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1 Introduction and summary

The Swampland program has given detailed insights about the boundaries of moduli spaces
in quantum gravitational theories. In particular the distance conjecture [1] combined with
the emergent string conjecture [2] has led to a complete characterization of how the masses of
towers of light particles decay as asymptotic boundaries of moduli space are approached (see
also [3] and [4] for a recent review). Therefore in these regions the effective theory of gravity
needs to include a large number of light degrees of freedom. The species scale Λs [5–8] provides
a measure for the number of light species and, as anticipated from the distance conjecture,
has to decrease as we traverse large distances in field space [9, 10]. As explained in [11],
the emergent string conjecture fixes the exponential decay rate of this cut-off scale. Further
detailed studies of the species scale in asymptotic regimes have been carried out in [12].
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However, since the species scale can be regarded as an invariant way to capture towers
of light states, it can also be used to study light towers of states away from asymptotic
boundaries where in general it might be difficult to identify the exact spectrum of states. For
the particular case of Calabi-Yau threefold compactifications of Type II string theory, it was
shown in [13] that the behavior of the species scale as a function of moduli can be effectively
computed by considering a certain R2-correction to the effective action. More precisely, due
to supersymmetric protection, the dependence of the R2-term on the scalars in the vector
multiplets can be calculated explicitly using the one-loop topological string free energy F1 [14]
leading to the evaluation of the species scale M2

pl/Λ2
s = F1 everywhere in vector multiplet

moduli space. And indeed, as shown in [13], the behavior of the species scale defined via the
higher-derivative term matches the results obtained by studying the details of the light tower
of states in the asymptotic regimes of moduli space. More importantly, for the first time,
the identification between F1 and the species scale allowed one to study the behavior of the
species scale in the interior of the moduli space of a theory. The identification between F1
and the species scale has been further supported using black hole entropy arguments in [15].1

We argued in [11] that in general the coefficients of generic higher-curvature terms in the
effective action capture the moduli dependence of the species scale. This in principle can
be used to generalize the 4d N = 2 results to any general gravitational theories — provided
the moduli dependence of the higher-derivative terms can be calculated explicitly. Still,
even without having access to the explicit coefficients of the higher-derivative terms, we
showed in [11] that consistency of the perturbative expansion is enough to constrain the
slope of the species scale as

|∇Λs|2

Λ2
s

≤ c

Md−2
pl

. (1.1)

This bound is saturated in asymptotic regions of field space where the emergent string
conjecture predicts an exponentially decaying species scale. The general EFT argument
alone does not, however, fix the O(1) coefficient c appearing in the above bound though the
emergent string conjecture [2] leads to the prediction [11] that, at least asymptotically, the
bound is satisfied with c = 1

d−2 . Nevertheless, the examples studied in [11] suggested that
the bound with this value of c may in fact be violated in the interior of field space.

Knowledge of the behavior of the species scale in the interior of moduli space allows us
to have some global insights into physical aspects of the moduli space. In particular, we can
identify special points where the species scale is maximized, dubbed ‘desert points’ in the
spirit of [18]. These points can be viewed as the center of moduli space where the amount of
light states is minimized. In addition, the species scale can be used to identify the effective
diameter of the moduli space at a cut-off scale µ. In order for the EFT description to be valid
at a cut-off scale µ, we need to require µ ≤ Λs. Having a moduli-dependent expression for
the species scale therefore allows us to exactly determine these regions and thus identify the
diameter of the moduli space available at any cut-off scale µ. For Type II compactifications

1See also [16] for a detailed analysis of the relation between species scale and black hole thermodynamics
and [17] for an extension of the relation between modular invariant functions, such as F1, and the species
scale to 4d theories with potentials.
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on Calabi-Yau threefolds with mildly broken supersymmetry, a similar notion of the diameter
of the field space was considered in [19] by considering regions available for a slowly varying
positive potential due to the condition V < Λ2

s. Furthermore, in [20] it was proposed that
the gradient of the species scale bounds the slope of the scalar potential from below.

The goal of this paper is two-fold: first we extend the study of the species scale via
higher-derivative terms to theories in higher dimensions in order to gather further evidence for
the proposed relation between species scale and higher-derivative terms. To that end we focus
on theories with eight supercharges in five and six dimensions, where we consider the R2-term
studied already in 4d N = 2 [11, 13] and theories with 16 and 32 supercharges for which R4-
couplings are used to compute the species scale. Again, we compare the asymptotic behavior
with the expected behavior predicted by the properties of light towers of states. Second we
aim to use the respective higher-curvature couplings to infer the properties of the species scale
in the interior of field space to identify the desert points and the diameter of field space in
these classes of theories. In particular, we also study the slope of the species scale in order to
confirm the bound (1.1) and find evidence that the O(1) constant appearing in it is given by
the naive expectation c = 1

d−2 . We explain why the apparent counter-examples found in [11]
may be avoided if we delete the contribution of fields within the EFT to the species scale.

The rest of this paper is structured as follows: in the remainder of this section, we provide
a summary of the main results of the analysis presented in this paper. In section 2, we
provide a review of how to extract the species scale from the coefficient of higher-derivative
terms in general effective theories of gravity and introduce the main quantities that we
calculate for the different classes of theories in the following sections. In section 3, we consider
theories with maximal supersymmetry in d ≥ 8 and study the properties of the species scale
using the coefficient of a certain R4-coupling. In section 4, we perform a similar analysis for
theories with 16 supercharges focusing on d ≥ 9. In section 5, we then turn to theories with
eight supercharges in six and five dimensions and use certain supersymmetrically protected
R2-couplings to study the properties of the species scale. Based on the results of these
sections, we then revisit the bound (1.1) in section 6 and argue how a proper treatment of
the massless modes suggests c = 1

d−2 . The appendices contain some useful details about
Eisenstein series that appear in the coefficients of the R4-term in various dimensions and
on the F-theory geometries considered in section 5.

Summary of results. We study the species scale in theories with 32, 16 and 8 supercharges
by considering the moduli dependence of higher-derivative corrections at the eight- and four-
derivative level. The location of the desert point and the value of the species scale at the
desert point depend crucially on the details of the theory in consideration. The values of the
species scale at the desert points of the different theories are summarized in table 1. The
diameter, diam(µ), of the region of moduli space for which Λs ≥ µ has the general form2

diam(µ) = −α log
[

µ

Mpl

]
+ b . (1.2)

2The logarithmic dependence of the diameter of the moduli space on the cut-off scale has previously been
observed in [21, 22].
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Example desert species scale diameter coef. α diameter coef. b

10d IIA 0.755 8
√
2 −2.12

10d IIB 0.756 2
√
2 −0.073

9d M-theory on T 2 0.513 14 −7.978

8d M-theory on T 3 0.504
√
42 −4.309

10d Heterotic E8 × E8 0.823 8
√
2 −1.14

10d Heterotic SO(32) 0.822 4
√
2 0.14

6d F-theory on dPr (9− r)−1/4 ∗

2

log
[

2
9−r

]∗
6d F-theory on Fn≤2

(
2−3/4

)∗
− log[

√
n]∗

6d F-theory on Fn>2
(

n1/4
√

2+n

)∗
5d M-theory on X(2,86) 0.490∗

√
3 −3.903∗

Table 1. Summary of the results for the maximal value of the species scale (the desert point) and
the coefficients α and b for the diameter of the field space (1.2) in the examples discussed in this
work (all in Planck units, the asterisks denote that in these cases we cannot determine the overall
normalization, and therefore only compare different backgrounds).

This diameter is defined as the maximum of the distance between any pair of points in
this region. For µ ≪ 1 this distance is maximized if at least one of the points lies in an
infinite-distance region. If the other point lies in the interior, the coefficient α is determined
by the exponent of the species scale in this asymptotic regime [19]. Alternatively, the other
point may lie in an inequivalent infinite-distance region. In this case, we find α to be given
by a certain combination of the species scale’s exponents in the two infinite-distance regimes
which — in the case that the geodesic connecting the two points traverses through the interior
of the region Λs ≥ µ — simply reduces to the sum [19]. The values of α for the theories
we considered in this work are summarized in table 1. On the other hand, the coefficient
b which is expected to be O(1) is not as easy to determine and in most cases is negative
(cf. table 1). This implies that the asymptotic behavior generically gives an overestimation
for the diameter of the moduli space.

In the maximally supersymmetric case, the coupling of a certain R4 term is protected by
supersymmetry and we show that in d ≥ 8 it correctly captures the dependence of the species
scale on all moduli. In particular, comparison with the Planck mass in 11d M-theory fixes
the overall normalization of the species scale. At the perturbative level, this coupling only
receives tree-level and one-loop contributions, but it can also receive further non-perturbative
corrections depending on the details of the theory in consideration. In ten-dimensional Type
IIA string theory, these non-perturbative corrections are absent. In this case, the tree-level
term correctly captures the behavior of the species scale in the weak-coupling limit whereas
the one-loop term dominates at strong-coupling. As we will show by merely comparing the
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behavior of this one-loop correction with the general expectation for the species scale, one
can infer the existence of an eleven-dimensional effective theory of gravity at strong coupling.
In other words, without using detailed information about the exact spectrum of states, the
one-loop correction to Type IIA string theory knows about the existence of M-theory!

On the other hand, for Type IIB string theory it is precisely the D(-1)-instanton corrections
that render the coefficient of the R4-coupling modular invariant and ensure that the species
scale in the strong coupling limit of Type IIB is again an emergent string limit. The species
scale of Type IIB is maximized at the value for the axio-dilaton corresponding to the third
root of unity where it evaluates roughly to 3

4Mpl, similar but slightly higher than Type
IIA. Compactifying maximally supersymmetric theories on tori, we have the species scale of
these theories can be expressed through generalized Eisenstein series [23–32]. The modular
properties of these functions allow us to identify the desert points as certain fixed points of
the U -duality groups of the maximally supersymmetric theories. The values for the species
scale and the dependence of the diameter of the field space as a function of the cut-off
scale are summarized in table 1.

In theories with 16 supercharges, the first non-vanishing higher-derivative terms continue
to arise at the eight-derivative level. The R4-coupling in this case is not protected by
supersymmetry but, as reviewed in [33], the leading perturbative corrections beyond the
one-loop level are expected to vanish. The known corrections to the R4-coupling have been
calculated in [33] and we show that, in case these give the exact expression, they reproduce
the expected behavior for the species scale. This provides further support to the claim
in [33] for the exactness of their computation. Additionally, in theories with 16 supercharges,
there exists another R4 coupling that arises at one-loop and is protected by supersymmetry.
Whereas this coupling does not capture the behavior of the species scale in emergent string
limits, we show that for the heterotic SO(32) string on S1 (with Wilson lines breaking the
gauge group to SO(16)× SO(16)) this one-loop term captures the dependence of the species
scale on the radial modulus correctly and serves as a good approximation to the actual species
scale. This illustrates that generically (but not always) the higher-derivative corrections that
are protected by supersymmetry do capture scaling behavior of the species scale correctly
and provide a useful upper bound for the species scale.

Finally, we consider theories with eight supercharges in five and six dimensions where
the species scale can be computed by the same R2-coupling considered in 4d N = 2 theories
in [11, 13]. Unlike in the 4d case, the coefficient of this coupling in the higher-dimensional
theories does not receive quantum corrections and is purely given by the geometry of the
compactification manifold. We show that also in five and six dimensions the asymptotic
behavior of the species scale is correctly captured by the coefficient of the R2-term from
which we infer the behavior of the species scale also in the interior. Unlike in the theories
with 16 and 32 supercharges, our methods do not fix the overall normalization of the species
scale in terms of the higher-curvature corrections.

In general, we find that in all the examples we consider the |∇Λs|2/Λ2
s is always bounded

by 1
d−2 except for two cases: 4d N = 2 where the corrections to the coefficient of the

R2-coupling in emergent string limits force the slope to approach its asymptotic value from
above and in 8d maximal supergravity where the same happens for the slope of the coefficient
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of the R4-coupling. In both cases, the correction that pushes |∇Λs|2/Λ2
s above 1

d−2 as we
approach emergent string limits is logarithmic in the moduli and can be traced back to the
running of the coupling due to the light states already present in the EFT. We argue that,
since the species scale should account for the light, but massive, states beyond the EFT,
this logarithmic running of the coupling should not be part of the definition of the species
scale. Similarly the behavior of the species scale close to a conifold point is dominated by the
contribution of the light hypermultiplet; treating this case carefully, we show that also in
this case the slope is bounded by 1

d−2 from above. Taking all of these considerations into
account, we can refine the bound in (1.1) as

|∇Λs|2

Λ2
s

≤ 1
d − 2 , (1.3)

in Planck units. As one of the main results of this paper, based on our analysis, we propose that
in a consistent theory of gravity this bound is always satisfied at any point in the moduli space.

2 Species scale from higher-curvature corrections

In this section, we review the definition of the species scale in terms of higher-curvature
corrections and lay out the general strategy for our example analysis in the following sections.
Consider a general theory of Einstein gravity in d-dimensions coupled to a massless (or light)
scalar field with two-derivative action

S =
Md−2

pl,d
2

∫
ddx

√
−g

(
R − 1

2(∂ϕ)2
)

. (2.1)

Here, Mpl,d is the d-dimensional Planck scale; for most of our analysis we work in d-dimensional
Planck units and set Mpl,d = 1, unless it is needed for clarity. In general, this effective action
receives corrections by higher-derivative terms that encode the effects of quantum gravity
at the effective field theory level. These corrections can be parameterized as

Scorr. =
Md−2

pl,d
2

∫
ddx

√
−g

( ∞∑
n=2

an(ϕ)
O2n(R)
M2n−2

pl,d

)
, (2.2)

where O2n are dimension-2n operators formed from contractions of the Riemann tensor
R. In this parametrization, the coefficients an(ϕ) encode the information about the UV
completion of the effective theory of gravity. If all these coefficients were independent of ϕ

and were of O(1), the expansion of the effective gravity action in higher-derivative terms
would break-down at curvatures of order of the Planck scale. However, in consistent theories
of gravity, we typically expect that there are additional light states beyond the massless level.
As argued in [5], these effectively cause the scale at which the effective description of gravity
breaks down to be lowered below the Planck scale. This new scale is typically referred to
as the species scale, Λs. Since the number of light states in a theory varies as a function of
the vev for the moduli, so does Λs = Λs(ϕ). From the perspective of the higher-curvature
terms in (2.2), a breakdown of the perturbative expansion at scale Λs(ϕ) implies that the
coefficients an(ϕ) satisfy the general bound

an(ϕ) ≤
(

Mpl,d
Λs(ϕ)

)2n−2
ân , (2.3)

– 6 –
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where ân is a theory-dependent moduli-independent constant. On general grounds, we expect
only a finite amount of fine-tuning among the higher-derivative terms [34]. This implies that
only a few coefficients do not saturate this bound. In other words, the field-dependence of
the coefficients of generic higher-curvature terms should capture the behavior of the species
scale as a function of moduli — up to the coefficient ân.

To infer the dependence of the species scale on the scalar fields, we hence need to
calculate the coefficients an(ϕ) of the higher-curvature corrections. In general, this is a
difficult task as typically closed expressions for an(ϕ) for general n are unknown. Still, in
favorable cases certain coefficients can be evaluated explicitly for any ϕ. This is, e.g., the
case in supersymmetric setups where certain higher-curvature corrections are protected by
supersymmetry. However, supersymmetry may also prevent certain higher-curvature terms
from appearing in the effective action. If this is the case, the parametrization (2.3) tells
us that ân = 0 for this term and the term cannot be used to infer the dependence of the
species scale on ϕ. To extract non-trivial information about the ϕ-dependence of the species
scale, we therefore need to find a term in the higher-curvature expansion that is protected by
supersymmetry but has ân ̸= 0. Assuming that we have found an operator On0(R) whose
coefficient is non-zero and can be evaluated explicitly, we identify the species scale as

Λs

Mpl,d
=
(

an0(ϕ)
ân0

) 1
2−2n0

. (2.4)

Strictly speaking, this gives us an upper bound on the species scale since in principle we
should consider all terms in the effective action and take the supremum of all possible values.
In maximal and half-maximal supergravities, we consider n0 = 4 where we can fix â4 by
comparison with the Planck scale of 11d M-theory. For theories with 8 supercharges, we
consider n0 = 2. However, as we cannot compute the dependence of a2(ϕ) on all moduli,
â2 is not fixed here.

Once we identify a higher-derivative term whose coefficient we can calculate reliably, we
can infer important information about the theory without knowing the exact spectrum of
light states but just from the properties of the species scale.

Asymptotic behavior of Λs. According to the Distance and Emergent String Conjec-
tures [1, 2], at infinite distances in moduli space, a dual weakly-coupled description emerges
corresponding either to a perturbative string limit or a decompactification to a higher-
dimensional theory. The emergence of this dual theory is signalled by a tower of states
becoming exponentially light in Planck units. In the perturbative string limit, the species
scale reduces to the string scale of the emergent string and in the decompactification limits is
identified with the higher-dimensional Planck scale. In both cases, the species scale decays ex-
ponentially Λs ∼ e−γ∆ϕMpl,d in the field space distance ∆ϕ where ϕ is the field parametrizing
the infinite-distance limit. The coefficient γ for a decompactification from d to D dimensions
and a d-dimensional emergent string limit is respectively given by [11] (see also [3, 12])

γd→D
decomp. =

√
D − d

(D − 2)(d − 2) , γstring = 1√
d − 2

. (2.5)

– 7 –
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By computing the slope of the higher-derivative coefficient in the asymptotic limit, we
can therefore infer the nature of the asymptotic limit without detailed knowledge of the
spectrum of light states.

Slope of Λs. In [11] we argued, based on the consistency of the higher-derivative expansion,
that the slope of the species scale should be bounded from above as

|∇Λs|2

Λ2
s

≤ c

Md−2
pl

, (2.6)

for some c ∼ O(1). Given the identification (2.4), this bound can be checked in explicit setups
where certain higher-curvature corrections can be computed exactly. This bound should
hold anywhere in moduli space including the interior. On the other hand, in asymptotic
infinite-distance regimes, the slope of the species scale is expected to become constant,
implying that it decays exponentially in the field distance. Based purely on the properties
of the coefficient an0(ϕ) and without prior knowledge of the states in the theory, we can
then infer important properties of the theory in the asymptotic region. Comparison with
the coefficients (2.5) suggests that the O(1) constant is fixed to

c = 1
d − 2 . (2.7)

We verify this refined bound in the large class of examples considered in this work.

Consistency under dimensional reduction. As a simple application, we can consider the
behavior of the higher-derivative terms under dimensional reduction of the theory. Therefore,
let us start with a D-dimensional theory and assume we have identified a higher-curvature
operator On0(R) whose coefficient, aD

n0(ϕ), can be determined explicitly. Let us therefore
focus on the term

Scorr. =
MD−2

pl,D
2

∫
dDx

√
−gD aD

n0(ϕ)
On0(R)
M2n0−2

pl,D
. (2.8)

If we compactify this theory on a (D − d)-dimensional manifold with volume V MD−d
pl,D = V

such that

Md−2
pl,d = Md−2

pl,DV . (2.9)

Then, a dimensional reduction of the term in (2.8) yields

Scorr. →
Md−2

pl,d
2

∫
ddx

√
−gd

(
aD

n0(ϕ)V
2n0−2

d−2

) On0(R)
M2n0−2

pl,d
. (2.10)

The terms in the brackets can be identified as a contribution to the higher-derivative coefficient
in the lower-dimensional theory

ad
n0(ϕ,V) = aD

n0(ϕ)V
2n0−2

d−2 + . . . , (2.11)
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where the dots indicate corrections that arise in the lower-dimensional theory. However,
since aD

n0 is exact, these corrections have to be sub-leading in the limit V → ∞. The species
scale in the limit V → ∞ is therefore given by(

Λs

Mpl,d

)2−2n0

= ad
n0(ϕ,V) . (2.12)

Let us assume that we take a homogeneous decompactification limit such that we can write
V = e(D−d)σ. The metric for the field space spanned by σ is given by (cf. [11])

ds2 = (D − 2)(D − d)
(d − 2) (dσ)2 , (2.13)

such that, as a function of the field space distance ∆σ, the species scale in the limit σ → ∞
scales as

Λs

Mpl,d
∼ e

−
√

D−d
(D−2)(d−2) ∆σ

, (2.14)

in accordance with our expectation (2.5) for a decompactification from d to D-dimensions.

