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1 Introduction

The Swampland program [1] has used the string landscape as the guiding principle to
determine what are some universality features of quantum gravitational theories (see [2–5] for
a review). As such it is crucial to try to characterize exotic corners of quantum gravity(QG)
landscape, so we can uncover sharper Swampland criteria.

The study of supersymmetric theories with 32 or more non-trivially 16 supercharges
in Minkowski space has advanced quite a bit and by now we can have a bottom up deriva-
tion [6–10] of allowed possibilities for low energy EFT’s based on Swampland principles,
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which matches what we know from the string landscape for d ≥ 7 [11–18]. Beginning in
d = 6 we also have the possibility of having 8 supercharges: N = (1, 0) in d = 6, N = 1
in d = 5, N = 2 in d = 4 and N = 4 in d = 3. It is important to comprehensively study
the known string landscape for this class as well.

The most straight-forward way of constructing this class of theories involves compactifi-
cation of F-theory, M-theory and type II theories on CY 3-folds. There is one commonality
in all these geometric constructions of the string landscape: we always have a universal
hypermultiplet, which corresponds to volume of the space/string coupling. It would be
important to understand whether the universal hypermultiplet is an unavoidable feature
of consistent QG or an artifact of geometric compactification. In fact, it is already known
that there are non-geometric string compactifications which lead to no hypermultiplets [19],
more recently [20–22]. We perform a more exhaustive search in the framework of asymmetric
toroidal orbifolds [23, 24] of heterotic and type II theories. Moreover, we extend this class to
6d which leads to the construction of models without any neutral hypermultiplets. In doing
so we discover a number of interesting features: we construct a number of theories in 6d
which have no neutral hypers, but when we higgs the charged ones we land on a geometric
compactification of F-theory on elliptic 3-fold [25–27]. Since the geometric limit of F-theory,
with large volume for the base of the elliptic 3-fold, always has a neutral multiplet, this implies
that when the volume of the base is Planckian the volume modulus itself becomes part of the
charged multiplet (similar features were noted in an example in [19] in 4d). Upon going down
to 5 and 4 dimensions this leads to theories which have no hypermultiplets at all, by going to
the Coulomb branch which masses up the charged hypers. In doing so, we find an interesting
structure in the rank of the 4d and 5d gauge groups in 8 supercharge theories with no hypers:
firstly, we find that the rank is always less than or equal to rG ≤ (26−d)+1. Secondly, we only
find even ranks in 5d and odd ones in 4d. We do not have a bottom up explanation of these
features. An additional interesting result is about the Kodaira condition [28] which holds
for all F-theory constructions. In particular, we show that this condition can be violated for
non-geometric models and therefore it is not a feature of 6d supersymmetric quantum gravity.

A more non-trivial question is whether one can have a pure N = 1 supergravity in 5d
with no additional fields. This would not be easy to construct from string theory directly
as it would have no weak coupling limits. However, it is conceivable that it would have
been discovered by its compactifications to lower dimensions, as in the connection between
M-theory in 11 dimensions and type IIA in 10d [29]. We have not been able to construct
such a theory in 4d (which would have required a single vector multiplet). However, we have
been able to construct a theory in 3d which has the same multiplet as that of the 5d pure
supergravity theory compactified on T 2. It remains to show whether this has a 5d uplift.

The organization of this paper is as follows: in section 2, we provide 6d models without
neutral hypermultiplets based on the asymmetric orbifolds. We find that the Kodaira condition
is not satisfied in this class of models. Many 5d and 4d models without hypermultiplets are
constructed in section 3 and section 4, respectively. We conclude in section 5. Technical
details are discussed in the appendices.
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2 6d models without neutral hypermultiplets

The highest dimension where we can have a theory with 8 supercharges is in d = 6 where the
minimal N = (1, 0) supersymmetry arises. The landscape of 6d minimally supersymmetric
supergravities has been of particular interest due to the very constraining chiral anomalies
which significantly reduce the possible theories.

A large class of models can be constructed using F-theory [25–27] compactified on elliptic
Calabi-Yau threefolds. The web of string dualities provides also descriptions in terms of the
heterotic string on K3, M-theory on K3× S1/Zn or type II orientifold/ brane constructions.
However, these constructions correspond to a subset of the string landscape and anomalies
seem to indicate that more possibilities can be allowed.

In particular, the gravitational anomaly for the 6d N = 1 theory is given by

H − V = 273− 29T (2.1)

where H,T, V are the number of hyper multiplets, tensor multiplets and vector multiplets
respectively. This anomaly can be a useful indicator for the possible boundaries of the string
landscape. Some of the interesting cases can be summarized as:

• T = 0: theories without any tensor multiplets have been studied in [30] and have
constructions given by F-theory on an elliptic threefold with base P2 [27] or through
type I or Gepner models in [31]. One can also arrive to these models through extremal
transitions from T > 0 as described in [27].

• Hcharged = 0, Hneutral = 0, Hcharged +Hneutral = 0: here we need to distinguish between
the following cases:

– Hcharged = 0: these are theories with no charged hypermultiplets, which are the
typical F-theory examples in the maximally Higgsed phases. For example the
bases P2,Fn=0,2,3,4,5,6,8,12 all have no charged matter. [27, 32, 33].

– Hneutral = 0: this is a very interesting case as described in the beginning of the
section because no geometric construction can give rise to such a theory as the
volume element always provides a free neutral hyper in the geometric limits of
Type II or F/M-theory pictures. Such constructions (and the fate of the universal
hypermultiplet in some strong coupling limits) are the main goal of this section
and a number of examples will be developed together with their relations to
geometric models. Examples of these models have appeared previous in the
literature including orbifold constructions [19, 22], Gepner models [20] and free
fermion constructions [34].

– H = 0: in this case the gravitational anomaly implies that V = 29T − 273 and
hence T ≥ 10. In terms of orbifold constructions such a theory cannot come from
a perturbative heterotic string as those cases have only T = 1. In the type II
picture one could potentially realize such a theory but no construction is known.1

1It could have only abelian gauge factors or some combination with non-abelian enhancements. Any
non-abelian gauge symmetry for the type II string comes from the NS-NS sector and contributes to cL = 4. If
one is looking for non-abelian gauge symmetries with no hypermultiplets then the only possibilities are the
Non-Higgsable clusters and the ones with

∑
i
cGi ≤ 4 are SU(3)1 × SU(3)1, SU(3)k≤3, SO(8)1 by unitarity.
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• V = 0: such models typically occur when no Non-Higgsable clusters are present in
F-theory constructions as for example those with base Fn where n = 0, 1, 2 or P2.

We can also consider pairs of these conditions: V = T = 0 can be realized as the
generic model for F-theory with bases P2. The H = T = 0 model would require V = −273
which is thus ruled out.

If however we considered the case Hneutral = T = 0 then we would require Hcharged −
V = 273 which can have non-abelian groups that satisfy anomalies and unitarity as shown
in [35]. Any such theory does not have neutral scalar fields so it does not have a perturbative
string construction but it could potentially appear as the strong coupling limit of a model
where some neutral fields become charged. For example, if the model is Higgsable and it is
possible to tune all neutral hypers so that they become charged similar to other examples we
study here then this could be realized. An example, could be an F-theory model on P2 where
the moduli controlling the base volume also gets charged. It is hard to argue for the existence
of such special points but they are not ruled out. Finally, note that the pure N = (1, 0)
supergravity with H = V = 0 is not allowed as it violates anomalies.

The most interesting of the above cases is H = 0 because these cannot be constructed using
geometric constructions but they could potentially be related to them through some transitions.
A large class of non-geometric examples can be constructed using asymmetric orbifolds [23]
which can provide new classes of theories not seen in normal geometric constructions. Such
constructions as summarized in appendix A and will be the model building tool of this paper.

As mentioned above usual geometric models always have a free universal hypermultiplet
(in the type II picture) associated to the volume element of the manifold, but one could
consider a process where this scalar can become charged at some special points where
the volume freezes. Indeed models without hypermultiplets can be realized in asymmetric
orbifolds [19] in 4d. Interestingly, in the same work it was conjectured that in fact such
models are related to geometric models through strong coupling analogs which involve going
to the small volume limit of the Calabi-Yau manifold and hence the geometry semi-classical
description is no longer valid. These are quantum versions of conifold transitions involving
higgsing/unhiggsing the vectors. Such transitions are particularly interesting because they
provide a fresh look at the connectedness of string vacua and provide examples of strong
coupling dualities. The loss of a geometric picture on the type II side makes it harder to
understand these transitions precisely but there are good indications, including duality with
heterotic strings where these enhanced gauge symmetries become perturbatively manifest [19]
that they should in fact be possible.

Here we study asymmetric orbifolds of both Type II and heterotic string theories
that have no neutral hypers and propose dual geometric string/M-theory vacua involving
compactifications on geometric Calabi-Yau manifolds that they could be related to through
Higgsing/unHiggsing similar to the ones described above.

Another interesting observation is that certain geometric consistency condition is violated
in some non-geometric models. In particular, as summarized in appendix B an N = (1, 0)
6d theory is specified by vectors −a, bi ∈ R1,T corresponding to the gravitational and gauge
instantonic string charges. In the F-theory picture these charges correspond to the canonical
class and effective curves wrapped by D3 in the base of the elliptic threefold. A consistent
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elliptic fibration in F-theory needs to satisfy the Kodaira condition [28] given by

−12a =
∑
i

νibi + Y (2.2)

where νi are the singularity multiplicities and Y the residual divisors which is the sum of
effective divisors associated to non-contractible curves or abelian gauge factors. From the
bottom up supergravity perspective the divisors Y correspond to a collection of supergravity
strings.2 This means that tensor branch scalars j satisfy j · Y ≥ 0 and hence

−j · (12a+
∑
i

νibi) ≥ 0 (2.3)

The quantities −j · a and j · bi correspond to the central charge in the supersymmetry
algebra for tension of the strings with charges a, bi respectively in the EFT description.
In particular, in the case that these strings correspond to gauge instantons of some gauge
symmetry of the theory the tensions control the corresponding gauge coupling g2 = T−1.
Therefore, the Kodaira constraint equation (2.3) can be phrased in purely EFT terms with
no reference to F-theory.

This constraint was suspected to hold for any 6d quantum gravity with 8 supercharges.
In fact in [9], where theories with 16 supercharges where studied a similar condition was
shown to be true, corresponding to the 8d analogue of the Kodaira condition. In that work it
was argued that small instantons can be exchanged with 3-brane probes which preserve 8
supercharges. According to the cobordism conjecture [38] different configurations are expected
to be connected and due to the amount of supersymmetry they are expected to be connected
through supersymmetric deformations. However, in this case they would preserve only 4
supercharges and even though the cobordism conjecture still implies they are connected in
field space, the path could go through non-supersymmetric deformations as a superpotential
is now allowed. This ended up being an obstacle in proving the Kodaira condition in lower
supersymmetric cases. Thus the proof never materialized, and raised the question whether
the Kodaira condition is generally true or not? Interestingly here we find that this condition
is not universal for 6d theories by making explicit constructions of string theories that do not
preserve equation (2.3). To our knowledge this is the first example that demonstrates this!
This also serves as a good lesson that the inability to support such constraints from bottom
up was a valid motivation to doubt its validity in the context of the Swampland program
and leads to searching for them in the string landscape. Indeed the Kodaira condition is
not necessary for a consistent QG!

In this section we demonstrate that geometric compactifications of F-theory do not
encompass the entire Landscape.3 We achieve this by explicitly constructing 6d models
without neutral hypermultiplets using non-geometric asymmetric orbifolds which violate
the Kodaira condition.

2A supergravity string [36, 37] of charge Q is a BPS string that only exists in a gravity theory and satisfies
Q2 ≥ 0 and Q · D ≥ 0 for any BPS string of charge D.

