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A B S T R A C T

Recent progress towards universal machine-learned interatomic potentials holds considerable promise for
materials discovery. Yet the accuracy of these potentials for predicting phase stability may still be limited. In
contrast, cluster expansions provide accurate phase stability predictions but are computationally demanding
to parameterize from first principles, especially for structures of low dimension or with a large number of
components, such as interfaces or multimetal catalysts. We overcome this trade-off via transfer learning.
Using Bayesian inference, we incorporate prior statistical knowledge from machine-learned and physics-based
potentials, enabling us to sample the most informative configurations and to efficiently fit first-principles cluster
expansions. This algorithm is tested on Pt:Ni, showing robust convergence of the mixing energies as a function
of sample size with reduced statistical fluctuations.
1. Introduction

Accurate and efficient predictions of phase stability are critical to
materials discovery. While machine-learned potentials can efficiently
explore the configurations of a phase, their precision is limited when
these configurations are not captured by the training dataset. To quan-
tify this limitation, Fig. 1 compares the accuracy of select interatomic
potentials, including pre-fitted many-body potentials (charge-optimized
many-body potential, COMB3 [1]; reactive force field, ReaxFF [2];
embedded-atom method, EAM [3]; modified embedded-atom method,
MEAM [4]) and off-the-shelf machine-learning models (crystal Hamil-
tonian graph neural network, CHGNet [5]; graph neural network with
three-body interactions, M3GNet [6]; atomistic line graph neural net-
work, ALIGNN [7]; message passing multilayer atomic cluster expan-
sion, MACE [8,9]) in predicting the stability of the face-centered cubic
Pt:Ni binary [Fig. 1(a)]. Reactive and embedded-atom physics-based
potentials (PBPs) rely on predetermined, physically formulated func-
tions, often tailored to specific chemical compositions; as such, they
may inherit some transferability beyond the limits of the training data.
In contrast, machine-learned potentials (MLPs) do not typically depend
on physical approximations; they utilize highly adaptable analytical
formulations to predict potential energies and should generally be
restricted to the regions of the configurational space that are covered
by the training dataset [10].
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As shown in Fig. 1(b), for this prototypical bimetallic alloy, MLP
and PBP energies can deviate considerably from density-functional
theory (DFT) calculations (as MLPs and PBPs may not adequately
extrapolate DFT predictions). Although the results for MEAM, EAM,
ALIGNN, and M3GNet appear relatively close to the DFT reference
for Pt:Ni, discrepancies of up to 40 meV per atom are still observed.
While MLPs and PBPs do not yet achieve the precision of DFT models,
they still carry important information about the relative energies of
the different configurations, as illustrated in Fig. 1(c), which presents
rescaled formation energies (the calculation of the scaling factor is
explained in Section 3). Convex hull diagrams are also presented in
Fig. 1(d), demonstrating that MLPs and PBPs capture the ordering of
formation energies to a reasonable extent, although they do not reliably
predict the convex hull of the stable configurations for the face-centered
cubic phase of Pt:Ni.

We circumvent this limitation by accelerating the parameterization
of cluster expansions (CEs), exploiting the latent information contained
in MLP and PBP data. CEs evaluate the energy of a lattice by summing
energy contributions from finite-size clusters across lattice sites [11,
12]. These models have been widely used to study crystalline order
and phase stability at reduced computational cost relative to DFT
calculations [13–17], and are useful for predicting free energies [13–
15,18], magnetic states [19], phase transitions [11,18,20], and defect
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Fig. 1. Accuracy of machine-learned and physics-based (reactive and embedded-atom) potentials in reproducing DFT energies [within the Perdew–Burke–Ernzerhof (PBE) generalized-
gradient approximation]. (a) 12 representative supercells (out of a dataset of 413 symmetrically inequivalent structures) for Pt:Ni. (b) Parity plots of mixing energies for
machine-learned and physics-based potentials relative to the DFT reference and (c) parity plots after optimal rescaling of the energies with respect to DFT (cf. Section 3
or a detailed description of the rescaling method). (The prefix ‘𝑟-’ indicates that the potential is rescaled.) (d) Convex hull plots for M3GNet and COMB3 using the scaled energies.
The energy points are slightly shifted with respect to the actual concentrations for ease of comparison.)
t