Desert point. The benefit of defining the species scale via higher-derivative corrections
is that it allows us to calculate the species scale in the bulk of the moduli space, i.e., away
from the asymptotic regimes. Of particular interest are the points in the moduli space at
which Λs is maximized, i.e., the desert points of the theory [18]. Besides the location of these
points in the moduli space, the value of Λs at the desert is of interest as it gives an estimate
for the smallest number of light states a theory of gravity can have. Since light states can
only decrease the quantum gravity cut-off, we expect that the value of Λs at the desert point
is bounded from above by the Planck scale. We confirm this in the examples below. We
also want to point out that the species scale can have saddle points and not just maxima, as
happens, e.g., for 10d Type IIB at self-dual coupling, see section 3.2 for more details.

Diameter of moduli space. Let us consider the low-energy EFT at a cut-off scale µ.
Since the species scale vanishes asymptotically in infinite-distance limits it eventually drops
below µ and the effective field description breaks down. Therefore, the part of the moduli
space where Λs ≥ µ and the EFT is valid is compact. A useful quantity that we can associate
to this compact space is its diameter, diam(µ), which is the maximum of the distance between
any pair of points on the moduli space. To get the largest distance in moduli space for a
given µ, at least one of the points needs to lie on the boundary of the region Λs ≥ µ. This
means that for small µ ≪ Mpl,d, this point needs to lie in one of the asymptotic regions where

Λs ∼ Ae−γ∆ϕ . (2.15)

The diameter for small µ then schematically takes the form

diam(µ) = −α log
(

µ

Mpl,d

)
+ b , (2.16)

– 9 –
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where b accounts for the coefficient A and the size of the interior of the moduli space where
the species scale does not feature an exponential behavior. Via (2.5), α is (inversely) related
to the exponent γ of the species scale in infinite-distance limits. If the diameter is set by
the distance between two points lying in inequivalent asymptotic regions, the coefficient α

will be some combination of the (inverse) exponents of the species scale in the two regions.
Whenever the geodesic connecting these regions passes through the interior it will simply
be their sum; otherwise, it will depend on the structure of the moduli space, see section 3.3
on 9d M-theory on T 2 for an example.

3 Species scale and 32 supercharges

The first instance to which we apply our general approach corresponds to maximally super-
symmetric cases. Therefore, consider the first few higher-derivative terms in the effective
supergravity action in the following schematic form

Scorr. =
Md−2

pl,d
2

∫
ddx

√
−g

(
a2(ϕ)
M2

pl
R2 + a3(ϕ)

M3
pl

R3 + a4(ϕ)
M4

pl
R4 + . . .

)
(3.1)

Via (2.3), we can relate the ai(ϕ) to the species scale. However, in theories with 32 supercharges
the R2 and R3 corrections vanish identically implying â2 = â3 = 0. Therefore, we cannot use
these terms to infer the species scale, but instead we need to go to the operators involving four
powers of the Riemann tensor. Theories with 32 supercharges can be obtained from toroidal
compactifications of M-theory in eleven dimensions. In eleven-dimensional supergravity, there
exists a single independent contraction of four Riemann tensors

J0 =
(

t8t8 −
1
24ϵ11ϵ11

)
R4 , (3.2)

where t8 and ϵ11 are tensors whose exact form can be found, e.g., in appendix B of [35].
Since M-theory does not have a moduli space, the coefficient of this R4 is just a constant
and the species scale is simply given by Mpl,11. Given (2.3), we can hence read off â4 as
the coefficient of the R4-term in the effective action [24]

S11,R4 =
M3

pl,11
2

∫
d11x

√
−g â4

(
t8t8 −

1
24ϵ11ϵ11

)
R4 , â4 = 1

18 · 214 · (2π) 10
3

. (3.3)

As shown in [24], this term can be obtained by considering four-graviton scattering in eleven
dimensions at one loop with the state running in the loop corresponding to the massless
supergraviton in eleven dimensions. Since supersymmetry relates this term to the C3 ∧ X8
term in the effective action, it does not receive corrections beyond one-loop [24] and is
therefore exact. The non-renormalization of this term can be used to also argue for one-loop
exactness of the corresponding terms for toroidal compactifications. In a series of works [23–
32], the coefficient of this term has been determined exactly in toroidal compactifications of
M-theory for supergravities in dimensions d ≥ 3. These coefficients may be expressed through
particular (real-analytic) Eisenstein series given by sums over tensions and masses of BPS
states in the theory; see appendix A for details on the Eisenstein series appearing in these
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d En+1(R) Kn+1 En+1(Z)

10A R+ 1 1

10B SL(2,R) SO(2) SL(2,Z)

9 SL(2,R)× R+ SO(2) SL(2,Z)

8 SL(3,R)× SL(2, R) SO(3)× SO(2) SL(3,Z)× SL(2,Z)

Table 2. The symmetry groups in maximal supergravity in d = 10− n giving the moduli space of
these theories as En+1(Z)\En+1(R)/Kn+1.

expressions. In the following, we discuss the species scale for maximally supersymmetric
gravitational theories in d = 10, 9, and 8 of which the moduli spaces and the U-duality groups
are summarized in table 1. In all these examples, the species scale is determined by the
coefficient of the t8t8R4-term in the respective higher-derivative action. Since this term is
present in 11d M-theory, we can use (3.3) to fix the coefficient â

(11)
4 appearing in (2.3).

3.1 10d Type IIA

We first consider Type IIA in ten dimensions, which is related to M-theory through a circle
compactifications. The compactified theory has a single modulus which corresponds to the
Type IIA dilaton e−λ, or equivalently, the radius of the circle can be expressed as follows

R11Mpl,11 = e2/3 λ . (3.4)

The field space is spanned by the dilaton λ with metric ds2 = 1
2dλ2. As in 11d M-theory,

the t8t8R4-term is protected by supersymmetry which ensures that there are no perturbative
corrections to its coefficient beyond one-loop. Furthermore, since there are no BPS instantons
in 10d Type IIA, there are also no non-perturbative corrections to a4(λ). Therefore, a4(λ)
consists of two terms one of which arises as the dimensional reduction of the t8t8R4-term
in (3.3) on a circle

S10,R4 ⊃
M8

pl,10
2

∫
d10x

√
−g â4

t8t8R4

M6
pl,10

(
Mpl,10
Mpl,11

)6

. (3.5)

From our general expression in (3.1), in the large-radius/strong-coupling limit, we can identify

a
(10)
4 (λ) = â4

(
Mpl,10
Λs

)6
λ→∞−−−→ â4 (2π)3/4eλ/2 , (3.6)

where we used

M8
pl,10

M8
pl,11

= 2πR11Mpl,11 . (3.7)

As is apparent from the dilaton dependence, this term arises at one-loop level. In fact, both
the tree- and one-loop contribution to the t8t8R4-term can be computed directly in string
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(a) Species scale.
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∆λ

|Λ′
s|2/Λ2

s
1/8

1/72

(b) Slope of Λs.

Figure 1. The species scale (3.10) (left) and its slope (right) as functions of ∆λ =
√
2λ. The limit

∆λ → −∞ corresponds to the emergent string limit and ∆λ → ∞ to the decompactification limit to
M-theory. The dashed and dotted curve show the respective contributions of the first and second term
in (3.10).

theory. These take on the following schematic form

S10,R4 ∼ M2
pl,10

∫
d10x

√
−g

(
2ζ(3)e−3λ/2 + 2π2

3 eλ/2
)

t8t8R4 . (3.8)

This fixes the relative factor between the tree-level and the one-loop term. Comparison
with (3.5) fixes the overall normalization, as in (3.1), to be

S10,R4 =
M2

pl,10
2

∫
d10x

√
−g a

(10)
4 (λ) t8t8R4 ,

with a
(10)
4 (λ) = â4

(
3 · 23/4ζ(3)

π5/4 e−3λ/2 + (2π)3/4 eλ/2
)

.

(3.9)

According to our general discussion, the species scale in ten-dimensional Type IIA string
theory for any value of λ is then given by

Λs = 1
(2π)1/8

(3ζ(3)
π2 e−3λ/2 + eλ/2

)−1/6
. (3.10)

In figure 1, we illustrate how the species scale and its slope vary as a function of ∆ = λ/
√
2.

With this preparation, we can now discuss the properties of the species scale.

Slope of Λs. As expected on general grounds [11], the slope of the species scale is bounded
from above. From figure 1(b), we conclude that the maximal value for the slope of the
species scale is achieved in the asymptotic weak-coupling limit which determines the O(1)
constant c in (2.6). This leads to the bound∣∣∣∣∇Λs

Λs

∣∣∣∣2 ≤ 1
8 , (3.11)

in Planck units.
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Asymptotic behavior. Next, we study the behavior of the species scale (3.10) in the two
asymptotic regions. In the weak-coupling limit λ → −∞, we find that the scaling of the
species scale in the canonically normalized field ∆λ = −

√
2λ on the moduli space is given by

Λs = π5/24

21/8(3ζ(3))1/6 e−∆λ/(2
√

2) . (3.12)

This agrees with the expected coefficient 1/
√

d − 2 for an emergent string limit in d = 10
dimensions. In the strong coupling limit λ → ∞, we find it decays in ∆λ =

√
2λ as

Λs = 1
(2π)1/8 e−∆λ/(6

√
2) , (3.13)

which agrees with the general expectation for the coefficient (2.5) for a decompactification
from d = 10 to D = 11 dimensions. From the ten-dimensional Type IIA perspective it
is in fact rather remarkable that the one-loop contribution to the coefficient of the t8t8R4

coupling knows about the decompactification to 11d M-theory at strong coupling, as it gives
us the right behavior for the species scale in this limit. We therefore could have inferred the
existence of this higher-dimensional theory just from studying the higher-derivative terms
without prior knowledge about the light spectrum of states in Type IIA.

Desert point. We next identify the point in the one-dimensional dilaton field space that
maximizes the species scale (3.10). We find that this desert point is located at

eλ = 3
π

√
ζ(3) ≈ 1.05 , (3.14)

corresponding to λ ≈ 0.05. This leads to a value of the species scale at the desert point of

max(Λs) =
(

32

211πζ(3)

)1/24

≈ 0.755 . (3.15)

Notice that the species scale is localized close to but not exactly at λ = 0. This should not come
as a surprise since the two infinite-distance limits for λ → −∞ and λ → ∞ are inequivalent
and hence there is no symmetry exchanging the two limits while keeping λ = 0 fixed. Notice
further that the maximal value of Λs is below Mpl,10 as expected on general grounds.

Diameter. Lastly, we can compute the diameter of the effective field space available at some
cut-off scale µ. The constraint Λs ≥ µ determines the diameter of the field space to scale as

diam(µ) = −8
√
2 log[µ]−

√
2
3 log [24πζ(3)] . (3.16)

The coefficient of the first term is simply the sum of the separate contributions
√
72 and

√
8 for

the decompactification and emergent string limits. The negative shift takes the numerical value

b = −
√
2
3 log [24πζ(3)] ≈ −2.12 , (3.17)

which is due to the leading coefficients in (3.12) and (3.13) appearing in the asymptotic
scaling of the species scale.
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(a) Fundamental domain.
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(b) Fixed axion slice τ1 = 1/2.

Figure 2. Plot of the species scale for ten-dimensional Type IIB. Left: a contour plot of Λs over the
upper half plane, where the fundamental domain bis indicated by a dashed line. Right: Λs along a
fixed axion slice τ1 = 1/2 as a function of distance ∆τ in scalar field space.

3.2 10d Type IIB

We now turn to ten-dimensional Type IIB string theory. In this case, the field space is
spanned by the axio-dilaton τ = τ1 + iτ2 which endows the field space with the standard
hyperbolic metric

ds2 = dτdτ̄

2τ2
2

. (3.18)

Again, the relevant term in the effective action corresponds to the t8t8R4 coupling. Thanks to
supersymmetry, the dependence of the coefficient a4(τ, τ̄) of this term on τ can be calculated
explicitly. As in Type IIA, there do not exist any perturbative contributions to a4(τ, τ̄)
beyond one-loop. However, there are contributions coming from D(−1)-instantons. As shown
in [23], the full τ -dependence of the t8t8R4 coupling is captured by the SL(2,Z)-invariant
Eisenstein series E 3

2
(τ, τ̄) given by

E 3
2
(τ, τ̄) =

∑
(p,q) ̸=(0,0)

τ
3/2
2

|p + qτ |3
. (3.19)

This expression can be understood as summing M−6
p,q for every (p, q)-string in the BPS

spectrum with tension Mp,q. This Eisenstein series gives the dependence of the species scale
on τ ; in order to obtain the correct normalization, we consider the weak-coupling limit
τ2 → ∞ in which the Eisenstein series behaves as

E 3
2
(τ, τ̄) = 2ζ(3)τ3/2

2 + 2π2

3 τ
−1/2
2 + 8π

√
τ2
∑
p ̸=0

∞∑
n=1

∣∣∣∣ pn
∣∣∣∣K1(2πτ2|p|n)e2πipnτ1 . (3.20)

The infinite sum corresponds to the exponentially suppressed contributions from D(-1)-
instantons. Recalling that τ2 = e−λ with λ the Type IIB dilaton, we recognize the first term
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Figure 3. Slope of the species scale |∇Λs|2/Λ2
s as a function of the distance ∆τ = log[τ2]/

√
2 in

scalar field space, along the constant axion slice τ1 = 1/2.

as a tree-level contribution and the second term as the one-loop term of which both were also
present in Type IIA. Comparison with (3.9) then fixes the normalization of the species scale to

Λs =
( 3
21/4π5/4 E 3

2
(τ, τ̄)

)−1/6
. (3.21)

We have depicted the behavior of Λs over the moduli space in figure 2. We also show the slope
of this species scale along a slice in moduli space for fixed τ1 = 1/2 in figure 3. Similar to Type
IIA, we find that the slope of Λs is bounded from above by 1/

√
8 everywhere in moduli space.

Asymptotic behavior. Due to the SL(2,Z)-duality, there is only a single kind of infinite-
distance limit for ten-dimensional Type IIB string theory corresponding to τ2 → ∞. All
other infinite-distance limits are related to this one via duality transformations and, due to
the SL(2,Z)-invariance of the Eisenstein series, the species scale (3.21) is the same in all
infinite-distance limits. From (3.21), we then find that the species scale has a power-law
behavior Λs ∼ (τ2)−1/4 in the string coupling. In terms of the field space distance ∆τ given
asymptotically by ∆τ = 1√

2 log[τ2], we find

Λs = π5/24

21/8(3ζ(3))1/6 e−∆τ /(2
√

2), (3.22)

which is indeed the expected coefficient 1/
√

d − 2 for d = 10.

Desert point. We next identify the desert point in the moduli space where the species
scale (3.21) is maximized. To this end, we first notice that due to the SL(2,Z) duality
symmetry of the species scale, the extrema of Λs are located at i) the point τ = i — fixed by
S-duality — and ii) the third root of unity τ = ρ ≡ −1

2 + i
√

3
2 — fixed by the combination

of S-duality and axion shift τ → τ + 1. We can compute the Eisenstein series numerically
over all of moduli space — as illustrated by figure 2 — confirming that τ = ρ is the desert
point. At these special points we can also compute the Eisenstein series exactly by number
theoretical methods; for a detailed analysis we refer to appendix A.1, but let us nevertheless
include the values here

E 3
2
(i,−i)= 4ζ(3

2)β(
3
2)≈ 9.03 , E 3

2
(ρ, ρ̄)=

(√
3

2

)1/2
ζ(3

2)
(
ζ 1

3
(3

2)−ζ 2
3
(3

2)
)
≈ 8.89 , (3.23)
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where β denotes the Dirichlet beta function and ζa(s) the generalized zeta function, see
appendix A.1 for their precise definitions. The species scale at the desert point is accordingly
given by

Λmax.
s = Λs(τ = ρ) ≈ 0.756 , (3.24)

whereas the species scale at τ = i is slightly lower

Λs(τ = i) ≈ 0.754 . (3.25)

It is instructive to compare these values with the Type IIA result (3.15), which lies in between
them. The difference between the IIA and IIB species scales is given solely by the instanton
sum in (3.20): along the line τ1 = 0, this gives a positive contribution to the Eisenstein
series, and hence a lower species scale value for IIB at τ = i compared to IIA; however, by
moving along the IIB axion τ1, we can alter the signs in this instanton sum and achieve
a maximal value at τ = ρ for the species scale. We also want to stress that this example
shows there can be points where Λs has a saddle point, which here occurs for τ = i, where
dΛs = 0, but it is neither a minimum nor a maximum. We refer to appendix A.1 for the
eigenvalues of the Hessian at both of these points.

Diameter. To determine the diameter of the effective field space set by the bound Λs ≥ µ,
we consider a geodesic starting from τ = ρ along a fixed axion slice τ1 = −1/2 up to the point
where Λs = µ. Note that any other axion value −1/2 ≤ τ1 ≤ 1/2 for the endpoint would
correspond to an exponential correction, as the length of this segment becomes exponentially
small asymptotically. We find that the length of this geodesic and hence the diameter as
a function of µ is given by

diam(µ) = −2
√
2 log[µ] + 1

6
√
2
log

[
23π5

37ζ(3)4

]
. (3.26)

The coefficient corresponds to the expected behavior for an emergent string limit. The
shift takes the value

b = 1
6
√
2
log

[
23π5

37ζ(3)4

]
≈ −0.073 . (3.27)

This small shift can be attributed to the contributions − log[
√
3/2]/

√
2 ≈ 0.102 from the short

distance between the desert point τ2 =
√
3/2 to τ2 = 1 and −

√
2 log[3ζ(3)23/4π−5/4]/3 ≈

−0.175 coming from the overall coefficient in the scaling of the species scale in (3.22).

3.3 M-theory on T 2

We next consider nine-dimensional supergravity obtained from compactifying M-theory on T 2.
In this case, the t8t8R4-coupling has been computed in [24, 30] and takes the schematic form

SR4 ∼ Mpl,9

∫
d9x

√
−g V6/7

(
V−3/2E 3

2
(τ, τ̄) + 2π2

3

)
t8t8R4 , (3.28)
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where 4π2V is the volume of the torus in 11d M-theory units and τ is the complex structure
of the torus. Furthermore, the kinetic terms can be determined by the metric3

ds2 = dτdτ̄

2τ2
2

+ 9
14

dV2

V2 . (3.29)

Along trajectories with constant axion τ1, we can introduce canonically normalized scalar fields

∆τ = log[τ2]/
√
2 , ∆V =

√
14/9 log[V] . (3.30)

Similar to 10-dimensional Type IIA string theory, we can fix the relation between the species
scale and the higher-derivative coefficient a

(9)
4 (τ,V) by comparison with 11d M-theory. We

therefore realize that in the limit V → ∞, the species scale should simply be given by Mpl,11.
In analogy to (3.5), we can consider the term

S9,R4 ⊃ Mpl,9
2

∫
d9x

√
−gâ4

t8t8R4

M6
pl,9

(
Mpl,9
Mpl,11

)6

, (3.31)

leading to the identification

a
(9)
4 (λ) = â4

(
Mpl,10
Λs

)6
λ→∞−−−→ â4 (4π2V)6/7 . (3.32)

This fixes the normalization of the species scale such that, from (3.28), we obtain in Planck
units

Λs = 1
(4π2V)1/7

(
3

2π2

E 3
2
(τ, τ̄)
V3/2 + 1

)−1/6

. (3.33)

In figure 4(a), we show a plot of the species scale in terms of ∆τ and ∆V . If one wishes, these
M-theory coordinates τ,V can be mapped to the IIA or IIB dilaton λA/B and circle radius
rA/B. The precise correspondence between these quantities is given by

e−2DA/B = τ
7/4
2

V3/4 , rA = V3/4τ
1/4
2 , rB = 1

rA
, (3.34)

where we defined the nine-dimensional dilaton DA/B as

e−2DA/B = e−2λA/B rA/B . (3.35)

By substituting these expressions into (3.28) and (3.29), one may obtain the R4-term and
scalar field metric in the IIA/B coordinates though we choose to work in the M-theory
coordinates in this section.

3The coefficient of the dV2 term agrees with the general expectation for a KK reduction (see e.g., [11])
from D = 11 to d = 9 dimensions.
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Figure 4. Plots of the species scale (left) and slope (right) for M-theory on T 2 with constant axion
τ1 = 1/2. Left: a contour plot of Λs, where arrows 1 and 2 correspond to the geodesic distances (3.43)
and (3.45) respectively. Right: the slope |∇Λs|2/Λ2

s, bounded from above by 1/7.

Asymptotic behavior. Let us now consider how the species scale (3.33) behaves along
infinite-distance limits. For theories with maximal supersymmetry in 9d, there are four
distinct limits (see also [12]): a 9d emergent string limit, two decompactification limits to
10d Type IIA or IIB supergravity, and a decompactification limit to 11d M-theory.

