the black string tension is then 17784.5. To
compare to the minimal piecewise-calibrated representative in that class we minimize
the family of piecewise-calibrated representatives with respect to a, b, c, demanding
that c is an integer. We find the minimum at c = 1250 (see Fig. 12 for the volume
of the piecewise-calibrated representative vol∪(c) as a function of c), and the minimal
piecewise-calibrated volume to be 16598.8, less than the tension of the black string. This
black string is then unstable to decay into BPS-anti-BPS constituents. In general, for
large charges we find that the black string tension is greater than the volume of the min-
imal piecewise-calibrated representative of the corresponding divisor class. However,
let us apply the black string tension formula for small charges, namely p1 = −p2 = 1,
even though we do not expect it to be valid. In this case, we find that the black string
tension is 3.56, but integrality of the piecewise-calibrated representative then gives that
the minimal piecewise-calibrated volume is 4.03. Thus, for large charges, the “extra” ef-
fective divisor enters to allow for decay into BPS-anti-BPS constituents. This is possible
suggestive evidence that the divisor D1 − D2 recombines.

In general, decomposing the black string charge into its minimal BPS and anti-BPS
constituents, we always find a repulsive force between them. For large charges the force
takes the form

P ∼ −3p1(p1 + 4p2)

8(t1 + 6t2)2
, (4.36)
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which is repulsive in the charge region where large non-BPS black strings exist for all
values of Kähler moduli.

4.4. Elliptic fibrations. We consider the same elliptic fibrations for M5 branes on divi-
sors as we did for M2 branes on curves.

4.4.1. B = P
2 The generating divisor classes are the section (base), and the inverse

image of the hyperplane section in the base P2. Denote the homology class of the M5
brane as (p0, p1), where p0 is the wrapping number around the base, and p1 is the
wrapping number around the vertical divisor. The effective potential is given by

Vef f = b21b22

(
9p20 − 3p0 p1 + p21

)
+ 3b31b2 p20 +

b41 p20
2

+3b1b32

(
3p20 − 2p0 p1 + p21

)
+
3b42 p21

2
. (4.37)

We first consider BPS black strings. The BPS equations of motion yield

x = −3p0 + p1
p0

, (4.38)

and so BPS solutions exist for

{p1 < 0 and
p1
3

< p0 < 0} or {p1 > 0 and
p1
3

> p0 > 0} . (4.39)

Let us now consider non-BPS black strings. The non-BPS equations of motion give

27p0 − 9p1 + (36p0 + 3p1)x + (18p0 + 9p1)x2 + (9p0 + 2p1)x3 + 2p0x4 = 0.

(4.40)

This example has the interesting feature that for the BPS black string charge range there
also exist non-BPS black string critical points corresponding to the same homology class
as the BPS ones. However, these solutions are not minima of the effective potential, but
instead maxima.

For mixed sign p0, p1 we find numerically there is a solution when |p1| � 6|p0|, and
these solutions are attractors. Defining y = p1/p0, we plot R in Fig. 13 for such black
strings. We find that R > 1, indicating the minimal piecewise-calibrated representative
has smaller volume than the representative corresponding to the black string.

We can compute the force between the BPS and anti-BPS constituent strings, which
we find to be

P ∼ − 3b1 p0 p1(b1 + 2b2)

2
(
b21 + 3b1b2 + 3b22

)2 , (4.41)

which is repulsive for mixed sign p0, p1 everywhere inside the Kähler cone.
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Fig. 13. The ratio R of the black string tension to theminimal piecewise-calibrated volumeof the corresponding
homology class, as a function of y = p1/p0, for mixed sign p0 and p1. We find R > 1 for the entire allowed
range, indicating the local representative corresponding to the black string has larger volume than the minimal
piecewise-calibrated representative