3This does not necessarily imply that the theory we discover is a disconnected component of the moduli
space, as we will discuss later.
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6d asymmetric orbifold models. The general construction of asymmetric abelian orb-
ifolds is reviewed in appendix A and involves a choice of momentum lattice which is an
even self-dual lattice

Γ4,4(g) = {(pL, pR)|pL ∈ ΛW (g), pR ∈ ΛW (g), pL − pR ∈ ΛR(g)}. (2.4)

for some simply-laced algebra g.
Additionally, one needs to specify the group action. Each group element is labeled by twist

vectors ϕL,R, corresponding to some automorphism of the lattice [exp(2πiϕL), exp(2πiϕR)]
and the shift vectors vL,R. In the case of the heterotic string one needs to specify the action
on the lattice which includes in addition the associated heterotic gauge factors.

There are many such choices for the lattice and orbifold actions but our objective is to
preserve 8 supercharges and the resulting theory to have no neutral hypermultiplets. For
example, in the type II picture one simple way to remove all right moving supersymmetries is
by twisting by (−1)FR , where FR is the right-moving fermion number. While preserving half of
the left-moving supersymmetries can be accomplished by a choice of ϕL that belongs to SU(2).
This leads to 8 supercharges. The objective is to choose appropriate shift vectors that can lift
many of the moduli with the ultimate goal of having no free neutral hypermultiplets. In table 1
four examples of such theories are summarized with more details left for the subsection B.2.
As can be seen all hypermultiplets in each of these models are charged under some of the
gauge factors of the theory. Such constructions cannot have geometric descriptions due to the
lack of a free neutral hyper in the weakly coupled type II picture for which the dilaton (and
the volume moldulus) lead to massless neutral hypers. In the weakly coupled asymmetric
orbifold string constructions the string coupling is instead part of a tensor multiplet.

However, if one turns on vevs for some of the charged hypermultiplets then the full
gauge group can be Higgsed to a subgroup and some neutral hypermultiplets will remain
which could potentially correspond to dual geometric models. So in this way we connect
a non-geometric model to a geometric model via Higgsing/unHiggsing. Indeed examples
of this type have been found in [19] and here we find many more such examples as well as
connect to various other dual descriptions.

The maximally Higgsed phase of these theories is described in detail subsection B.3 and
summarized in table 1. Then the number of multiplets can be matched with the expected
Hodge numbers if the theory had a geometric description ala F-theory. Furthermore, Models
3 and 4 contain non-Higgsable clusters and hence the exact identification of the base of
the elliptic threefold can be deduced.

For example, model 3 in the maximally Higgsed phase has a leftover E8 gauge symmetry
and no charged matter but 492 free hypermultiplets which matches the expectation of the
matter in the maximally Higgsed phase of F-theory on an elliptic threefold with base F12.

The models 2, 3 and 4 which in the Higgsed phase correspond to F-theory on elliptic
3-fold with base Fn are dual to E8 × E8 heterotic strings on K3 with instanton numbers
(12− n, 12 + n) in the two E8’s. Indeed for these models a distinct dual heterotic perspective
offers another way to understand the hypermultiplets becoming charged at special points in
the moduli (as was observed in [19] for the specific case of model 3 in its 4d compactification):
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Without
neutral H0

Model 1 Model 2

Type II Heterotic

Lattice Γ4,4(D4) Γ4,4(D4) + 2Γ8,0(E8)

Twist ϕL =
(

1
2 ,

1
2

)
,

ϕR = (1, 0)
ϕL = (0, 0),
ϕR =

(
1
2 ,

1
2

)
Shift No shift VL = 1

2(12, 06; 12, 06)

Gauge U(1)12 E7 × SU(2)×E7×SU(2)×SO(8)

Representation

(
±1, 0, 0, 0, 08)+ (

±,±,±,±, 08)
+
(
±,∓,∓,∓, 08)+ (

−,−,+,+, 08)
(56,2,1,1,1) + (1,1,56,2,1)
(56,1,1,2,1) + (1,2,56,1,1)
+(1,2,1,2,8v) + (1,2,1,2,8s)

+(1,2,1,2,8c)

Spectrum G+ 9T + 12V + 24Hc G+ T + 300V + 544Hc

Kodaira Condition Yes No

Spectrum
after Higgsing

G+ 9T + 8V + 20H0
U(1)8 gauge group G+ T + 244H0

(would be)
F-dual

after Higgsing

h1,1 = h2,1 = 19,

elliptically fibered dP9

(
(T 2)3

Z2
2

) h1,1 = 3, h2,1 = 243,
elliptically fibered F0

4

Instanton number N/A (12, 12)
Without

neutral H0
Model 3 Model 4

Type Heterotic Heterotic

Lattice Γ4,4(A2 ⊕A2) + 2Γ8,0(E8) Γ4,4(D4) + 2Γ8,0(E8)

Twist
ϕL = (0, 0),
ϕR =

(
2
3 ,

2
3

) ϕL = (0, 0),
E8 ↔ E8,

ϕR =
(

1
2 ,

1
2

)
Shift VL = 1

3(16, 02; 08) No shift

Gauge E6 × SU(3)× E8 × SU(3)2 E8 × SO(8)

Representation
2(27,3,1,1,1) + (27,1,1,3,1)
+(27,1,1,3,1) + (1,3,1,3,3)
+(1,3,1,3,3) + (1,3,1,3,3)

2(248,1) + (1,8v)
(1,8s) + (1,8c)

Spectrum G+ T + 350V + 594Hc G+ T + 276V + 520Hc
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Kodaira Condition No No

Spectrum
after Higgsing

G+ T + 248V + 492H0
E8 gauge group

G+ T + 8V + 252H0
SU(3) gauge group

(would be)
F-dual

after Higgsing

h1,1 = 11, h2,1 = 491,
elliptically fibered F12

h1,1 = 5, h2,1 = 251,
elliptically fibered F3

with (−3)-curve
Instanton number (0, 24) (9, 15)

Table 1. 6d N = (1, 0) models without neutral hypermultiplets. Here ± means charge ±1/2. The
hypermultiplets are all charged and their representation is listed in the table. The details of these
models can be found in subsection B.2. The notation G,V, T,H0, Hc refers to gravity multiplet,
vectors, tensors, neutral hypers, and charged hypers respectively. The details of the Higgsing process
are described in subsection B.3. The instanton number denotes the instanton numbers of the two E8’s
in the E8 × E8 heterotic model on K3.

it is the familiar story that as we vary the Narain moduli of heterotic strings, one gets
enhanced gauge symmetries. The Narain moduli correspond to hypermultiplets, including
the universal one. Thus the transition from geometric to the non-geometric phase is more
easily understood from this perspective.

On the other hand, the first model has T = 9 and hence does not come from the
perturbative heterotic string. However, there is a fiber-wise duality to the heterotic string.
In fact the base dP9 corresponds to 1

2K3 and is an elliptic surface with an infinite number of
rational (−1) curves which when combined give rise to P1’s which become the base of some K3
fibration. In fact as studied in [39] there are infinitely many such K3 fibrations corresponding
to different heterotic string limits. The heterotic limits are in fact equivalent through some
U-duality group since the K3 fibrations are all diffeomorphic. It would be interesting to know
if the enhancement points could be understood from the heterotic picture (together with
small instantons), at enhanced gauge symmetries as in Narain lattice compactifications.

2.1 Compactifying from 6d down to 5d and 4d

The 6d models become even more interesting when compactified on a circle or a torus. In
fact consider Models 1,2,3 on a circle, now one is allowed to turn on Wilson lines for the
gauge fields5 and hence at a generic point of the Coulomb branch the charged hypermultiplets
acquire masses, and the gauge group is broken to the multiple U(1)s. In this way, we obtain the
5d theories without hypermultiplets starting from 6d theories with charged hypermultiplets.
In fact the first three models all have rank 22 and no hypermultiplets which leads one to
believe that they could all be describing the same theory. As for model 4, the rank of the
5d theory is 14 also with no massless hypers.

4Note that all Fn with n = 0, 1, 2 give the same Hodge numbers for the threefold. However, the Z2

symmetry of the gauge group seems to indicate that both instanton numbers should be the same (based on
how they embed on the two heterotic E8’s )and hence needs to be n = 0. Note that according to [26] the
n = 0 and n = 2 cases may represent the same physics.

5The 6d vector multiplets have no scalars but the 5d N = 1 theory has vector multiplets with a real scalar.
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Figure 1. This figure depicts the transitions between the geometric and non-geometric phases. The
Higgs Branch of the geometric phases of the elliptic Calabi-Yau’s with bases Fn or dP9 from table 1
are connected to the asymmetric orbifolds on their Coulomb branch when compactified on a circle
with Wilson lines. The threefolds with bases Fn are connected through instanton transitions and
the dP9 threefold can be reduced to Fn through the tensor branch via successive blow downs and
instanton transitions. The Calabi-Yau threefolds with base Fn have one tensor multiplet and hence
a dual heterotic on K3 description with different configuration of instanton numbers n1, n2 e.g. F12
corresponds to n1 = 0, n2 = 24. The asymmetric orbifold can be reached directly from the heterotic
discretion in these cases.

We can also connect this to the perspective of M-theory compactification on Calabi-Yau
threefold in 5d, using the duality between F-theory on a circle and M-theory. For example
model 3, corresponds to M-theory on an elliptic fibration over F12. As we just argued, when
we change the volume of the M-theory compactification at special small size, the theory
enjoys an enhanced gauge symmetry of E6 × SU(3)3 × E8, for which the volume modulus is
charged. We can then go to the Coulomb branch of this new enhanced gauge group, which
in turn higgses all the charged hypermultiplets, leading to a model with rank 22 and no
hypers. This has no geometric description in M-theory and should be viewed as a Planckian
sized geometry for the M-theory compactification, at which point the classical geometry
picture is no longer applicable.

A graphical depiction of these transitions is shown in figure 1. Moreover, the last
three F-theory models of table 1 are connected through instanton transitions as described
in [27, 33, 40] where one needs to go through some tensor branch transitions. Geometrically,
this corresponds to a flop transition in the base where one needs to blow up a curve and
then blow down a different curve. Physically, at the origin of some Tensor Branch new Higgs
branches appear and vice versa giving rise to such transitions. Additionally, the first model
corresponding to an elliptic threefold with base dP9 can be related to the Fn models through
similar tensor branch transitions where one exchanges one tensor multiplet for some neutral
hypermultiplets (charged hyper and vector could also appear). In geometric language these
correspond to successive blow downs.

From the picture above, we are also able to figure out the strong coupling limit of the non-
geometric models. For example consider Model 2 which corresponds to F0 = P1 × P1. Since
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the tensor branch and Higgs branch do not talk to each other, the strong coupling limit before
the Higgsing is the same as the one after the Higgsing. After the Higgsing, the model exhibits
the S-duality exchanging the two P1s. Therefore, we conclude that the model is self-dual and
that the strong coupling limit of our non-geometric models is the tensionless string limit.

Another interesting remark as described earlier in the section is that any F-theory
compactification satisfies the Kodaira condition equation (2.3) but as it can be easily checked,
appendix B.2, the Models 2, 3 and 4 do not satisfy it. In fact the orbifold models tend
to have a large amount of non-abelian enhancements which makes all the hypers charged
and hence the right hand side of equation (2.2) has the potential to become large violating
the condition. These are good demonstrations of geometric consistency conditions being
violated in non-geometric theories.

3 5d models without hypermultiplets

In the previous section the Landscape of 6d N = (1, 0) with no neutral hypermultiplets was
explored using asymmetric orbifold techniques. Interestingly, we saw that when compactified
on a circle the non-geometric and geometric phases can be understood as part of a single
moduli space. In this section, we would like to extend our study to the Landscape of the 5d
N = 1 supergravity theories. A large number of theories is realized through M-theory on
Calabi-Yau threefolds. These theories contain the “universal hypermultiplet”, as the number of
hypermultiplets is given by h2,1+1. However, we demonstrate that non-geometric asymmetric
orbifolds yield models without hypermultiplets. This provides further evidence that geometric
compactification alone is not sufficient to capture all aspects of the QG landscape. However,
as discussed in the previous section these non-geometric phases can be connected to geometric
phases through strong coupling transitions involving Higgsing/unHiggsing.