• We begin with the 9d emergent string limit. In the IIA or IIB coordinates DA/B, rA/B ,
this limit corresponds to sending the nine-dimensional dilaton to weak-coupling
DA/B → −∞ while keeping the radius rA/B constant. Equivalently, using the dic-
tionary (3.34), this corresponds to τ2 ∼ V−3 → ∞ with τ2V3 kept fixed. The scaling of
Λs in the distance ∆ along this trajectory is given by

Λs ∼ e−∆/
√

7 . (3.36)

This scaling with ∆ is obtained straightforwardly in the coordinates ∆τ ,∆V defined
in (3.30), as we then only need to compute Euclidean distances. The coefficient 1/

√
7

is consistent with our expectation (2.5) for the 9d emergent string limit.

• Next, we consider the two distinct decompactification limits to 10d. The limit to 10d
Type IIA supergravity is obtained by sending τ2 ∼ V → ∞ while keeping τ2/V fixed;
equivalently, this corresponds to scaling the radius rA → ∞ while keeping the dilaton
λA fixed.4 The limit to 10d Type IIB supergravity corresponds to V → 0 while keeping
the dilaton τ2 fixed. Let us write down the scaling of Λs in terms of the volume V in

4Otherwise we would obtain a decompactification limit super-imposed by a ten-dimensional emergent
string limit.
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these limits explicitly

IIA : τ2,V → ∞ ,
τ2
V

∼ cst, Λs = 1
7√4π2 6

√
3

π2 ζ(3)
( τ2
V
)3/2 + 1

V−1/7 ,

IIB : V → 0 , τ2 = cst, Λs ∼ 1
7√4π2 6

√
3

2π2 E 3
2
(τ, τ̄)

V3/28 ,
(3.37)

where τ2/V, τ are kept fixed in the Type IIA and the Type IIB case, respectively. We
kept track of the overall factors explicitly, as we will need to tune these later in the
computation of the diameter of the field space. Using the Euclidean metric on the
coordinates ∆τ ,∆V defined in (3.30), we find for both trajectories that Λs scales with
the moduli space distance ∆ as

Λs ∼ e−∆/
√

56 , (3.38)

which is consistent with the expectation of (2.5).

• Finally we consider the decompactification limit to 11d M-theory. This limit corresponds
to decompactifying the T 2 by sending V → ∞ while keeping τ fixed. For the species
scale, this gives the scaling of Λs with the distance as

Λs = 1
(2π)2/7V

−1/7 ∼ e−
√

2∆/3
√

7 , (3.39)

which is also consistent with (2.5). Here, we also kept track explicitly of the leading
coefficient, as this factor is relevant to the length (3.43) of the first geodesic considered
for the diameter.

Species scale polygon. In figure 4(a), we have provided a plot of constant species scale
contours. These contours asymptote to a bilateral triangle for which we briefly elaborate on
the physical significance of its corners and sides in relation to the asymptotic limits discussed
above. The top left/right corners correspond to V ∼ τ2 → ∞ and V ∼ 1/τ2 → ∞, respectively,
which both lead to a decompactification limit to ten-dimensional Type IIA; the corner at the
bottom corresponds to the limit V → 0, i.e., the decompactification limit to ten-dimensional
Type IIB. In addition, we consider the lines normal to the sides of the triangle passing
through the origin: for the top side of the triangle, this corresponds to a decompactification
limit to 11d M-theory, while for the left and right side, these yield 9d emergent string limits.

Slope. The slope of the species scale is depicted in figure 4(b). As indicated in the figure 4(b),
the slope is bounded from above, everywhere in the moduli space, by

|∇Λs|2

Λ2
s

≤ 1
7 . (3.40)

In this figure, the limit ∆V → ∞ corresponds to a decompactification to 11d M-theory while
the limit ∆V → −∞ corresponds to the decompactification to 10d Type IIB. The valley
along ∆V ,∆τ → ∞ is identified with the decompactification to 10d Type IIA. The plateau
corresponds to the 9d emergent string limit.
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Desert point. Since the field space factorizes between τ and V , the location of the desert
point can be found straightforwardly by first extremizing with respect to the complex
structure modulus τ and subsequently with respect to V . The first step is analogue to our ten-
dimensional Type IIB discussion and singles out the third root of unity τ = ρ as the location
of the desert. In turn, extremizing the species scale with respect to the volume V yields

V = 34/3

4π4/3

(
E 3

2
(ρ, ρ̄)

)2/3
≈ 1.009 , (3.41)

where we have used the numerical value for E 3
2
(ρ, ρ̄) computed in (3.23). Thus, we find

the species scale at the desert point to be

Λs = 1

31/4271/6
(
πE 3

2
(ρ, ρ̄)

)2/21 ≈ 0.513 , (3.42)

which is substantially lower than the values encountered in ten dimensions for IIA and IIB.

Diameter. For the diameter of the field space we compare the length of two geodesics: 1)
a path connecting V = 0 and V = ∞ with fixed axio-dilaton — corresponding to a vertical
line through the center of the triangle in figure 4; 2) a path along the edge of this triangle
connecting its bottom and top-right corner, i.e., from V → 0 to V ∼ τ2 → ∞. For these
endpoints, we need to specify certain order-one constants in the asymptotic behavior in (3.37):
for path 1), we need to specify the fixed value for τ , whereas for path 2), we need to specify
the ratio V/τ2 in the limit V, τ2 ≫ 1. Below, we work out these two cases in detail.

• Path 1) from V → 0 (10d IIB supergravity) to V → ∞ (11d supergravity). To maximize
the distance, we must set τ = ρ since this minimizes E 3

2
(τ, τ̄), and therefore maximizes

the coefficient in (3.37). We then find the maximal length ℓ1(µ) of path to be

ℓ1(µ) = −7
√
7√
2

logµ + b1 . (3.43)

The coefficient of the logarithm is the sum of
√
7 · 9/2 from decompactification to 11d

M-theory and
√
7 · 8 from decompactification to 10d Type IIB. The constant shift of

the diameter is given by

b1 = −
√
14
3 log

[
12πE 3

2
(ρ, ρ̄)

]
≈ −7.25242 , (3.44)

where we plugged in the numerical value for E 3
2
(ρ, ρ̄) from (3.23).

• Path 2) from V → 0 (10d IIB supergravity) to V, τ2 → ∞ (10d IIA supergravity). The
discussion above tells us that we have to set τ = ρ in the first limit to 10d Type IIB
to maximize the length of path 2). For the second endpoint, we need to determine
the ratio τ2/V. The value for this ratio that maximizes the length of path 2) will be
determined in the end. Continuing with a generic τ2/V for now, we find the length
ℓ2(µ) of path 2) to be given by

ℓ2(µ) = −14 logµ + b2(τ2/V) . (3.45)
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Note that the coefficient of the logarithm is not given by the sum of the contributions
coming from the two separate infinite-distance limits, as path 2) does not pass through
the center of the moduli space. Instead, it is the length of the side of the bilateral
triangle in figure 4(a) with height 7

√
7/2 and width 7

√
2. The constant shift b2(τ2/V)

is given by

b2

(
τ2
V

)
= −31

24 log[12]+
1
4 log

[
τ2
V

]
− 7

6 log
[
E 3

2
(ρ, ρ̄)

(
π2 + 3

(
τ2
V

)3/2
ζ(3)

)]
+ 2 log π

3 .

(3.46)
We can maximize this coefficient as a function of τ2/V straightforwardly and find that
the maximum is reached for

τ2
V

= π4/3

34/3(2ζ(3))2/3 , b2 = − 1
24 log

[
238311

(
7E 3

2
(ρ, ρ̄)

)28 (
π8ζ(3)

)4] ≈ −7.97766 ,

(3.47)
where we evaluated E 3

2
(ρ, ρ̄) numerically using (3.23).

For small µ, the shortest distance between two points is maximized if they are connected via
path 2). Therefore, out of (3.43) and (3.45), the diameter diam(µ) as a function of µ is given by

diam(µ) = ℓ2(µ) ≈ −14 logµ − 7.97766 . (3.48)

3.4 M-theory on T 3

As a final setup with maximal supersymmetry, we consider eight-dimensional supergravity
arising from M-theory compactified on T 3, or equivalently, Type IIB on T 2 following [25, 30].
From table 2, we infer that the moduli space of maximal supergravity in 8d is given by

M8 = (SL(3,Z)× SL(2,Z))
∖SL(3,R)× SL(2,R)

SO(3)× SO(2) . (3.49)

In particular, the SL(3,R) factor is interesting since its structure differs from the SL(2,R) and
R+ moduli spaces encountered in the previous examples. For definiteness, we consider Type
IIB on T 2 in the following. The kinetic terms in the eight-dimensional Einstein frame read

S8 =
M6

pl,8
2

∫
d8x

√
−g

(
R − 1

6
∂ν2

ν2 − 1
2

∂U∂Ū

U2
2

− 1
2

∂τ∂τ̄

τ2
2

− ν
|τ∂BN + ∂BR|2

2τ2

)
. (3.50)

Here, U = U1 + iU2 is the complex structure parameter of the T 2, τ = τ1 + iτ2 is the
axio-dilaton of ten-dimensional Type IIB string theory, BN (BR) are the scalars obtained from
reducing the NS-NS(R-R) two-form along the T 2, and we defined ν = 1/(τ2V2) where 4π2V
is the string frame volume of the T 2. The complex structure U spans the SL(2,R) component
of the moduli space M8, whereas the SL(3,R)-part is parameterized by ν, τ and BN,R.

The action (3.50) may be brought into a form invariant under the SL(3,Z) U-duality
group by introducing [36]

M = ν1/3


1
τ2

τ1
τ2

Re(B)
τ2

τ1
τ2

|τ |2
τ2

Re(τ̄B)
τ2

Re(B)
τ2

Re(τ̄B)
τ2

1
ν + |B|2

τ2

 , (3.51)
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where B = BR + τBN . In terms of M , the action (3.50) can then be rewritten as

S8 = 1
2κ2

8

∫
d8x

√
−g

(
R − 1

2
∂U∂Ū

U2
2

+ 1
4Tr(∂M∂M−1)

)
. (3.52)

Again, we consider the coefficient of the t8t8R4-coupling in the effective action which is given by

E(2)(M, U, Ū) = E
SL(3)
3
2

(M) + E
SL(2)
1 (U, Ū) . (3.53)

Here, the term corresponding to the SL(3) part of the moduli space is defined as

ESL(3)
s =

∑
(m1,m2,m3)∈Z3

(m1,m2,m3) ̸=(0,0,0)

ν−s/3
(
|m1 + m2τ + Bm3|2

τ2
+ m2

3
ν

)−s

, (3.54)

for s = 3
2 . On the other hand, the SL(2)-term is given by

ESL(2)
s =

∑
(p,q) ̸=(0,0)

U s
2

|p + qU |2s
, (3.55)

for s = 1. In eight dimensions, the t8t8R4-term is conformally invariant and its coefficient
in (3.53) is divergent due to the contribution of massless modes to the conformal anomaly.
Both terms appearing in (3.53) therefore need to be properly regularized. Evaluating (3.55)
for s = 1 + ϵ and subtracting the pole, one finds

Ê
SL(2)
1 = −2π log(U2|η(U)|4) , (3.56)

up to a constant infrared ambiguity. This is reminiscent of the situation in the vector
multiplet sector of Type II string theory compactified on a Calabi-Yau threefold Y3. There,
the conformally invariant R2-term also has a coefficient that diverges due to the contributions
of massless modes. Regularizing this coefficient yields an expression similar to (3.56)[14, 37]
for the case of Y3 = (K3 × T 2)/Z2.

Similarly, the regularization of E
SL(3)
3
2

has been carried out in detail in [25]. The finite
part is given by

Ê
SL(3)
3
2

= 2τ
3/2
2

ν1/2 ζ(3) + 2π2

3 T2 + 4π log ν1/3 + ID +
∑

(p,q)=1
Ip,q . (3.57)

Here ID represents the D(−1)-instanton contribution given by

ID = 8π

√
τ2
ν

∑
p ̸=0

∞∑
n=1

∣∣∣∣ pn
∣∣∣∣K1(2πτ2|p|n)e2πipnτ1 , (3.58)

with K1 denoting the Bessel function. On the other hand, we have

Ip,q = −8πRe log
[ ∞∏

n=1

(
1− e2πinTp,q

)]
, Tp,q = (qBR − pBN ) + i|p + qτ |V , (3.59)
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encoding the contributions from Euclidean [p, q]-strings wrapping the T 2. The effective t8t8R4

coupling is then determined by the regularized Eisenstein series Ê
SL(2)
1 and Ê

SL(3)
3
2

up to
an additive renormalization constant. By studying the full string amplitude this additive
constant has been determined in [38] to be 22π

3 when evaluating the effective coupling at
the Planck scale.

To relate this higher-derivative correction to the species scale, we need to fix its nor-
malization. We therefore realize that in the limit of large-radius and weak-coupling, the
species scale should be given by the species scale of ten-dimensional Type IIB string theory
discussed in section 3.2. In the limit V, τ2 → ∞, the t8t8R4-coupling is dominated by the
first term in Ê

SL(3)
3
2

in (3.57) such that

E(2) ∼ 2ζ(3)τ2
2V + . . . . (3.60)

Dimensional reduction of ten-dimensional Type IIB string theory on a torus with volume
4π2V, we find that in eight-dimension, the coefficient of the t8t8R4-term should be given by

a
(8)
4 (τ,V) τ2,V→∞−−−−−→ â4

(
12ζ(3) τ2

2V + . . .
)

. (3.61)

Comparison with (3.60) determines the species scale in eight-dimensional maximal super-
gravity to be

Λs = 1
41/6

(
Ê

SL(3)
3
2

− 2π log(U2|η(U)|4)
)−1/6

. (3.62)

In figure 5, we show the behavior of this species scale Λs over the moduli space.

Species scale polygon. In figure 5(a), we show the part of (saxionic) field space for which
the bound Λs ≥ µ for µ = 10−4 Mpl,8 is satisfied in terms of the three saxionic coordinates

∆ν = log[ν]/
√
6 , ∆τ = log[τ2]/

√
2 , ∆U = log[U2]/

√
2 . (3.63)

The triangular side is parameterized by ∆τ and ∆ν spanning the SL(3,R) factor of the
moduli space, while the transverse direction is parameterized by ∆U parameterizing SL(2,R)
component. The geodescis passing through the corners of the polygon correspond to de-
compactification limits to 9d, while geodesics normal to rectangular side correspond to
emergent string limits in 8d. We will discuss the asymptotic structure of this field space
in more detail momentarily.

Slope. Figure 5(b) shows the slope |∇Λs|2/Λ2
s in the (∆τ ,∆ν)-plane of SL(3,R) which

can be identified with the triangular side of the polygon in figure 5(a). More precisely, the
corners of this triangle — corresponding to the directions of 9d decompactification limits —
are identified as the valleys for the slope, while the normals to the edges of this triangle —
corresponding to 8d emergent string limits — are identified with the maximal plateaus for
the slope. Note that the slope surpasses the emergent string value 1/6 along these directions;
we will explain, in section 6, why this behavior is unphysical and that the slope should
instead be bounded from above by 1/6 everywhere. This is achieved by removing zero mode
contributions — logarithmic terms in U2 and ν in (3.55) and (3.57) — to the R4-term that
should not be included in the species scale.
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∆U

∆τ

∆ν

(a) Plot of the region Λs ≥ 10−4Mpl,8.

∆ν ∆τ

|∇Λs|2
Λ2

s

(b) Plot of slope |∇Λs|2/Λ2
s.

Figure 5. Plot of the species scale and its slope of M-theory on T 3 as a function of ∆U , ∆τ and ∆ν

defined in (3.63). We have set all axions to zero τ1 = U1 = BR = BN = 0. Left: the region where
the species scale obeys the lower bound Λs ≥ 10−4Mpl,8. Right: the slope of the species scale in the
(∆τ ,∆ν)-plane together with the plateau at |∇Λs|2/Λ2

s = 1/6 for the 8d emergent string limit.

Asymptotic behavior. The parametric behavior of the species scale in the asymptotic lim-
its of the theory has been in analyzed in detail in [12]. Below we show that our proposal (3.62)
correctly reproduces the expected parametric behavior of the species scale.

• Emergent string limit. For this limit, we take the 8d string coupling gs,8 = 1/(V τ2
2 ) =

ν1/2/τ
3/2
2 to zero while keeping τ2ν (and U2) constant. In this limit, the first term

in the species scale (3.62) diverges the quickest. We can express it in terms of the
canonically normalized scalars (3.63) as

Λs ∼ e
− 1

2
√

2
∆τ− 1

2
√

6
∆ν . (3.64)

For the emergent string limit, we then consider the trajectory (∆τ ,∆ν) = (
√
3/2, 1/2)∆

with ∆ the geodesic distance, giving us the scaling

Λs ∼ e−∆/
√

6 , (3.65)

with the expected coefficient 1/
√

d − 2 in d = 8.

• Decompactification to 11d. This limit corresponds to taking the large-complex structure
limit, U2 → ∞, for the T 2 on which we compactified Type IIB while keeping the volume
of T2 and the 10d string coupling τ2 constant. To see that this limit indeed corresponds
to a decompactification to 11d M-theory, let us for simplicity consider a rectangular
torus T 2 = S1

1 × S1
2 such that

U2 = r1
r2

T2 = r1r2 , (3.66)
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with r1/2 the radii of the respective S1’s. To reach the proposed limit for U2 and T2,
we hence need to consider the scaling

r1 ∼ 1
r2

→ ∞ . (3.67)

The light states in this limit are the KK-modes on S1
1 and the winding modes of both

the fundamental string of Type IIB and the D1-brane on S1
2 . We therefore have three

KK-like towers. Performing a T-duality on S1
2 , we hence decompactify to 10d Type

IIA. Since we keep the Type IIB string coupling constant, the Buscher rules imply that
the limit (3.67) corresponds to a strong coupling limit in Type IIA

gIIA ∼ r1 , (3.68)

such that, indeed, we obtain a decompactification to eleven dimensions. As far as the
species scale is concerned, in this limit the last term in (3.62) dominates. In terms of
the canonically normalized scalar ∆U defined in (3.63), we find the scaling

Λs ∼ e
− 1

3
√

2
∆U = e

−
√

11−8
(11−2)(8−2) ∆U

, (3.69)

which indeed has the correct exponent (2.5) for a decompactification from d = 8 to
D = 11 dimensions.

• Decompactification to 10d. This limit corresponds to keeping the dilaton τ2 and the
complex structure U2 of the torus fixed while sending the volume of the torus V → ∞.
For this limit, the first two terms in (3.62) dominate, both leading to the scaling
Λs ∼ V−1/6. From the kinetic terms in (3.52) we find that the volume scales as
V ∼ exp(

√
3/2∆) in terms of the moduli space distance ∆ along this trajectory. For

the species scale we then find that

Λs ∼ e
− 1

2
√

6
∆

, (3.70)

which agrees with the expected coefficient (2.5) for a decompactification from d = 9 to
D = 10 dimensions.

• Decompactification to 9d. Finally, we can take a decompactification limit to 9d by
taking the large-volume and large-complex structure limit for the T 2 simultaneously,
i.e., sending V, U2 → ∞ while keeping V/U2 fixed. To see that this limit decompactifies
to one dimension higher, note that for a rectangular torus — V = r1r2 and U2 = r1/r2

— this limit corresponds to taking r1 → ∞ while keeping r2 fixed. For this limit, the
dominant terms in the species scale are the second and third term in (3.62). Along this
trajectory we find by using the kinetic terms (3.52) that the moduli U2,V scale with
the field space distance ∆ as U2 ∼ V ∼ e

√
6/7∆. We then find

Λs = 1
6√4 6
√

E 3
2
(τ, τ̄) + 2π2

3 U2
√

ν
ν1/12 ∼ e

− 1√
42

∆
. (3.71)
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Here we kept track explicitly of the leading coefficient for the computation of the
diameter of the field space later; note in particular that the D-instanton sum in (3.58)
is finite in this limit, and combines with the other τ2 dependent terms into E 3

2
(τ, τ̄)

given in (3.20). The exponent agrees with (2.5) for a decompactification from d = 8 to
D = 9 dimensions.

