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Abstract

Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar
physics: determining the mechanism that counterintuitively heats coronae to temperatures that are orders of
magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible
for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfvén waves. To date,
neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release
could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this
presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If
the slope of the power law fitting the flare frequency distribution is above a critical threshold, o =2 as established
in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We
performed >600 case studies of solar flares, made possible by an unprecedented number of data analysts via three
semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial,
analysis methods: preflare baseline subtraction and computation of the flare energy, which requires determining
flare start and stop times. We aggregated the results of these analyses into a statistical study to determine that
a=1.63 £0.03. This is below the critical threshold, suggesting that Alfvén waves are an important driver of

Mason et al.

coronal heating.

Unified Astronomy Thesaurus concepts: Solar physics (1476); Solar flares (1496); Astrostatistics distribu-

tions (1884)

1. Introduction

It has long been established that the slope of a power law
fitting the solar flare frequency distribution (occurrence rate
versus energy) is a strong indicator of whether nanoflares are an
important coronal heating mechanism (e.g., Hudson 1991;
Crosby et al. 1993; Veronig et al. 2002). The conceptual
reasoning is simple: a large slope means that there is a large
abundance of the smallest flares. These small flares may not
individually transport much energy, but, in aggregate, they
represent a substantial heat transfer mechanism. It is well
established in the flare literature that many flare parameteriza-
tions tend to have power-law relationships with each other
(e.g., Kahler 1982; Veronig et al. 2002; Aschwanden &
Freeland 2012; D’Huys et al. 2016). The flare frequency
distribution (FFD) is one one such relationship well described
by a power law:

dn o

E AE™°, 1)
where 7 is the number of events, E is the radiated flare energy,
A is an offset constant, and the primary parameter of interest is
the exponent, «, which manifests as a slope when fitting a line
in log-log space. If a <2, then nanoflares are not
frequent enough to contribute a sufficient amount of energy
to the corona to explain its observed ambient temperature
(Hudson 1991). Thus, the accurate determination of « is of
critical importance for addressing the longstanding coronal
heating problem.

Moreover, important points of comparison can be made
between solar and stellar FFDs that can lead to greater insights
into the mechanisms that drive the FFD and dominate heating
mechanisms (e.g., Loyd et al. 2018). For example, many stellar
studies find o < 2—consistent with much of the solar FFD
literature (e.g., Crosby et al. 1993 and 11 references in their
Table 1)—and conclude that the underlying mechanism driving
flaring and coronal heating is therefore the same as that of the
Sun (e.g., Airapetian et al. 2020 and references therein). Still
other studies find stellar FFDs with o > 2 (e.g., Maehara et al.
2012)—also consistent with some of the solar literature (e.g.,
Veronig et al. 2002). We also know that flares of all energies
(including superflares with >10** erg) tend to occur more often

for rapidly rotating stars (Machara et al. 2012; Shibayama
et al. 2013).

There is a large body of research that has focused on the
determination of « for the Sun. The ultimate goal is to obtain
the total amount of radiated energy from each flare, excluding
background radiated energy. This is a challenge. Most
studies, including this one, focus on a single wavelength
regime. Soft X-rays (SXRs) are a popular choice (e.g., Hudson
et al. 1969; Drake 1971; Veronig et al. 2002; Aschwanden &
Freeland 2012) because during a flare they experience the
greatest enhancement above their background levels and are
therefore easier to detect and characterize (Woods et al. 2004;
Rodgers et al. 2006), and they may be a better indicator of total
flare energy release than, e.g., hard X-rays (HXRs; Veronig
et al. 2002; Lee et al. 1993; Feldman et al. 1997). Furthermore,
there are now several decades of continuous measurement of
the SXR wavelength region from the NOAA Geostationary
Operational Environmental Satellites (GOES)_ X-ray Sensor
(XRS) in two channels; XRS-A from 0.5 to 4 A (aka “short”)
and XRS-B from 1 to 8 A (aka “long”). Crosby et al. (1993) list
many studies and which wavelength regime each focused on to
determine « in their Table 1. Some studies have analyzed the
global energetics spanning multiple wavelengths and acceler-
ated particles, but this detailed analysis typically can only be
done for a relatively small number of events, for example, the
38 large events studied by Emslie et al. (2012). Some studies
calculate the radiated energy in their selected wavelength
regime (e.g., Shimizu 1995), while others do not, instead
focusing on peak irradiance or other parameters to act as a
proxy for the energy (e.g., Aschwanden & Freeland 2012).
Furthermore, some studies have subtracted the background
irradiance from the flare, while others have not. Veronig et al.
(2002) found that this could have an impact on the derived
value of a, in that case bringing it from o =2.03 £0.09
without subtraction to a=1.88+0.11 with subtraction—
straddling the critical value of a=2.