tability [21]. The central complication in constructing CEs is to gener-
te a dataset of DFT energies. This constraint is especially problematic
or low-dimension systems, as the absence of full translation symmetry
mplies that a large number of configurations is needed to capture
he interatomic interactions along the nonperiodic direction(s) [12,22].
onsiderable effort has been dedicated to generating cluster expansions
hat minimize prediction errors for a given training set size. While
arious machine-learning techniques, including active learning [23–
5], cross validation [23], regularization [26,27], and feature selec-
ion [26–29], are commonly employed to circumvent this bottleneck,
significant improvements in computational efficiency may be achieved
by leveraging statistical correlations extracted from MLPs and PBPs.

In what follows, we present and validate an algorithm to expedite
the fitting of cluster expansions by transfer learning. This approach ex-
ploits Bayesian inference to extract prior knowledge from MLPs/PBPs,
enabling one to identify the most informative configurations in a given
pool [27,30,31]. We show the efficacy of this method by examining
Pt:Ni intermetallics.

2. Methodology

2.1. Cluster expansion

Within cluster expansions, the formation energy 𝛥𝐸 of a configu-
ration 𝝈 of a system is expressed as the sum of energy contributions
associated with symmetrically inequivalent clusters that make up that
configuration [17,32]:

𝛥𝐸(𝝈) =
∑

𝛼
𝑚𝛼𝐽𝛼𝜋𝛼(𝝈), (1)

where 𝜋𝛼(𝝈) =
⟨
∏

𝑖 𝜑𝛼,𝑖(𝜎𝑖)
⟩

𝛼 represents a cluster product averaged over
a collection of symmetrically inequivalent clusters labeled by the index
𝛼 with 𝑖 being the site index and (𝜑𝛼,𝑖)𝛼 being a basis of orthogonal
functions of the site-dependent occupation 𝜎𝑖. Multiplicity factors (𝑚𝛼)
quantify how many times a symmetrically equivalent cluster appears
throughout the lattice and 𝐽𝛼 is the effective cluster interaction (ECI)
corresponding to the energy contribution of a cluster to the total
energy.

To derive a cluster expansion, it is necessary to determine the ECIs.
This process involves acquiring reference data, typically in the form of a
set of configurations, along with an associated vector of target energies,
which is usually obtained from first-principles calculations. Eq. (1) can
be expressed in a simplified vectorial form as [33]
2

𝜟𝐸 = 𝜫𝑱 , (2)
where the vector 𝜟𝐸 encodes the energies of the configurations, 𝑱
represents the ECIs, and 𝜫 is the matrix of cluster products. The ECIs
can be estimated as

𝑱 = 𝜫+𝜟𝐸. (3)

where 𝜫+ ≡ (𝜫⊤𝜫)−1𝜫⊤ denotes the pseudoinverse of 𝜫 .

2.2. Bayesian sampling

The Bayesian approach consists of specifying a prior distribution
over hypotheses or parameters. Using Bayes’ theorem, as new data be-
comes available, the prior is combined with the likelihood to compute
the posterior distribution. Implicitly, Bayes’ theorem can be expressed
as [34]
(

𝗉𝗈𝗌𝗍𝖾𝗋𝗂𝗈𝗋
)

=
(

𝗅𝗂𝗄𝖾𝗅𝗂𝗁𝗈𝗈𝖽
)

⋅
(

𝗉𝗋𝗂𝗈𝗋
)

∕
(

𝗆𝖺𝗋𝗀𝗂𝗇𝖺𝗅 𝗅𝗂𝗄𝖾𝗅𝗂𝗁𝗈𝗈𝖽
)

. (4)