Desert point. We next determine the point that maximizes the species scale (3.62). The
extremization of the SL(2,R) moduli space factor yields the third root of unity U = ρ, as
its dependence is given by the same function as the species scale of (K3 × T 2)/Z2 studied
in [13]. For the extremization over SL(3,R), we have scanned over duality fixed points of
SL(3,Z). We find that the lattice that minimizes E 3

2
(M) is given by

MA3 =2−2/3

 2 −1 0
−1 2 −1
0 −1 2

 , τ =−1
2+

i
√
3

2 , ν = 3
√
3

4 , BR =−1
3 , BN =−2

3 , (3.72)

with MA3 the Cartan matrices of the A3 root lattice, also known as the face-centered cubic
(FCC) or hexagonal close-packed (HCC) lattice. The value of the Eisenstein series and
species scale is given by

E
SL(3)
3
2

(MA3) = 8.79961 , Λmax
s = 1

6

√
E

SL(3)
3
2

(MA3) + E
SL(2)
1 (ρ, ρ̄)

≈ 0.5038 (3.73)

In appendix A.3, we collect the values at other fixed points of SL(3,Z) and show that,
indeed, the value of the species scale is smaller at these points. Moreover, we computed
the Hessian confirming that MA3 gives a maximum for the species scale. In [39] it was also
proven numerically that MA3 indeed give a minimum of the Eisenstein series, confirming
our result for the desert point.

Diameter. We next determine the largest distance between two points inside a finite moduli
space region set by Λs ≥ µ. For simplicity, we ignore the axions in the infinite-distance
regions, as these only contribute exponential corrections to the diameter.

• Let us first consider the S-duality transformations in SL(3,Z)× SL(2,Z) that cut out
our fundamental domain. The S-duality of SL(2,Z) simply restricts us to the |U | ≥ 1
regime as usual — it cuts the polygon in figure 5(a) down the middle of the ∆U axis.
The S-duality transformations of SL(3,Z) then act on the (∆τ ,∆ν)-plane, corresponding
to the triangular-shaped cross section of the remaining half-polygon. As discussed in
more detail in appendix A.2, these S-dualities partition this triangle into 6 fundamental
regions. We focus on the fundamental regime set by τ2 ≥ 1 and ντ2 ≤ 1, in which the
instanton corrections in (3.58) and (3.59) are suppressed. In particular, these duality
transformations tell us that all corners of the polygon in figure 5(a) are identified,
corresponding to the same decompactification limit to D = 9. This means that the
longest distance between two points cannot be given by one of the sides of the polygon;
rather, we should consider a geodesic from an interior point — which we take to be the
desert point (3.72) — to a corner corresponding to the decompactification to D = 9.
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• Next we examine this decompactification limit to D = 9 more closely. We parameterize
this limit by sending U2 ∼ 1/

√
ν → ∞ while keeping their ratio U2

√
ν and τ2 fixed. We

have to maximize the distance over these fixed parameters. To this end, it is useful
to consider the leading behavior of the species scale in this limit given in (3.71): we
see that τ appears only in E 3

2
(τ, τ̄) in the leading coefficient, which is maximized for

τ = ρ. The other parameter U2
√

ν we will keep generic for now, and extremize after
the computation of the distance.

• With the above preparations in place, let us next compute the distance between the desert
point (3.72) and a point along the D = 9 decompactification limit U2 ∼ 1/

√
ν → ∞

with τ = ρ and U2
√

ν fixed arbitrarily. We then find that the diameter is given by

diam(µ) = −
√
42 log[µ] + b(U2

√
ν) . (3.74)

The coefficient
√
6 · 7 corresponds to a decompactification limit to 9d. The shift is a

function of the remaining parameter U2
√

ν, given by

b=
−14log

[
2π2U2

√
ν+3E 3

2
(ρ, ρ̄)

]
+6log[U2

√
ν]+17log(3)−30log(2)

2
√
42

. (3.75)

Extremizing this coefficient for the fixed parameter U2
√

ν gives us a maximum at

U2
√

ν =
9E 3

2
(ρ, ρ̄)

8π2 , (3.76)

with the shift value being

b = −
8 log

(
E 3

2
(ρ, ρ̄)

)
+ 12 log(π) + 14 log(7)− 15 log(3) + 20 log(2)

2
√
42

≈ −4.309 ,

(3.77)
which, again, is negative.

4 Species scale and 16 supercharges

After having discussed the cases with maximal supersymmetry in some detail, we now turn
to theories with minimal supersymmetry in ten and nine dimensions. To that end, we
consider theories arising from Hořava-Witten theory, Type I string theory, and the two
heterotic strings. Again, we focus on the higher-derivative terms involving contractions of
four Riemann tensors. The situation is therefore similar to the maximally supersymmetric
case, but there are some crucial differences:

• Unlike for theories with 32 supercharges, the t8t8R4-interaction in theories with 16
supercharges is not 1/2-BPS. In maximal supergravity, this property ensured that
the t8t8R4-coupling does not receive any perturbative corrections beyond one-loop
level. Such a protection is absent in theories with 16 supercharges even though, as
reviewed in [33], there is evidence that higher-loop corrections to t8t8R4 are also absent
in this case.
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• Compared to maximal supergravity, there exist two other terms at the eight-derivative
level that contribute to the effective action corresponding to t8 trR4- and t8(trR2)2-
couplings. A priori, there is an ambiguity for the coefficients of the individual couplings
due to the identity

t8t8R4 − 24t8 trR4 + 6t8(trR2)2 = 0 . (4.1)
There exists, however, one combination of these couplings that is related via supersym-
metry to the anomaly-cancelling term, i.e., −12ϵ10BY

(gs)
8 which arises at one-loop in

the effective heterotic action. Here, the eight-form Y
(gs)

8 is given, in the absence of a
field strength F for the gauge group, by

Y
(gs)

8 (R, F = 0) = trR4 + 1
4(trR2)2 . (4.2)

Since it is related to an anomaly, the coefficient of −12ϵ10BY
(gs)

8 does not receive
corrections beyond one-loop. Expressing the higher-derivative terms through the
superinvariants (cf. [33])

X1 = t8 trR4 − 1
4ϵ10B trR4 , X2 = t8(trR2)2 − 1

4ϵ10B(trR2)2 ,

I2 = J0 − 24
(

X1 −
1
4X2

)
,

(4.3)

where J0 = t8t8R4 − 1
8ϵ10ϵ10R4, one realizes that −12ϵ10BY

(gs)
8 is contained in the

combination [33]

−I2 + 24X1 + 18X2 = 24 t8 trR4 + 18 t8(trR2)2 + 1
4ϵ10ϵ10R4 − 12ϵ10BY

(gs)
8 . (4.4)

Therefore, the coefficient of the coupling

Ianom = 24 t8 trR4 + 18 t8(trR2)2 + 1
4ϵ10ϵ10R4 , (4.5)

is also protected by supersymmetry and does not receive corrections beyond one loop.
In addition, there exists a term involving (trR2)2 that already arises at tree-level in
heterotic string coming from the t8(trF 2 − trR2)2 which is unrenormalized beyond tree
level.

• Given that, compared to the maximally supersymmetric case, we now have three terms
appearing at the eight-derivative level. Hence, we need to be more careful when defining
the species scale in terms of the eight-derivative terms. Schematically, the effective
action at order R4 in d-dimension takes the form

SR4,d =
Md−8

pl,d
2

∫
ddx

√
−g
(
a4,t8(ϕ) t8t8R4+a4,anom(ϕ)Ianom+a4,tree(trR2)2

)
, (4.6)

where ϕ denotes any scalar field in the theory. The species scale is then given by(
Mpl,d
Λs(ϕ)

)6
= max

{
a4,t8(ϕ)

â4
,
a4,anom(ϕ)

â4
,
a4,tree

â4

}
, (4.7)

where, similar to (2.3), we divided by a constant â4 that sets the overall normalization
of the species scale.

In the following, we discuss the species scale in theories with minimal supersymmetry
restricting to ten and nine dimensions.
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4.1 Heterotic E8 × E8 in 10d

The eight-derivative terms for the heterotic E8 × E8 string in ten dimensions have been
computed in [40–42] and take the schematic form

SHE,R4 ∼ M2
pl,10

∫
d10x

√
−g

[(
2ζ(3)
g

3/2
he

+ 2π2

3 g
1/2
he

)
t8t8R4 − (trR2)2

2g
3/2
he

+ 2π2

3 g
1/2
he Ianom

]
,

(4.8)
where we disregarded terms involving the B-field. Here, ghe is the string coupling of the
heterotic E8 × E8 string. The above expression fixes the relative factor between the different
terms, but does not fix the overall normalization â4 for the species scale. As in the Type
IIA case discussed in section 3.1, we can determine the relation between the species scale
and the coefficients appearing in (4.8) by comparing to the eleven-dimensional M-theory
compactified, in this case, on S1/Z2, i.e., Hořava-Witten theory. Denoting the radius of
the S1 again by R11, we can equate

ghe = (R11M11)3/2 , (4.9)

and repeat the analysis of section 3.1 while keeping in mind that the length of the interval
S1/Z2 is πR11. In the large-R11 limit, the eight-derivative action is dominated by the
one-loop terms. In fact, from (4.8), we find that

lim
ghe→∞

a4,t8(ghe) = lim
ghe→∞

a4,anom(ghe) = â4π3/4g
1/2
he . (4.10)

Comparing with the general form of the effective action (4.6), we can determine the co-
efficients to be

a4,t8(ghe) = â4

(3 · ζ(3)
π5/4 g

−3/2
he + π3/4 g

1/2
he

)
,

a4,anom(ghe) = â4 π3/4g
1/2
he ,

a4,tree(ghe) = â4
3

4π5/4 g
−3/2
he .

(4.11)

From our definition of the species scale in (4.7), we see that a4,t8 always yields the species
scale for any value of the coupling whereas a4,anom is comparable only in the strong-coupling
limit. Therefore, the analysis of the asymptotic regimes proceeds completely analogous to the
Type IIA case which we, therefore, do not repeat here. Again, the desert point is located at

ghe =
3
π

√
ζ(3) ≃ 1.05 , (4.12)

whereas the value of the species scale at the desert is slightly higher

max(Λs) ≈ 0.823 . (4.13)

Let us stress again that this result is derived under the assumption that there are indeed no
corrections to the t8t8R4-term beyond one-loop. While there is evidence for this from the
vanishing of the next-order terms, it is by no means at the same level as the supersymmetric
non-renormalization theorems. We note, however, that from the perspective of the species
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scale, it is at least consistent that higher-loop terms are indeed absent. In fact, our species
scale analysis provides further evidence for the absence of such higher-loop corrections to
this coupling. Similar to the Type IIA case, we can determine the diameter of the field
space, for which Λs ≥ µ is satisfied, to be

diam(µ) = −8
√
2 log [µ]−

√
2
3 log[3πζ(3)] , (4.14)

with the constant shift taking the numerical value of

b = −
√
2
3 log[12π · 21/4ζ(3)] ≈ −1.14 . (4.15)

4.2 Heterotic SO(32) and Type I string

Let us now turn to the heterotic SO(32) string. At tree- and one-loop level, the eight-derivative
contribution to the effective action in the gravity sector takes the same form as (4.8) where
we replace the string coupling by gho. Again, following the arguments presented in [33], one
may expect there to be no higher-loop corrections to the t8t8R4-term in the effective action
whereas the term proportional to Ianom is one-loop exact as a consequence of supersymmetry.
However, this cannot be the full answer since the strong-coupling behavior of the heterotic
SO(32) string is distinctively different from the strong-coupling behavior of the heterotic
E8 ×E8 string: instead of being a decompactification limit, it corresponds to a weak-coupling
limit for the Type I string. Hence, the behavior of the species scale cannot be the same
in the strong-coupling limits for SO(32) and E8 × E8. This necessarily implies that the
higher-derivative terms need to be different.

In [33], non-perturbative corrections to the t8t8R4-coupling have been computed explicitly,
giving rise to the effective eight-derivative action which schematically takes the form

SHO,R4 ∼ M2
pl,10

∫
d10x

√
−g

[
E 3

2
(ig−1

ho )t8t8R4 − (trR2)2

2g
3/2
ho

+ 2π2

3 g
1/2
ho Ianom

]
. (4.16)

Notice that the coefficient of the t8t8R4-term is similar to the one of Type IIB in ten dimensions
discussed in section 3.2. The relation between the species scale and the higher-derivative
terms can be inferred by recalling that the heterotic E8 × E8 string on S1 with Wilson lines
chosen to break each E8 to SO(16) is T-dual to the heterotic SO(32) string on S1 with
Wilson lines breaking SO(32) to SO(16)× SO(16). Using this duality, we can translate the
normalization (4.11) to the SO(32) string, leading to

a4,t8(gho) =
3â4
2π5/4 E 3

2
(ig−1

ho ) ,

a4,anom(gho) = â4 π3/4g
1/2
ho ,

a4,tree(gho) =
3â4
4π5/4 g

−3/2
ho .

(4.17)

Similar to the other heterotic theory, our definition of the species scale in (4.7) singles out
the coefficient of the t8t8R4-coupling as the species scale defined everywhere in the moduli
space. The behavior of the species scale in the asymptotic limits gho → 0,∞ parallels that of
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the species scale in Type IIB and we correctly reproduce the scaling of the species scale in
an emergent string limit in 10d. Therefore, the corrections computed in [33] are precisely of
that form to ensure that the eight-derivative terms correctly capture the species scale, again,
providing further evidence for the exactness of the computation of [33]. For the heterotic
SO(32) string, the desert point is located at gho = 1 where the species scale is given by

max(Λs) = Λs(gho = 1) = 0.822 . (4.18)

We can again determine the diameter of the field space region for which Λs ≥ µ to be

diam(µ) = −4
√
2 log [µ]−

√
2
6 log

[
34ζ(3)4

π5

]
. (4.19)

Compared to Type IIB, we now have two inequivalent limits for gho → 0 and gho → ∞.
Therefore, the prefactor of the logµ-term differs by a factor of two from (3.26). The shift
evaluates to

b = −
√
2
6 log

[
34ζ(3)4

π5

]
≈ 0.140 , (4.20)

which, unlike in all previous examples, is positive.

4.3 16 supercharges in 9d

Let us move one dimension down and compactify heterotic string theories on S1.5 For
simplicity, we choose the Wilson lines in both circle-compactified heterotic theories such
that the respective gauge group in each theory is broken to SO(16)× SO(16). Since in this
case, the two heterotic theories are T-dual to each other, the small-radius limit for the S1

in either theory can be well-described. In this setting, the eight-derivative action has been
calculated for both heterotic string theories in [33]. Focusing on the HO theory, the effective
9d action continues to be given by (4.6) with

a4,t8(gho, r) = 3â4
2π5/4

(
2πr

g
1/4
ho

)6/7(
E 3

2
(ig−1

ho ) +
2π2

3
g

1/2
ho
r2

)
,

a4,anom(gho, r) = â4 π3/4
(
2πr

g
1/4
ho

)6/7

g
1/2
ho

(
1 + 1

r2

)
,

a4,tree(gho, r) = 3â4
4π5/4

(
2πr

g
1/4
ho

)6/7

g
−3/2
ho .

(4.21)

In the following, we are only interested in the dependence that these coefficients have on the
radius r. We first notice that the functional dependence of a4,t8 and a4,anom is similar up
to order-one factors. To study the asymptotics of the species scale, we can hence examine
either of the two terms. In the limit r → ∞, the scaling of Λs in the field space distance
∆r is then given by

Λs
r→∞−−−→ e

− 1√
56

∆r , (4.22)
5For an in-depth analysis of the asymptotic limits in 9d N = 1 theories see [43].
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Figure 6. Left: the behavior of the terms appearing in the definition of the species scale (4.7) for
the heterotic SO(32) string on S1 given in (4.21) plotted as a function of σ = log r for gho = 1/100.
Right: the slope of the coefficients at eight-derivative level for the SO(32) heterotic string on S1.

as expected for a decompactification limit from d = 9 to D = 10 dimension. On the other
hand for r → 0 we obtain

Λs
r→0−−−→ e

−
√

2
3
√

7
∆r , (4.23)

suggesting that this limit is a decompactification limit from d = 9 to D = 11 dimensions. And,
indeed, recalling that T-duality relates the coupling and radii of the two circle-compactified
heterotic string theories via

ghe =
gho
rho

, rhe =
1

rho
, (4.24)

we observe that the rho → 0 limit corresponds to a large-radius strong-coupling limit for the
heterotic E8 × E8 string, i.e., to the decompactification limit to 11d Hořava-Witten theory.
Our definition of the species scale in (4.7) singles out the largest coefficient among those
in (4.21) to give the species scale. Since

a4,t8 ≥ a4,anom , (4.25)

for any r and fixed gho, the species scale continues to be given by the coefficient of the
t8t8R4-coupling. We illustrated this in figure 6. Even though for r ≳ O(1), the coefficient
a4,anom of the term in the effective action protected by supersymmetry differs by O(1) factors
from the species scale and would for instance predicts a different location of the desert point,
it captures the asymptotic scalings of the species scale correctly. Since terms in the effective
action, that are protected by supersymmetry, are oftentimes expressed in terms of index-like
quantities, one would in general expect that these terms provide an upper bound for the
species scale. The example of the heterotic SO(32) string illustrates that the term protected
by supersymmetry can indeed be used as a reasonable upper bound on the species scale.
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5 Species scale and 8 supercharges

We now turn to theories with eight supercharges. Of particular interest to us are 6d theories
with N = (1, 0) supersymmetry and 5d N = 1 theories. The case of N = 2 theories in four
dimensions has been extensively covered in [11, 13, 19]. In theories with eight supercharges,
the moduli space factorizes as

M = MH ×MV,T , (5.1)

where the first factor denotes the hypermultiplet sector which has the same structure in six,
five, and four dimensions. The second factor corresponds to the vector multiplet moduli
space in five and four dimensions and the tensor multiplet space in six dimension. The
structure of this space differs significantly between six, five, and four dimensions. Due to the
small amount of supersymmetry, most of the higher-curvature terms are not BPS protected,
making their exact computation difficult. Unlike in the theories studied in the previous
sections, theories with eight supercharges allow for non-trivial R2-terms implying that â2 ̸= 0
in general. In particular, there exists a four-derivative coupling whose coefficient can be
computed explicitly. In 4d N = 2, the coefficient of this term is given by the topological
genus-one free energy F1 which has been used in [11, 13, 19] to study the dependence of
the species scale on the vector multiplet moduli space.

In four dimensions, this term is protected from perturbative corrections and can be
evaluated explicitly. If we consider Type IIA compactifications on a Calabi-Yau threefold
Y3, the contributions to F1 can be split into a classical piece, which is proportional to the
second Chern class, and a sum over worldsheet instantons. If we lift this Type IIA setup to a
five-dimensional theory with N = 1 supersymmetry corresponding to M-theory compactified
on Y3, the contribution from worldsheet instantons vanishes and we are left with the classical
piece only. This piece can equivalently be obtained by reducing the t8t8R4-term on the
Calabi-Yau background. Using [44]

t8t8R4 = 3 · 28 trR2(c2 ∧ J) , (5.2)

one obtains

SR2,5 = Mpl,5
2

(
b2

24V1/3

∫
Y3

c2 ∧ J

)∫
M1,4

d5x trR2 , b2 = 1
24(2π)10/3 , (5.3)

where J is the Kähler form on Y3 and V = 1
6
∫

J3 is the volume of Y3. It is convenient
to expand the Kähler form as

J = XIJI , (5.4)

where JI is a basis of 2-forms. The coefficient of the trR2-coupling is therefore independent of
an overall rescaling of J corresponding to a modulus in a hypermultiplet. As in 4d N = 2, the
coefficient of the tr R2-coupling in (5.3) is exact and does not receive any further corrections.