While it would be ideal if these studies were done spanning
all wavelengths, that is an extremely challenging task that
would not necessarily lead to different conclusions given that
SXRs have already been established to be a reliable indicator of
the total energy release, which is partially why the GOES/
XRS-B peak measurement remains the de facto definition for
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flare magnitude. In summary, it is important to study a large
number of flares, subtract the background irradiance, and
calculate the energy. That is precisely what has been done for
the present study.

A novel aspect of this study is the large number of
contributing authors, which we call the Colorado Physics
Laboratory Academic Research Effort (C-PhLARE) Collabora-
tion. Over 1400 undergraduate students participated in an
introductory physics lab course run as a Course-based Under-
graduate Research Experience (CURE) at the University of
Colorado Boulder (Auchincloss et al. 2014). The students were
enrolled in the CURE in one of three semesters from fall of
2020 through spring of 2021. The students worked in small
teams on this research, where they chose individual flares,
removed the background irradiance, and computed the energy
of single flares. Their analysis was peer-reviewed by other
teams in the class and iteratively improved based on this
feedback. The students then submitted their final results in
memo form as a flare archive entry, which included the
calculated total energy of the flare, the peak irradiance,
beginning and ending times of the flare, and plots of the
analysis. These memos were used by the senior authors to
review the analysis and determine which flare analyses met the
standards to be included in the final data set used for the work
presented here. This process is described in detail in
Section 3.6. A more detailed description of the course,
educational objectives, and results of student learning can be
found in Werth et al. (2022c, 2022b, 2022a).

All students who were enrolled in the class were offered
authorship. To be included in the final author list, students had
to have completed the course during one of the three semesters
this project was run, earned a passing grade in the class, and
opted in to being an author through a web form. This process
resulted in 964 student coauthors. Additionally, all graduate
teaching assistants for the course during these semesters were
offered authorship, resulting in 31 additional coauthors.

The paper begins by describing the data used for this study
(Section 2), which is predominately from GOES/XRS with a
calibration check provided by the Miniature X-ray Solar
Spectrometer (MinXSS; Mason et al. 2016). Section 3 describes
the methods applied to study the flares in our data set, which
include background subtraction and energy calculation. Section 4
presents the resultant FFD and comparisons with other solar and
stellar work. Section 5 closes with a discussion.

2. Data

Two primary sources of data were used for this study:
measurements from GOES-15/XRS and MinXSS-1 (see
Table 1). Prior to GOES-16, the XRS instruments did not
have an absolute calibration. MinXSS-1, however, flew
concurrently and observed the same bandpass as GOES/XRS
(and beyond), but with spectral resolution and an absolute
calibration (Moore et al. 2016) obtained at the National
Institute of Standards and Technology (NIST) Synchrotron
Ultraviolet Radiation Facility (SURF), so we used its data as a
validation check of the GOES-based results. MinXSS-1 data
are limited to a single year (2016 May—2017 May) and the
spacecraft experienced regular (~15/day) eclipses that caused
gaps in some flare observations. GOES/XRS has provided
nearly continuous X-ray observations since 1975 from multiple
generations in the satellite series with minimal measurement
interruptions from eclipses due to a geostationary orbit. We