4.4.2. B = P
1 × P

1 As a final black string example we will consider the base B =
P
1 × P

1, as in Sect. 3.2.2. There are now three divisor classes: the section, and the two
vertical divisors corresponding to the inverse image of the two hyperplane curves in the
base. Again let the wrapping number of the base be p0, and the wrapping numbers of the
vertical divisors be p1 and p3. We will study two interesting sub-loci in charge space.
Let us first consider p1 = p3, so we can take b1 = b2 due to the symmetry in the base.
Defining x = b2/b3, the BPS equations of motion give

x = −2p0 + p3
p0

, (4.42)

and so large BPS black strings exist when

{p0 > 0 and p3 > 2p0} or {p0 < 0 and p3 < 2p0} . (4.43)

In the case of a non-BPS black string, the equations of motion give

3p0x4 + x3(9p0 + 3p3) + x2(12p0 + 9p3) + x(16p0 + 2p3) + 8p0 − 4p3 = 0.

(4.44)

We again find that for the entire BPS black string charge range there also exist non-BPS
black string critical points, but again these solutions are not minima, but instead are
maxima. Numerically we find that a non-BPS black string with mixed sign p0 and p3
exists when |p3| � 4p0, and that these solutions are attractors. Defining y = p3/p0,
we plot R in Fig. 14 as a function of y. We find R > 1, indicating the local volume
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Fig. 14. The ratio R of the black string tension to theminimal piecewise-calibrated volumeof the corresponding
homology class, as a function of y = p3/p0, for mixed sign p0 and p3. We find R > 1 for the entire allowed
range, indicating the local representative corresponding to the black string has larger volume than the minimal
piecewise-calibrated representative

minimizing representative has greater volume than the smallest piecewise-calibrated
representative.

We find that the force between the BPS-anti-BPS constituents takes the form

P ∼ −3p0 p3
(
3
(
b21 + b22

)
+ 4b3(b1 + b2)

)
2(3b1(b2 + b3) + b3(3b2 + 4b3))2

, (4.45)

which is repulsive for mixed sign p0, p3.
Finally, let us consider the configuration given by p1 = −p3. In this case we will

consider the limit |p3| � |p0|, in which case we can take b1 � b2. Again we find R > 1,
and the force between the BPS-anti-BPS constituents is repulsive.

5. Non-BPS Black Holes from BPS and Non-BPS Strings

We have so far explored non-BPS black holes and black strings in five dimensions. An
equally interesting question is the study of black strings in 6 dimensions. Indeed upon
compactification on a circle this can lead to both black holes and black strings in 5d. In
particular here we would like to show how the non-BPS black holes in 5d can arise from
BPS and non-BPS black strings in 6d and how we can use this to make a prediction for
their entropy.

Consider 6d F-theory, obtained by compactification of IIb on a positively-curved
space B, which is the base of a Calabi–Yau threefold X . Strings in six dimensions arise
from wrapping a D3 brane on a curve C ⊂ B, and appropriate curves can lead to large
extremal black strings in six dimensions, both BPS and non-BPS, as we will shortly
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see. The near-horizon geometry of the black strings is of the form Ad S3 × S3 [23], and
so is associated with a 2d CFT, regardless of whether the string is supersymmetric or
not. The central charge of the CFT can be computed by the Brown-Henneaux formalism
[11], and in the case of BPS strings has been verified to match the microscopic central
charge [16,51]. We will extend this to the non-BPS case, providing a prediction for the
central charge of the theory on the non-BPS strings. We will show that it is simply given
absolute value of the analytic continuation of the BPS case: c = 3|C · C |.

Such black strings lead to black holes in 5d upon a circle reduction, with n units of
momentum around the circle. However, one can arrive at a 5d black hole with the same
charges via another route, by considering M-theory on X , with M2 branes wrapped on
the same curve C ⊂ B ⊂ X , and wrapping the elliptic fiber n times. For a BPS black
hole, where C is holomorphic and n is positive, this corresponds to a BPS string on a
circle with n units left-moving momentum on the string (reversing the orientation of
the entire system also corresponds to a BPS string). In this case the macroscopic black
hole entropy agrees with the Cardy formula for the leading contribution from string
oscillation modes.