We would like to mention that the 5d models without hypermultiplets were recently
investigated in [22], where models with ranks 6, 8, and 14 were presented. However, we
also study freely acting ZN orbifold models and provide a more comprehensive list, as
demonstrated in table 2.

An interesting observation is that the models with no neutral hypermultiplets seem
to behave similar to their higher supersymmetric versions where the rank is bounded by
rG ≤ 26− d [6] which in our case takes the form rG ≤ 26− d+1 due to the extra dual tensor.
This bound for the case of freely acting orbifolds can be understood as having a “memory” of
the higher supersymmetric version of it similar to the discussions in [41]. However, in the
previous section the 6d models that also gave maximal rank 22 in 5d were not freely acting
and hence the reasoning is not clear. It would be interesting to understand whether this bound
is a universal feature of theories with no neutral hypers or an artifact of our constructions.
Additionally, as also observed in [22] these hyper-free theories in 5d seem to allow only even
ranks. Theories with 16 supercharges in 6d are suspected to also satisfy a similar condition.

If this is true and freely acting orbifolds do behave as their higher supersymmetric
versions then it is natural to suspect that in fact this parity condition is universal also
for hyper-free models in 5d.
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5d freely acting ZN orbifolds with no hypermultiplets. The asymmetric orbifold
constructions we consider are similar to the previous section but now we focus on freely
acting versions. In particular, we consider a 4d reduction with an extra circle on which
the abelian discrete ZN twist acts as a shift which makes the twisted sector massive for a
sufficiently large radius (see appendix A.3).

In the case of type II models, we consider the momentum lattice

Γ5,5 = Γ4,4 + Γ1,1. (3.1)

and for the heterotic models, we use

Γ21,5 = Γ20,4 + Γ1,1. (3.2)

The ZN acts as a twist for Γ4,4 and Γ20,4, and acts as a shift for Γ1,1 and hence lifting
the twisted sectors.

The goal is to find a set of 5d models with 8 supercharges and no hypermultiplets. The
details of the constructions are described in appendix C and summarized in table 2. The
columns of the table represent the rank of the 5d theory, whether it descends from type II
or heterotic string theory, the choice of momentum lattice and the orbifold ZN twist and
shift. In contrast to the previous section since there are no invariant lattices, no shifts are
present in the right mover while the shift in Γ1,1 is implicitly understood.

As we noted before, only even rank theories (from 2 to 22) are obtained for 5d. Notice
that the models with rank 6 (Z6 orbifold), 8 (Z4 orbifold) and a different rank 14 (Z2
orbifold) are given in [22].

An interesting observation is that the minimal rank 2 example reduces to rank 3 in 4d with
again no hypermultiplets making all the possible combinations r +H = 3 realizable. In fact
this case was already realized in [20] by the STU example which could potentially describe the
same theory. The other combinations can be understood through Calabi-Yau manifolds [42]
with (h1,1, h1,2) = (1, 1), (2, 0) corresponding to (r,H) = (1, 2), (2, 1) and (r,H) = (2, 1), (1, 2)
respectively with the two choices describing whether we are compactifying IIA or IIB on the
corresponding manifold. It would be interesting to understand if examples with r +H < 3
are possible. But we leave this discussion for the next section where 4d models will be
analyzed in more detail.

It would be tempting to explain the parity of the rank of the vector multiplets in theories
with no hypers using an anomaly. Note that when we have one hypermultiplet, we have
examples with both odd and even numbers of vector multiplets. Indeed [42] provides CY
threefolds with h1,1 = 13, h2,1 = 0 and h1,1 = 2, h2,1 = 0, where M-theory would lead to
even and odd vector rank vector multiplets with one hypermultiplet. Therefore this implies
that there cannot be a simple anomaly argument, in the presence of hypermultiplets. The
only option would be a symmetry that exists if and only if there are no hypermultiplets,
and we are not aware of any such symmetry.

It is also curious that we are having the same bound on the rank as the theory with
higher supersymmetry. In our heterotic constructions, the freely acting orbifolds inherit
the behavior of their higher supersymmetric versions. This could also explain why in these
cases with no hypers the rank is bounded by rG ≤ 26− d+ 1 as the equivalent rG ≤ 26− d
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rank type lattice
+Γ1,1 twist order ref.

2 II Γ4,4(D4
) ϕL =

(1
6 ,

3
6
)

ϕR =
(1

4 ,
1
4
) 12

4 II Γ4,4(D4
) ϕL =

(
0, 2

3
)

ϕR =
(1

4 ,
1
4
) 12

6 II Γ4,4(A2 ×A2
) ϕL =

(
1, 0

)
ϕR =

(1
3 ,

1
3
) 6 [22]

8 II Γ4,4(D4
) ϕL =

(1
2 , 0

)
ϕR =

(1
4 ,

1
4
) 4 [22]

12 Het 2Γ2,2(A2
)
+ 2Γ8,0(E8

) ϕR =
(1

6 ,
1
6
)

Γ2,2(A2
)
↔ Γ2,2(A2

)
Γ8,0(E8

)
↔ Γ8,0(E8

)
VL =

(
08; 08)

6

14
Het Γ4,4(D4

)
+ 2Γ8,0(E8

) ϕL =
(
0, 0

)
ϕR =

(1
4 ,

1
4
)

Γ8,0(E8
)
↔ Γ8,0(E8

)
VL =

(
08; 08)

4

II Model 4 on S1,
Coulomb branch

20 Het 2Γ2,2(A2
)
+ 2Γ8,0(E8

) ϕR =
(1

6 ,
1
6
)

Γ2,2(A2
)
↔ Γ2,2(A2

)
VL =

(
08; 08) 6

22
Het Γ4,4(D4

)
+ 2Γ8,0(E8

) ϕL =
(
0, 0

)
ϕR =

(1
2 ,

1
2
)

VL =
(
08; 08) 2

II Model 1, 2, 3 on S1,
Coulomb branch

Table 2. 5d freely acting orbifold models without hypermultiplets. The models with rank 6 and
8 are the ones in [22] (Another realization of rank 14 model is also provided there). The other
models are new. It should be noted that the choice of the orbifold is not unique for each rank. The
compactification of the models on a circle results in 4d models with odd ranks, which do not have
hypermultiplets.

bound holds for theories with 16 supercharges as shown in [6] with the extra vector coming
from the additional tensor dual. But this condition would still only hold for freely acting
cases and would not encompass examples like those given in the previous section which are
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not freely acting. Therefore, it would be interesting to either construct cases that violate
these bounds or explain why the evenness of rank as well as the bound on the rank of
the vector multiplet is a universal feature of theories with no hypers in 5d N = 1 in the
context of the Swampland program.

4 4d models without hypermultiplets

In this section, we examine asymmetric orbifold constructions of 4d N = 2 theories without
hypermultiplets. We investigate three different model types.

4.1 S1 compactification of 5d models

An obvious construction of 4d hyper-free models is the S1 compactification of 5d hyper-free
models in table 2. The S1 compactification adds one vector multiplet. Therefore, we obtain
4d hyper-free models with odd number of vector multiplets, ranging in rank from 3 to 23.
Among these models, the rank 23 model is previously constructed in [19].

4.2 Intrinsically 4d model

As just noted the circle compactifications of the 5d models we have constructed with no
hypers yield a minimal number of vectors, namely 3. A natural question is if we can achieve
the rank< 3 by considering an intrinsically 4d model. In particular, a no hyper model with
one vector multiplet is interesting, since it can potentially lead to the 5d pure supergravity
at the strong coupling limit [43]. Here we demonstrate the absence of one-vector models
within cyclic asymmetric orbifolds.

In order to realize 4d N = 2 model, we should preserve eight supercharges in the right-
moving (or left-moving) sector.6 This requirement indicates that the right-moving twist
involves two eigenvalues of one, leading to two vector fields in the untwisted sector. One
of them is the graviphoton, and the other is part of the vector multiplet. Consequently, in
order to realize our goal, we need to perform left-moving twists without an invariant lattice.
Otherwise, there will be additional vector fields in the untwisted sector. Furthermore, the
addition of a shift vector is necessary to lift all the twisted sector states.

In the case of type II, this possibility is examined in [29]. The author begins by
enumerating all 4D N = 4 pure supergravity models derived from cyclic asymmetric orbifolds,
then investigate whether further twist/shift leads to 4d N = 2 supergravity with one vector
multiplet. The author finds no such twist/shift.

It is instructive to see an example to get an intuition why it is difficult to realize one vector
model. It is known that the 6d N = (1, 1) pure supergravity is constructed as type II Z5
asymmetric orbifold with Γ4,4(A4) lattice and the twist ϕL = (2/5, 4/5) and ϕR = (0, 0) [43].
One may think that the reduction of this model leads to the 4d N = 2 with one vector
multiple. However, it turns out that this cannot be the case. If we choose Γ6,6(A4 ⊕ A2)
lattice, then the left-moving twist must be

ϕL =
(2
5 ,

4
5 ,

2
3

)
, (4.1)

6Models with four supercharges in both left and right-moving sectors are likely to lead to hypermultplets.
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to avoid the additional vector fields. Moreover, the right-moving twist should be

ϕR =
(
0, 23 ,

2
3

)
, or

(
0, 12 ,

1
2

)
(4.2)

to preserve the eight numbers of supersymmetry. However both choices lead to extra fields
in the untwisted/twisted sectors. In appendix E, we show that there are no models with
one vector multiplet in the models based on the cyclic asymmetric orbifolds for type II or
heterotic strings. Moreover the rank of these models for cyclic orbifold models is always odd.7
It would be interesting to see if this is a general feature or not.

4.3 Speculative 4d models as a strong coupling limit of 3d models

Up to this point, we have not encountered any 4D no-hyper models with a rank smaller
than 3. Here we investigate the possibility of decompactifying a 3D model into 4D under
strong coupling conditions.

To this end, we consider the freely acting type II asymmetric orbifold model. The
theory is compactified on

T 6 × S1

ZN
, (4.3)

where the momentum lattice of T 6 is chosen to be a Lie algebra lattice. The ZN acts on T 6

as a twist, while acting on S1 as a shift. The total ZN action is freely acting, which lifts all
the states in the twisted sectors. Numerous models are constructed in this way.

An idea is to construct a 3d model whose spectrum is the same as the S1 reduction of
4d one vector model. Subsequently, we hypothesize that the desired 4d model is realized
at the strong coupling limit of the 3d model.

It is easy to realize such a 3d model. For instance, we take Γ6,6(E6) + Γ1,1 lattice. We
choose the left and right twists on Γ6,6(E6) as8

ϕL =
(
0, 23 ,

2
3

)
, ϕR =

(1
9 ,

2
9 ,

4
9

)
. (4.4)

This is the order 18 twist by taking into account the fermions. It turns out that the untwisted
sector spectrum is the desired one. This can be seen by checking the spectrum before
compactifying on S1 (before adding Γ1,1). The 4d untwisted sector massless states are

[2v + 21Scalar + 2Spinor]× [2v] = (4d N = 2 Gravity) + (Vector), (4.5)

where left hand side shows the left and right-moving states. The massless spectrum of our
3d model is obtained by compactifying the above on S1. Moreover, all the twisted sectors
are massive thanks to the shift on S1 (see (4.3)).

Let us study the behavior in the infinite distance limit of the model, which is either decom-
pactification or tensionless string limit according to the emergent string conjecture [46, 47].
There are two non-compact scalars in our 3d model. One is the radius of freely acting S1.
Another is the scalar corresponding to the string coupling.

7This is because nonzero eigenvalues appear in complex pairs.
8See [44, 45] for the conjugacy classes in the Weyl group of E6.
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3d models Rank of
4d model?

