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ABSTRACT

Pausing behavior in introductory Computer Science (CS1) courses
has been related to course outcomes and could be linked to a stu-
dent’s cognitive load. Using Cognitive Load Theory and Vygot-
sky’s Zone of Proximal Development as a theoretical framework,
this study empirically analyzes keystroke latencies, or pause times
between keystrokes, with the goal of better understanding what
types of assignments need more scaffolding than others. We report
the characteristics of eleven assignments, introduce a method to
analyze pausing behavior, and investigate how pausing behavior
changes with assignment characteristics (e.g., introducing new pro-
gramming constructs, engaging creativity through Turtle graphics,
etc). We find evidence that pausing behavior does change based on
the assignment characteristics and that assignments with particular
characteristics, such as object-oriented principles, may be more
likely to have excessive demands on student working memory. We
also find evidence that assignment completion time may not be an
accurate measure of assignment difficulty.
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1 INTRODUCTION

There are multiple psychological theories that have helped guide
and improve educational processes, such as Cognitive Load Theory
and Vygotsky’s Zone of Proximal Development. These theories
have also been applied to Computing Education Research (CER)
and may especially be applicable to introductory Computer Science
(e.g., CS1) classes. Learning to program requires substantial work-
ing memory allocation. Instructors need to ensure that students
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have the necessary scaffolding to accomplish tasks that are just
outside of their ability (i.e., the Zone of Proximal Development)
so that their working memory is not overloaded, disabling learn-
ing and prompting disengagement. The concepts learned in CS1
courses will contribute to mental models of Computer Science that
students will carry throughout their careers, so it is crucial for a
CS1 instructor to be cognizant of assignments that cause students
to feel overwhelmed and disengaged. An objective measure of paus-
ing behavior would help instructors identify such assignments and
provide the necessary scaffolding.

We have observed that it is a temptation for instructors (including
ourselves) to judge the difficulty of an assignment by how long it
takes for students to complete it. Doing this fails to take cognitive
load and frustration into account. We suggest that it is important to
find measures of difficulty that say meaningful things about student
experience beyond time spent. Recently, there have been studies in
CER that have examined the length of student’s pauses between
keystrokes (i.e., latencies), their effect on course outcomes, and
their relation to a student’s cognitive load [9, 20, 25]. We know
of no studies that have incorporated latency analysis to compare
assignments.

In this paper, we introduce a measure of assignment pausing
behavior by analyzing student latencies in a CS1 course. We look
at the proportion of pauses of different lengths, including short
pauses (0 - 45 seconds), medium pauses (45 seconds — 6 minutes),
and long pauses. Short pauses could represent a low cognitive
load, while medium pauses could represent a high cognitive load.
Long pauses are where a student is more likely to be disengaged
[14], which could be caused by a working memory overload. We
compare distributions of these pause lengths between assignments
to discover what assignments may require more scaffolding. The
research questions in this paper are:

RQ1I: Are assignments different from each other in student pausing
behavior?

RQ2: What types of assignments cause students to take the highest
proportion of longer pauses?

The novelty of this research is that it compares the pausing be-
havior of students between assignments and provides instructors
with a possible measure of cognitive load, as well as an indica-
tion of what assignments may require improved scaffolding. This
knowledge will help instructors reduce the amount of overwhelmed
and disengaged students and provide improved foundational in-
struction in Computer Science. Our contributions are an empirical
framework for exploring Cognitive Load Theory and the Zone of
Proximal Development in CS1 assignments, as well as an alternative


https://doi.org/10.1145/3626252.3630760
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626252.3630760
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626252.3630760&domain=pdf&date_stamp=2024-03-07

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

way of describing assignments based on student pausing behavior
during assignment completion.

The findings of this study are that assignments differ in their
pausing behavior. Furthermore, assignments that require CS1 stu-
dents to implement object-oriented programming constructs have
the highest proportion of longer pauses, which could indicate these
types of assignments cause students to experience a working mem-
ory overload and may need additional scaffolding. Although, further
research is needed to validate the cause of longer pauses in these
assignments. In any case, we find evidence that assignments where
students take longer pauses, which may signify a high cognitive
load, do not necessarily take students the longest to complete.