This approach not only enables for parameter estimation but also offers
the ability to account for uncertainty and incorporate domain/empirical
knowledge using Gaussian statistical distributions  [35]. An example
of energy distribution for a collection of 𝑁 configurations is shown in
Fig. 2. The conventional functional representation of the distribution
is illustrated in Fig. 2(a). An equivalent 𝑁-dimensional vectorial de-
scription is shown in Fig. 2(b). The goal of the Bayesian sampling is
to minimize the number of first-principles calculations by identifying
a subset of configurations from a larger pool, which most effectively
capture the energy trends (the energy covariance).
The distinct advantage of the proposed method is that the kernel of
the prior statistical distribution, which encodes the energy covari-
ance, is directly derived from universal machine-learning potentials
and physics-based potentials, rather than being modeled using a
chosen metric of structural similarity.

The initial step of the sampling consists of generating the Gaussian
distribution prior

(𝜟𝐸) = |

|

|

2𝜋𝑨−1|
|

|

− 1
2 exp

(

−1
2
(𝜟𝐸 − 𝝁)⊤𝑨(𝜟𝐸 − 𝝁)

)

, (5)

where 𝜟𝐸 is a 𝑁-dimensional vector representing the energies of the 𝑁
configurations, 𝝁 = E[𝜟𝐸] is the expectation value of 𝜟𝐸, 𝑨 = 𝑲−1 is
he inverse of the covariance matrix 𝑲 , which describes the correlations
between the energies (𝑲 = E[(𝜟𝐸 − 𝝁)⊤(𝜟𝐸 − 𝝁)]), and | ⋅ | denotes the
determinant. To describe the sampling method, we rewrite (𝜟𝐸) as

(𝜟𝐸) = |

|

|

2𝜋𝑨−1|
|

|

− 1
2 exp

(

−1
(

𝜟𝐸⟂ − 𝝁⟂
)⊤
2 𝜟𝐸∥ − 𝝁∥
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Fig. 2. Functional and vectorial representations of the statistical distribution of the energies of 𝑁 configurations. (a) By calculating the average and spread of the energy of each
cluster across selected empirical potentials, one obtains a statistical energy distribution. (b) This distribution can be represented as a Gaussian probability in 𝑁-dimensional vector
space of the configurational energies.
e
c
o
i
a

2

t
a
s
E
c
e
t
i
t
s
c
c
w
(
p
d

3

u
i
s
d
a
t

×
(

𝑨⟂⟂ 𝑨⟂∥
𝑨∥⟂ 𝑨∥∥

)(

𝜟𝐸⟂ − 𝝁⟂
𝜟𝐸∥ − 𝝁∥

))

, (6)

where ∥ indicates the projection on the subspace of the sampled config-
uration and ⟂ indicates the projection out of this subspace. The prior
can then be refined by Bayesian inference using the configurations that
have been sampled at the previous iterations. Using this information,
Eq. (4) can be rewritten as

(𝜟𝐸⟂|𝜟𝐸∥ = 𝜟𝐸0) =
(

∫⟂
(𝜟𝐸⟂,𝜟𝐸0)𝑑𝜟𝐸⟂

)−1
(𝜟𝐸⟂,𝜟𝐸0), (7)

where (𝜟𝐸⟂|𝜟𝐸∥ = 𝜟𝐸0) denotes the posterior distribution obtained
by replacing 𝜟𝐸∥ with 𝜟𝐸0, which represents the energies of the
already sampled configurations, ∫⟂ (𝜟𝐸⟂,𝜟𝐸0)𝑑𝜟𝐸⟂ is the marginal
ikelihood and (𝜟𝐸⟂,𝜟𝐸0) is the likelihood-weighted prior. Eq. (7)
yields

(𝜟𝐸⟂|𝜟𝐸∥ = 𝜟𝐸0) =
|

|

|

2𝜋𝑨−1
⟂⟂

|

|

|

− 1
2 exp

(

−1
2
[

𝜟𝐸⟂ − 𝝁⟂

− 𝑨−1
⟂⟂𝑨⟂∥(𝜟𝐸0 − 𝝁∥)