In case Y3 is genus-one fibered, i.e., Y3 : T 2 → B2 for some Kähler surface B2, we can
further lift to a six-dimensional theory with N = (1, 0) supersymmetry corresponding to
F-theory on Y3. Given the fibration structure of Y3, it is natural to split the Kähler moduli,
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XI , I = 1, . . . , h1,1(Y3), of Y3 into base moduli, Xa
b , a = 1, . . . , h1,1(B2), and fibral moduli,

Xα
f , α = h1,1(B2) + 1, . . . , h1,1(Y3). To obtain the six-dimensional limit, one first realizes

that F-theory on Y3 × S1 is dual to M-theory on Y3. The duality identifies [45]

rS1M11 = 1
τ

, (5.5)

where M11 is the fundamental M-theory scale and τ the volume of the generic fiber which
is related to the fibral volumes

τ =
h1,1(Y3)∑

α=h1,1(B2)+1
cαvα

f , (5.6)

for some cα that are fixed by the precise geometry of the fibration. The six-dimensional
theory is obtained in the rS1 → ∞ limit corresponding to τ → 0. Since the overall volume of
Y3 has to remain constant in this limit, the actual F-theory limit corresponds to the scaling

Xα
f → λ−1 , Xa

b → λ1/2 , λ → ∞ . (5.7)

Since the effective action of F-theory is obtained as a scaling limit of M-theory, this in
particular includes the tr R2-term in (5.3). We therefore need to consider the F-theory lift
of the coefficient of trR2 in (5.3). Interpreting c2(Y3) as a curve class on Y3, we have only
its components along the base survive in the F-theory limit. For Y3 a smooth Weierstrass
model with zero section S0, we can use the adjunction formula

c2(Y3) = c2(B2) + 11c1(B2)2 + 12S0 ∧ c1(B2) . (5.8)

Here, only the last term corresponds to a curve in the base whereas the first two terms
do not contribute to

∫
c2 ∧ J in the F-theory limit. In principle, there could be additional

contributions to c2 surviving in the F-theory limit in case we do not have a smooth Weierstrass
model as is, e.g., the case in the presence of a non-Higgsable cluster. In this case, Y3 is
singular and we need to perform a (series of) small resolutions to obtain a smooth Ỹ3. Let
[P1] denote the class of the exceptional curves introduced by the small resolutions. The
second Chern class of Ỹ3 is then related to that of Y3 via (see e.g., [46])

c2(Ỹ3) = c2(Y3)− [P1] . (5.9)

Since in the F-theory limit, the volume of the resolution P1s vanishes, we find that∫
Ỹ3

c2(Ỹ3) ∧ J
F-theory→

∫
Y3

c2(Y3) ∧ J = 12
∫

B2
c1(B2) ∧ Jb , (5.10)

such that the trR2-term in the 6d F-theory effective action reads

SR2,6 =
M2

pl,6
2

 b2

2V1/2
B2

∫
B2

c1(B2) ∧ JF

∫
M1,5

d6x trR2 . (5.11)

Here, JF is the Kähler class of the base B2 and VB2 is the volume of B2, both measured
in Type IIB string units.
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We thus identified a higher-curvature term in supergravity theories with minimal su-
persymmetry in both six and five dimensions whose coefficient can be calculated explicitly
since it is protected by supersymmetry. We can use these terms to study the behavior of the
species scale on the scalars in the vector/tensor sector in five and six dimensions. Notice that
the protected coefficients are not sensitive to the scalars in the hypermultiplet sector such
that they only provide an upper bound for the species scale. Even though the parametric
dependence of the coefficients in (5.3) and (5.11) on the scalars in the vector/tensor sector is
expected to reflect the scaling of the species scale, recall from section 4 that in theories with
reduced supersymmetry, the actual species scale can differ from the one obtained from terms
protected by supersymmetry by O(1) factors. Therefore, also in the vector/tensor sector, the
coefficients in (5.3) and (5.11) provide an upper bound for the species scale.

In the following, we first consider the properties of the species scale as derived from (5.11)
in simple examples of six-dimensional F-theory compactifications and then discuss a five-
dimensional M-theory example.

5.1 Species scale in 6d N = (1, 0) supergravity

We start by considering the properties of the species scale in six-dimensional theories with
N = (1, 0) supersymmetry. We focus on F-theory compactifications on elliptically-fibered
Calabi-Yau threefolds for which, as described above, the dependence of the species scale on
the scalars in the tensor multiplets is captured by

Λs =

 1
V1/2

B2

∫
B2

c1(B2) ∧ Jf

−1/2

, (5.12)

up to the order-one constant â2 introduced in (2.3). Notice that, unlike in the previous cases,
we cannot fix this constant as the relation between the higher-derivative term and the species
scale can no longer be read off from eleven-dimensional M-theory. The reason for this is that
the coupling in question is independent of the overall volume of the Calabi-Yau threefold
such that it is insensitive to the eleven-dimensional decompactifictation limit to M-theory,
which is necessary for the matching. We therefore take the definition as in (5.12) keeping in
mind that it is an upper bound for the species scale up to an O(1) constant.

5.1.1 General discussion

The tensor multiplet moduli space for six-dimensional F-theory has dimension nT = h1,1(B2)−
1 and is embedded in the Kähler moduli space of B2 as the hypersurface corresponding
to the solution of

ΩαβXαXβ = 1 , (5.13)

where Ωαβ is an SO(1, nT ) invariant inner product. The tensor moduli jα parameterize this
hypersurface. The relevant part of the 6D effective action then reads

S6d =
M4

pl,6
2

∫
d6x

√
−G

(
R6d −

1
2gαβ∂µjα∂µjβ + . . .

)
. (5.14)
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Here, the field space metric is defined as

gαβ = 2jαjβ − Ωαβ , (5.15)

where we use Ωαβ to raise and lower indices. Given that the signature of the tensor branch is
(1, nT ), this implies that there is just one kind of infinite-distance limit we can consider in
this theory — an emergent string limit [47, 48]. In each of these limits, a movable curve with
trivial normal bundle shrinks to zero size which is compensated by blowing up other curves
in B2 to keep the volume of B2 fixed. Denoting the shrinking curve by C0, the triviality of
the normal bundle implies C2

0 = 0 and the Kähler form can be expanded as

J = X0C0 + Jrest , (5.16)

with the emergent string limits corresponding to X0 → ∞. These limits fall into two classes
depending on whether [48]∫

B2
C0 · c1(B2) = 2 or

∫
B2

C0 · c1(B2) = 0 . (5.17)

In the former case, a D3-brane on C0 is dual to a heterotic string that becomes weakly-
coupled in the limit X0 → ∞ with tension

T

M2
pl,6

∼ 1
X0 . (5.18)

On the other hand, the higher-curvature term predicts, via (5.12), a scaling of the species scale

Λs →
(

X0
∫

B2
c1 ∧ C0 + . . .

)−1/2
∼ 1√

X0
, (5.19)

which is consistent with the expectation that in an emergent string limit, the species scale is
given by the string scale (5.18). In terms of the distance, ∆, on moduli space, the species
scale scales as

Λs ∼ e−
1
2 ∆ , (5.20)

consistent with (2.5) for a six-dimensional emergent string limit. Notice that in the second
case in (5.17), the protected higher-derivative term does not correctly reproduce the species
scale since the leading term in (5.19) vanishes. This is, however, not surprising since in this
limit the asymptotically tensionless string corresponds to a Type II string with very mildly
broken N = 4 supersymmetry which provides stronger protection to the R2-terms causing
a systematic cancellation among the contributions to a2. As a consequence, the R2-term
in this limit is not a good approximation to the species scale, and instead higher-curvature
corrections should be considered.

To study the species scale in the interior of the moduli space, we need to specify more
details of the geometry of B2. We, therefore, consider in the following a few simple examples
to illustrate the properties of the species scale away from asymptotic regimes.
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5.1.2 F-theory on del Pezzo surfaces

As a first class of examples, we study the family of bases corresponding to del Pezzo surfaces
dPr, i.e., blow-ups of P2 in r generic points. A basis of curves on dPr is given by the
hyperplane class L, inherited from P2, and the r exceptional blow-up curves, Ei. The
intersection pairing in this basis is given by

L.L = 1 , Ei.Ej = −δij , L.Ei = 0 . (5.21)

Field space and metric. Let us first characterize the field space and its metric. We
do so by expanding the Kähler form as

J = X0L −
r∑

i=1
XiEi , (5.22)

with coordinates XI = (X0, X i) on the (r+1)-dimensional moduli space. We want to restrict
to the r-dimensional constant volume submanifold. By using the intersection data given
in (5.21), we find this constraint to be

F =
(
X0
)2

−
r∑

i=1

(
Xi
)2

= 1 . (5.23)

Thus, we parameterize this fixed volume submanifold by

X0 = cosh[x] , X i = ui sinh[x] ,
r∑

i=1
(ui)2 = 1 , (5.24)

where the coordinates ui are restricted to the sphere Sr−1, which may for instance be
parameterized by the standard spherical coordinates. The pull-back metric on the fixed
volume submanifold then reads

ds2 = dx2 + sinh[x]2dΩ2
r−1 , (5.25)

where dΩ2
r−1 denotes the metric on Sr−1. We still have to supplement this characterization

of the field space by the Mori cone constraints on the volumes of the curves. To this end, it is
instructive to consider the case of dP2. Its Mori cone is generated by E1, E2, L−E1 −E2 (we
refer to [49, 50] for an overview of the generators for all del Pezzo surfaces). We parameterize
the S1 by (u1, u2) = (cos θ, sin θ), such that a positive volume for E1,2 requires θ ∈ [0, π/2].
The volume of L − E1 − E2 reads

cosh[x]− sinh[x](cos θ + sin θ) ≥ 0 . (5.26)

The infinite-distance limits correspond to x → ∞, for which the above constraint reduces
to cos θ + sin θ ≤ 1 which can only be satisfied for θ = 0, π/2. We therefore find that there
are only two possible infinite-distance limits in this field space, corresponding to sending
x → ∞ along one of these two directions. A more detailed depiction of this field space
has been included in figure 7(a). For the other del Pezzo surfaces dPr>2, one encounters
a similar picture where emergent string limits correspond to particular (one-dimensional)
rays in the (r − 1)-sphere along which we send x → ∞; for dP1≤r≤3, these rays always lie
along the standard axes, while for dPr≥4, additional rays have to be considered, cf. the
emergent string limit for (5.29).
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(a) Field space.
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Figure 7. Left: the tensor moduli space of dP2 (solid orange region) corresponding to the constant
volume hypersurface (X0)2 − (X1)2 − (X2)2 = 1 inside the Kähler cone defined by X1, X2 ≥ 0 and
X0 − X1 − X2 ≥ 0 (opaque orange region). Right: the behavior of Λs according to (5.27) along the
constant volume hypersurface. The black dot indicates where Λs is maximized and the dashed line
indicates the Z2 symmetry of the field space.

Species scale and asymptotics. Let us next characterize the physics underlying this
field space. We begin with the species scale, which may be determined from the first Chern
class of the del Pezzo surface according to (5.12). For dPr, we have c1(dPr) = 3L −

∑
i Ei,

such that we find the species scale to be given by

Λs = 1
(3X0 −

∑
i Xi)1/2 . (5.27)

To study the behavior of the species scale in asymptotic limits, without loss of generality,
we can consider the direction ui = (1, 0, . . . , 0) on the sphere Sr−1. Any other direction
in the Kähler cone (at constant overall volume) yields the same asymptotics. In the limit
x → ∞, we find

Λs = e−x/2 . (5.28)

The coefficient 1/
√
4 = 1/2 in the exponent here matches the expectation (2.5) for an

emergent string limit in d = 6. Also note that in the normalization in (5.12), the coefficient
of Λs is always one.6

Tensionless strings and the Weyl group. The strings that become tensionless along
the infinite-distance limits come from D3-branes wrapped on curves with vanishing self-
intersection. For dPr=1,2,3, these are simply the curves L − Ei with i = 1, . . . , r, where for

6For this, it is important that we only consider directions inside the constant volume submanifold that also
lie in the Kähler cone. For example, for dP2 we consider only ui = (1, 0) and ui = (0, 1), but no angles in
between these two directions, for which Λs would have a different leading coefficient. In general, it follows
from the fact that for any emergent Type II string limit, the curve wrapped by the D3-brane has degree 2
under c1(dPr), see (5.17).
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|∇Λs|2
Λ2

s

X1

X2

Figure 8. Slope of the species scale |∇Λs|2/Λ2
s for dP2 in the (X1, X2)-plane (with X0 fixed by the

constant volume constraint (5.24). The blue plateau indicates the emergent string bound at 1/4.

a given curve the corresponding emergent string limit is given by X0 ∼ Xi → ∞ (for fixed
i, and keeping all others constant). For higher del Pezzo surfaces, however, we have to
consider a broader spectrum of strings. Starting with dPr≥4, we have to introduce additional
curves of the form

Cijkl = 2L − Ei − Ej − Ek − El , with i < j < k < l . (5.29)

These curves also have self-intersection 0 and satisfy c1(dPr).Cijkl = 2. Importantly, these
strings are all related under the Weyl group of Er, which acts naturally on the curves. While
we refer to e.g., [51] for details on this Weyl group, let us summarize some of the main
points relevant to our discussion here. In general, a root α ∈ H2(dPr,Z) (that is, α2 = 0
and c1(dPk).α = 0) defines a transformation that acts as

C → C + (C.α)α . (5.30)

By this transformation rule, we find that simple roots αi = Ei − Ei+1 act by exchanging
Ei and Ei+1; this allows us to exchange all curves L − E1, . . . , L − Er with one another.
On the other hand, one straightforwardly verifies that αk = L − E1 − E2 − E3 acts by
relating, for instance, L − E4 to 2L − E1 − E2 − E3 − E4. The main take-away is that (for
dPr<9) all emergent strings lie in the same Weyl orbit, and hence just correspond to the
same limit in a different duality frame.

Slope of Λs. The slope of the species scale |∇Λs|2/Λ2
s vanishes at the desert point (5.31)

in the moduli space and asymptotes to the emergent string value 1/4. We have provided a
plot of this slope in figure 8 for dP2, which illustrates that this slope is indeed bounded from
above by 1/4 everywhere in moduli space. This result extends to all other del Pezzo surfaces
dP1≤r≤8. For dP9, one has to be more careful, as in addition to the emergent heterotic string
limits, there also is a Type II string limit; we will elaborate more on this case later.
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Desert point. Let us next identify the desert point in the moduli space where the species
scale is maximized. By symmetry considerations, we can directly restrict to the symmetric
locus X1 = . . . = Xr, reducing it to effectively a one-dimensional problem along the constant
volume submanifold (5.24). Extremization of the species scale (5.27) along this symmetric
locus then yields the location for the desert point

X0
des =

3√
9− r

, X i
des =

1√
9− r

, (5.31)

where Λs takes its maximal value

Λs

∣∣
des = (9− r)−1/4 . (5.32)

Note that, again, this analysis does not apply directly to r = 9 which we consider later on.
Other than that, the value of the species scale does increase with r as we switch between
the del Pezzo surfaces.

Diameter. Let us finally compute the diameter of the field space. We consider a geodesic
that runs from the desert point (5.31) out towards any of the emergent string limits. As these
are related by duality under the Weyl group, we can take simply the one along ui = (1, 0, . . . , 0)
and send x → ∞. Using the asymptotic behavior given in (5.28) for the species scale, we find
that Λs crosses the cut-off scale µ at x = −2 log[µ]. We have carried out the computation
of the geodesic distance in appendix B. Taking the main result (B.9) and plugging in the
cut-off scale µ, we find

diam(µ) = −2 log[µ] + log 2√
9− r

. (5.33)

The coefficient of logµ matches with the expectation from (2.5) for an emergent string limit in
6d, while the constant shift decreases as we increase the index r of the del Pezzo surface dPr.

Rank 9 del Pezzo. Finally, the del Pezzo dP9 deserves some special attention, as most
of our discussion does not apply directly to this case. Namely, our analysis so far breaks
down when we consider the following limit

X0 =
√
1 + 9λ2 , X i = λ , (5.34)

where we send λ → ∞. Along this limit, we have a tensionless string obtained from wrapping
a D3-brane on the curve given by c1(dP9) = 3L −

∑
i Ei. The difference to the cases before

is that this curve has degree zero d = c1(dP9).c1(dP9) = 0, whereas all other curves had
degree two. As discussed in the beginning of this subsection, the limit therefore corresponds
to a Type II emergent string limit. As these Type II strings have only very mildly broken
N = 4 supersymmetry, there are systematic cancellations that cause the coefficient of the
R2-term to vanish rather than diverge asymptotically. For this reason, one should consider
other gravitational corrections — say at order R3 or R4 — in these limits and, similar to the
case of maximal and half-maximal supergravities discussed in section 3 and 4, take these as
definition for the species scale instead of the coefficient of the trR2-coupling.
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5.1.3 F-theory on Hirzebruch surfaces

For our next class of bases, we consider Hirzebruch surfaces Fn. We can consider these
surfaces as base for elliptic fibrations — and hence as compactification manifold for our 6d
F-theory supergravities — for n = 1, . . . , 8, and n = 12 (see [52]). Our basis of curves on
Fn is given by the generators of the Mori cone, H, F which satisfy

H.H = −n , F.H = H.F = 1 , F.F = 0 . (5.35)

For convenience, we can expand the Kähler form in the dual basis as

J = hH̃ + fF̃ . (5.36)

This choice of basis is related to (H, F ) via the identification F̃ ∼ F and H̃ ∼ H + nF such
that the intersection pairing between H̃, F̃ is given by

H̃.H̃ = n , F̃ .H̃ = H̃.F̃ = 1 , F̃ .F̃ = 0 . (5.37)

Thus, demanding positive volumes for the Mori cone generators H, F (no tilde) amounts to

h, f ≥ 0 . (5.38)

The constant volume submanifold is then given by

F = 2hf + nh2 = 1 . (5.39)

We parameterize this field space by the canonically normalized scalar ∆ as

h(∆) = e−∆ , f(∆) = 1
2(e

∆ − ne−∆) , (5.40)

such that the positivity constraint (5.38) is satisfied when ∆ ≥ log[n]/2.
Having characterized the field space, we next turn to the species scale. Using c1(Fn) =

2H̃ + (2 − n)F̃ from (5.12), we obtain

Λs = 1√
2f + (2 + n)h

= 1√
3 cosh∆− sinh∆

. (5.41)

Interestingly, the species scale does not depend on the degree n of the Hirzebruch surface Fn.

Slope of Λs. The behavior of the species scale and its slope for all Fn are plotted in
figure 9. In particular, we observe that as in the ∆ → ∞, the volume of F̃ asymptotes to
f(∆) + nh(∆) = e∆/2 → ∞. This corresponds to an emergent string limit for which, as
we infer from figure 9(b), the slope |∇Λs|2/Λ2

s approaches 1/4 from below in this limit —
the correct exponential behavior for the emergent string. However, for each Fn, ∆ must
satisfy (5.38). Hence for each Fn, Λs and |∇Λs|2/Λ2

s plotted in figure 9 should only be
considered for ∆ ≥ log[n]/2 as indicated by the gray vertical dashed lines in the figures.

– 41 –



J
H
E
P
0
5
(
2
0
2
4
)
1
1
2

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

∆

Λs

F1F2

. . .

F12

(a) Species scale.

0 1 2 3 4 5 6
0.00

0.05

0.10

0.15

0.20

0.25

∆

|∇Λs|2
Λ2

s

F1F2

. . .

F12

(b) Slope of species scale.

Figure 9. Species scale (left) and slope |∇Λs|2/Λ2
s (right) for F-theory base B2 = Fn as a function of

∆ defined in (5.40). The gray vertical dashed lines indicate the range of the boundaries ∆ = log[n]/2 of
the tensor branch for F2≤n≤12; the boundary of the field space for F1 corresponds to the vertical axis.

Desert point. We next determine the point where the species scale (5.41) is maximized.
Extremizing for ∆ gives us a maximum at

∆ = 1
2 log[2] . (5.42)

However, we note that for n ≥ 3, this point does not lie inside the Kähler cone, as we can
recall from demanding f ≥ 0 in (5.40) that ∆ ≥ log[n]/2 for Fn; in these cases, the species
scale is actually maximized at the boundary of their respective Kähler cones. In summary,
we find the species scale at the desert point for Hirzebruch surfaces to be

Λs

∣∣
des =

2−3/4 at ∆ = log[2]/2 for n = 1, 2 ,( √
n

2+n

)1/2
at ∆ = log[n]/2 for 3 ≤ n ≤ 8 and n = 12 .

(5.43)

Diameter. Let us now turn to the field range set by some cut-off scale µ. Setting Λs = µ

and inverting (5.41), we obtain the position in the field space as a function of the cut-off scale µ

∆ = log
[
1 +

√
1− 8µ2

2µ2

]
. (5.44)

Therefore, computing the diameter of field space at small µ for Fn in the field space metric
ds2 = d∆2 yields the following expression

diam(µ) = −2 log[µ]− 1
2 log[n] . (5.45)

The coefficient of log[µ] agrees with the emergent string limit. Thus, this is in agreement
with (5.20).
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5.2 Species scale in 5d N = 1 supergravity

In this section we consider M-theory compactifications on Calabi-Yau threefolds. We study
the vector multiplet moduli spaces arising in these 5d N = 1 supergravity theories, where we
investigate the shape and size of the effective field space cut out by the species scale.