However, one can also consider non-BPS black holes in 5d. The mildest way to do
so is to take a BPS string in 6d, compactify on a circle, but with the “wrong” sign of
momentum which corresponds to replacing the elliptic fiber class with its conjugate
n → −n. For a string corresponding to a D3 brane wrapped on a holomorphic curve
C , this corresponds to giving right-moving momentum around the circle instead of left-
moving. In this case this is a non-BPS excitation of a BPS string, and we find the black
hole entropy again matches the Cardy formula.

Instead, one can also take a non-BPS string in 6d and compactify on a circle. In this
case we will find that the central charge from the 6d Ad S3 agrees with the central from
the black hole entropy, when we match with the Cardy formula for the string.

To summarize, we find that the various ways of computing the central charge of
the non-BPS strings agree, via the 6d black string calculation from the near-horizon
Ad S3 space, and from the 5d black hole entropy and matching with the Cardy formula,
therefore making a prediction for the central charge of the theory on the non-BPS string.
The various connections between solutions are indicated in Fig. 15.

5.1. 5d black holes. We now consider the general case of 5d black holes resulting from
elliptic CY 3-folds when the wrapping number of the fiber is much larger than the
wrapping number of the base, which is the case in which the Cardy formula applies.
We will find that the corresponding black holes are either wrapped around (anti)-ample
curves in the base manifold, or have h1,1(B)−2 flat directions. We will make the ansatz
that the fiber volume t0 shrinks with the wrapping of the fiber n, which we will find to
be self-consistent. The volume of the elliptically fibered threefold is again

V = 1

6

(
C000t30 + 3C00αt20 tα + 3t0�αβ tαtβ

)
. (5.1)

The black hole potential depends on the volume, its derivatives, and second derivatives,
and so we can consistently drop the t30 term, but cannot make any further simplifications
at this point, and so we take

V � 1

2

(
C00αt20 tα + t0�αβ tαtβ

)
. (5.2)
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Fig. 15. The connections between the various black objects we consider in 6d and 5d. An arrow represents
a dimensional reduction and matching of the central charge in the various pictures. A BPS black string in 6d
descends to either a BPS or a non-BPS black hole in 5d, depending on the relative orientation of themomentum
along the S1. A non-BPS black string in 6d descends to a non-BPS black hole in 5d

Taking two derivatives we find the matrix AI J takes the form
(

A00 A0α
Aα0 Aαβ

)
=

(
C00αtα C00αt0 + �αγ tγ

C00αt0 + �αγ tγ t0�αβ

)
�

(
C00αtα �αγ tγ

�αγ tγ t0�αβ

)
. (5.3)

The inverse matrix in this limit then takes the form

A−1 =
(− t0

2VB

tα
2VB

tα
2VB

1
t0

(�αβ − tα tβ
2VB

)

)
, (5.4)

where �αβ is the inverse of �αβ , and

VB = 1

2
�αβ tαtβ . (5.5)

Enforcing V = 1, we have t0 � 1/VB , and so we write

A−1 =
(− 1

2V 2
B

tα
2VB

tα
2VB

VB�αβ − tα tβ
2

)
, (5.6)

The effective potential is given by

Vef f = 2

(
−AI J +

t I t J

2

)
qI qJ , (5.7)

with the restriction that V = 1. The fiber only intersects the section, as it has zero
intersections with all base divisors, being the inverse image of the self-intersection of
an ample divisor in the base. In the limit that the fiber wrapping n is much greater than
the wrapping of the base curve, we then have

q0 � n , qα = �αβ�β , (5.8)
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where �β is the wrapping number of the base curve. The effective potential then takes
the form

Vef f = 2

(
n2

2V 2
B

− ntαqα

VB
− VB�αβqαqβ +

(tαqα)2

2
+

(tαqα)2

2
+

n2

2V 2
B

+
ntαqα

VB

)

= 2

(
n2

V 2
B

− VB�αβqαqβ + (tαqα)2

)
. (5.9)

Differentiating we have

∂αVef f = 2

(
−2n2

V 3
B

�α − �α(C · C) + 2Z Bqα

)
= 0 , (5.10)

where Z B = tαqα , and C · C = qα�αβqβ . We then have

�α

(
2n2

V 3
B

+ (C · C)

)
= 2qα Z B . (5.11)