] ⊤𝑨⟂⟂
[

𝜟𝐸⟂ − 𝝁⟂

− 𝑨−1
⟂⟂𝑨⟂∥(𝜟𝐸0 − 𝝁∥)

]

)

, (8)

hich can be further simplified into

(𝜟𝐸⟂|𝜟𝐸∥ = 𝜟𝐸0) = |

|

2𝜋𝑲 ′
⟂⟂

|

|

− 1
2 exp

(

−1
2
(𝜟𝐸⟂ − 𝝁′

⟂)
⊤

⋅ (𝑲 ′
⟂⟂)

−1(𝜟𝐸⟂ − 𝝁′
⟂)
)

, (9)

where 𝝁′
⟂ and 𝑲 ′

⟂⟂ stand for the mean and the covariance of the
posterior, respectively. Thus, by comparing Eqs. (8) and (9), the mean
and the covariance of the posterior can be determined iteratively as

𝑲𝑛+1 =
[

(𝑲−1
𝑛 )⟂⟂

]−1 (10)

𝝁𝑛+1 = (𝝁𝑛)⟂ −𝑲𝑛+1(𝑲−1
𝑛 )⟂∥(𝐸∥𝝈∥ − (𝝁𝑛)∥), (11)

where 𝑲𝑛 and 𝝁𝑛 are the covariance matrix and mean vector of the
prior after 𝑛 iterations, 𝐸∥ is the energy of the configuration 𝝈∥ that
has been newly sampled at the current (𝑛th) iteration.

In Eqs. (10) and (11), the configuration 𝝈∥ that is sampled (that
is, the configuration whose energy will be calculated at the DFT level
at the next step of the iterative process) is the one that results in the
largest reduction in the uncertainty of the posterior, which is repre-
sented as the area 𝑆𝑛⟂ of the 𝝁-centered projection of the prior along
the direction of the configuration 𝝈𝑛, as illustrated in Fig. 3. In this
example, because 𝑆 is the lowest cross-section area, the configuration
3

2⟂ o
𝝈∥ = 𝝈2 will be selected, as this choice will result in maximal reduction
of the posterior uncertainty. Analytically, 𝑆𝑛⟂ is calculated as the
determinant of the covariance matrix 𝑲⟂⟂ = 𝑨−1

⟂⟂ after removing the
row and column corresponding to that configuration from the inverse
covariance matrix 𝑨. One of the benefits of the Bayesian approach
is the ability to quantify uncertainties 𝛥𝐸(𝝈) = 2

(

𝝈⊤𝑲𝑛+1𝝈
)
1
2 and

𝛥𝐽 (𝜶) = 2
(

𝜶⊤𝑲𝑛+1𝜶
)
1
2 associated to energy predictions and cluster-

xpansion parameters, where 𝜶 = (𝜋𝛼(𝝈𝑛))𝑛 is the vector representing
luster 𝛼 across the configurational space. The detailed implementation
f the Bayesian sampling approach is described in the supplementary
nformation (SI). The next section (Section 3) presents its application
nd validation in predicting the stability of Pt:Ni binaries.

.3. Simulations

The Quantum ESPRESSO suite for plane-wave materials simula-
ions was used to perform the DFT calculations [36,37]. Projector-
ugmented-wave pseudopotentials from the library PseudoDojo were
elected to represent the ionic cores [38] and the Perdew–Burke–
rnzerhof (PBE) [39] exchange–correlation functional was used to
alculate the energies. The kinetic energy cutoffs for the plane waves
xpansion of wavefunctions and electronic charge density were set
o 80 Ry and 320 Ry, respectively. To sample the Brillouin zone
n reciprocal space, the 𝒌-point density was set to 0.025 Å−1. Elec-
ronic occupations were smoothened using the Marzari–Vanderbilt cold
mearing [40], with a smearing width of 0.01 Ry. These kinetic energy
utoffs, 𝒌-points, and smearing width were found to be sufficient to
onverge the total energies within 1 meV per atom and the forces
ithin 1 meV/Å. Classical simulations were performed in the LAMMPS
large-scale atomic/molecular massively parallel simulator) software
rogram [41]. The interatomic potentials follow the parameterization
escribed in Refs. [2–4,42].