2 RELATED WORK

2.1 Cognitive Load Theory and Zone of
Proximal Development

Our work is based on two prominent psychological theories, Cog-
nitive Load Theory and the Zone of Proximal Development (ZPD).
Cognitive Load Theory suggests that the cognitive load (e.g., work-
ing memory allocation) required to learn material differs if the task
is a biological primary or biological secondary task [13]. Biolog-
ical primary tasks include skills that are necessary for survival,
such as learning to speak a native language, and learning happens
without much cognitive effort. Biological secondary skills have not
historically been necessary for survival and require more cognitive
effort and working memory allocation from the learner [13, 28].
Furthermore, a learner only has so much room in their working
memory. If they try to learn a task that has too high of a cogni-
tive load, their working is overwhelmed, and learning is frustrated
[28]. As such, Cognitive Load Theory is used to inform educational
processes. Cognitive Load Theory has been applied to learning
academic subjects in a second natural language [1, 23], as well as
technology-assisted learning [29].

Cognitive Load Theory could apply especially to CER [3, 24],
where students learn new programming languages, interact with
technology, and apply mathematical concepts. All of these are bio-
logical secondary skills. Learning a programming language is like
learning a second natural language because students need to both
learn the syntax of a programming language and the constructs
behind the syntax. The syntax of a programming language has
been referred to as “extraneous cognitive load” since it is necessary
for programming, but not usually the main focus of computer sci-
ence education [21]. Edwards et al. found that teaching students
the syntax of a programming language before the problem-solving
aspects of programming (e.g., a “syntax-first” pedagogy) leads to
improved course outcomes. This is because students are freed of
the “extraneous cognitive load” of the syntax and have more room
in working memory for the higher-level constructs of computer
programming [6, 10]. Studies of visual/block-based languages, with
which syntactic errors are not possible, have similar findings [34].

The Zone of Proximal Development (ZPD) is a concept in ed-
ucational psychology that was created by Lev Vygotsky [32]. It
refers to the area where a learner cannot accomplish a task alone
and needs the guidance (e.g., scaffolding) of a more experienced
peer or educator. This zone is where learning occurs [32]. The ZPD,
particularly the concept of scaffolding, has been commonly used
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as a framework for general education [33], as well as in computer
science education [2, 31]. The relation between scaffolding and
cognitive load in CER was shown when Stachel et al. found that
students who used a scaffolding tool in a CS1 lab assignment had
lower levels of self-reported cognitive load, and received higher
grades [26]. Overall, it is crucial for CS1 assignments to have the
optimal amount of scaffolding to prevent a student from having a
cognitive overload.

2.2 Pausing behavior

In this research, cognitive load and ZPD are explored by analyzing
students’ pausing behavior in CS1 assignments. Pausing behavior
has been analyzed in multiple contexts outside of CER [18, 22].
In CER, keystroke analysis has been shown to be a useful tool in
analyzing students’ programming processes, as it provides more
information than an assignment submission [30]. Some of the im-
portant data provided by keystroke analysis are keystroke latencies
(i.e., the elapsed time between keystrokes). Keystroke latencies have
been used to examine pausing behavior in CER in multiple studies
[9, 19, 20, 25]. Leinonen et al. found that keystroke latency patterns
could help create tailored learning experiences for students (e.g.,
scaffolding to keep students in the ZPD) [19]. Many of the studies
incorporating latencies have examined their relation with course
outcomes, and provide evidence that students who take a higher
proportion of longer pauses tend to have worse course outcomes
[9, 20, 25]. Leppénen et al. suggest that a higher number of pauses in
programming may suggest a higher cognitive load because the stu-
dent is unable to retain all of the necessary information in working
memory and has to search other material [20]. Shrestha et al. found
that students who pause more often tend to have worse course
outcomes. Cluster analysis found two groups of students in regard
to pausing behavior: one that takes fewer mid-to-long pauses and
one that takes more [25].

Keystroke latencies have also been recently used to predict stu-
dent engagement during programming assignments. Edwards et al.
created a regression model based on student responses to prompts
while programming to predict the probability that a student was
on-task (e.g., engaged) based on the elapsed time since their last key-
stroke [8]. Hart et al. built on the regression model by incorporating
a larger sample size, error analysis, and other techniques to provide
more accurate results [14]. Overall, these studies provide evidence
that pausing behavior does influence CS1 course outcomes and
engagement. However, no known study has examined keystroke
latency differences between assignments in CS1 courses.