Contracting both sides with tα , we find

2VB

(
2n2

V 3
B

+ (C · C)

)
= 2Z2

B . (5.12)

and so we can conclude

�α = 2VBqα

Z B
, (5.13)

or

tα = 2VB�α

Z B
, (5.14)

where we have assumed that the multiplicative factors on both sides do not simultane-
ously vanish, which we will discuss later. Therefore the M2 branes wrap an (anti)-ample
curve in the base. We can also write

VB = 1

2
�αβ tαtβ = 2

(
VB

Z B

)2

(C · C) , (5.15)

where we note C · C = �α�αβ�β , and so

Z2
B = 2VB(C · C) . (5.16)

Using this relationship in the above equations we find

VB =
(

2n2

(C · C)

)1/3

. (5.17)
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Plugging this back into Vef f we find

Vef f = 2

(
n2

(
(C · C)

2n2

)2/3

− (C · C)

(
2n2

(C · C)

)1/3

+ 2(C · C)

(
2n2

(C · C)

)1/3
)

= 2|n|2/3(C · C)2/3
(
2−2/3 + 21/3

)

= 3 × 21/3|n|2/3(C · C)2/3 . (5.18)

Let us now compute the entropy. We have

S = 2π

(
1

6
Vef f

)3/4

= 2π
(
2−2/3|n|2/3(C · C)2/3

)3/4 = √
2π

√|n|(C · C) , (5.19)

which agrees with a Cardy formula based on a wrapped string

Smirco = 2π

√
c|n|
6

, (5.20)

where in the SUSY case (the M2 brane wrapping the fiber and base curve with the same
orientation) we should require the string to have c = cL =� 3C · C , and in the non-
SUSY case (the M2 brane wrapping the fiber and base curve with opposite orientation),
we should take c = cR � 3C · C . Here the � indicates we are working at large charge
where the black hole formula should apply, and in this regime we have cL = cR .

Recall from above that we assumed the scalar factors on either side of Eq. 5.11 did
not vanish, which led us to conclude that the M2 brane wrapped an (anti)-ample curve
in the base. If we do not make this assumption (i.e. in the case C · C < 0), we are led to
the conditions that (

2n2

V 3
B

+ (C · C)

)
= 2Z B = 0 . (5.21)

This is two equations for h1,1(B) variables, and so these solutions will have h1,1(B)−2
flat directions. Let us calculate the entropy. We have

Z B = 0 , (5.22)

and

VB =
(

− 2n2

C · C

)1/3

. (5.23)

Plugging these back into the the effective potential we have

Vef f = 2

(
n2

(
−C · C

2n2

)2/3

−
(

− 2n2

C · C

)1/3

(C · C)

)

= 2|n|2/3(|C · C |)2/3
(
2−2/3 + 21/3

)

= 3 × 21/3|n|2/3(|C · C |)2/3 , (5.24)

which gives the same value of the effective potential as when the M2 branes wrapped
an (anti)-ample divisor in the base, but with the sign of C · C flipped.
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To summarize the 5d calculation in the large fiber wrapping limit, we find two solu-
tions: the M2 branes either wrap an (anti)-ample curve in the base, or the solution has
Z B = 0 with h1,1(B)−2 flat directions, the latter case always being a non-BPS solution.
In both cases the wrapping of the fiber can be of either orientation, giving both BPS and
non-BPS solutions. In either case the entropy takes the form

S = √
2π

√
n|C · C | , (5.25)

and the expected central charge is then read off as

c = 3|C · C | , (5.26)

which agrees with the microscopic calculation in the case of an ample wrapping in the
base, regardless of whether the solution is BPS.