. Results and discussion

To validate the Bayesian sampling, a database of 413 symmetrically
nique configurations of Pt:Ni mixtures was produced, correspond-
ng to all distinct supercells with up to eight atoms using the ICET
oftware package [33,43]. As previously stated, our objective is to
ecrease the number of first-principles calculations required within
n extensive training set. This approach utilizes Bayesian analysis
o obtain a prior from MLPs and PBPs, facilitating the recognition
f the most relevant configurations in the training set. In specific
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Fig. 3. Evaluation of the posterior uncertainty by examining cross sections (representing the marginal probability distributions) of the prior Gaussian distribution. The estimated
uncertainty of the posterior obtained by sampling configuration 𝝈𝑛 equals the area 𝑆𝑛⟂ of the associated cross section going through the mean 𝝁 of the Gaussian distribution. The
configuration to be sampled is the one minimizing the cross-sectional area (the marginal uncertainty); here, the configuration 𝝈2.
c
a
t
a
t
t
a
s
w

a
o
D
t
o
i
t
a
c
a
s

Fig. 4. Root mean squared error (RMSE) of the cluster expansion using Bayesian and
uniform sampling as a function of the number of sampling iterations (the number of
DFT calculations). RMSE is estimated against a cluster expansion derived from the
complete dataset of fully converged DFT energies.

terms, we employed a total of eight interatomic potentials to com-
pute the energy of all structures in our dataset. These encompassed
embedded-atom potentials (EAM [3], MEAM [4]), reactive many-body
otentials (COMB3 [1], ReaxFF [2]), and machine-learned potentials
CHGNet [5], M3GNet [6], ALIGNN [7], MACE [8,9]).
Our approach relies on the premise that the prior captures cor-

relations between the formation energies of the configurations. We
systematically tested this hypothesis by comparing the formation en-
ergies calculated from DFT to those computed with the interatomic
potentials mentioned in the preceding paragraph. As shown in Fig. 1(a),
there exist significant discrepancies between the DFT and MLP/PBP en-
ergies. However, these discrepancies do not imply that these potentials
cannot provide exploitable information. In fact, upon renormalizing the
empirical energies from MLPs or PBPs by the scaling factor

𝛼 =
[

(𝜟𝐸̃)⊤𝜟𝐸̃
]−1 [(𝜟𝐸̃)⊤𝜟𝐸

]

(12)

(where 𝜟𝐸 represents the DFT energies and 𝜟𝐸̃ is the energy calcu-
lated using the MLP/PBP empirical potential), a close correspondence
is found between the DFT and empirical trends, suggesting that the
ordering of the calculated empirical energies is qualitatively consistent
with its DFT counterpart [Fig. 1(b)]. In practice, the calculation of the
rescaling factor is repeated for all the interatomic potentials at each
iteration, allowing for the gradual improvement of the empirical trends
with the progressive incorporation of new DFT energies. After few
iterations, the rescaled potentials closely capture energy correlations.

Next, a cluster expansion was parameterized, incorporating clusters
up to the fourth order, with cutoff distances of 10 Å for pairs, 7.5 Å for
triplets, and 5 Å for quadruplets. This cluster space was composed of a
total of 130 parameters, distributed as follows: 1 zerolet, 1 singlet, 17
pairs, 76 triplets, and 35 quadruplets. To analyze how the performance
of the approach is affected by increasing the number of DFT calcula-
tions in each iteration, we generated a learning curve by assessing the
root mean squared error (RMSE) against a cluster expansion derived
4

e

solely from DFT calculations. It should be mentioned that 370 out of
the initial 413 structures were successfully converged during the DFT
calculations. Structures that did not converge were excluded from our
interatomic potentials database.