(NSNS, RR)
vector lattice (+Γ1,1) twist

No.1 1 (1, 0) Γ6,6(E6)
ϕL =

(
0, 2

3 ,
2
3
)
,

ϕR =
(1

9 ,
2
9 ,

4
9
)

No.2 3 (1, 2) Γ6,6(A6)
ϕL =

(
0, 1

2 ,
1
2
)
,

ϕR =
(1

7 ,
2
7 ,

4
7
)

No.3

5

(3, 2) Γ6,6(D6)
ϕL =

(
0, 2

3 ,
2
3
)
,

ϕR =
(
0, 1

6 ,
1
2
)

No.4 (1, 4) Γ6,6(D6)
ϕL =

(
0, 3

4 ,
3
4
)
,

ϕR =
(3

2 ,
1
2 ,

1
2
)

No.5 (5, 0) Γ6,6(D6)
ϕL =

(
0, 1

4 ,
1
4
)
,

ϕR =
(
1, 0, 2

3
)

Table 3. 3d models could be decompactified to 4d at the strong coupling. The shift is added to Γ1,1

to make an orbifold freely-acting. The choice of the orbifold is not unique for each rank.

• We can analyze the large radius limit using perturbative string theory. It turns out
that when the radius of freely acting S1 goes to infinity, the theory decompactifies to
4d theory which has more than eight supercharges. So, this limit is not interesting.
Another infinite distance is the small radius limit, but in this case it is easy to see that
we get an enhanced supersymmetric model.

• The strong coupling limit of this theory is not clear due to a lack of understanding
regarding instanton corrections. It may be possible that the theory could decompactify
into a 4D N = 2 model featuring a single vector multiplet in this limit. While we are
unable to conclusively demonstrate this scenario, it is a viable option.

Finally, in table 3, we provide a list of 3d models which have a chance to decompactify
into the 4d model from rank 1 to 5. The first column is the label of the 3d models, and
the second column is the rank of 4d model assuming that the strong coupling limit is the
decompactification limit. When the 4d vector multiplet is compactificed on S1, it becomes 3d
vector multiplet. The number of (NSNS,RR) vector multiplet is shown in the third column.
The fourth and last columns are the choice of the lattice and twist.

5 Conclusion and discussion

In this paper, we constructed models without the geometric “universal hypermultiplet” in 6,
5 and 4 dimensions. Even though some examples of this is already in the literature we found
convincing evidence for their transitions to geometric models with universal hypermultiplet.
Along the way we found that some geometric conditions, such as the Kodaira condition, can
be violated by the non-geometric models we constructed.
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We did not manage to construct no hyper and no vector theories with 8 supercharges
in 5d or 4d theories. Nor could we rule it out. Moreover, we found that the only no hyper
theories we could construct in 5d have even rank, starting with 2. Furthermore, all no hyper
theories in 4d have minimal rank 3. But we found theories in 3d which if they do have a
4d lift, then they would describe theories with smaller rank. These features we could not
explain, and it remains to be seen whether they are Swampland conditions, or some consistent
QG theories on the landscape can violate them.
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A Orbifolds review

A.1 Symmetric orbifolds

Consider string theory compactified on T d. One can obtain a new theory by quotienting
the T d by a isometry group G of T d and get string theory compactified on the orbifold
T d/G [48, 49]. This is called a symmetric orbifold since both the left and right moving
degrees of freedom of the string live in the same space.

An isometry g ∈ G of T d lifts to that of Rd, therefore it can be written as an orthogonal
transformation R together with a shift v

g = (R, v) ∈ O(d)⋉Rd. (A.1)

Here, R ∈ O(d) can be assumed to be diagonal by complexifying the appropriate torus
coordinates

Zi = 1√
2
(X2i + iX2i+1), (A.2)

Zi∗ = 1√
2
(X2i − iX2i+1), (A.3)

where i = 1, . . . , ⌊d/2⌋. If d is odd, we keep Xd as a real coordinate. In this basis, R is
a diagonal matrix

R = diag(e2πiϕ1 , e−2πiϕ1 , . . . , e2πiϕd/2 , e−2πiϕd/2) (A.4)
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if d is even and

R = diag(e2πiϕ1 , e−2πiϕ1 , . . . , e2πiϕ⌊d/2⌋ , e−2πiϕ⌊d/2⌋ ,±1) (A.5)

if d is odd so that the eigenvalue on Xd is ±1. The collection of the rotation angles

ϕ = (ϕ1, . . . , ϕ⌊d/2⌋) (A.6)

is called the twist vector.
To define the action of rotations on superstrings, first we need R ∈ SO(d), and second

we should lift R to R̃ ∈ Spin(d). For RN = I with N odd, the choice of the lift corresponds
to whether gN = (−1)F or gN = e, where e ∈ G is the identity. In terms of the twist vector,
the lift to Spin(d) corresponds to lifting the entries ϕi ∈ R/Z to ϕ̃i ∈ R/2Z. In particular,
the lift choice corresponding to ∑

Nϕ̃i odd gives gN = (−1)F and otherwise for ∑
Nϕ̃i even.

For simplicity and by an abuse of notation, we write ϕi instead of ϕ̃i. Similarly, by G we
also mean its lift G̃ for supersymmetric strings.

To find the spectrum of the orbifold compactification, we start with the Hilbert space of
the parent T d theory, the untwisted sector He. We first only consider the states |ψ⟩ ∈ He

that are invariant under the action of g ∈ G

g · |ψ⟩ = |ψ⟩ . (A.7)

Then the partition function of the untwisted sector can be computed by an insertion of
the projector πG = 1

|G|
∑
g∈G g as

Ze =
1
|G|

∑
g∈G

TrHe(gqL0−c/24q̄L̄0−c̄/24) = 1
|G|

∑
g∈G

Zge . (A.8)

Here, Zge are partial traces corresponding to traces in the untwisted sector He with an
insertion of g.

It turns out that the untwisted sector alone is not modular invariant under τ 7→ −1/τ .
This suggests that the spectrum for the orbifold compactification includes more than just
the untwisted sector. Indeed, one can have strings with boundary conditions that close
up to a group action by g ∈ G as

Xi(σ + 2π) = g ·Xi(σ). (A.9)

These states correspond to the g-twisted sectors, with the untwisted sector corresponding
to the identity g = e. In the g-twisted sector, we only take the states that are invariant
under the centralizer CG(g) := {x ∈ G | gx = xg}. Denoting by Hg the g-twisted sector,
the partition function of the g-twisted sector is

Zg =
1
|G|

∑
h∈CG(g)

TrHg(hqL0−c/24q̄L̄0−c̄/24) = 1
|G|

∑
h∈CG(g)

Zhg . (A.10)

Similar to before, Zhg denotes the partial trace in the g-twisted sector with an h insertion.
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The total partition function is

Z =
∑
g∈G

Zg =
1
|G|

∑
g∈G

∑
h∈CG(g)

Zhg , (A.11)

which finally is modular invariant.
For our purposes, it is enough to consider cyclic orbifolds

G = ⟨g⟩ ∼= ZN , (A.12)

where the isomorphism is given by gn 7→ n. The centralizer is simply the whole group
CG(gn) = G and we have

Z = 1
N

N∑
g,h=0

Zhg . (A.13)

A.2 Asymmetric orbifolds

Since left and right moving degrees of freedom of strings are decoupled, we can consider
orbifolding by a symmetry g that acts differently on the left and the right. Such an orbifold
has no target space interpretation and is called an asymmetric orbifold [23, 24].

In particular, string theory compactified on T d is characterized by an even unimodular
lattice called the Narain lattice Γd+x,d with signature (d+ x, d), where x = 16 for heterotic
strings and x = 0 otherwise [50, 51]. We only consider the automorphisms of the Narain
lattice that decompose to left and right components as

(RL;RR) ∈ O(d+ x)×O(d) ⊂ Aut(Γd+x,d). (A.14)

Coupling the automorphism with shifts on the left and right vL, vR ∈ Q⊗ Γd+x,d, we obtain
an action

g = (RL, vL;RR, vR). (A.15)

For gN = 1 with even N , a condition we impose is

pgN/2p = 0 mod 2 (A.16)

for all p ∈ Γd+x,d.9
We also define the invariant sublattice under gm as

Im := Fixgm(Γd+x,d) = {p ∈ Γd+x,d | g · p = p}. (A.17)

For notational simplicity, we let I := I1.
By complexifying the left and right movers similarly to the symmetric case, we obtain

two twist vectors, ϕL and ϕR, associated to RL and RR. The discussion concerning the lifts
to the Spin group follow similarly for the left and right movers if they are supersymmetric.
Each component of ϕL,R satisfies −1 ≤ ϕi < 1.

In summary, the data required to construct an asymmetric orbifold consists of the Narain
lattice Γd+x,d, the twist vectors ϕL, ϕR, and the shift vector v = (vL; vR).

9The cases in which condition (A.16) is not satisfied involve subtleties, see [52].
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A.2.1 Type II

We consider the case where the momentum lattice Γd,d is a Lie algebra lattice. Namely,

Γd,d(g) := {(pL; pR)|pL ∈ ΛW (g), pR ∈ ΛW (g), pL − pR ∈ ΛR(g)}. (A.18)

This lattice is even as pL and pR belong to the same conjugacy class. Moreover, the lattice
is self-dual since

pL · qL − pR · qR = 0 mod 1, (pL, pR), (qL, qR) ∈ Γd,d. (A.19)

To compute the spectrum for type II strings on asymmetric ZN orbifolds, we consider
the weight vectors rL and rR of SO(8) and the mass formulae in the m-th twisted sector:

HL,m = L0,m − 1
2 , HR,m = L0,m − 1

2 , (A.20)

L0,m = NB + (rL +mϕL)2

2 + (pL +mvL)2

2 + E0, (A.21)

L̃0,m = ÑB + (rR +mϕR)2

2 + (pR +mvR)2

2 + Ẽ0 (A.22)

E0 =
∑
i

1
2 |[mϕL,i]|(1− |[mϕL,i]|), Ẽ0 =

∑
i

1
2 |[mϕR,i]|(1− |[mϕR,i]|). (A.23)

Here, [mϕi] is defined as −1 ≤ [mϕi] < 1 with mϕi = [mϕi] + 2li and li ∈ Z. The momenta
(pL, pR) in the m-th twisted sector live in the dual lattice I∗m. The vector rL,R is

rL =


(n1, n2, n3, n4),

∑
ni = odd, NS-sector 8v,(

n1 +
1
2 , n2 +

1
2 , n3 +

1
2 , n4 +

1
2

)
,

∑
ni = odd, R-sector 8c,

(A.24)

rR =



(n1, n2, n3, n4),
∑
ni = odd, NS-sector 8v,(

n1 +
1
2 , n2 +

1
2 , n3 +

1
2 , n4 +

1
2

)
,

∑
ni = odd, R-sector (IIB) 8c,(

n1 +
1
2 , n2 +

1
2 , n3 +

1
2 , n4 +

1
2

)
,

∑
ni = even, R-sector (IIA) 8s.

(A.25)

The necessary and sufficient condition for modular invariance is the level matching
condition [53]

N(HL,m −HR,m) ∈ Z (A.26)

for any NB, ÑB, rL,R and pL,R. For example, the necessary conditions to satisfy the level
matching are

(v∗)2

2 ∈ Z
N
,

∑
i

ϕL,i ∈
2Z
N
,

∑
i

ϕR,i ∈
2Z
N
. (A.27)

Here, v∗ is the orthogonal projection of v to the space spanned by I.
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A.2.2 Heterotic

For heterotic strings, the Narain lattice is Γd+16,d. Since the Narain lattice is asymmetric, we
have to use different Lie algebra lattices on the left and the right. For the left and right Lie
algebra lattices to be compatible, we need their conjugacy class groups to be isometric.