5.2. 6d black strings. We now consider the F-theory limit of the elliptically fibered
geometry, which gives IIb on the base B. By wrapping enough D3 branes around curves
in B we get black strings in 6d which are charged under the self-dual two-form gauge
fields Bα which number h1,1(B) − 1, and then by taking a circle compactification we
arrive at the related 5d black holes. Let us then perform the analysis in the 6d theory,
following [23]. It was noted in [23] that in 6d there are two types of solutions: BPS
solutions, where the D3 branes wrap (anti)-ample curves in B, or solutions where the
central charge Z vanishes, in agreement with the solutions that we found in 5d. The
effective potential takes the form

Vef f =
(

−�αβ +
tαtβ

VB

)
qαqβ =

(
−(C · C) +

(tαqα)2

VB

)
) = −(C · C) + Z2,

(5.27)

where Z is the central charge

Z = tαqα√VB
, (5.28)

and we implicitly fix VB = 1/2. Differentiating, we find the equations

Z∂α Z = 0 . (5.29)

For the BPS solutions ∂α Z = 0, the equations of motion give

tα = 2�αVB

(tλqλ)
= 2�αVB

Z B
, (5.30)

in agreement with the 5d black hole calculation, where Z B = √VB Z . Again we have

Z2
B = 2VB(C · C) , (5.31)

and so the effective potential for these solutions takes the form

Vef f = (−(C · C) + 2(C · C)) = (C · C) . (5.32)

The tension of a BPS string is given by the central charge, or square root of the effective
potential.
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Clearly in the Z = 0 solutions, which are only valid for C · C < 0, we find

Vef f = |C · C | , (5.33)

analogous to the BPS solutions, and in agreement with the 5d solutions. Again, such
solutions have h1,1(B) − 2 flat directions. Let us note that not all curves with C ·
C �= 0 correspond to to large black strings. For instance, if we consider a D3 brane
wrapped on a holomorphic curve with negative self-intersection, the non-BPS equations
of motion force the horizon moduli to the boundary of the Kähler cone where C has
zero volume. On the other hand, one can also find examples with C · C > 0, but C has
negative intersectionwith a holomorphic curve. For example, considerP2 with projective
coordinates [x1, x2, x3], and blow up the locus x2 = x3 = 0 to get a d P1. The exceptional
divisor De has self intersection −1, the divisor D1 corresponding to x1 = 0 has self
intersection 1, and De · D1 = 0. Now consider the curve D = nD1 + De, with n > 1.
We have D2 = n2 − 1, but D · De = −1, and so while D2 > 0, D does not correspond
to a large black string.

To summarize, the equations of motion for the 5d and 6d cases agree and fix the
moduli to the same value, and the wrapping of the fiber should be associated with the
momentum of the black string around the circle upon reduction. This is true in both
the BPS and non-BPS cases, regardless of whether the associated curve in the base is
holomorphic or not. In fact, in both cases the effective potential is given byVe f f = |C ·C |,
regardless of whether the string is BPS or not. In Sect. 5.2.2 we show how this leads to
the anticipated result for the central charge.

5.2.1. Measure-theoretic musings. Let us comment on somemeasure-theoretic prospects.
We note that given a curve class, the effective potential simply produces a number for
the volume of the corresponding connected representative, given by the tension

T = √|C · C | , (5.34)

with the volume of B held fixed to 1/2, and Z = 0. This is somewhat striking, as
it predicts that the volume of an LBBC is always given by the absolute value of the
self-intersection of the curve, so long as we can solve VB = 1/2 and Z = 0.

We can consider the difference in hyperplane sectionsC = C1−C2 for B = P
1×P

1,
as we did in § 3.2.2. In this case the attractor mechanism sets the two Kähler moduli
(sizes of the P1’s) to be equal, and we find that the tension of the black string is given
by the volume of the minimal piecewise-calibrated representative of C . This is different
from what the analysis in § 3.2.2 suggested, where we found suggestive evidence for
recombination. One difference between the two cases is the values of the Kähler moduli:
in this case the moduli are equal, and in § 3.2.2 one modulus was three times the other.
Indeed the possibility of recombination could depend on the Kähler moduli and the
discussions in 3.2.2 was based on the moduli fixed by the attractor mechanism for the
string in 5d which is different from that in 6d. From the physics perspective this suggests
that when we compactify on a circle, the tension of the transverse string (not wrapped
around the circle) decreases as we decrease the radius of the circle.