Mason et al.
Table 1
Key Instrument/Data Set Characteristics
GOES/XRS MinXSS-1
Bandpass XRS-A: 0.5-4 A(3-25 keV) 0.4-30 A(0.4-30 keV)
(native) XRS-B: 1-8 A(1.5-12 keV)
Bandpass used 1-8 A(1.5-12 keV) 0.4-30 A(0.4-30 keV)
Spectral 0.15 keV
resolution
Cadence 2s 10's
(native)
Cadence used 1 minute 1 minute
Dates used 2011 Jan 14 to 2018 Feb 10 2016 May 16 to 2017
May 06
Data product xrsf-12-avglm_science Level 1
Data version v1-0-0 v4.0.0

focused on GOES-15 because (1) it spans the entirety of the
most recent solar cycle, (2) it overlaps with the MinXSS-1
observations, and (3) focusing on a single satellite in the series
it avoids any concerns with cross-calibration. This study uses
the science-quality GOES-15 XRS data products from
NOAA’s National Centers for Environmental Information
(NCEI® available as of early 2020. Compared to the previously
available GOES-15 XRS data, the science-quality data use a
significantly improved background correction and remove
scaling factors applied by the Space Weather Prediction Center
(SWPC) to the XRS channel irradiance measurements (0.85
and 0.7 for XRS-A and -B, respectively) to provide the
irradiance measurements in true physical units of W m 2.
GOES/XRS L2 | minute average data were retrieved from the
Space Weather Data Portal (SWDP; SWx TREC 2019; Knuth
et al. 2020), and data for MinXSS are available from NASA’s
Solar Data Analysis Center.” A total of 18,833 flares were
identified in the 1 minute average GOES/XRS-B irradiances
by the NCEI L2 flare summary algorithm'® in the time period
listed in Table 1; Figure 1 shows the corresponding distribution
of flare classification. This flare classification nomenclature is an
alphanumeric labeling of the flare’s 1 minute-averaged peak flux
measured by GOES/XRS-B. To determine the slope of the
power law represented in Figure 1, we followed the the
recommendation in D’Huys et al. (2016) to use a maximum
likelihood estimator (MLE). They found that MLEs converge
much faster as a function of sample size than other methods. This
was not crucial for the data in Figure 1 given the large number of
events (a linear regression results in a similar value of
Opeak_irrad = 2.22 2= 0.07), but the MLE method will be important
when we determine the slope of the energy FFD («) in
Section 3.7, where the number of events is on the order of ~200.

3. Methods

The overarching procedure applied to the GOES/XRS data
are outlined here and detailed in subsequent subsections.

8 https://www.ncei.noaa.gov /data/goes-space-environment-monitor/
access/science/xrs/GOES_1-15_XRS_Science-Quality_Data_Readme.pdf

? https://sdac.virtualsolar.org /cgi/show_details?provider=LASP_
MINXSSI

19 The GOES-15 XRS 12 data products are generated using the same
algorithms as those used for the next-generation GOES-R (GOES-16 through
-19) XRS data products. Details of the L2 algorithms can be found at https://
data.ngdc.noaa.gov /platforms /solar-space-observing-satellites /goes /goes 16/
12/docs /GOES-R_XRS_L2_Data_Users_Guide.pdf
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Figure 1. Histogram of the 18,833 flares identified by NCEI for the time range specified in Table 1 using logarithmic bin widths. Note that the saturation at the
smallest flare classes is due to low signal-to-noise ratio in the instrument, but is also due to the Sun’s inherent background intensity, which can obscure the smallest
classes of flares. The slope of the power law represented here is apeak_jrraa = 2.16 = 0.01.

Working in teams of three or four, students on the project
completed the following steps:

1. Selected a flare to analyze, under the constraint that we
needed to ensure broad coverage across the entire solar
cycle and across flare classifications;

. Subtracted preflare baseline level;

. Integrated light curve over duration of flare;

. Converted to energy units;

. Cross validated another team’s result; and

. Combined the results to produce a data set of the total
energy and peak irradiance of each flare.

AN AW

After the above steps were completed by the student research
teams, senior researchers on the project completed an
individualized review of these teams’ analyses and the resulting
data, addressing items such as duplicate flares or faulty
calculations.

Finally, the resulting data set was used to produce a flare
frequency distribution and determine the best-fit value of a.