In particular, define the glue group

D(g) := ΛW (g)/ΛR(g) (A.28)

with p ∈ ΛW (g) projecting to [p] ∈ D(g). Endow the glue group with the quadratic from
q of ΛW (g) as

q̄([v]) := q(v) mod 2, v ∈ ΛW (g). (A.29)

Then, given h and an isometry,

ψ : D(g) → D(h), (A.30)

the lattice

Γd+16,d(g, h) := {(pL; pR)|pL ∈ ΛW (g), pR ∈ ΛW (h), ψ([pL]) = [pR]} (A.31)

is even and unimodular.
Note that since D(E8) is trivial, we get a simplification for E8 × E8 constructions as

Γd+16,d(E8 × E8 × g, g) = 2Γ8,0(E8)⊕ Γd,d(g). (A.32)

Computing the spectrum for the heterotic string is identical to type II for the right
movers, whereas the left movers are bosonic and involve different formulae. In the m-th
twisted sector, we have

HL,m = NB + (P +mV )2

2 + E0 − 1, (A.33)

HR,m = ÑB + (rR +mϕR)2

2 + (pR +mvR)2

2 + Ẽ0 −
1
2 . (A.34)

The bosonic zero point energy E0 for m-th twisted sector is

E0 =


∑8+⌊d/2⌋
i=1

1
2 |[mϕL,i]|(1− |[mϕL,i]|) for detRL = 1,

1
16 +∑7+⌊d/2⌋

i=1
1
2 |[mϕL,i]|(1− |[mϕL,i]|) for detRL = −1.

(A.35)

The level-matching conditions are similar to those of type II.

A.3 Freely acting orbifolds

The orbifold obtained by a group G without fixed points is termed a freely acting orbifold.
The most useful feature of these orbifolds is that their twisted sectors can be massed up.

The technique we extensively use involves orbifolding on T d coupled with a shift on an
additional S1, compactifying overall to 9− d dimensions. The advantage of this construction
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is that except at special S1 radii, all twisted sectors become massive. Essentially, freely acting
orbifolds enable us to project out a significant portion of the massless spectrum without
introducing massless states in the twisted sectors.

Consider an orbifolding action g of order N on T d. Further compactify on an additional
circle S1 with radius r, and couple this action g with a shift 2πr/N on the circle.

Since the S1 remains invariant under the overall orbifolding action, we have

I ⊃ Γ1,1 =
{1
2(n/r + wr, n/r − wr)|n,w ∈ Z

}
. (A.36)

A 2πR/N shift on S1 corresponds to a pure winding mode vector (m = 0, w = 1) in Γ1,1

divided by N . Therefore the shift vector is

v = 1
2N (r,−r) . (A.37)

We will now prove that all twisted sectors are massive for large enough r. We will show
this for type II strings, but the proof for heterotic strings is similar. Intuitively, as r increases,
twisted sector strings become longer and thus gain mass.

To prove that the m-th twisted sector with m ̸= 0 is massive, we will show that r can
be chosen large enough such that

HL,m ⊃ (pL +mvL)2

2 + E0 −
1
2 > 0 (A.38)

or

HR,m ⊃ (pR +mvR)2

2 + Ẽ0 −
1
2 > 0 (A.39)

holds for all (pL; pR). Essentially, we will prove that either the left or right moving ground
state is always massive.

Assume without loss of generality that there exists pL = 1
2(
n
r + wr) such that

0 ≤ (pL +mvL)2

2 =
( m2N r +

n
r + wr)2

2 ≤ 1
2 − E0 (A.40)

for some n,w ∈ Z. This implies potential massless states in the left-moving sector. We claim
that HR,m > 0. If Ẽ0 − 1/2 > 0, we are done, so we assume Ẽ0 − 1/2 ≤ 0.

Taking the positive square root of (A.40),

| m2N r +
n
r + wr|√
2

≤
√

1
2 − E0. (A.41)

For the right movers, we have

(pR +mvR)2

2 =
(− m

2N r +
n
r − wr)2

2 . (A.42)

Taking square root and using the reverse triangle inequality,

| − m
2N r +

n
r − wr|√

2
≥

∣∣∣∣∣2| m2N r + wr|√
2

−
| m2N r +

n
r + wr|√
2

∣∣∣∣∣ . (A.43)
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Using (A.41) we get

2| m2N r + wr|√
2

−
| m2N r +

n
r + wr|√
2

≥
2| m2N r + wr|√

2
−

√
1
2 − E0. (A.44)

We can choose r large enough so that the r.h.s. of (A.44) is strictly larger than
√

1
2 − Ẽ0.

We conclude that

(pR +mvR)2

2 >
1
2 − Ẽ0, (A.45)

so HR,m > 0 as claimed.

B Landscape of 6d supergravity

B.1 Review of 6d (1,0) supergravity

The 6d (1, 0) supergravity has a massless spectrum given by representation of the little
group SO(4) ∼= SU(2) × SU(2).

Fields in SO(4) ∼= SU(2)× SU(2)

Gravity Multiplet (G) (3,3)︸ ︷︷ ︸
gµν

+2 (2,3)︸ ︷︷ ︸
2ψ+

µ

+(1,3)︸ ︷︷ ︸
B+

µν

Tensor Multiplet (T) (3,1)︸ ︷︷ ︸
B−

µν

+2 (2,1)︸ ︷︷ ︸
2ψ−

+(1,1)︸ ︷︷ ︸
ϕ

Vector Multipet (V) (2,2)︸ ︷︷ ︸
Aµ

+2 (1,2)︸ ︷︷ ︸
2λ+

Hypermultiplet (H) 4 (1,1)︸ ︷︷ ︸
4ϕ

+2 (2,1)︸ ︷︷ ︸
χ−

In terms of the bosonized momentum r (see appendix A.2), the representations of
SU(2) × SU(2) are

(1,1) : r = (#,#, 0, 0),

(2,1) : r =
(
#,#, 12 ,−

1
2

)
,

(1,2) : r =
(
#,#,±1

2 ,±
1
2

)
,

(2,2) : r = (#,#,±1, 0), (B.1)

where the underline indicates the permutation. See [54, 55] for earlier work on 6d het-
erotic string.

The tensor multiplet moduli space locally takes the form SO(1, T )/SO(T ) , and can be
parameterized by a vector j in the space R1,T of positive norm j · j > 0, representing the
positivity of the metric on the moduli space.
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The chiral fields of those multiplets contribute to the anomalies produced in such a theory
characterized by an 8-form anomaly polynomial I8. Such anomalies can be cancelled by the
Green-Schwarz-Sagnotti mechanism [56] if the anomaly polynomial I8 factorizes as

I8(R,F ) =
1
2ΩαβX

α
4 X

β
4 , Xα

4 = 1
2a

αtrR2 +
∑
i

bαi
2
λi
trF 2

i (B.2)

where aα, bαi are vectors in R1,T , Ωαβ is the metric on this space and λi are normalization
factors of the gauge groups Gi. The anomaly factorization conditions for gravitational, gauge
and mixed anomalies are summarized as follows:

• R4 : H − V = 273− 29T

• F 4 : 0 = Bi
Adj −

∑
niRB

i
R

• (R2)2 : a · a = aαΩαβaβ = 9− T

• F 2R2 : a · bi = aαΩαβbβi = 1
6λi(AiAdj −

∑
R n

i
RA

i
R)

• (F 2)2 : bi · bi = bαi Ωαβb
β
i = 1

3λ
2
i (
∑
R n

i
RC

i
R − CiAdj)

• F 2
i F

2
j : bi · bj = bαi Ωαβb

β
j = ∑

R,S λiλjn
ij
RSA

i
RA

j
S i ̸= j

where H,V, T denote the number of hypermultiplets, vectors multiplets and tensor multiplets
in the theory respectively. The number niR represents the number of hypermultiplets in
the representation R of the gauge group Gi and AiR, B

i
R, C

i
R are the following group theory

coefficients:

trRF
2 = ARtrF

2, trRF
4 = BRtrF

4 + CR(trF 2)2 (B.3)

the values of some of those coefficients for various representations and the normalization
factors λi are summarized in table 4. In addition, as shown in [28] the vectors aα, bαi ∈ R1,T

are constrained to have integer inner products a · a, a · bi, bi · bj ∈ Z with respect to the
bilinear form Ωαβ, we call this the anomaly lattice. The gauge coupling of the group Gi is
given by g−2

i = j · bi. Positivity of the kinetic terms and the Gauss-Bonnet term implies
j · bi ≥ 0 and j · a ≤ 0 [57].

The charges aα, bαi span the anomaly lattice Λ which is contained in the full string lattice
of the 6d theory. The anomaly lattice is required to have a unimodular embedding into a
self-dual lattice [58]. Furthermore, the existence of the two-form fields implies the existence
of string sources in accordance with the hypothesis that the spectrum of a gravitational
theory needs to be complete [59, 60]. Such considerations provide various constraints on
the possible 6d theories as demonstrated in [35, 37].

For example, a non-instantonic BPS string with charge Q satisfies∑
Gi

cGi ≤ cL = 3Q ·Q− 9a ·Q+ 2 (B.4)

where Gi is some bulk gauge symmetry that appears as a current algebra on the string
worldsheet with cGi the corresponding central charges.
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λ Aadj Cadj AR CR

SU(2) 1 4 1/2 2 = 1 2 = 8
SU(3) 1 6 9 3 = 1 3 = 1/2
SO(8) 2 6 3 8s,c,v = 1 8s,8c = 3/23,8v = 0
E6 6 4 1/2 27 = 1 27 = 1/12
E7 12 3 1/6 1 1/24
E8 60 1 1/100

Table 4. Various group theoretic invariants.

In the F-theory compactifications on a elliptic Calabi-Yau threefold the massless spectrum
can be determined by the Hodge numbers:

h1,1(CY3) = rG + T h2,1(CY3) = Hneutral − 1 (B.5)

This implies that such theories have at least one neutral hypermultiplet, known as the
“universal” hypermultiplet. In section 2 we demonstrate the existence of theories with no
neutral hypermultiplets corresponding to “h2,1 = −1” which are realized by non-geometric
constructions.

The map between the anomaly coefficients and F-theory is:

a→ KB (B.6)
bi → Ci (B.7)
j → JB (B.8)

where KB is the canonical divisor of the base, Ci effective and irreducible divisors that support
that gauge algebra Gi and JB the Kähler class of the base. Therefore, the gauge coupling is
identified with the volume of the corresponding divisor as g−2

i = V olJB
(Ci), this also controls

the tension of the string with charge bi which corresponds to the D3 brane wrapping Ci.
Additionally, a consistent elliptic fibration over a base B needs to satisfy the Kodaira

condition [28] given by

−12KB =
∑
i

νiCi + Y (B.9)

where νi are the singularity multiplicities and Y the residual divisors which is the sum of
effective divisors associated to non-contractible curves.