We can also analyze K3 from the perspective of IIb on K3. To make a connection
to the Sen and Micallef-Wolfson examples, let us consider a non-holomorphic curve
C = C1 − C2 of negative self-intersection, where C1 and C2 are both holomorphic. The
tension of the black string is then given by

T = √|C · C | , (5.35)
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while the volume of a piecewise-calibrated representative of C is given my

vol∪(C) = vol(C1) + vol(C2) . (5.36)

In the example ofMicallef andWolfson,C1 andC2 are both (−2)-curves of equal volume
(normalized to 1), so the black string condition Z = 0 is automatically satisfied. This
example also has C · C = −4, and so in order to find recombination one would then
want to tune vol∪(C) to be as large as possible, while holding vol(VK3) fixed. Intuitively,
recombination in the Micallef-Wolson example occurred when the cycle connecting C1
and C2 shrunk compared to the volumes of C1 and C2, which appears consistent with
holding the overall volume fixed while increasing the volumes of C1 and C2. However,
in the Micallef-Wolfson example the overall volume of the K3 is taken to be arbitrarily
large and essentially decouples from the analysis, which is a local one.

A simpler case than K3 is taking B to be a space with fewer moduli, such as a blowup
of P2 at two distinct points. Let the homogeneous coordinates on P2 be [x1, x2, x3], and
blow up the points x1 = x2 = 0 and x1 = x3 = 0. The cone of curves is then generated
by C1, Ca , and Cb, where Ca and Cb are the exceptional divisors from the blowup.
Consider the divisor C = Ca −Cb, which has self-intersection (−2). Let the volumes of
the divisors be b1, ba, bb. Enforcing Z = 0 gives ba = bb, and solving V = 1/2 gives

ba = 1

2

(
−2b1 +

√
2
√
1 + b21

)
. (5.37)

In order to remain in the Kähler cone we need b1 < 1. The tension of the non-BPS string
is

√
2. In terms of b1, the volume of the piecewise-calibrated representative of C is

vol∪(C) = 2ba = −2b1 +
√
2
√
1 + b21 , (5.38)

which has a maximum of
√
2 at b1 = 0, and shrinks to zero at b1 = 1. Therefore, when

we shrink down the cycle connecting Da and Db we find that the tension of the non-BPS
black string is given by the volume of a piecewise-calibrated representative, but as we
move away from this locus the piecewise-calibrated representative has smaller volume,
and so we do not find recombination in this example.

5.2.2. The central charge. To close the circle of ideas, we need to compute the central
chargeof the 6d string and see if it agreeswith that anticipatedbasedonblackhole entropy
in 5d, which we undertake in this section. The near-horizon geometry of 6d strings is
Ad S3×S3, and so associated with and Ad S3 solution is a dual 2d conformal field theory.
This C FT2 is then expected to describe the worldsheet theory of the associated string,
whether it is BPS or not (though in the non-BPS case we expect it to be an “unstable”
CFT). Let us compute the central charge. In general, via the Brown-Henneaux central
charge formula [11], the central charge of the C FT2 is related to the Ad S3 radius and
Newton’s constant

c = 3lAd S

2G3
. (5.39)

In [52], a straightforward method was given to compute the central charge, given the
attractor values of the scalars. Consider a d-dimensional theory specified by aLagrangian
Ld , that admits black object solutions with a near-horizon geometry of the form Ad S3×
S p. The fields on the horizon are fixed by the attractormechanism, and themethod of [52]
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is to treat the Ad S3 radius lAd S and p-sphere radius l p as free parameters, and extremize
a central charge function with respect to lAd S and lS p to obtain their values, which can
roughly be thought of as extremizing the bulk action. One can then evaluate the central
charge function to obtain the corresponding central charge. The central charge function
can in general be written as

c = 3�2�p

32πG p+3
l3Ad Sl p

S pLp+3 . (5.40)

For 6d string in F-theory with have p = 3, and the relevant terms4 in the action we
consider are [44]