Details for each of these steps are outlined in subsections
below. We also identified three flares that received this
treatment and were also observed by MinXSS-1, which we
analyzed in order to “cross check” the absolute energy
calibration. This MinXSS analysis method is further detailed in
Section 3.8.

3.1. Flare Selection

Flares were selected for analysis by teams of 3—4 students
over three semesters, with instruction for some teams to select
different class flares to ensure we sampled the full distribution.
During the first semester, students were permitted to choose
from flares across the entire lifetime of the GOES-15 satellite,
2010 March through 2018 December. The students chose flares
mostly close to the solar minimum. In subsequent semesters,
students were asked to focus on flares closer to the solar

maximum to make sure there was coverage of the entire solar
cycle. The resulting final data set contains flares with a majority
near the solar maximum—though we note that prior studies
have searched for and failed to find any significant solar cycle
dependence in the FFD slopes (e.g., Veronig et al. 2002;
Aschwanden & Freeland 2012).

In addition, there were other factors that guided student flare
selection. For example, students were instructed to choose
single flares that did not overlap with other flares of similar or
greater irradiance. Students may have looked at the preflare
background and chosen flares with a flatter background for
simpler preflare baseline subtraction. There were cases where
multiple student teams analyzed the same flare. If a flare had
been analyzed more than twice, the research leads selected the
one closest to the mean of the set, while the flares that were
analyzed exactly twice were downselected randomly.

3.2. Preflare Baseline Subtraction

As described in Section 1, preflare baseline subtraction is a
crucial step because it reduces the impact of the baseline level
of X-rays being counted as part of the energy of the flare,
which has been shown to cause the calculation of « to straddle
the critical value of 2. While the concept of preflare baseline
determination is simple, in practice, it is not trivial. It is
common that there are either other flares just prior to the flare-
of-interest or minutes-to-hours-long trends in the irradiance due
to active region evolution. Automated methods can be
developed for this determination, but tend to rely on algorithms
with fixed thresholds for, e.g., how much variation is allowed
in the preflare baseline. As a result, many flares must be
rejected in the automated analysis for violating these thresh-
olds, which we refer to as “low throughput” for the algorithm.
In Mason et al. (2019), this throughput was 30% for preflare
baseline determination; subsequent steps in the automated
algorithm had rejection criteria of their own that further
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Figure 2. Example GOES /XRS light curve with annotations for the baseline level (horizontal dashed line) and start/stop times (vertical dashed line) as determined by
the student team for this particular event. This particular flare peaked as an M2 at 2016 July 24 06:20:00. Simple light curves like this one are ideal, but they can

become much more complex (e.g., see Mason et al. 2019).

reduced the throughput of the full algorithm. Manual
determination of the preflare baseline level can have a higher
throughput (see Section 3.6), but tends to limit the number of
events that can be studied and, thus, the statistical significance
of the final result. Our solution is to distribute the task across a
large number of undergraduate researchers.

To determine the preflare background, teams selected from a
variety of methods depending on the features of the particular
flare in question. Most were able to identify a period shortly
before the start of the flare that did not contain additional small
flare signals, and was reasonably long compared to the
timescale of the target flare (e.g., Figure 2). When this was
not possible, teams chose a method to exclude small flare
signals before averaging—for example, clipping the data at the
level of a B-class flare, or averaging only over the local minima
in a preflare region.

3.3. Flare Duration Integration

Integrating the light curve over time is another step that is
simple in concept, but nontrivial in practice. The start and stop
times have to be chosen. Additionally, flare profiles are not
always “clean”: due to subsequent flares or active region
evolution and the profile may not return directly to the prefflare
baseline. The NCEI L2 flare summary algorithm flags a flare
end time for every event: whatever time the irradiance drops to
half the peak value. This is a consistent but problematic metric
for our application because it ignores valid energy that was
released by the flare, though the end time is not as important as
the start time for determining the total energy (Ryan et al.
2016). Just as with preflare baseline determination, this step can
also be automated, but results in major caveats in the
conclusion, yet manual determination for every flare is
cumbersome. Again, the advantage of the present study is the
large number of researchers that can distribute the task. As with
the background subtraction, teams made individualized deter-
minations about the start and end points of the integration. As a
guide, many began by examining points where the flare crossed

the previously determined background level, but often made
small adjustments based on the nuances in the data for that
particular event. Note that the units of the GOES /XRS data are

W m 2 =Ts ' m 2 This time-integration step eliminates the
2

s ', leaving us with J m 2.