5.2.1 General discussion

Let us first discuss some general features of vector multiplet moduli spaces for Calabi-Yau
threefold compactifications of M-theory. These spaces are spanned by the Kähler moduli of
the Calabi-Yau manifold, subject to the constraint that the overall volume stays fixed

F(X) = 1
6CIJKXIXJXK = 1 , (5.46)

where XI (with I = 1, . . . , h1,1) are the Kähler moduli and CIJK are the intersection numbers
of the Calabi-Yau manifold. Let us denote the h1,1 − 1 scalar fields that parameterize the
F = 1 hypersurface by ϕi. The metric on this field space is then obtained as a pull-back as

gij = GIJ(X(ϕ)) ∂iX
I(ϕ)∂jXJ(ϕ) , GIJ = −1

2∂I∂J logF(X) , (5.47)

where the factor of 1
2 accounts for the normalization of the kinetic terms.

Having characterized the field space, let us next describe the species scale Λs. To this end,
let us recall the expression given in (5.3). Thus, the species scale for M-theory compactified
on a Calabi-Yau threefold is

Λs =
[ 1
12c2,IXI

]−1/2
, (5.48)

where c2,I denote the integrated second Chern class numbers. As in the F-theory case
discussed previously, also for M-theory on Calabi-Yau threefold, we cannot fix the exact
coefficient of the species scale in terms of the higher-derivative coefficient, â2 in (2.3). In
the following, we work with the above expression keeping in mind that we did not fix this
exact O(1) coefficient.7

Again, we can first study the general behavior of (5.48) in asymptotic regimes. We
therefore recall from [2, 53] that in the 5d N = 1 vector multiplet moduli space, there exist
only three types of infinite-distance limits:

• Limits of Type T 2/Decompactification limits to 6d : for these limits to exist, Y3 needs
to allow for a torus fibration Y3 : T 2 → B2. The infinite-distance limit corresponds to
the limit where the fiber shrinks and the base B2 grows homogeneously

V−1
T 2 ∼ VB2 ∼ λ → ∞ . (5.49)

This corresponds to the F-theory limit and we obtain an effectively six-dimensional
theory signalled by light KK-modes corresponding to wrapped M2-branes on T 2. This
leads to a species scale that asymptotically vanishes like

Λs ∼ 1
λ1/2 . (5.50)

7We keep the factor of 1
12 such that the overall O(1) factor in M-theory agrees with that in F-theory

discussed in the previous section.
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On the other hand, the scaling (5.49) implies that the Kähler moduli corresponding to
curves in the base scale like λ1/2, such that our proposal (5.48) correctly reproduces
the expected scaling for the decompactification limit to 6d. In terms of the field space
distance, ∆, it is straight-forward to check that the scaling (5.50) translates to

Λs ∼ e
− 1

2
√

5
∆

, (5.51)

in agreement with (2.5).

• Limits of Type K3/Emergent heterotic string limits: in this case, Y3 allows for a K3-
fibration Y3 : K3 → P1

b and the infinite-distance limit corresponds to the limit of
homogeneously shrinking the K3 fiber while growing the base P1

b as

V−1
K3 ∼ VP1

b
∼ λ → ∞ . (5.52)

In this limit, an M5-brane wrapping the K3-fiber becomes light. The resulting string in
five dimensions is dual to a weakly-coupled heterotic string. Accordingly, the species
scale in this limit is set by the tension of this string

Λs ∼ 1
λ1/2 . (5.53)

Since the volume of the P1
b also diverges as λ and c2(Y3) = c2,0[P1

b ] + . . . with c2,0 = 24,
our species scale (5.48) reproduces this scaling in the emergent string limit. In terms of
the field space distance, we have

Λs ∼ e
− 1√

3
∆

, (5.54)

in accordance with (2.5).

• Limits of Type T 4/Emergent Type II string limits: in this case, Y3 needs to allow for an
Abelian fibration Y3 : T 4 → P1

b . Similarly to the previous case, the infinite-distance limit
corresponds to the fiber shrinking homogeneously and the base becoming large. As a
result, the M5-brane wrapping the T 4 fiber becomes light leading to a tensionless string
in 5d dual to a Type II string. In this case, (5.53) does not serve as a good description
of the species scale since for the limits of Type T 4, the component of c2(Y3) along Pb

1
vanishes, i.e., c2,0 = 0. Therefore, (5.48) does not correctly reproduce the species scale
in this limit. As in the analogue limit in 6d F-theory, the reason is again supersymmetry
enhancement in the asymptotic limit causing the R2-coupling to be sub-leading due to
systematic cancellations occuring in the supersymmetric protected coupling.

In the following, we consider a simple example of a Calabi-Yau manifold that possesses a
heterotic emergent string limit and use (5.48) to study the properties of the species scale
in the interior of the vector multiplet moduli space.
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5.2.2 Example: Calabi-Yau threefold with (h1,1, h2,1) = (2, 86)

We consider the Calabi-Yau threefold given by the intersection of bidegree (4,1) and bidegree
(1,1) hypersurfaces inside P4 × P1. This manifold was initially studied in [54, 55] and in
the CICY representation can be written as

X(2,86) =
(
P4 4 1
P1 1 1

)2

−168
. (5.55)

The Hodge numbers for this threefold are (h1,1, h2,1) = (2, 86) such that we refer to it as
X(2,86). Following the conventions in [56], the prepotential in phase I is

F (I) = 5
6X3 + 2X2Y with Kähler cone KI = {X, Y ≥ 0}, (5.56)

where X, Y correspond to curves in P4 and P1. There is a second phase which can be reached
via a flop wall located at Y = 0 where the geometry develops 16 conifold singularities.
Passing through the flop wall, we obtain phase II of our moduli space where the prepotential
takes on the following form

F (II) = 5
6X ′3 + 8X ′2Y ′ + 24X ′Y ′2 + 24Y ′3 with Kähler cone KII = {X ′, Y ′ ≥ 0} . (5.57)

The coordinate change between KII and KI is given by X ′ = X + 4Y and Y ′ = −Y . We
can then write down the prepotential in KII in the coordinates X, Y as

F (II) = 5
6X3 + 2X2Y − 16

6 Y 3 with Kähler cone KII = {X ≥ −4Y ≥ 0} . (5.58)

Thus, the extended Kähler cone is K∞[X(2,86)] = KI ∪ KII . The F = 1 hypersurface in
KI can be conveniently parameterized as

X = e−∆/
√

3 and Y = − 5
12e−∆/

√
3 + 1

2e2∆/
√

3 , (5.59)

where ∆ is the canonically normalized scalar in the single vector multiplet moduli space.
In terms of ∆, the flop boundary corresponds to

∆flop = − 1√
3
log 6

5 . (5.60)

There is only one infinite-distance limit which corresponds to ∆ → ∞. This is an emergent
heterotic string limit.8

We are interested in how the species scale varies over this moduli space, which may be
computed in terms of the second Chern class via (5.48). In general, the second Chern class
changes as we pass through a flop wall. For completeness, we provide the integrated second
Chern class for this example in the two possible phases∫

X(2,86)

c
(I)
2 ∧ J = 50X + 24Y ,

∫
X(2,86)

c
(II)
2 ∧ J = 50X + 56Y . (5.61)

8KII is bounded by a flop wall at Y = 0 and a CFT boundary at Y = −1/(2 · 31/3). Therefore, the distance
traversed in KII is always finite. Furthermore, the finite contribution to diam(µ) at small µ from KII is then
simply the distance between these two boundaries.
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Figure 10. Species scale (left) and slope |∇Λs|2/Λ2
s (right) for M-theory on X(2,86) in KI as a

function of ∆ defined in (5.59). The black dot on the left indicates the local maximum of the species
scale in KI .

As we are interested in the asymptotic behavior of the species scale and KII does not have
an infinite-distance limit, let us only write down the species scale (5.48) in KI :

Λ(I)
s =

[ 1
12 (50X + 24Y )

]−1/2
=
(10

3 e−∆/
√

3 + e2∆/
√

3
)−1/2

. (5.62)

Slope of Λs. In figure 10(a), we show the species scale as a function of the modulus ∆
and in (10(b)) the slope |∇Λs|2/Λ2

s is shown. We see that the latter is bounded by 1/3
everywhere in moduli space with the bound being saturated for ∆ → ∞ in accordance with
our general expectation for a heterotic emergent string limit.

Desert point. In phase KI , we find an extremum for the species scale as illustrated in
figure 10. Its precise location and the value of the species scale at this point is given by

Λ(I)
s

(
∆ = 1√

3
log 5

3

)
= 1

31/6 · 51/3 , (5.63)

which lies below the 5d Planck scale. However, the expression in (5.48) for X(2,86) is continuous,
but not differentiable across the flop wall, and the actual maximum of the species scale is
reached in phase KII along the CFT boundary at Y = −1

4X = −1/(2 · 31/3) where we have

Λmax.
s = 1√

2 · 31/3 ≈ 0.490 , (5.64)

which is roughly a factor of two lower than the Planck scale.9
9Close to the flop transition, the states becoming massless at this wall in the moduli space should be

integrated into the field theory description. In this regime, their effect on the higher-derivative corrections
should therefore be subtracted carefully leading to a definition for the species scale that is differentiable across
the flop wall. The effect of the light EFT states at the flop wall is the five-dimensional avatar of the logarithmic
divergences appearing in 4d that we revisit in section 6.
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Diameter. Finally, we can evaluate the diameter of the region in moduli space where
Λ ≥ µ for some cut-off scale µ. As before, we set Λs = µ and invert (5.62) to compute the
distance from the flop wall to ∆

∣∣
Λs(∆)=µ

in KI . The distance between these two points take
the following form in the small µ expansion

∆ =
√
3 log[µ]− 1√

3
log[1440] +O(µ3) . (5.65)

We also need to consider the bulk contribution which is the finite diameter of KII . Upon
numerical integration, we obtain ∆bulk,II ≈ 0.294.10 Combining everything together, we
obtain the diameter of field space for M-theory compactified on X(2,86) as

diam(µ) ≈ −
√
3 log[µ]− 3.903 . (5.66)

The coefficient appearing in front of log[µ] agrees with the analysis for a heterotic emergent
string limit, i.e., (5.54).

6 Refined bound on the species scale

One of the main motivations to study the relation between higher-curvature corrections and
the species scale was to extract general patterns for the species scale not specific to certain
examples with fixed dimension. Of particular interest is the validity of the bound (2.6) on the
slope of the species scale. It was noticed in [11], based on the emergent string conjecture [2],
that asymptotically there is a bound on the slope of the species scale |∇Λs|2

Λ2
s

≤
M2−d

pl
d−2 . Motivated

by this bound, it was argued, based on the consistency of the higher-derivative expansion of
the effective theory of gravity, that a similar upper bound on the slope exists everywhere
including the interior of the moduli space. However, this qualitative argument did not allow
us to fix the coefficient c appearing in the bound above which was just argued to be O(1),
and counter-examples were found for the original hope that the bound is given by c = 1

d−2 .
Nevertheless, given the large set of explicit examples in various dimensions studied in this
work, we are in a position to revisit the O(1) factor in the expression (2.6) and propose
the originally motivated sharper bound

|∇Λs|2

Λ2
s

≤ 1
d − 2 . (6.1)

In all the examples we studied, this bound is indeed satisfied everywhere in moduli space
— with two notable exceptions that we revisit now.

As we already mentioned, in [11] it was found that the bound (6.1) is naively violated
in the vector multiplet sector of 4d N = 2 theories arising from Type II compactifications
on Calabi-Yau threefolds Y3. Given the proposal [13] of identifying the species scale with
the genus-one topological free energy

Λs ∼ 1√
F1

, (6.2)

10Here, we only include the numerical value of ∆bulk,II. However, its closed-form expression may be computed
and is included in the Mathematica notebook in the supplementary material attached to this paper.
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it was shown in [11] that, with this identification, the constraint (6.1) is already not satisfied
in asymptotic emergent string limits. This violation of the proposed bound can be traced
back to the behavior of F1 at sub-leading order in the asymptotic regimes. In asymptotic
regimes (t → ∞), the topological genus-one free energy can be schematically written as

F1 = 1
12c2 t − β log t + . . . , (6.3)

where c2 is related to the integrated second Chern class of Y3 and the coefficient β depends
on the Hodge numbers of Y3 (see [11] for a detailed discussion of β). If β > 0, it was
shown in [11] that the slope of Λs = F

−1/2
1 approaches its asymptotic value from above.

In particular, there exist simple examples of emergent string limits for which β > 0 which
violate the bound (6.1). A similar situation arises already in eight-dimensional maximal
supergravity discussed in section 3.4. Using the notation introduced in that section, the
emergent string limit corresponds to

τ2 ∼ λ , ν ∼ λ−1 , λ → ∞ , (6.4)

while keeping U fixed. In this limit, the species scale then scales as

Λs = 1
41/6

(
2ζ(3)λ2 − 4π

3 log λ + . . .

)−1/6
, (6.5)

where the . . . indicate suppressed terms in the limit λ → ∞. We notice that the structure
of the term in the brackets is very similar to (6.3) in that the first sub-leading term in the
definition of the species scale depends logarithmically on the parameter that is taken to
be large in the emergent string limit.

Therefore, as illustrated in figure 11(a), the bound (6.1) seems to be violated in the
limit (6.4). To understand the origin of the corrections responsible for this violation, we
notice that in general the contribution of light modes with mass m to dimension-n operators
in d-dimension is by dimensional analysis expected to contribute to the effective coupling
as 1/mn−d and logarithmically if n = d. Therefore, the contribution of states describable in
the EFT to the couplings diverges if n ≥ d as m → 0. Since the R2-term in four dimensions
and the R4-term in eight dimensions have n = d, these states lead to logarithmic divergence
of the coupling whereas in higher dimensions, they do not lead to a divergence. A similar
situation arises close to the conifold where, as shown in [11], the slope of the F1 diverges such
that, naively, also the slope of the species scale violates the bound (6.1). The divergence in
this case is due to the additional hypermultiplet that becomes massless at the conifold and
hence should be included in the EFT and not contribute to the moduli-dependence of the
species scale. In the following, we first want to discuss how the violation of the bound (6.1)
is avoided in infinite-distance regions and then subsequently discuss how a proper treatment
of the conifold is consistent with the bound (6.1).

6.1 Contribution of EFT states at infinite distance

In 8d maximal supergravity, the logarithmic dependence of the R4-term on the moduli shows
up when regularizing E

SL(3)
3
2

and E
SL(2)
1 , whereas in four dimensions it arises when regulating
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the IR divergence arising in the definition of

F1 = 1
2

∫
F

d2τ

τ2
Tr(−1)F FLFRqH0 q̄H̄0 , (6.6)

due to the zero modes. In fact, in the latter case the term in F1 depending logarithmically
on the moduli is fixed by the holomorphic anomaly [14]. As argued in [57], the holomorphic
anomaly precisely arises due to the propagation of massless states. Therefore, the logarithmic
term in F1 is a consequence of the running of the R2-coupling due to massless modes. Similarly,
in eight dimensions, the coefficient Ê 3

2
satisfies the Laplacian equation

∆Ê 3
2
= 4π , with ∆ = 4τ2

2 ∂τ ∂̄τ̄ + |∂BN
− τ∂BR

|2

ντ2
+ 3∂ν(ν2∂ν) , (6.7)

which can be viewed as the analogue of the holomorphic anomaly equation in four dimensions
(see [58, 59]) and precisely captures the logarithmic divergence due to massless particles.
Since the logarithmic terms parameterizes the running of the higher-curvature couplings due
to massless particles, it should not affect the scaling of the species scale as a function of
moduli which should capture the effect of the massive states. We, therefore, propose that to
define the species scale correctly we need to subtract the term corresponding to the running
of the coupling due to integrating out states that are already part of the EFT. The exact
subtraction scheme is dependent on the exact point in moduli space and chosen duality frame.
Notice that since in higher dimensions, the light states do not lead to a divergence of the
higher-curvature coupling, we did not need to subtract the moduli-dependent EFT state
contribution in, e.g., 10d maximal supergravity.

In eight dimensions, the subtraction of the moduli-dependent contribution of EFT states
amounts to refining our identification of the species scale in (3.62) to

Λ̂s = 1
41/6

(
Ê

SL(3)
3
2

− 4π log ν1/3 − 2π log(|η(U)|4)
)−1/6

. (6.8)

Notice that the resulting expression is not U-duality invariant anymore — neither with
respect to SL(2) nor SL(3). From figure 11(a), we see that the slope |∇Λ̂s|2/Λ̂2

s is indeed
bounded by 1/6 in accordance with our bound (6.1).

We can proceed similarly in four dimensions. For simplicity, we focus here on the
Enriques Calabi-Yau Y3 = (K3× T 2)/Z2. For this manifold, the genus-one topological free
energy is given by [60]

F1

(
K3× T 2

Z2

)
= −6 log

[
i(t − t̄)|η(t)|2

]
+ F K3

1 (s, s̄) , (6.9)

where t is the complexified volume of the torus factor and s collectively stands for the moduli
of K3. Here, we are interested in the Im t → ∞ limit while keeping s constant. This is an
emergent string limit and, as shown in [11], the slope of F1 approaches its asymptotic value
1/2 from above in the limit Im t → ∞. Since we keep s constant, the details of F K3

1 are not
important to us, but we can effectively treat it as a positive constant.

In (6.9), the term proportional to log[i(t − t̄)] is precisely the term that at large Im t

is fixed by the holomorphic anomaly equation [14]. According to our general discussion, in
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(a) Slope along emergent string limit.
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(b) Slope along decompactification limit.

Figure 11. Left: the slope of the species scale 8d M-theory on T 3 along the path (τ2, ν) = (λ, 1/λ)
(with U2 = 1 and all axions set to zero): the dashed line denotes the emergent string bound 1/6,
the yellow curve the species scale without logarithmic terms, blue the species scale with logarithmic
terms. Right: the slope of species scale along the 9d decompactification limit (τ2, ν, U2) = (1, λ−2, λ)
(with axions set to (τ1, BR, BN , U1) = ( 1

2 ,− 1
3 ,− 2

3 , 1
2 )), where the blue curve denotes the species scale

without logarithmic terms.

the limit Imt → ∞, we hence should subtract this term to obtain the correct behavior for
the species scale such that we can define

Λ̂s =
(
−6 log |η(t)|2 + F̂ K3

1 (s, s̄)
)−1/2

, (6.10)

where F̂ K3
1 is obtained by similar subtractions to F K3

1 for which the details are, however, not
important to our present discussion. The slope of Λ̂s is shown in figure 12 from which we
can see that, indeed, the bound (6.1) is satisfied for d = 4. Notice that to satisfy the bound,
it is crucial to have the additional t-independent F̂ K3

1 contributing positively to the species
scale. If this term was absent, the bound (6.1) can be violated as illustrated in figure 12.
In general, for emergent string limits in dimensions less than 10, we always expect such
a constant contribution depending on additional moduli. The fact that their contribution
can never be entirely absent reflects the fact that the weakly-coupled strings arising in the
emergent string limits still have additional moduli corresponding to the compactification
manifold in the dual frame. If the additional contributions to the species scale would vanish in
the emergent string limit, this would mean that we could find a genuinely lower-dimensional
critical string. The analysis of [61, 62] illustrates, however, that such limits are expected
to be obstructed at the quantum level implying that, indeed, there is always a constant
contribution to the species scale in emergent string limits such that the slope |∇Λ̂s|2/Λ̂2

s

approaches its asymptotic value from below.
Notice that this does not mean that, for other type of limits, the species scale necessarily

approaches its asymptotic value from below. However, this does not imply a violation of
the bound (6.1) since the asymptotic value for decompacitfication limits is well-below the
value for emergent string limits. To illustrate this point, consider again eight-dimensional
maximal supergravity with species scale given by (6.8). In this theory, we can consider
the decompactification to 9d by taking the limit (see section 3.4) V, U2 → ∞. From (3.57)
and (6.8), we see that, in this limit, the first subleading term in Λ̂s is given by exponentials
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Figure 12. Plot of the slope of the species scale for (K3 × T 2)/Z2 along a constant axion slice
τ1 = 1/2. For blue curve F K3

1 (s, s̄) is set to zero while for the yellow curve F K3
1 (s, s̄) = 1. The dashed

line indicates the emergent string bound 1/2 for the slope.

such that the sign of the correction to the asymptotic behavior of Λ̂s depends on the
value of the axionic coordinates. The slope of the species scale for the choice of axions
(τ1, BR, BN , U1) = (1

2 ,−1
3 ,−2

3 , 1
2) is shown in figure 11(b). It is clear from there that even

though the slope of the species scale approaches its asymptotic value from above, it does
not violate the bound (6.1) anywhere in moduli space.