S6 =
∫
M6

[
R

2
∗ 1 − 1

4
gαβ Hα ∧ ∗Hβ − 1

2
gαβdtα ∧ ∗dtβ

]
, (5.41)

where the tα are the Kähler moduli on B, gαβ is the metric on moduli space which takes
the form

gαβ = �α�β

VB
− �αβ , (5.42)

where we implicitly hold VB fixed to 1/2, and Hα are the two-form tensor field strengths
Hα = d Bα . The integral charges are defined by the fluxes as

4π2Qα =
∫

S3

Hα , (5.43)

and so we have

Hα = 2

l3
S3

QαεS3 , (5.44)

where εS3 is the volume form on the S3. Let us now evaluate the central charge function.
We have

c = 3�2�p

32πG6
l3Ad Sl3S3L6 = 3π2

4G6
l3Ad Sl3S3L6 = − 3π2

4G6
l3Ad Sl3S3

×
(

− 3

l2Ad S

+
3

l2
S3

− gαβ Qα Qβ

l6
S3

)
. (5.45)

From the 6d attractor mechanism above, we have that

gαβ Qα Qβ = |C · C | , (5.46)

whereC is the curve wrapped by the D3 branes. Extremizing the central charge function,
we find

lS3 = lAd S =
( |C · C |

2

)1/4

, (5.47)

and so the central charge takes the form

c = 3π2|C · C |
4G6

. (5.48)

4 In this calculation we only consider the leading-order central charge and so do not include corrections to
the field strength due to gravitational Chern-Simons terms.
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In these conventions, in order to match the the BPS case we take G6 = π2

4 , for which
the central charge takes the form

c = 3|C · C | . (5.49)

However, this formula does not assume the string is BPS, and the results are valid for
non-BPS strings as well. Therefore, if a large black string exists for a given curve C , the
central charge is given by 3|C · C |, regardless of whether the string is BPS or not. This
agrees with what we found in 5d.

6. Discussion

In this paper we have studied aspects of non-supersymmetric black holes and black
strings in 5d and 6d in theories with 8 supercharges. This is motivated by the importance
of considering non-supersymmetric configurations in string theory. We have found that
extremal non-BPS configurations, at least in the limit of large charges, can have robust
features similar to what one sees for supersymmetric BPS states. Moreover we have
explored the interplay between non-BPS black holes and black strings with the Weak
Gravity Conjecture, which is motivated by the condition that all non-supersymmetric
macroscopic states in string theory are bound to decay. In a number of examples we have
seen that there will have to exist remnant stable non-BPS states, which when combined
with the WGC predicts that these strings should be microscopic with small charges.

Unlike the black strings, for black holes we have found that the non-BPS states
seems to decay to BPS and anti-BPS constituents, and we have found no examples
of macroscopic black holes whose mass predicts a stable remnant microscopic black
hole coming from Calabi–Yau threefolds. However, our microscopic force analysis in
Sect. 3.2.2 suggests that such a stable remnant might exist, either via recombination or
a 5d bound state. One explanation of this may be the fact that black holes correspond
to cycles which are less than half of the dimension of the manifold whereas strings
correspond to cycles with dimension bigger than half of the dimension of the manifold.
This would suggest a generic intersection for higher dimensional cycles due to local
instability modes localized where holomorphic and anti-holomorphic cycles intersect.

For the case of stable non-BPS strings it would be interesting to confirm the existence
of such states mathematically. This would entail a study of volume minimizing currents
in non-holomorphic divisor classes. This is a rather difficult subject mathematically, and
thus the impetus and predictions coming from thework presented herewill hopefully lead
to further progress in this direction. Moreover, the fact that we are predicting complex
structure-independent minimum volumes for large non-holomorphic classes begs for a
mathematical explanation. This is of course expected for holomorphic ones, but what is
the explanation of this behavior for non-holomorphic ones?

The fact that non-BPS extremal strings can account for the entropy of non-BPS black
holes is a novel feature that we have found in this paper. This suggests more broadly
that extremal non-supersymmetric configuration, even though ultimately unstable, share
features very similar to the supersymmetric counterparts which are stable. It would be
thus interesting to identify such non-supersymmetric extremal configurations either as
states or as string compactifications more broadly in hopes of applying them to the
observed universe, which is non-supersymmetric.
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