3.4. Conversion to Energy Units

In the GOES/XRS irradiance units, the m 2 is a normal-
ization of the flux to a shell with radius equal to the Sun—Earth
distance at the time of observation, which is 1 au on average.
To get energy independent of any particular distance scaling,
we simply multiply by 47d®, where d is the Sun—Earth distance
at the time of observation, then convert to erg for easier
comparisons with prior studies.

3.5. Cross-validation

After each team had completed at least one flare analysis,
teams exchanged analysis documents to provide dual anon-
ymous reviews of each other’s work. Each flare analysis
received reviews from multiple other students. Reviewers
identified any clearly erroneous work (for example, mistake in
unit conversion or a coding error) and assessed the reason-
ableness of the methods used for the baseline analysis and
integration. In many cases, a variety of methods would be
reasonable and produced very similar numbers, but the review
process helped, in part, to identify cases where the choice of
method was dramatically impacting the results. The teams then
received the feedback and made improvements to their analysis
before reporting the results to the collaboration.

Finally, for each flare, the student teams created an entry in a
“flare archive,” which was a formal presentation of their
analysis documents and included basic information about the
event (e.g., timestamps, classification, reference solar image), a
description of the flare’s environment (e.g., solar minimum,
close in time to other flares or not), and a description of the
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Figure 3. Peak irradiance vs. the energy determined with the methodology described in Section 3. The slope of the fit shown in red is 0.97 £ 0.04. These results are

comparable to those found in Veronig et al. (2002).

specific methods applied in Steps 2 and 3, with accompanying
plots.

3.6. Data Review

After the student data was compiled in our “flare archive,”
the senior researchers on the project were able to review the
work flare by flare as an additional check above and beyond the
review process that took place among the student teams. This
comprehensive data review involved the following steps:

1. Resolving instances of duplicate flares, where multiple

student teams chose the same flare to analyze.

Ensuring that the peak irradiance and other details

reported for each flare matched the data in the SWDP.

. Removing flares from the database that contained an
overlapping flare.

. Removing flares from the database where the preflare
background displayed a secular trend that would make
the background subtraction unreliable.

2.

The flare archive included 607 entries; removal of duplicates
left us with 350 data points; removal of unreliable data from the
remaining checks left 212, for an overall throughput of 35%.
We note that this compares favorably with attempts to use
automated algorithms to analyze similar light curves: in a
recent example, throughput for preflare baseline identification
and event start/stop times was only 17% (Mason et al. 2019).

3.7. Flare Frequency and Determination of o

Essentially all studies of flare frequency distributions
consider some subsample of all flares that occurred. Depending
on the selection method, this can inject bias. The present study
also had to subsample, and here we describe how we corrected
the bias. Because the flare analysis used a stratified flare
selection process to ensure adequate sampling (i.e., some teams
of student researchers were instructed to choose an X-class
flare, others an M-class, etc.), the frequency of various flare

types in our data set is unnaturally skewed. We cannot rely,
therefore, on the frequency of various flare types within our
sample as a reliable indicator of the actual frequency of such
flares in nature. To correct for this when producing our final
FFD, we analyzed all flares from the target period to produce a
frequency diagram of the flares by peak irradiance. That is, we
created a histogram with logarithmically spaced bins, normal-
ized by the bin width (Figure 1). By fitting the result with a
power law using the method described in D’Huys et al. (2016),
we extract an expression for dn/dI, the frequency per peak
irradiance, as a function of peak irradiance.

Then, using just the set of flares analyzed by our
collaboration, we performed another fit to the peak irradiance
as a function of their energies (Figure 3). From this, we
extracted the derivative dI/dE and, in turn, computed the
desired relationship:

dn_dndl o
dE  dl dE

Both terms on the right-hand side of Equation (2) are known
—Z—;’ as represented by Figure 1 and 5—; as represented by
Figure 3. In other words, for every flare we studied, we knew
how frequently flares of that peak irradiance should occur if
there was no bias in our selection method, and could specify
that frequency for the particular energy we calculated.
Propagation of the standard errors from the two preceding fits
produces uncertainties on the resulting d—; data points.