B.2 More details on constructions

Type II model 1. We consider the type IIB on T 4 asymmetric orbifold.10 The momentum
lattice takes the form

Γ4,4(D4) = {(pL, pR)|pL ∈ ΛW (D4), pR ∈ ΛW (D4), pL − pR ∈ ΛR(D4)}. (B.10)
10The same spectrum is obtained for type IIA string.
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Phase Left Right Total

0 (2,2) + 2(1,2) (2,2) + 4(1,1)

(3,3) + 2(2,3) + (1,3)︸ ︷︷ ︸
G

+(3,1) + 2(2,1) + (1,1)︸ ︷︷ ︸
T

+4(2,2) + 8(1,2)︸ ︷︷ ︸
4V

1
2 2(2,1) + 4(1,1) 2(2,1) + 2(1,2)

4(2,2) + 8(1,2)︸ ︷︷ ︸
4V

+4(3,1) + 8(2,1) + 4(1,1)︸ ︷︷ ︸
4T

Table 5. The untwisted sector spectrum in model 1.

at a special point in the Narain lattice. Here, ΛR(D4) and ΛW (D4) are the root and weight
lattices of D4, respectively. In terms of the orthonormal basis, an element of ΛR(D4) lattice
is written as (n1, n2, n3, n4) with ∑

ni ∈ 2Z and ni ∈ Z, while an element of ΛW (D4) lattice
is written as (n1, n2, n3, n4) or (n1 + 1/2, n2 + 1/2, n3 + 1/2, n4 + 1/2) with ni ∈ Z. Next,
we perform an asymmetric Z2 twist:

ϕL =
(1
2 ,

1
2

)
, ϕR = (1, 0), (B.11)

where the eigenvalues of the twist are (e2πi(ϕL)1 , e−2πi(ϕL)1 , e2πi(ϕL)2 , e−2πi(ϕL)2) for the left-
moving sector and (e2πi(ϕR)1 , e−2πi(ϕR)1 , e2πi(ϕR)2 , e−2πi(ϕR)2) for the right-moving sector. The
twist ϕR corresponds to (−1)FR , where FR is the right-moving fermion number. Consequently,
all the right-moving supersymmetry is broken. On the other hand, half of the left-moving
supersymmetry is preserved as the twist ϕL belongs to SU(2). This satisfies the mod 2
condition in [23] as pgp = −p2

L − p2
R is even for pL − pR ∈ ΛR(D4). The invariant lattice

I and the dual lattice I∗ are

I = { (0, pR) | pR ∈ ΛR(D4) }, I∗ = { (0, pR) | pR ∈ ΛW (D4) }. (B.12)

The spectrum in the untwisted and twisted sectors is computed as follows.

• Untwisted sector

The untwisted massless spectrum is computed as in table 5.

In table 5, the representation under the 6d little group SO(4) ≃ SU(2)× SU(2) is listed.
From table 5, the untwisted spectrum is

G+ 5T + 8V, (B.13)

where G,T , and V are the gravity, tensor, and vector multiplets, respectively.

• Twisted sector
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The degeneracy factor [23] is ∏2
i=1(2 sin(πϕLi))

VI
= 2, (B.14)

where VI = 2 is the volume of the lattice I. From eq. (A.20), the left-mover massless
states are

(2,1) : rL =
(
−1
2 ,−

1
2 ,−

1
2 ,

1
2

)
, (B.15)

2(1,1) : rL = (−1, 0, 0, 0). (B.16)

On the other hand, the right-mover massless states are

2(2,1) : rR =
(
−1
2 ,−

1
2 ,−

1
2 ,

1
2

)
,

(
−3
2 ,

1
2 ,−

1
2 ,

1
2

)
, pR = 0, (B.17)

2(1,2) : rR =
(
−1
2 ,

1
2 ,±

1
2 ,±

1
2

)
,

(
−3
2 ,−

1
2 ,±

1
2 ,±

1
2

)
, pR = 0, (B.18)

24(1,1) : rR = (−1, 0, 0, 0),

pR =
(
±1, 0, 0, 0

)
,±

(1
2 ,

1
2 ,

1
2 ,

1
2

)
,±

(
−1
2 ,

1
2 ,

1
2 ,

1
2

)
,

(
−1
2 ,−

1
2 ,

1
2 ,

1
2

)
.

(B.19)

Note that pR ∈ I∗ = ΛW (D4). There are 24 states with p2
R = 1/2 corresponding to 8v,

8s, and 8c representations of D4.

Taking into account the degeneracy factor 2, the twisted sector spectrum is

2 [(2,1) + 2(1,1)]× [2(2,1) + 2(1,2) + 24(1,1)]
= 4(3,1) + 8(2,1) + 4(1,1)︸ ︷︷ ︸

4T

+4(2,2) + 8(1,2)︸ ︷︷ ︸
4V

+48(2,1) + 96(1,1)︸ ︷︷ ︸
24Hc

. (B.20)

All the hypermultiplets arise from states with pR ̸= 0, as can be observed from eq. (B.19).
Since the lattice I∗ can be regarded as a charge lattice of U(1)4, all the hypermultiplets
carry charges.

• Full spectrum

By combining the untwisted and twisted sectors, the full massless spectrum is

G+ 9T + 12V + 24Hc. (B.21)

The gauge group is U(1)12. The charges of the hyper are(
±1, 0, 0, 0, 08

)
+

(
±1
2 ,±

1
2 ,±

1
2 ,±

1
2 , 0

8
)

+
(
±1
2 ,∓

1
2 ,∓

1
2 ,∓

1
2 , 0

8
)
+

(
−1
2 ,−

1
2 ,

1
2 ,

1
2 , 0

8
)

(B.22)

under U(1)12. The gravitational anomaly-free condition H − V = 273− 29T is satisfied.
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Heterotic model 2. We consider the heterotic string theory compactified on T 4, where
the momentum lattice is

Γ4,4(D4) + 2Γ8,0(E8). (B.23)

Then, we perform the following Z2 twist and shift,11

ϕL = (0, 0), ϕR =
(1
2 ,

1
2

)
,

VL = 1
2(1

2, 06; 12, 06). (B.24)

Here T 4 is chosen as Γ4,4(D4) lattice, and VL is the shift in E8 ×E8 lattice.12 As the twist ϕR
sits in SU(2), the half of the right-moving supersymmetry is preserved. The level-matching
conditions (A.27) are satisfied. The invariant lattice is

I = {(pL, PL; 0)|pL ∈ ΛR(D4), PL ∈ ΛR(E8 × E8)}, (B.25)

where an element of ΛR(E8) lattice is written as (n1, · · · , n8) or (n1 + 1/2, · · · , n8 + 1/2)
with ∑

ni ∈ 2Z, ni ∈ Z. The dual lattice is

I∗ = {(p∗L, PL; 0)|pL ∈ ΛW (D4), PL ∈ ΛR(E8 × E8)}. (B.26)

• Untwisted sector
The choice of the shift vector (B.24) breaks each E8 to E7 × SU(2). Moreover, the
group SO(8) appears as we take Γ4,4(D4) lattice. Therefore, the gauge group of the
model is

E7 × SU(2)× E7 × SU(2)× SO(8), (B.27)

and V = 133 + 3 + 133 + 3 + 28 = 300. The number of the tensor multiplet is one. In
the untwisted sector, there are 224 hypermultiplets. The charges are

(56,2,1,1,1) + (1,1,56,2,1), (B.28)

under the group eq. (B.27). This can be understood that 248 of E8 is broken to
(1,3) + (56,2) + (133,1) of E7 × SU(2).

• Twisted sector
In the twisted sector, the degeneracy factor is 2. The right-mover massless states are
(2,1) + 2(1,1) under SU(2)× SU(2) little group. For the left-mover, the momentum
lattice is shifted as I∗ + VL. The left-moving massless states are given by the states
satisfying

p∗2
L

2 + (PL + VL)2

2 − 1 = 0, (B.29)

11Just from the level matching condition alone, VL = 0 is allowed. However, in this case, extra gravitinos
appear from the twisted sector, and the theory becomes 6d N = (1, 1).

12There are no shifts in T 4 direction.
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where p∗L ∈ ΛW (D4) and PL ∈ ΛR(E8 ×E8). It turns out that there are 224 states with
p2
L = 0 and (PL + VL)2 = 2, whose charge is

(56,1,1,2,1) + (1,2,56,1,1) (B.30)

under the gauge group (B.27). Moreover, there are additional massless states with
p2
L = 1 and (PL + VL)2 = 1. The charge of these states is

(1,2,1,2,8v) + (1,2,1,2,8s) + (1,2,1,2,8c) (B.31)

under the group (B.27). In total, the number of hypermultiplets in the twisted sector
is 320.

• Full spectrum
By combining the untwisted and twisted sectors, the massless spectrum is

G+ T + 300V + 544Hc. (B.32)

The full spectrum is consistent with the gravitational anomaly cancellation. Next check
is the condition 0 = BAdj −

∑
niRB

i
R (TrF 4 anomaly). This condition is trivially satisfied for

E7 and SU(2) as BR = 0 for all the representations. For SO(8), this condition is nontrivially
satisfied by using BAdj = 0, B8v = 4, and B8s = B8c = −2. The intersection matrix is

8 2 26 2 26 2
2 0 12 0 12 0
26 12 24 12 24 12
2 0 12 0 12 0
26 12 24 12 24 12
2 0 12 0 12 0


(B.33)

under E7 × SU(2) × E7 × SU(2) × SO(8). All the anomaly can be satisfied by choosing
a = (−3, 1), bE7 = bE′

7
= (1,−1), bSU(2) = bSU(2)′ = (7, 5), bSO(8) = (1,−1) with j = −a for

example. Finally, we show that the Kodaira condition,

j · (−12a− 9bE7 − 9bE′
7
− 6bSO(8) − 2bSU(2) − 2bSU(2)′) > 0 (B.34)

is not satisfied in this model. We parametrize j as c1bE7 + c2bSU(2) without loss of generality.
Then, we obtain the condition

−24(c1 + 3c2) > 0. (B.35)

However, this is incompatible with the positivity of the gauge kinetic term:

j · bE7 > 0 and j · bSU(2) > 0 ⇔ c2 > 0 and c1 + 2c2 > 0. (B.36)

Note that this result is independent of the choice of vectors as the choice of −a fixes
the other vectors. Similarly, it can be shown in the case of an even lattice with −a = (2, 2).
Another choice is −a = (4, 1) but this contradicts the fact that −a is a characteristic class
of the lattice [61]. Although, even in this case the solutions would be fixed and also not
satisfying the Kodaira condition.
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Heterotic model 3. We again consider the heterotic string theory with the momen-
tum lattice

Γ4,4(A2 ⊕A2) + 2Γ8,0(E8). (B.37)

The twist and shift are

ϕL = (0, 0), ϕR =
(2
3 ,

2
3

)
,

VL = 1
3(1

6, 02; 08). (B.38)

The level-matching condition (A.26) is satisfied. The invariant lattice is

I = {(pL, PL; 0)|pL ∈ ΛR(A2 ⊕A2), PL ∈ ΛR(E8 × E8)}, (B.39)

and the dual lattice is

I∗ = {(p∗L, PL; 0)|pL ∈ ΛW (A2 ⊕A2), PL ∈ ΛR(E8 × E8)}. (B.40)

• Untwisted sector
The shift vector in eq. (B.38) breaks one of E8 to E6 × SU(3). Therefore, the gauge
group is

E6 × SU(3)× E8 × SU(3)2. (B.41)

There are 81 hypermultiplets charged under the gauge group:

(27,3,1,1,1). (B.42)

• Twisted sector
There are two twisted sectors. The degeneracy factor of each sector is 1. The right-mover
massless states are (2,1) + 2(1,1) under SU(2)× SU(2) little group. The left-moving
massless states are given by the states satisfying

p∗2
L

2 + (PL ± VL)2

2 − 1 = 0, (B.43)

where p∗L ∈ ΛW (A2⊕A2), PL ∈ ΛR(E8×E8), and ± corresponds to the first and second
twisted sectors. There are three types of massless hypermultiplets. First is the state
with p∗2

L /2 = 0 and (PL ± VL)2/2 = 1. The charge of these states is

(27,3,1,1,1). (B.44)

The second type is the states with p∗2
L /2 = 1/3 and (PL ± VL)2/2 = 2/3. The charge is

(27,1,1,3,1) + (27,1,1,3,1). (B.45)

The third type is the states with p∗2
L /2 = 2/3 and (PL ± VL)2/2 = 1/3. The charge is

(1,3,1,3,3) + (1,3,1,3,3) + (1,3,1,3,3). (B.46)
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• Full spectrum

By combining the untwisted and twisted sectors, the massless spectrum is

G+ T + 350V + 594Hc. (B.47)

This is consistent with the gravitational anomaly cancellation. The TrF 4 anomaly
cancellation condition is trivially satisfied.