6.2 Refined treatment of the conifold

It was already noticed in [13] that upon identifying F1 = Λ−2
s in 4d N = 2 theories the

conifold point requires careful treatment. The reason for this is that close to the conifold,
F1 diverges logarithmically

F1 = − 1
12 log |u|2 + . . . , (6.11)

where u = 0 ∈ C corresponds to the conifold locus. This term is generated by the hypermul-
titplet that becomes massless at u = 0 and hence needs to be included in the EFT. Similar
to the contributions of the massless states to F1 in the asymptotic limits discussed above,
the relevant term in F1 generated by the additional hypermultiplet in the EFT depends
logarithmically on the conifold modulus u. As for the slope |∇F1|/F1, it was shown in [11]
that for u → 0 it diverges as

|∇F1|
F1

∼ 1
|u|2(− log |u|)3 , (6.12)

implying that, naively, the bound (6.1) is violated for small u. However, since F1 is calculated
in string perturbation theory, it does not include the additional hypermultiplet in the
EFT. Therefore, F1 only captures the species scale correctly as long as the mass of the
hypermultiplet is above the Type II string scale, i.e.,

u

gs
≥ 1 . (6.13)

– 51 –



J
H
E
P
0
5
(
2
0
2
4
)
1
1
2

In order to ensure the validity of the perturbative string description in the limit u → 0, we need
to co-scale gs ∼ u. Since gs is part of a hypermultiplet, the dependence of the species scale on
gs is not directly captured by F1 and we cannot give a closed form for it at finite gs. However,
since the limit gs → 0 corresponds to an emergent string limit, we know that Λs ∼ Ms ∼ gs

in this limit. We account for this by effectively adding a u-independent contribution to F1

F1 = − 1
12 log |u|2 + N(gs) , (6.14)

where the additive contribution depends on gs. In the scaling limit gs ∼ u for which the mass
of the conifold state does not drop below the string scale, we can still trust the EFT and
check if the conjectured bound on the slope of Λs is still satisfied. The field space metric
for the dilaton in four-dimensions and u for u, gs ≪ 1 is given by

ds2 = 2g2
s dg2

s − log |u|2 du2 . (6.15)

Using this, we evaluate the slope of the species scale to be∣∣∣∣∇Λs

Λs

∣∣∣∣2 ∼ g2
s

8
(∂gsN(gs))2(

− 1
12 log |u|2 + N(gs)

)2 − 1
4 log |u|2

1
|u|2(− log |u|2 + 12N(gs))2

gs=|u|∼ 1
2 + 1

12 |u|
2 log |u|2 − 1

576
|u|2

log |u|2 +O(|u|4) .

(6.16)

In the last step, we used N(gs) ∼ g−2
s , set gs = |u| and expanded around |u| = 0. We note

that in the second line the u-dependent terms vanish in the limit |u| → 0. For small |u|, the
term proportional to log |u|2 is negative and dominates over the positive contribution from
the term proportional to 1/ log |u|2. Therefore, in the limit |u| ∼ gs → 0 the slope |∇Λs|2/Λ2

s

approaches 1/2 from below and hence satisfies the bound (6.1).
After accounting correctly for the effect of the zero modes on the higher-curvature

couplings, we hence see that all our examples satisfy the bound (6.1) at every point in moduli
space, providing strong evidence that this bound is satisfied in general. We therefore have
a proposed sharp constraint on the species scale and hence the light states in the theory
that may be valid at any point in moduli space.
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A Eisenstein series for SL(n,Z)

In this appendix we detail the computation of real-analytic Eisenstein series for SL(n,Z).
These series show up as coefficients of the R4-corrections in maximal supergravities in 8, 9 and
10 dimensions considered in this work. In general the Eisenstein series for SL(n,Z) is defined as

ESL(n)
s (M) =

∑
p∈Zn\{0}

1
|pT Mp|s

, (A.1)

where we take M to be any positive-definite, symmetric matrix with determinant detM = 1.
In the following we consider this Eisenstein series at s = 1, 3

2 for SL(2,Z) and s = 3
2

for SL(3,Z).

A.1 Eisenstein series for SL(2,Z)

In this subsection we consider the Eisenstein series E1(τ, τ̄) and E 3
2
(τ, τ̄) for SL(2,Z) which

we parameterize by the usual coordinate τ on the upper half-plane. The relation with the
matrix M used in (A.1) is then given by

M = 1
τ2

(
1 τ1
τ1 τ2

1 + τ2
2

)
. (A.2)

There are two special points for this Eisenstein series: τ = i and τ = ρ ≡ 1
2 + i

√
3

2 . In the
following we will evaluate the various Eisenstein series and their derivatives at these points.

Eisenstein series Ê1(τ, τ̄). Here we consider the Eisenstein series E1(τ, τ̄). It arises as
coefficient of the R4-correction for 8d M-theory on T 3 discussed in section 3.4. As this sum
is divergent, we consider the regularized version

Ê1(τ, τ̄) = −2π log τ2|η2(τ)|2 , (A.3)

where η(τ) is the Dedekind eta function. This expression may be obtained by expanding
around s = 1 + ϵ and subtracting the divergent 1/ϵ term with an appropriate constant. We
now want to evaluate this Eisenstein series at the special points τ = i and τ = ρ. As we know
the values of the Dedekind eta function at these points, we find that

Ê1(i,−i) = 2π log 16π3

Γ
[

1
4

]4 ≈ 6.6268 , Ê1(ρ, ρ̄) = 2π log 32π4

Γ
[

1
3

]6 ≈ 6.49379 . (A.4)

We next compute the Hessian of the Eisenstein series at these special points, that is, 2τ2
2 ∂i∂jÊ1

with i, j = τ1, τ2. Here we included the factor of 2τ2
2 to ensure the correct normalization of

the kinetic terms for the scalars. For the eigenvalues of the Hessian we find

2τ2
2 ∂i∂jÊ1(τ, τ̄)

∣∣∣∣
τ=i

=
(
−1.87372 0

0 8.1569

)
,

2τ2
2 ∂i∂jÊ1(τ, τ̄)

∣∣∣∣
τ=ρ

=
(
4.18879 0

0 4.18879

)
.

(A.5)

We conclude that τ = i is a saddle point of Ê1 while τ = ρ is a (global) minimum. The
instability of τ = i is due to a negative eigenvalue along the axionic direction. It is also
remarkable that for τ = ρ the two eigenvalues are precisely equal.
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Eisenstein series Es(τ, τ̄ ). Here we consider the Eisenstein series Es(τ, τ̄) for s > 1. We
are interested in the exact computation of these infinite series at τ = i, ρ, which we achieve
by number theoretic methods (see [63] for a review). In general, the Eisenstein series may
be computed exactly whenever τ lies in an imaginary quadratic field τ ∈ Q(i

√
d), with d

some positive integer, i.e., when the elliptic curve associated to τ has complex multiplication.
We write this value for τ as

τ = − b

2a
+ i

√
−b2 + 4ac

2a
, (A.6)

where d = 4ac − b2. For these values of τ we can rewrite the Eisenstein series into a so-called
Epstein zeta function as

ζQ(s) =
∑

(p,q)∈Z2\0

1
Q(p, q)s

, Q(p, q) = (p, q)
(

a b/2
b/2 c

)(
p

q

)
= ap2 + bpq + cq2 , (A.7)

where d is now the determinant of this matrix. For the values τ = i, ρ this yields

Es(i,−i) = ζQi(s) , Es(ρ, ρ̄) =
(√

3
2

)s
ζQρ(s) , (A.8)

where we defined

Qi =
(
1 0
0 1

)
, Qρ =

(
1 1/2
1/2 1

)
. (A.9)

The general strategy of evaluating these Epstein zeta functions is to rewrite the lattice sum
into the product of two one-dimensional sums. One of the two factors will be ζ(s), while
the other factor depends on the precise bilinear Q that specifies the sum. In the following
we carry out these summations for τ = i and τ = ρ.

Value at τ = i. Let us first compute the Eisenstein series for τ = i. We can rewrite
it in terms of an L-function value as

Es(i,−i) = 4ζ(s)L(s, χi) = 4ζ(s)
∞∑

n=1

χi(n)
ns

, (A.10)

with the character χi given by

χi(n) =


0 if n = 0 mod 2,
1 if n = 1 mod 4,
−1 if n = 3 mod 4.

(A.11)

By writing out the sum over n explicitly one recognizes the Dirichlet beta function β(s) as

Es(i,−i) = 4ζ(s)β(s) = 4ζ(s)
∞∑

n=0

(−1)n

(2n + 1)s
. (A.12)
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Value at τ = ρ. We next consider the Eisenstein series at the third root of unity. Similar
to τ = i we can rewrite the lattice sum into an L-function value as

Es(ρ, ρ̄) = 6
(√

3
2

)s

L(s, χρ) . (A.13)

The character χρ associated to this sum is now given by

χρ(n) =


0 if n = 0 mod 3,
1 if n = 1 mod 3,
−1 if n = 2 mod 3.

(A.14)

This allows us to evaluate the Eisenstein series to be

Es(ρ) = 6
(√

3
2

)s
3−s

[
ζ 1

3
(s)− ζ 2

3
(s)
]

, (A.15)

where we defined the generalized Riemann zeta functions

ζa(s) =
∞∑

n=0

1
(n + a)s

. (A.16)

Eisenstein series E 3
2
(τ, τ̄ ). Finally we specialize to s = 3

2 , in which case the Eisenstein
series computes the R4-correction to 10d Type IIB discussed in section 3.2. Here we will
investigate the stability at τ = i, ρ more closely. Let us begin by evaluating the Eisenstein
series at these points explicitly. By using (A.12) and (A.15) we find that

E 3
2
(i,−i) = 4ζ(3

2)β(
3
2) ≈ 9.03362 , E 3

2
(ρ, ρ̄) =

(√
3

2

)1/2
ζ(3

2)
(
ζ 1

3
(3

2)− ζ 2
3
(3

2)
)
≈ 8.89275 .

(A.17)
We note that these numerical values may also be obtained by taking the expression (3.20)
and including only the first few D(-1)-instanton corrections. We next consider the Hessian
2τ2

2 ∂i∂jE 3
2
(τ, τ̄), where the factor 2τ2

2 represents the normalization by the metric and i, j =
τ1, τ2. We find that

2τ2
2 ∂i∂jE 3

2
(τ, τ̄)

∣∣∣∣
τ=i

=
(
−3.96778 0

0 17.5182

)
,

2τ2
2 ∂i∂jE 3

2
(τ, τ̄)

∣∣∣∣
τ=ρ

=
(
6.66956 0

0 6.66956

)
.

(A.18)

We thus arrive at the same conclusions as for Ê1(τ, τ̄): there is a global minimum at τ = ρ

while τ = i is a saddle point (again due to the negative eigenvalue along the τ1 direction).
Also note that the eigenvalues of the Hessian at τ = ρ are equal as before.

A.2 Fundamental domain of SL(3,Z)

In this subsection we characterize the fundamental domain of SL(3,Z). Recall from section 3.4
that this field space is spanned by two saxions τ2, ν and three axions τ1, BR, BN . For simplicity
we restrict our attention to vanishing axions τ1 = BR = BN = 0. Here we will work out the
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precise S-duality transformations inside SL(3,Z) on the remaining moduli space spanned
by τ2, ν.

Let us begin by considering the three analogues of the familiar S-duality of SL(2,Z).
These are generated by the matrices

S1 =

0 −1 0
1 0 0
0 0 1

 , S2 =

1 0 0
0 0 −1
0 1 0

 , S3 =

 0 0 1
0 1 0
−1 0 0

 . (A.19)

We can infer the action of these S-duality transformations by acting on the matrix M , given
in (3.51), that parameterizes our moduli space as M → SMST . From this transformation
we read off the action on the coordinates τ2, ν (in the case of vanishing axions) as

(τ2, ν) → (1/τ2, ν) , (τ2, ν) → (
√

τ2
ν

,
1

ν1/2τ
3/2
2

) , (τ2, ν) → (√τ2ν,
τ

3/2
2

ν1/2 ) . (A.20)

There are two additional S-duality transformations, that may be obtained by combining two
out of three operators S1, S2, S3 above. Concretely, we take

S4 = S1S2 =

0 0 1
1 0 0
0 1 0

 , S5 = S1S3 =

 0 −1 0
0 0 1
−1 0 0

 . (A.21)

These transformations act on the coordinates as

(τ2, ν) → (
√

ν

τ2
,

1
τ

3/2
2 ν1/2

) , (τ2, ν) → (
√

ν

τ2
,
τ

3/2
2

ν1/2 ) . (A.22)

Altogether this gives us 5 S-duality operators. From the validity of the instanton expansion
in (3.20) we know that we have a fundamental domain given by τ2 > 1 and √

ντ2 < 1. In
total there are six such patches in the (τ2, ν)-plane that are mapped to each other by the
S-duality transformations above. This proves to be useful for us in extending (3.20) to these
other regimes — for instance in producing figure 5 — as we can simply plug this coordinate
change into the instanton expansion.

A.3 Eisenstein series for SL(3,Z)

In this appendix we analyze the Eisenstein series E 3
2
(M) of SL(3,Z). It arises as the R4-

coupling of 8d M-theory on T 3 discussed in section 3.4. As this lattice sum is divergent, we
have to regularize it by expanding around s = 3

2 + ϵ and subtracting the 1/ϵ term with an
appropriate constant. The resulting series expansion for Ê 3

2
(M) has been given explicitly

in (3.20). In the following we use this series to analyze the special points in moduli space
and their stability.

Cubic lattice. We begin with the standard cubic lattice. It corresponds to the following
point in the SL(3,R)/SO(3) moduli space

MI =

1 0 0
0 1 0
0 0 1

 , τ = i , ν = 1 , BR = BN = 0 . (A.23)
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For this point we compute the Eisenstein series and the eigenvalues of its (normalized)
Hessian numerically. We find these to be

Ê 3
2
(MI) = 9.13479 ,

eigvals(Gik∂k∂jÊ 3
2
(M))

∣∣
M=MI

= (19.0355, 19.0355,−4.31275,−4.31275,−4.31275) .
(A.24)

This lattice thus gives a saddle point due to the three (equal) negative eigenvalues.

A3 root lattice. We next consider the A3 root lattice, also called the face-centered cubic
(FCC) or hexagonal close-packing (HCC) lattice. It corresponds to the following point in
the SL(3,R)/SO(3) moduli space

MA3 = 2−2/3

 2 −1 0
−1 2 −1
0 −1 2

 , τ = −1
2 +

√
3i

2 , ν = 3
√
3

4 , BR = −1
3 , BN = −2

3 . (A.25)

For this point we compute the Eisenstein series and the eigenvalues of its (normalized)
Hessian numerically. We find these to be

Ê 3
2
(MA3) = 8.79961 ,

eigvals(Gik∂k∂jÊ 3
2
(M))

∣∣
M=MA3

= (7.58637, 7.58637, 7.58637, 1.18682, 1.18682) .
(A.26)

From comparison to other special points we find that the A3 root lattice is the global minimum
of Ê 3

2
. Also note that it has only two distinct eigenvalues.

A∗
3 root lattice. We next consider the A∗

3 root lattice; this lattice is dual to the A3 root
lattice, and also known as the body-centered cubic (BCC) lattice. It corresponds to the
following point in the SL(3,R)/SO(3) moduli space

MA∗
3
=2−4/3

 3 −1 −1
−1 3 −1
−1 −1 3

 , τ =−1
3+

2
√
2i

3 , ν =
√
2 , BR =BN =−1

2 . (A.27)

For this point we compute the Eisenstein series and the eigenvalues of its (normalized)
Hessian numerically. We find these to be

Ê 3
2
(MA∗

3
)= 8.8031 ,

eigvals(Gik∂k∂jÊ 3
2
(M))

∣∣
M=MA∗

3
=(7.90579,7.90579,7.90579,0.707685,0.707685) .

(A.28)

This lattice thus gives another minimum of Ê 3
2
, although it is not a global one.

B Geodesic distances for del Pezzo surfaces

In this appendix we discuss some details about the computation of geodesic distances in the
field space of del Pezzo surfaces. This analysis is of interest to the study of 6d F-theory field
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spaces in section 5.1. As was already discussed there, the metric on the constant volume
submanifold reduces to the generalized hyperbolic metric

ds2 = dx2 + sinh2 xdΩ2
r−1 . (B.1)

Recall that geodesics on any sphere Sr−1 lie along great circles, i.e., circles on the sphere
whose origin coincides with that of the sphere. For this metric (B.1) this allows us to reduce
the problem of finding geodesics by considering an appropriate great circle S1 ⊂ Sr−1. If
we parameterize this coordinate by θ, the metric then reduces to

ds2 = dx2 + sinh2 xdθ2 . (B.2)

Note that this metric is just that of the hyperbolic plane, for which we know that geodesics
are either lines of constant θ or described by

tanh[x] = tanh[x0]
cos(θ − θ0)

, (B.3)

here (x0, θ0) is the point closest to the origin. The distance between two points (x1, θ1), (x2, θ2)
is given by

∆ = arccosh[cosh x1 cosh x2 − sinh x1 sinh x2 cos(θ2 − θ1)] . (B.4)

We will now be interested in finding geodesics between the desert point and a point along
any of the emergent string limits. Concretely, we have the begin and endpoints

XI
1 = (X0

1 , X i
1) = ( 3√

9− r
,

1√
9− r

) , XI
2 = (cosh x, sinh x, 0, . . . , 0) , (B.5)

where we chose the second endpoint to lie along the emergent string limit of H − E1. In
terms of the coordinates x and ui on the (r − 1)-sphere defined by (5.24) we find that these
points are mapped to

x1 = arccosh
[ 3√

9− r

]
, ui

1 = 1√
r

, x2 = x, ui
2 = (1, 0, . . . , 0) . (B.6)

Let us now fix a great circle S1 ⊂ Sr−1 that passes through ui
1 and ui

2 such that ui
2 lies at

θ2 = 0 and ui
1 within θ2 ∈ [0, π/2). Then we can compute the angle θ1 simply from the

inner product of the vectors ui
1 and ui

2 to be

θ1 = arccos
[ 1√

r

]
. (B.7)

With all of these preparations in place, we are ready to compute the geodesic distance for
the diameter of field space. Let us first summarize what are the begin and endpoints in
the (x, θ)-coordinates we have established

(x1, θ1) = (arccosh
[ 3√

9− r

]
, arccos

[ 1√
r

]
) , (x2, θ2) = (x, 0) . (B.8)

Plugging this into the distance formula (B.4) we find that

∆ = arccosh
[3 cosh x − sinh x√

9− r

]
≈ x + log 2√

9− r
, (B.9)

where we approximated for large x ≫ 1 in the second step.

– 58 –



J
H
E
P
0
5
(
2
0
2
4
)
1
1
2

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] H. Ooguri and C. Vafa, On the Geometry of the String Landscape and the Swampland, Nucl.
Phys. B 766 (2007) 21 [hep-th/0605264] [INSPIRE].

[2] S.-J. Lee, W. Lerche and T. Weigand, Emergent strings from infinite distance limits, JHEP 02
(2022) 190 [arXiv:1910.01135] [INSPIRE].

[3] M. Etheredge et al., Sharpening the Distance Conjecture in diverse dimensions, JHEP 12 (2022)
114 [arXiv:2206.04063] [INSPIRE].

[4] N.B. Agmon, A. Bedroya, M.J. Kang and C. Vafa, Lectures on the string landscape and the
Swampland, arXiv:2212.06187 [INSPIRE].

[5] G. Dvali, Black Holes and Large N Species Solution to the Hierarchy Problem, Fortsch. Phys. 58
(2010) 528 [arXiv:0706.2050] [INSPIRE].

[6] G. Dvali and D. Lüst, Evaporation of Microscopic Black Holes in String Theory and the Bound
on Species, Fortsch. Phys. 58 (2010) 505 [arXiv:0912.3167] [INSPIRE].

[7] G. Dvali and C. Gomez, Species and Strings, arXiv:1004.3744 [INSPIRE].

[8] G. Dvali, C. Gomez and D. Lüst, Black Hole Quantum Mechanics in the Presence of Species,
Fortsch. Phys. 61 (2013) 768 [arXiv:1206.2365] [INSPIRE].

[9] B. Heidenreich, M. Reece and T. Rudelius, Emergence of Weak Coupling at Large Distance in
Quantum Gravity, Phys. Rev. Lett. 121 (2018) 051601 [arXiv:1802.08698] [INSPIRE].

[10] T.W. Grimm, E. Palti and I. Valenzuela, Infinite Distances in Field Space and Massless Towers
of States, JHEP 08 (2018) 143 [arXiv:1802.08264] [INSPIRE].

[11] D. van de Heisteeg, C. Vafa and M. Wiesner, Bounds on Species Scale and the Distance
Conjecture, Fortsch. Phys. 71 (2023) 2300143 [arXiv:2303.13580] [INSPIRE].