To determine o, we followed the recommendation made by
D’Huys et al. (2016). They note that the MLE method
described therein is a special case of a more general
Bayesian approach. In order to ingest and propagate the errors

on % and Z—é, we applied that more general Bayesian approach:

we used a Gaussian likelihood function with uniform/flat
priors to fit the model (Equation (1)) to the data. We used a
Markov Chain Monte Carlo (MCMC) method with emcee
(Foreman-Mackey et al. 2013) to sample the posterior
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Figure 4. Flare frequency distribution of the C-PhLARE Collaboration, with fit coefficients corresponding to Equation (1). The value of « is below the critical
threshold value of 2, suggesting that Alfvén waves are an important source of coronal heating.

Table 2
Comparison of GOES/XRS- and MinXSS-derived Flare Energies

Flare Peak Time (Class)

GOES/XRS-derived Flare Energy (erg)

MinXSS-1-derived Flare Energy (erg) Difference (%)

2016-07-24 06:20 (M2) 7.47 x 103 6.31 x 10°® —-18
2016-11-29 07:10 (C7) 6.04 x 1077 7.81 x 10*7 +29
2017-02-22 13:27 (C4) 1.88 x 10%® 1.64 x 103 —-15
distribution of the fit parameters. We show the FFD and line fit 4. Results

in Section 4.

3.8. MinXSS Analysis Method

Of the flares studied in the GOES-15/XRS data, three were
also observed by MinXSS-1. Their peak flare times occurred at
2016 July 24 06:20 (M2), 2016 November 29 07:10 (C7), and
2017 February 22 13:27 (C4). We applied the same basic
process described above to obtain flare energy for each:

1. Converted from the native units of photons s~

cm “keV ' toerg s~ em “keV .

2. Integrated across the 1-8 A wavelength part of the
spectrum in order to match the GOES /XRS long channel
bandpass, resulting in erg s~ cm 2.

3. Identified a preflare baseline in the light curve and
subtracted it from the light curve.

4. Identified the start and stop times of the flare (ensuring
they were close to those identified in GOES/XRS) and
integrated across the corresponding duration, resulting in
erg cm

5. Removed the cm ™2 by applying 1/1r2 for 1 au, resulting
in erg.

Steps 1, 2, and 5 were simple conversions and integrations.
Steps 3 and 4 are the key steps requiring some judgment.
Because these flares had already been analyzed in the GOES/
XRS data, we could simply use the preflare time period and
flare start/stop times as the guide for the MinXSS flares.

The flare frequency distribution, line fit, and slope («) are
shown in Figure 4.

Per Equation (1) and the discussion in Section 1, the result of
o =1.63 4+ 0.03 indicates that even at the outer bound of the
uncertainty, o < 2, suggesting that Alfvén waves, rather than
nanoflares, are the dominate mechanism of coronal heating.

4.1. Cross-checking Flare Energy

Table 2 shows the comparison of the flare energy as
determined with the GOES/XRS data and the MinXSS-1 data.
This agreement is within the expected range per Woods et al.
(2016), accounting for the small irradiance errors introduced
when using a flat spectrum in the calibration of the broadband
XRS measurements (see, e.g., Garcia 1994) and the MinXSS
absolute calibration accuracy of about 10% (Moore et al. 2016).
Therefore, we conclude that despite GOES-15/XRS not having
an absolute instrument calibration, the resultant flare energies
reported in absolute units (erg) are reasonably accurate.