The intersection matrix is 

8 14 14 −10 14 14
14 12 12 0 12 12
14 12 12 0 12 12
−10 0 0 −12 0 0
14 12 12 0 12 12
14 12 12 0 12 12


(B.48)

under E6 × SU(3) × E8 × SU(3)2. All the anomaly can be satisfied by choosing a =
(−3, 1), bE6 = bSU(3) = bSU(3)′ = bSU(3)′′ = (4, 2), bE8 = (−2,−4) with j = −a − bE8 for
instance. The Kodaira condition,

j · (−12a− 10bE8 − 8bE6 − 3bSU(3) − 3bSU(3)′ − 3bSU(3)′′) > 0 (B.49)

is not satisfied. To see this, we parametrize j as j = c1bE6 + c2bE8 . Then, the Kodaira
condition is

c1 < 0. (B.50)

However, this contradicts the positivity of SU(3) gauge kinetic term. Similarly, for the even
lattice choice −a = (2, 2).

In fact, models 2, 3 where shown in section 2 to be dual to F-theory models with bases
giving rise to even string charge lattices. Since Higgsing does not affect the tensors since
there is no such coupling we expect the lattice to remain the same.

Heterotic model 4. We start from E8 × E8 string. We take Γ4,4(D4) lattice with the
twist (inspired by the CHL string)

E8 ↔ E8, ϕR =
(1
2 ,

1
2

)
. (B.51)

The gauge group is

E8 × SO(8). (B.52)

V = 248 + 28 = 276. The number of the hyper should be H = 520 (Note that T = 1).
The invariant lattice is

I = {(a; b, b)|a ∈ ΛR(D4), b ∈ ΛR(E8)}. (B.53)
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The dual lattice is

I∗ =
{(

ã; 12(b̃, b̃)
)
|ã ∈ ΛW (D4), b̃ ∈ ΛR(E8)

}
. (B.54)

There are 248 untwisted hypers. Before orbifolding, there are E8 × E8 gauge bosons. By
the CHL twist [62, 63], this becomes E8 gauge bosons and E8 adjoint hyper. Therefore,
the charges are

(248,1). (B.55)

In the twisted sector, the mass formula for the left-mover is

EL = −1 + 1
2 +NB + p2

L

2 , pL ∈ I∗, (B.56)

The left-moving massless states are

24 states with pL = (pso(8); 0, 0), pso(8): weight vector of 8v, 8s, and 8c, (B.57)

8 states with NB = 1
2 , (B.58)

240 states with pL =
(
0; 12(pE8 , pE8)

)
, pE8 : root vector of E8. (B.59)

These become hypermultiplets by combined with right-moving states. The second and third
states form the adjoint representation of E8. There are 272 hypers in the twisted sector.
The charges are

(1,8v) + (1,8s) + (1,8c) + (248,1). (B.60)

The full spectrum is

G+ T + 276V + 520Hc. (B.61)

The intersection matrix is  8 10 1
10 12 0
1 0 −3

 , (B.62)

under E8 × SO(8). All the anomaly can be satisfied by choosing a = (−3, 1), bE8 = (4,−2),
bSO(8) = (1,−2) with j = −a for instance.

The Kodaira condition,

j · (−12a− 10bE8 − 6bSO(8)) > 0 (B.63)

is not satisfied. By parametrizing j as j = c1bE8 + c2bSO(8), the Kodaira condition becomes

c2 > 0. (B.64)

However, this contradicts the positivity of the SO(8) gauge kinetic term.
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B.3 Maximal Higgsing

In this section, we study the spectrum of our four models after the maximal Higgsing. See [64]
for the chain of the Higgsing in 6d F-theory and the heterotic string.

Type II model 1. We start from the model 1. The gauge group is U(1)12, and the charge
of the hypermultiplets is given in eq. (B.22). By turning on the VEV to

(
±1, 0, 0, 0, 08) hyper-

multiplets, U(1)4 are Higgsed. The spectrum after the Higgsing is 20 neutral hypermultiplets
with the gauge group U(1)8.

The model after the Higgsing can also be described in terms of an orbifold. The lattice
is Γ4,4(D4) with a Z4 twist

ϕL =
(1
4 ,

3
4

)
, ϕR =

(1
4 ,

1
4

)
. (B.65)

The spectrum is G + T + 2V + 2H0 in the untwisted sector, 8T + 8H0 in the g and g3-
twisted sectors, and 6V + 10H0 in the g2-twisted sector. The full massless spectrum is
G + 9T + 8V + 20H0.

Heterotic model 2. The gauge group is [E7 × SU(2)]2 × SO(8), and the charge of the
hypermultiplets is eqs. (B.28), (B.30), (B.31). In the following, we show that the whole
gauge group can be Higgsed.

First we note that

E7 × SU(2) → E6 ×U(1)×U(1)

(56,2) →
massive︷ ︸︸ ︷

(27,−1,−1) + (27, 1, 1)+(27,−1, 1) + (27, 1,−1)
+ (1, 3, 1) + (1, 3,−1) + (1,−3, 1) + (1,−3,−1)︸ ︷︷ ︸

massive

. (B.66)

This means that by turning on the VEV to (1, 3, 1), E7 × SU(2) is broken to E6 × U(1)′,
where U(1)′ is a linear combination of two U(1) under which (1, 3, 1) is neutral. At the same
time, 57 hypermultiplets become massive to form massive vector multiplets.

The spectrum after Higgsing is

E7 × SU(2) → E6 ×U(1)′

(56,2) → (27,−4) + (27, 4) + (1, 0). (B.67)

This Higgsing can be done for each E7×SU(2) factor, and so the full gauge group is Higgsed to

[E7 × SU(2)]2 × SO(8) → [E6 ×U(1)′]2 × SO(8). (B.68)

Under the Higgsing, one of the hypermultiplets decompose as

(56,1,1,2,1) → (27,−1,1,±3,1) + (27, 1,1,±3,1)
+ (1, 3,1,±3,1) + (1,−3,1,±3,1) (B.69)

The gauge group U(1)′2 can be Higgsed by turning on the VEV to (1, 3,1,±3,1).
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At this stage, the gauge group is E2
6 × SO(8), and the hypermultiplets are

3(27,1,1) + 3(27,1,1) + 4(1,1,8v) + 4(1,1,8s) + 4(1,1,8c) + 10(1,1,1). (B.70)

In order to Higgs E6 completely, 3(27 + 27) is enough:

E6
27+27−−−−→ SO(10) 16+16−−−−→ SU(5)

3(27 + 27) −−−−→
massive︷ ︸︸ ︷

(16 + 16 + 1)+2(16 + 16) −−−−→
massive︷ ︸︸ ︷

(10 + 10 + 1)
+ 6(10) + 5(1) + (10 + 10)

+ 8(5 + 5) + 8(1) (B.71)

5+5−−→ SU(4) 4+4−−→ SU(3) 3+3−−→ SU(2)

−−→
massive︷ ︸︸ ︷

(4 + 4 + 1)+(6 + 6) −−→
massive︷ ︸︸ ︷

(3 + 3 + 1) −−→
massive︷ ︸︸ ︷

2(2) + (1)
+ 8(4 + 4) + 23(1) + 9(3 + 3) + 38(1) 16(2) + 55(1)

2(2)−−→ Nothing

−−→
massive︷︸︸︷
3(1) +84(1) (B.72)

Similarly, 4(8v + 8s + 8c) can Higgs SO(8) completely.

Heterotic model 3. The gauge group is E6 × SU(3)× E8 × SU(3)2. The representation
of the hypermultiplets is eqs. (B.42), (B.44), (B.45), (B.46). We show that E8 is the only
gauge group that remains after the maximal Higgsing.

By turning on the VEV to 2(27,3,1,1,1), E6×SU(3) is broken to SO(10)×SU(2)×U(1):

E6 × SU(3) → SO(10)× SU(2)×U(1)
2(27,3) → 2(16,1, 3) + 2(1,2, 3) + (1,1, 0)︸ ︷︷ ︸

massive

+ 2(16,2,−3) + 2(10,2, 0) + 2(10,1, 6) + (1,1, 0). (B.73)

Moreover, the VEV of 2(10,2, 0) breaks SO(10) × SU(2) × U(1) to SO(9) × U(1):

SO(10)× SU(2)×U(1) → SO(9)×U(1)

2(10,2, 0) + 2(16,2,−3) →
massive︷ ︸︸ ︷

(9, 0) + 3(1, 0)+3(9, 0) + (1, 0)
+ 2(10,1, 6) + (1,1, 0) + 4(16,−3) + 2(9, 6) + 2(1, 6) + (1, 0). (B.74)

Next, 2(1, 6) can break U(1) completely. Combining these steps, we observe

E6 × SU(3) → SO(9)
2(27,3) → 4(16) + 5(9) + 3(1). (B.75)
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By using 3(9), we can Higgs SO(9) as SO(9) → SO(8) → SO(7) → SU(4):

SO(9) 3(9)−−→ SU(4)

4(16) + 5(9) + 3(1) −−→ 16(4) + 2(6) + 15(1). (B.76)

In order to Higgs SU(4) completely, 16(4) is enough.
At this stage, the massless spectrum is

76(1,1,1) + 54(1,3,1) + 6(1,3,3) + 3(1,3,3) (B.77)

under the gauge group E8 × SU(3)2. Clearly, 54(1,3,1) is enough to Higgs SU(3)2. Con-
sequently, after the maximal Higgsing, there are neutral hypermultiplets with the gauge
group E8.

Heterotic model 4. The gauge group is E8 × SO(8), and the charge of hypermultiplets is
eqs. (B.55), (B.60). We show that SU(3) gauge group remains after the maximal Higgsing.

The E8 gauge group is completely Higgsed by two adjoint representation. The 248
neutral hypermultiplets are in the spectrum after the Higgsing. As for SO(8) part, the SU(3)
gauge group remains even after the maximal Higgsing:

SO(8) 8v−→ SO(7) 8−→ G2
7−→ SU(3)

(8) + (8s) −→
massive︷︸︸︷
(7) +(1) →

massive︷︸︸︷
(7) +(7) →

massive︷ ︸︸ ︷
(3 + 3)

+ (8c) + 2(8) + 3(1) + 4(1) (B.78)

Therefore, the spectrum after the Higgsing is SU(3) with 252 singlets.

C Details of the 5d models

As described in section 3 for the type II models, we choose the momentum lattice

Γ5,5 = Γ4,4 + Γ1,1. (C.1)

and for the heterotic models, we choose

Γ21,5 = Γ20,4 + Γ1,1. (C.2)

A choice of discrete twist ZN needs to specified that acts as a twist for Γ4,4 and Γ20,4,
while it acts as a shift for Γ1,1. Thanks to this shift in Γ1,1, the states in the twisted sector
become massive for a sufficiently large radius as reviewed in (see appendix A.3). This means
that only the untwisted sectors are important for this discussion.

Untwisted sector. Suppose that the ZN twist on Γ4,4 or Γ20,4 breaks half of right-
supersymmetry and all (if any) of left-supersymmetry. We denote the number of zero
eigenvalues of the twist by zL and zR (counted in real) for a left and right twist, respectively.
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Note that zR = 0 while zL takes values from 0 to 4 for type II and from 0 to 20 for the
heterotic case. Consequently, the untwisted spectrum is as follows:

[3v + (zL + 1)(scalar)]× [3v + (scalar) + 2(spinor)] + · · · , (C.3)

where 3v represents the 5d vector, and (scalar) indicates a real scalar. The symbol · · ·
denotes other scalars, spinors, and vectors which potentially appear corresponding to states
where the left and right phases cancel out nontrivially. For such additional states in the
NSNS sector, we obtain other hypermultiplets. For additional states in the RR sector, we
obtain other vector multiplets.

The bosonic spectrum is

(C.3) = (5gµν + 3v) + (zL + 2)3v + (zL + 2)(scalar) + · · · , (C.4)

where 5gµν represents the 5d graviton, and 5gµν + 3v is the bosonic part of the 5d gravity
multiplet. Based on the discussion above, we observe

• We must not have extra states in the NSNS sector, where the phases in the left and
right-mover nontrivially cancel, otherwise we will get hypermultiplets.13

• From eq. (C.4), we have zL + 2 vector multiplets. This is the number of vectors for
the heterotic, while other vector multiplets may appear from the RR sector for type II
string.