[12] J. Calderón-Infante, A. Castellano, A. Herráez and L.E. Ibáñez, Entropy bounds and the species
scale distance conjecture, JHEP 01 (2024) 039 [arXiv:2306.16450] [INSPIRE].

[13] D. van de Heisteeg, C. Vafa, M. Wiesner and D.H. Wu, Moduli-dependent Species Scale,
arXiv:2212.06841 [INSPIRE].

[14] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Holomorphic anomalies in topological field
theories, Nucl. Phys. B 405 (1993) 279 [hep-th/9302103] [INSPIRE].

[15] N. Cribiori, D. Lüst and G. Staudt, Black hole entropy and moduli-dependent species scale, Phys.
Lett. B 844 (2023) 138113 [arXiv:2212.10286] [INSPIRE].

[16] N. Cribiori, D. Lüst and C. Montella, Species entropy and thermodynamics, JHEP 10 (2023) 059
[arXiv:2305.10489] [INSPIRE].

[17] N. Cribiori and D. Lüst, A Note on Modular Invariant Species Scale and Potentials, Fortsch.
Phys. 71 (2023) 2300150 [arXiv:2306.08673] [INSPIRE].

[18] C. Long, M. Montero, C. Vafa and I. Valenzuela, The desert and the swampland, JHEP 03
(2023) 109 [arXiv:2112.11467] [INSPIRE].

– 59 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.nuclphysb.2006.10.033
https://doi.org/10.1016/j.nuclphysb.2006.10.033
https://arxiv.org/abs/hep-th/0605264
https://inspirehep.net/literature/717890
https://doi.org/10.1007/JHEP02(2022)190
https://doi.org/10.1007/JHEP02(2022)190
https://arxiv.org/abs/1910.01135
https://inspirehep.net/literature/1757412
https://doi.org/10.1007/JHEP12(2022)114
https://doi.org/10.1007/JHEP12(2022)114
https://arxiv.org/abs/2206.04063
https://inspirehep.net/literature/2093817
https://arxiv.org/abs/2212.06187
https://inspirehep.net/literature/2613889
https://doi.org/10.1002/prop.201000009
https://doi.org/10.1002/prop.201000009
https://arxiv.org/abs/0706.2050
https://inspirehep.net/literature/753103
https://doi.org/10.1002/prop.201000008
https://arxiv.org/abs/0912.3167
https://inspirehep.net/literature/840289
https://arxiv.org/abs/1004.3744
https://inspirehep.net/literature/852514
https://doi.org/10.1002/prop.201300002
https://arxiv.org/abs/1206.2365
https://inspirehep.net/literature/1118069
https://doi.org/10.1103/PhysRevLett.121.051601
https://arxiv.org/abs/1802.08698
https://inspirehep.net/literature/1657421
https://doi.org/10.1007/JHEP08(2018)143
https://arxiv.org/abs/1802.08264
https://inspirehep.net/literature/1657204
https://doi.org/10.1002/prop.202300143
https://arxiv.org/abs/2303.13580
https://inspirehep.net/literature/2645703
https://doi.org/10.1007/JHEP01(2024)039
https://arxiv.org/abs/2306.16450
https://inspirehep.net/literature/2672911
https://arxiv.org/abs/2212.06841
https://inspirehep.net/literature/2614218
https://doi.org/10.1016/0550-3213(93)90548-4
https://arxiv.org/abs/hep-th/9302103
https://inspirehep.net/literature/352841
https://doi.org/10.1016/j.physletb.2023.138113
https://doi.org/10.1016/j.physletb.2023.138113
https://arxiv.org/abs/2212.10286
https://inspirehep.net/literature/2616367
https://doi.org/10.1007/JHEP10(2023)059
https://arxiv.org/abs/2305.10489
https://inspirehep.net/literature/2660859
https://doi.org/10.1002/prop.202300150
https://doi.org/10.1002/prop.202300150
https://arxiv.org/abs/2306.08673
https://inspirehep.net/literature/2668943
https://doi.org/10.1007/JHEP03(2023)109
https://doi.org/10.1007/JHEP03(2023)109
https://arxiv.org/abs/2112.11467
https://inspirehep.net/literature/1996064


J
H
E
P
0
5
(
2
0
2
4
)
1
1
2

[19] D. van de Heisteeg, C. Vafa, M. Wiesner and D.H. Wu, Bounds on field range for slowly varying
positive potentials, JHEP 02 (2024) 175 [arXiv:2305.07701] [INSPIRE].

[20] D. Andriot, Bumping into the Species Scale with the Scalar Potential, Fortsch. Phys. 71 (2023)
2300139 [arXiv:2305.07480] [INSPIRE].

[21] A. Hebecker, P. Henkenjohann and L.T. Witkowski, Flat Monodromies and a Moduli Space Size
Conjecture, JHEP 12 (2017) 033 [arXiv:1708.06761] [INSPIRE].

[22] M. Scalisi and I. Valenzuela, Swampland distance conjecture, inflation and α-attractors, JHEP
08 (2019) 160 [arXiv:1812.07558] [INSPIRE].

[23] M.B. Green and M. Gutperle, Effects of D instantons, Nucl. Phys. B 498 (1997) 195
[hep-th/9701093] [INSPIRE].

[24] M.B. Green and P. Vanhove, D instantons, strings and M theory, Phys. Lett. B 408 (1997) 122
[hep-th/9704145] [INSPIRE].

[25] E. Kiritsis and B. Pioline, On R4 threshold corrections in IIb string theory and (p, q) string
instantons, Nucl. Phys. B 508 (1997) 509 [hep-th/9707018] [INSPIRE].

[26] B. Pioline and E. Kiritsis, U duality and D-brane combinatorics, Phys. Lett. B 418 (1998) 61
[hep-th/9710078] [INSPIRE].

[27] N.A. Obers and B. Pioline, Eisenstein series and string thresholds, Commun. Math. Phys. 209
(2000) 275 [hep-th/9903113] [INSPIRE].

[28] M.B. Green, H.-H. Kwon and P. Vanhove, Two loops in eleven-dimensions, Phys. Rev. D 61
(2000) 104010 [hep-th/9910055] [INSPIRE].

[29] B. Pioline, R4 couplings and automorphic unipotent representations, JHEP 03 (2010) 116
[arXiv:1001.3647] [INSPIRE].

[30] M.B. Green, J.G. Russo and P. Vanhove, Automorphic properties of low energy string amplitudes
in various dimensions, Phys. Rev. D 81 (2010) 086008 [arXiv:1001.2535] [INSPIRE].

[31] M.B. Green, S.D. Miller and P. Vanhove, Small representations, string instantons, and Fourier
modes of Eisenstein series, J. Number Theor. 146 (2015) 187 [arXiv:1111.2983] [INSPIRE].

[32] G. Bossard, A. Kleinschmidt and B. Pioline, 1/8-BPS Couplings and Exceptional Automorphic
Functions, SciPost Phys. 8 (2020) 054 [arXiv:2001.05562] [INSPIRE].

[33] M.B. Green and A. Rudra, Type I/heterotic duality and M-theory amplitudes, JHEP 12 (2016)
060 [arXiv:1604.00324] [INSPIRE].

[34] J.J. Heckman and C. Vafa, Fine Tuning, Sequestering, and the Swampland, Phys. Lett. B 798
(2019) 135004 [arXiv:1905.06342] [INSPIRE].

[35] T.W. Grimm, K. Mayer and M. Weissenbacher, Higher derivatives in Type II and M-theory on
Calabi-Yau threefolds, JHEP 02 (2018) 127 [arXiv:1702.08404] [INSPIRE].

[36] C.M. Hull and P.K. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109
[hep-th/9410167] [INSPIRE].

[37] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and exact
results for quantum string amplitudes, Commun. Math. Phys. 165 (1994) 311 [hep-th/9309140]
[INSPIRE].

[38] G. Bossard and A. Loty, Saturating unitarity bounds at U-duality symmetric points, JHEP 10
(2023) 110 [arXiv:2308.02847] [INSPIRE].

– 60 –

https://doi.org/10.1007/JHEP02(2024)175
https://arxiv.org/abs/2305.07701
https://inspirehep.net/literature/2659726
https://doi.org/10.1002/prop.202300139
https://doi.org/10.1002/prop.202300139
https://arxiv.org/abs/2305.07480
https://inspirehep.net/literature/2659266
https://doi.org/10.1007/JHEP12(2017)033
https://arxiv.org/abs/1708.06761
https://inspirehep.net/literature/1618353
https://doi.org/10.1007/JHEP08(2019)160
https://doi.org/10.1007/JHEP08(2019)160
https://arxiv.org/abs/1812.07558
https://inspirehep.net/literature/1709841
https://doi.org/10.1016/S0550-3213(97)00269-1
https://arxiv.org/abs/hep-th/9701093
https://inspirehep.net/literature/439650
https://doi.org/10.1016/S0370-2693(97)00785-5
https://arxiv.org/abs/hep-th/9704145
https://inspirehep.net/literature/442369
https://doi.org/10.1016/S0550-3213(97)00645-7
https://arxiv.org/abs/hep-th/9707018
https://inspirehep.net/literature/445094
https://doi.org/10.1016/S0370-2693(97)01398-1
https://arxiv.org/abs/hep-th/9710078
https://inspirehep.net/literature/449516
https://doi.org/10.1007/s002200050022
https://doi.org/10.1007/s002200050022
https://arxiv.org/abs/hep-th/9903113
https://inspirehep.net/literature/496680
https://doi.org/10.1103/PhysRevD.61.104010
https://doi.org/10.1103/PhysRevD.61.104010
https://arxiv.org/abs/hep-th/9910055
https://inspirehep.net/literature/508268
https://doi.org/10.1007/JHEP03(2010)116
https://arxiv.org/abs/1001.3647
https://inspirehep.net/literature/843305
https://doi.org/10.1103/PhysRevD.81.086008
https://arxiv.org/abs/1001.2535
https://inspirehep.net/literature/842865
https://doi.org/10.1016/j.jnt.2013.05.018
https://arxiv.org/abs/1111.2983
https://inspirehep.net/literature/945669
https://doi.org/10.21468/SciPostPhys.8.4.054
https://arxiv.org/abs/2001.05562
https://inspirehep.net/literature/1776037
https://doi.org/10.1007/JHEP12(2016)060
https://doi.org/10.1007/JHEP12(2016)060
https://arxiv.org/abs/1604.00324
https://inspirehep.net/literature/1439803
https://doi.org/10.1016/j.physletb.2019.135004
https://doi.org/10.1016/j.physletb.2019.135004
https://arxiv.org/abs/1905.06342
https://inspirehep.net/literature/1735231
https://doi.org/10.1007/JHEP02(2018)127
https://arxiv.org/abs/1702.08404
https://inspirehep.net/literature/1515242
https://doi.org/10.1016/0550-3213(94)00559-W
https://arxiv.org/abs/hep-th/9410167
https://inspirehep.net/literature/378794
https://doi.org/10.1007/BF02099774
https://arxiv.org/abs/hep-th/9309140
https://inspirehep.net/literature/358604
https://doi.org/10.1007/JHEP10(2023)110
https://doi.org/10.1007/JHEP10(2023)110
https://arxiv.org/abs/2308.02847
https://inspirehep.net/literature/2686036


J
H
E
P
0
5
(
2
0
2
4
)
1
1
2

[39] P. Sarnak and A. Strömbergsson, Minima of Epstein’s Zeta function and heights of flat tori,
Invent. Math. 165 (2006) 115.

[40] D.J. Gross and J.H. Sloan, The Quartic Effective Action for the Heterotic String, Nucl. Phys. B
291 (1987) 41 [INSPIRE].

[41] J.R. Ellis, P. Jetzer and L. Mizrachi, One Loop String Corrections to the Effective Field Theory,
Nucl. Phys. B 303 (1988) 1 [INSPIRE].

[42] M. Abe, H. Kubota and N. Sakai, Loop Corrections to the E8 × E8 Heterotic String Effective
Lagrangian, Nucl. Phys. B 306 (1988) 405 [INSPIRE].

[43] M. Etheredge et al., Running decompactification, sliding towers, and the distance conjecture,
JHEP 12 (2023) 182 [arXiv:2306.16440] [INSPIRE].

[44] T.W. Grimm, R. Savelli and M. Weissenbacher, On α’ corrections in N = 1 F-theory
compactifications, Phys. Lett. B 725 (2013) 431 [arXiv:1303.3317] [INSPIRE].

[45] T.W. Grimm, The N = 1 effective action of F-theory compactifications, Nucl. Phys. B 845
(2011) 48 [arXiv:1008.4133] [INSPIRE].

[46] L.B. Anderson, C.R. Brodie and J. Gray, Branes and bundles through conifold transitions and
dualities in heterotic string theory, Phys. Rev. D 108 (2023) 106018 [arXiv:2211.05804]
[INSPIRE].

[47] S.-J. Lee, W. Lerche and T. Weigand, Tensionless Strings and the Weak Gravity Conjecture,
JHEP 10 (2018) 164 [arXiv:1808.05958] [INSPIRE].

[48] S.-J. Lee, W. Lerche and T. Weigand, A stringy Test of the Scalar Weak Gravity Conjecture,
Nucl. Phys. B 938 (2019) 321 [arXiv:1810.05169] [INSPIRE].

[49] R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, The particle spectrum of heterotic
compactifications, JHEP 12 (2004) 054 [hep-th/0405014] [INSPIRE].

[50] L.B. Anderson, X. Gao, J. Gray and S.-J. Lee, Fibrations in CICY Threefolds, JHEP 10 (2017)
077 [arXiv:1708.07907] [INSPIRE].

[51] A. Iqbal, A. Neitzke and C. Vafa, A Mysterious duality, Adv. Theor. Math. Phys. 5 (2002) 769
[hep-th/0111068] [INSPIRE].

[52] D.R. Morrison and C. Vafa, Compactifications of F theory on Calabi-Yau threefolds. 2, Nucl.
Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].

[53] C.F. Cota, A. Mininno, T. Weigand and M. Wiesner, The asymptotic weak gravity conjecture in
M-theory, JHEP 08 (2023) 057 [arXiv:2212.09758] [INSPIRE].

[54] B.R. Greene, D.R. Morrison and A. Strominger, Black hole condensation and the unification of
string vacua, Nucl. Phys. B 451 (1995) 109 [hep-th/9504145] [INSPIRE].

[55] B.R. Greene, D.R. Morrison and C. Vafa, A geometric realization of confinement, Nucl. Phys. B
481 (1996) 513 [hep-th/9608039] [INSPIRE].

[56] M. Alim, B. Heidenreich and T. Rudelius, The Weak Gravity Conjecture and BPS Particles,
Fortsch. Phys. 69 (2021) 2100125 [arXiv:2108.08309] [INSPIRE].

[57] I. Antoniadis, E. Gava, K.S. Narain and T.R. Taylor, Topological amplitudes in string theory,
Nucl. Phys. B 413 (1994) 162 [hep-th/9307158] [INSPIRE].

[58] N. Berkovits and C. Vafa, N = 4 topological strings, Nucl. Phys. B 433 (1995) 123
[hep-th/9407190] [INSPIRE].

– 61 –

https://doi.org/10.1007/s00222-005-0488-2
https://doi.org/10.1016/0550-3213(87)90465-2
https://doi.org/10.1016/0550-3213(87)90465-2
https://inspirehep.net/literature/236987
https://doi.org/10.1016/0550-3213(88)90214-3
https://inspirehep.net/literature/250239
https://doi.org/10.1016/0550-3213(88)90699-2
https://inspirehep.net/literature/260852
https://doi.org/10.1007/JHEP12(2023)182
https://arxiv.org/abs/2306.16440
https://inspirehep.net/literature/2672923
https://doi.org/10.1016/j.physletb.2013.07.024
https://arxiv.org/abs/1303.3317
https://inspirehep.net/literature/1223878
https://doi.org/10.1016/j.nuclphysb.2010.11.018
https://doi.org/10.1016/j.nuclphysb.2010.11.018
https://arxiv.org/abs/1008.4133
https://inspirehep.net/literature/866234
https://doi.org/10.1103/PhysRevD.108.106018
https://arxiv.org/abs/2211.05804
https://inspirehep.net/literature/2181045
https://doi.org/10.1007/JHEP10(2018)164
https://arxiv.org/abs/1808.05958
https://inspirehep.net/literature/1688845
https://doi.org/10.1016/j.nuclphysb.2018.11.001
https://arxiv.org/abs/1810.05169
https://inspirehep.net/literature/1698241
https://doi.org/10.1088/1126-6708/2004/12/054
https://arxiv.org/abs/hep-th/0405014
https://inspirehep.net/literature/649568
https://doi.org/10.1007/JHEP10(2017)077
https://doi.org/10.1007/JHEP10(2017)077
https://arxiv.org/abs/1708.07907
https://inspirehep.net/literature/1620235
https://doi.org/10.4310/ATMP.2001.v5.n4.a5
https://arxiv.org/abs/hep-th/0111068
https://inspirehep.net/literature/565871
https://doi.org/10.1016/0550-3213(96)00369-0
https://doi.org/10.1016/0550-3213(96)00369-0
https://arxiv.org/abs/hep-th/9603161
https://inspirehep.net/literature/417012
https://doi.org/10.1007/JHEP08(2023)057
https://arxiv.org/abs/2212.09758
https://inspirehep.net/literature/2616325
https://doi.org/10.1016/0550-3213(95)00371-X
https://arxiv.org/abs/hep-th/9504145
https://inspirehep.net/literature/394588
https://doi.org/10.1016/S0550-3213(96)00465-8
https://doi.org/10.1016/S0550-3213(96)00465-8
https://arxiv.org/abs/hep-th/9608039
https://inspirehep.net/literature/421727
https://doi.org/10.1002/prop.202100125
https://arxiv.org/abs/2108.08309
https://inspirehep.net/literature/1908004
https://doi.org/10.1016/0550-3213(94)90617-3
https://arxiv.org/abs/hep-th/9307158
https://inspirehep.net/literature/356484
https://doi.org/10.1016/0550-3213(94)00419-F
https://arxiv.org/abs/hep-th/9407190
https://inspirehep.net/literature/375171


J
H
E
P
0
5
(
2
0
2
4
)
1
1
2

[59] H. Ooguri and C. Vafa, All loop N = 2 string amplitudes, Nucl. Phys. B 451 (1995) 121
[hep-th/9505183] [INSPIRE].

[60] T.W. Grimm, A. Klemm, M. Marino and M. Weiss, Direct Integration of the Topological String,
JHEP 08 (2007) 058 [hep-th/0702187] [INSPIRE].

[61] F. Baume, F. Marchesano and M. Wiesner, Instanton Corrections and Emergent Strings, JHEP
04 (2020) 174 [arXiv:1912.02218] [INSPIRE].

[62] D. Klaewer, S.-J. Lee, T. Weigand and M. Wiesner, Quantum corrections in 4d N = 1 infinite
distance limits and the weak gravity conjecture, JHEP 03 (2021) 252 [arXiv:2011.00024]
[INSPIRE].

[63] J.M. Borwein et al., Lattice Sums Then and Now, Cambridge University Press (2013)
[DOI:10.1017/cbo9781139626804].

– 62 –

https://doi.org/10.1016/0550-3213(95)00365-Y
https://arxiv.org/abs/hep-th/9505183
https://inspirehep.net/literature/395572
https://doi.org/10.1088/1126-6708/2007/08/058
https://arxiv.org/abs/hep-th/0702187
https://inspirehep.net/literature/745151
https://doi.org/10.1007/JHEP04(2020)174
https://doi.org/10.1007/JHEP04(2020)174
https://arxiv.org/abs/1912.02218
https://inspirehep.net/literature/1768650
https://doi.org/10.1007/JHEP03(2021)252
https://arxiv.org/abs/2011.00024
https://inspirehep.net/literature/1827507
https://doi.org/10.1017/cbo9781139626804

	Introduction and summary
	Species scale from higher-curvature corrections
	Species scale and 32 supercharges
	10d Type IIA
	10d Type IIB
	M-theory on T**(2)
	M-theory on T**(3)

	Species scale and 16 supercharges
	Heterotic E(8) x E(8) in 10d
	Heterotic SO(32) and Type I string
	16 supercharges in 9d

	Species scale and 8 supercharges
	Species scale in 6d N = (1,0) supergravity
	Species scale in 5d N = 1 supergravity

	Refined bound on the species scale
	Contribution of EFT states at infinite distance
	Refined treatment of the conifold

	Eisenstein series for SL(n,Z)
	Eisenstein series for SL(2,Z)
	Fundamental domain of SL(3,Z)
	Eisenstein series for SL(3,Z)

	Geodesic distances for del Pezzo surfaces