4.2. Comparison with Other Studies

Table 3 places the results from this study in the context of
several others. Many solar studies do not agree with each other
to within their uncertainties, but this could be explained by
differences in methodology as highlighted in Table 3, by
uncorrected skews introduced by subsample selection effects,
or by issues with fitting methods as described by D’Huys et al.
(2016). Nevertheless, there appears to be general agreement
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among solar studies that « is less than the critical value of 2,
meaning that these studies conclude that wave coronal heating
is dominant. Table 3 also shows that, compared to solar studies,
many stellar studies have systematically higher values of «,
even exceeding o of 2 (if only just) and therefore favor the
opposite conclusion: that nanoflares explain coronal heating. It
has been reasonably suggested that the underlying physical
mechanism powering solar and stellar flares should be the same
(e.g., Maehara et al. 2017; Airapetian et al. 2020), namely that
a convection-driven dynamo generates a magnetic field that is
contorted to store energy in the corona and then abruptly freed
via magnetic reconnection to produce eruptive events. If this is
the case, then the resultant FFD power law should scale well
across solar and stellar studies. Table 3 shows that this is not
the case, but it also makes clear that the methods for all of these
studies are not uniform. Moreover, there are other nuances that
may need to be accounted for such as the strong dependence of
flare frequency on the stellar period of rotation (Notsu et al.
2013; Maehara et al. 2015; Davenport 2016).

Table 3 also shows how tantalizingly close to a =2 many
studies are, some even including the value within their
uncertainty. This itself suggests that both processes—nanoflare
heating and wave heating—are likely important. Beyond the
nuances in the data analysis method, the dominance of one
process or the other is likely dependent on a variety of factors
that are themselves dynamic with time and varying conditions.

5. Discussion

The literature on flare frequency distributions is extensive.
The key novelty in the present study is that we had an
unprecedented number of data analysts to perform a large
number of case studies that we aggregated into a statistical
study. In prior studies, it was not feasible to perform preflare
baseline subtraction and/or energy computation (which
requires determining a flare start and stop time) because it
was either labor intensive or required automated algorithms that
tended to reject a large fraction of flares. We found a preflare-
subtracted, flare energy frequency distribution with a slope of
1.63 4+ 0.03, which suggests Alfvén waves play an important
role in heating the solar corona. This result disagrees with
much of the prior stellar literature despite the reasonable
widespread assertion that the underlying physical processes
should be the same for the Sun as other stars. We argue that this
discrepancy is likely due to differences in methodology and
observational availability.

We note that, just as in the solar literature, it is difficult to
find stellar studies that have performed an energy computation
or a baseline subtraction. Solar physicists enjoy a long, nearly
unbroken record of observations—especially in SXR irradiance
via GOES/XRS and now also in extreme ultraviolet (EUV)
with GOES/EUVS—but astrophysical studies to date have
been primarily limited to time allocation on major facilities,
such as Chandra/HETGS, which makes the acquisition of
complete light curves for flares and preflare baselines difficult.
An astrophysics mission dedicated to obtaining long baseline
observations of stars in the SXR and/or EUV would be highly
beneficial to future studies seeking to determine stellar coronal
heating mechanisms that could be compared against solar
results like those presented here.

Data used for this analysis were processed at the NOAA
Space Weather Prediction Center (https://www.swpc.noaa.

11

Mason et al.

gov/) and the NOAA National Centers for Environmental
Information (NCEL https://www.ncei.noaa.gov/), and are
provided by NCEI at https://www.ngdc.noaa.gov/stp/
satellite/goes-r.html. These data were accessed via the
University of Colorado’s Space Weather Technology,
Research, and Education Center’s (https://colorado.edu/
spaceweather) Space Weather Data Portal (https://lasp.
colorado.edu/space-weather-portal). This work is supported
by National Science Foundation grant Nos. DMR-1548924,
PHY-1734006 and NASA grant NNX17AI71G.

Facilities: GOES(XRS), MinXSS.

Software: Code for this paper (Werth et al. 2023), AASTeX
(AAS Journals Team & Hendrickson 2018), astropy (Price-
Whelan et al. 2018), Google Colab, IDL, IPython (Perez &
Granger 2007), LyaPy (Youngblood & Newton 2022), mat-
plotlib (Hunter 2007), numpy (Oliphant 2006), pandas
(McKinney 2010), R (R Core Team 2021), scipy (Jones et al.
2001), seaborn (Waskom 2021), SolarSoft (Freeland &
Handy 1998).
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