• When the determinant of the left twist is one, then the number of the vector multiplets
obtained in this way is always even (this is also observed in [22]). This is because
nonzero eigenvalues appear in complex pairs.

We provide a detailed explanation of the twist Γ8(E8) ↔ Γ8(E8) in table 2. This is the
CHL twist [62], which exchanges two E8s. The invariant lattice and its dual are

ICHL = {(a, a)|a ∈ ΛR(E8)}, I∗CHL =
{1
2(b, b)|b ∈ ΛR(E8)

}
. (C.5)

The twist Γ2,2(A2) ↔ Γ2,2(A2) is similar.

D Other constructions

In this appendix we comment on earlier studies of the 4d N = 2 string landscape with a
small number of moduli using other techniques.

• Based on the free fermionic construction [65–68], a hyper-free 4d N = 2 models with
one vector multiplet is constructed in [34]. However, contrary to the claim, we find the
model leads to 4d N = 3 supersymmetry. The details are shown in the next subsection.

• The model with effective Hodge numbers (h11, h21) = (1, 1) is constructed in [69, 70].
By using the Gepner model [20] or the duality twist [21], the hyper-free model with 3
vector multiplets is constructed, which is consistent with our result.

13This is why symmetric orbifolds do not lead to models without hypermultiplets.
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Interestingly, the minimal matter content seems to be H + V = 3 (except for 3d models
in section 4.3), where H and V is the number of hypermultiplets and vector multiplets
respectively.

D.1 Check of the DJK model

This model is claimed to possess N = 2 supersymmetry and no hypers in its spectrum. We
show that there is N = 3 supersymmetry, contrary to the original claim.

Setup. The DJK model performs a generalized GSO projection using

b1 = {ψµ, χ1,2, y3,4, y5,6, y1, w1 | ȳ5, w̄5}, (D.1)
b̄1 = {ψ̄µ, χ̄1,2, ȳ3,4, ȳ5,6, ȳ1, w̄1 | y5, w5}, (D.2)
b̄2 = {ψ̄µ, χ̄3,4, ȳ1,2, w̄5,6, ȳ3, w̄3 | y6, w6}, (D.3)
b̄3 = {ψ̄µ, χ̄5,6, w̄1,2, w̄3,4, ȳ6, w̄6 | y2, w2}, (D.4)

in addition to F, S, S̄ (see [68] for the definitions). The yi, wi are fermionizations of the
internal coordinates

:eiXi
L : = 1√

2
(yi + iwi), (D.5)

:eiXi
R : = 1√

2
(ȳi + iw̄i). (D.6)

The correspondence between generalized GSO actions and bosonic actions are

yi : yi + iwi 7→ −yi + iwi ⇐⇒ eiX
i
L 7→ −e−iXi

L ⇐⇒ Xi
L 7→ −Xi

L + π, (D.7)

wi : yi + iwi 7→ yi − iwi ⇐⇒ eiX
i
L 7→ e−iX

i
L ⇐⇒ Xi

L 7→ −Xi
L, (D.8)

yiwi : yi + iwi 7→ −yi − iwi ⇐⇒ eiX
i
L 7→ −eiXi

L ⇐⇒ Xi
L 7→ Xi

L + π, (D.9)

and similarly for the right movers.

Basis change. Performing the basis change as in [71],

b̃3 = b̄1 + b̄2 + S̄ = {ψ̄µ, χ̄5,6, ȳ2, w̄1, ȳ4, w̄3, ȳ5,6, w̄5,6 | y5,6, w5,6} (D.10)
B̄3 = b̃3 + b̄3 = {ȳ2,4,5w̄2,4,5 | y2,5,6w2,5,6}. (D.11)

We can use a pure shift B̄3 instead of b̄3 in the generators.

Supersymmetry. We find 2 gravitinos in the S sector. However, we also find a gravitino
in the S̄ sector. In total, we get 4d N = 3 instead of the claimed N = 2.

The gravitino in the S̄ sector have the form ψµ− 1
2
|0⟩⊗|S̄⟩. Here, |S̄⟩ denotes a spinor in 10d

|S̄⟩ = |s1, s2, s3, s4⟩ , (D.12)

where si = ±. Compactifying to 4d, we distinguish between the spacetime and internal
components with a line.

|s1 | s2, s3, s4⟩ . (D.13)
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The generator S̄ halves the number of possibilities for si. In other words,

(−1)S̄ = −1 =⇒ s1s2s3s4 = −1. (D.14)

We can also see that (−1)F = 1 and (−1)S = −1 are satisfied by the gravitino due to the
presence of the oscillator on the left ψµ− 1

2
.

In 4 dimensions, we therefore have 4 gravitinos

|s1 | s2, s3,−s1s2s3⟩ , (D.15)

corresponding to the sign choices of s2, s3. Then, the projections require

(−1)b̄1 = −1 =⇒ s1s2 = −1 (D.16)

(−1)b̄2 = −1 =⇒ s1s3 = −1. (D.17)

The generator b̄3 does not impose an additional condition (as expected since it can be
replaced by a pure translation B̄3). Also, b1 does not impose a condition since it is a pure
translation on the right.

So b̄1 and b̄2 together reduce the number of gravitino by a quarter. As a result, we
get exactly one gravitino in the S̄ sector

ψµ− 1
2
|0⟩ ⊗ |s1| − s1,−s1,−s1⟩ . (D.18)

In summary, we used (D.14), (D.16), (D.17) on (D.12).
Together with the two gravitino from the S sector, we have 3 gravitino in total, hence

N = 3 supersymmetry.

E No 4d cyclic asymmetric orbifolds with one vector multiplet

Here we show that no 4d cyclic asymmetric orbifolds with one vector multiplet both for the
heterotic and type II. An idea is to show that there is no shift vector which lifts all the
twisted sectors. In other words, there exists k-th twisted sector where any shift vector v
belongs to kv ∈ I∗ under the condition for the shift vector Nv ∈ I and Nv2/2 ∈ Z. Here N
is the order of the orbifold. We assume that the twist is inner automorphism.

First, we note that there is no invariant lattice for the left-mover, and two eigenvalue
one for the right-mover in order to realize the model with eight supercharges and one vector
multiplet. Therefore, the invariant lattice is the right-mover root lattice of the Lie algebra.
We consider the cases where the I = ΛR(D6) and ΛR(E6). The same argument holds for
the other choices of the lattices.

• I = ΛR(D6)
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The right twist must preserve 4d N = 2 supersymmetry, and the possible choices are

(1̄, 1̄, 1̄, 1̄) ⇒ ϕR =
(1
2 ,

1
2

)
, (E.1)

(3, 3) ⇒ ϕR =
(1
3 ,

1
3

)
, (E.2)

(2, 2, 1̄, 1̄) ⇒ ϕR =
(1
2 ,

1
2

)
, (E.3)

(2̄, 2̄) ⇒ ϕR =
(1
4 ,

1
4

)
. (E.4)

Note that the Weyl group of Dn is given by the permutation and even number of
sign flips of the orthonormal basis, e1, e2, · · · , en. Here “ i ” means the permutation
e1 → e2 → · · · → ei → e1, and “ ī ” means the permutation with the sign flip,
e1 → e2 → · · · → ei → −e1. For each twist, the invariant lattice I and its dual I∗ are
given by

(1̄, 1̄, 1̄, 1̄) : I = n1(0, 0, 0, 0, 1, 1) + n2(0, 0, 0, 0, 1,−1),

I∗ = n1

(
0, 0, 0, 0, 12 ,

1
2

)
+ n2

(
0, 0, 0, 0, 12 ,−

1
2

)
, (E.5)

(3, 3) : I = n1(1, 1, 1, 1, 1, 1) + n2(1, 1, 1,−1,−1,−1),

I∗ = n1

(1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6

)
+ n2

(1
6 ,

1
6 ,

1
6 ,−

1
6 ,−

1
6 ,−

1
6

)
, (E.6)

(2, 2, 1̄, 1̄) : I = n1(1, 1, 0, 0, 0, 0) + n2(0, 0, 1, 1, 0, 0),

I∗ = n1

(1
2 ,

1
2 , 0, 0, 0, 0

)
+ n2

(
0, 0, 12 ,

1
2 , 0, 0

)
, (E.7)

(2̄, 2̄) : I = n1(0, 0, 0, 0, 1, 1) + n2(0, 0, 0, 0, 1,−1),

I∗ = n1

(
0, 0, 0, 0, 12 ,

1
2

)
+ n2

(
0, 0, 0, 0, 12 ,−

1
2

)
(E.8)

in terms of the orthonormal basis. We can show that there are no vectors v which
satisfy both Nv ∈ I and kv /∈ I∗ for k = 1, · · · , N − 1. Let us consider the (1̄, 1̄, 1̄, 1̄)
twist for illustration purposes. It is easy to see that Nv/2 ∈ I∗ is satisfied for any v.
The same argument applies to the other cases.

• I = ΛR(E6)

From table 9 in [44], the twist preserving half supersymmetry is either A4
1 (order 2), A2

2
(order 3), or D4(a1) (order 4).

We start from the twist A2
2. The E6 has a A3

2 as a maximal subgroup. The twist A2
2 is

the 2π/3 rotation of the two A2s. The invariant lattice is the root lattice of the third
A2, which is I = n1(1,−1, 0) + n2(0, 1,−1). The dual of I is I∗ = n1(1/3, 1/3,−2/3) +
n2(1/3,−2/3, 1/3). Given the conditions Nv ∈ I and Nv2/2 ∈ Z, we parametrize the
shift vector as

v =
(
m1
N
,−m1 +m2

N
,
m2
N

)
, (E.9)
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where m1,2 ∈ Z and

m2
1 −m1m2 +m2

2
N

∈ Z. (E.10)

From the condition (E.10), we obtain m1 = m2 mod 3 since N is a multiple of 3. Then,
for gN/3-twisted sector, Nv/3 is an element of I∗:

N

3 v · I = 1
3
(
(2m1 +m2)n1 − (m1 + 2m2)n2

)
∈ Z. (E.11)

In order to deal with A4
1 and D4(a1) twists, we use the following parametrization of the

E6 root lattice [72]:

ΛR(E6) = n1(1, 1, 0, 0, 0, 0, 0, 0) + n2(−1, 1, 0, 0, 0, 0, 0, 0)
+ n3(0,−1, 1, 0, 0, 0, 0, 0) + n4(0, 0,−1, 1, 0, 0, 0, 0) + n5(0, 0, 0,−1, 1, 0, 0, 0)

+ n6

(1
2 ,−

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2

)
(E.12)

in terms of an eight-dimensional orthonormal lattice. Here the first four entry cor-
responds to orthonormal coordinate of the D4 lattice, and D4(a1) is the (2, 2) twist
for these four coordinates. The A4

1 is a maximal subgroup of D4, and the A4
1 is the

reflection for all A1s. The invariant lattice and its dual in these cases are

I = n1(0, 0, 0, 0,−1,−1,−1, 1) + n2(0, 0, 0, 0, 2, 0, 0, 0),

I∗ = n1

(
0, 0, 0, 0, 0,−1

3 ,−
1
3 ,

1
3

)
+ n2

(
0, 0, 0, 0, 12 ,−

1
6 ,−

1
6 ,

1
6

)
. (E.13)

We parametrize the shift vector as

v =
(
0, 0, 0, 0, 2m2 −m1

N
,−m1

N
,−m1

N
,
m1
N

)
, (E.14)

where m1,2 ∈ Z. From Nv2/2 = Z, we obtain

N
v2

2 = 2(m2
1 −m1m2 +m2

2)
N

∈ Z. (E.15)

Then, in the gN/2 twisted sector, we get

N

2 · I = 2m1n1 −m2n1 −m1n2 + 2m2n2 ∈ Z. (E.16)
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