We derived the prior distribution by utilizing eight different in-
teratomic potentials with statistical weights representing the amount
of information contained in each of them, as explained in Sec. S4 of
the SI. The prior was employed in the iterative process of minimizing
uncertainty to select the optimal configurations. The performance of the
resulting Bayesian sampling method is compared to randomly sampling
(uniform sampling) the structures in Fig. 4, which depicts the root mean
squared error of the Bayesian and random cluster expansion models
with respect to a cluster expansion model solely derived from DFT
calculations. A notable difference in the convergence of the RMSE is
observed, especially at the initial stages of iterations where Bayesian
sampling leads to an immediate decrease of the RMSE. After the 60th
iteration, uniform sampling seems to outperform Bayesian sampling
because it may better capture configurations away from the convex hull
where the accuracy of MLPs/PBPs is expected to deteriorate (as these
high-energy configurations are generally less represented in MLP/PBP
training). However, as shown in Fig. 5(a), the convex hull generated
using uniform sampling at iteration 60 noticeably differs from the
convex hull created using all available training structures, while the
Bayesian convex hull is already very close to the DFT target.

To correctly assess the convergence of the convex hull, we intro-
duce a direct metric of convex hull accuracy, the areal convex hull
error (ACHE), obtained by calculating the area between the convex
hulls, as depicted in Fig. 5. Changes in ACHE along the iterative
ycle are reported in Fig. 5(d). A noteworthy observation is the close
lignment between the Bayesian and DFT curves after 20–40 itera-
ions, while uniform sampling requires 150–170 iterations to reach
n ACHE accuracy of 3 meV. Additionally, with Bayesian sampling,
he correct prediction of the convex hull is achieved after 100 itera-
ions, whereas uniform sampling provides consistent predictions only
fter 250 iterations. These observations demonstrate that Bayesian
ampling significantly reduces the number of DFT steps in building
ell-converged cluster expansions.
It is worth noting that further computational acceleration would be

chieved by opting for a batch selection strategy at each iteration (as
pposed to processing individual structures) and by conducting parallel
FT calculations for the selected batch. To assess the effectiveness of
his approach, we conducted a test by calculating the DFT energy for 5
r 10 structures in each iteration. The results demonstrated a marginal
ncrease in the number of DFT calculations required. With a batch of 5,
he model achieved convergence after 105 DFT calculations, while for
batch of 10, convergence was attained after 110 DFT calculations. In
ontrast, the single-structure selection approach reached convergence
fter 100 DFT calculations. Therefore, it is advisable to employ batch
election to minimize computational time in generating accurate cluster

xpansions.
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Fig. 5. Cluster expansion performance as a function of the number of sampling iterations. The energy points associated with uniform (Bayesian) sampling are slightly shifted to
he right (left) of the actual concentrations for ease of comparison. Convex hull diagrams after (a) 60 iterations, (b) 100 iterations, and (c) 250 iterations. (d) Areal convex hull
rror (ACHE) between the Bayesian sampling and DFT, and uniform sampling and DFT as function of the number of iterations. The areal convex hull errors (ACHEs) are shown
s the colored (orange and green) transparent regions in panel (a) for Bayesian and uniform sampling, respectively.
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. Conclusion

We introduced a Bayesian selection algorithm to expedite the robust
arameterization of accurate cluster expansions using covariance infor-
ation extracted from machine-learned and physics-based interatomic
otentials. This prior enables one to identify the most informative
tructures within a training set for model construction. The energies
f the selected structures are calculated at the DFT level. The prior
s then updated by incorporating the computed DFT energies. Ap-
lying this iterative approach to a prototypical Pt:Ni alloy provided
ell-converged CE at a fraction of the computational cost of uniform
ampling. Importantly, much lower statistical fluctuations were ob-
erved using Bayesian inference. Further acceleration was attained by
electing a batch of structures at each iteration rather than perform-
ng DFT calculations for single structures. This algorithm provides a
owerful approach for future studies of multicomponent interfaces and
aterials at finite temperature.
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