2.3 CS1 Assignments

While there have not been any known studies examining the paus-
ing behavior between assignments in a CS1 course, there have
been multiple studies examining what makes a good program-
ming assignment, or how to improve programming assignments
[4, 11, 12, 17, 27, 35]. Layman et al. argued that programming as-
signments should be meaningful (i.e., they should relate to real-life
problems) [17]. Stevenson and Wagner similarly suggested that
students will work harder if an assignment involves real-world
problems and solutions, focuses on topics from class, and is chal-
lenging and interesting [27]. Garcia noted that the presentation of
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an assignment is important and that design patterns (e.g., context,
assignment descriptions, and hints) provide scaffolding that al-
lows students to independently learn [12]. Kussmaul also addressed
scaffolding methods for multiple CS1 assignments [16]. Kinnunen
and Simon examined how CS1 assignments affect some cognitive
processes of students by studying how programming experiences
during assignments affect a student’s perceived self-efficacy [15].
Pausing behavior and assignment design have been shown to be
important factors in a student’s experience in a CS1 course. As
such, it is important to examine both factors to learn if different
constructs presented in assignments require more scaffolding. It
is worth noting the dearth of research on CS1 assignment design
principles that incorporate Cognitive Load Theory (see Section 2.1).

3 METHODS
3.1 Data

This study analyzes the differences in keystroke latencies between
assignments in a CS1 course to determine which assignments may
have the highest cognitive load and need more scaffolding. The
programming language taught in the course was Python. We use
a public keystroke dataset released in 2022 [7]. It was collected at
Utah State University in 2021, deidentified, and made available for
public use with the oversight of their IRB. The dataset contains
over 2 million keystrokes from 44 students across 8 assignments.
We excluded students who had less than 1000 keystrokes across
all assignments from analyses and only examined "file edit" events.
The final sample size was about 900,000 keystrokes from 43 stu-
dents. The dataset also contains files for the academic information
of students in the course, due dates for the assignments, and the as-
signment descriptions [5]. However, the keystroke and assignment
description files are the only files used in this study. See Edwards
et al. [7] for further details on the data and data collection process.

3.2 Assignment Breakout

Of the 8 programming assignments that had data collected, 2 were
dropped from this study. One was the last assignment in the course,
which only 23 of the 43 students completed. The instructor dropped
one assignment from a student’s grades, so students may have
chosen to drop the last assignment. The second assignment that
was dropped had a mean keystroke count of 999.3 with a standard
deviation of 1679.3. We were unsure of the cause of the unusually
high variability, so we dropped this assignment as well. Additionally,
we dropped one student from a repeated-measures ANOVA because
they only had three keystrokes for one of the assignments in the
test.

Of the six remaining assignments, multiple included two to three
tasks. Each task involved different requirements and sometimes
more advanced programming than the other task(s) included in
the same assignment. While programming constructs may build
upon each other in subsequent tasks, each task required students
to create new files and write new code. As such, we broke up the
tasks and treated them as separate assignments. The rest of the
paper will present data on 11 assignments. This allowed for more
detailed analyses of what programming constructs affect student
pausing behavior. Table 1 shows a summary of the programming
concepts throughout assignments.
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3.3 Latency binning

To compare the pausing behavior between assignments, we create
three bins of elapsed time since the previous keystroke. Our bins
are empirically based rather than equal frequency or equal interval.
We refer to pauses of length 0 - 45 seconds (bin 1) as short pauses,
those of length 45 seconds to 6 minutes (bin 2) as medium pauses,
and over 6 minutes (bin 3) as long pauses.

We based our bin sizes on the regression model for student en-
gagement in Hart et al.. Given the elapsed time since the previous
keystroke, the model predicts the probability that a student is en-
gaged, or on task. The model predicts that students have an 81%
chance of being on task at 45 seconds and a 52% chance of being on
task at 6 minutes. We use 45 seconds as the upper threshold of the
first bin (short pauses) so that the first bin represents the proportion
of time students are most likely on task and who may have a rela-
tively small cognitive load. 6 minutes is used as the upper threshold
of the second bin (medium pauses), which represents pauses where
students have a chance of being disengaged but could also be taking
a pause to review notes, search Stack Overflow, etc. This bin could
represent a high cognitive load with a lower chance of a working
memory overload. Finally, bin 3 (long pauses) represents pauses
where students are more likely to be disengaged and experience a
working memory overload.

3.4 Statistical and visualization techniques

Since assignments vary in total keystrokes required for comple-
tion (see Figure 1a), comparing the raw keystroke counts in each
pause length (i.e., short, medium, and long) would not yield an
accurate comparison. It would just show how long an assignment
took. For example, if one assignment had 3000 keystrokes with 10
long pauses and another assignment had 1500 keystrokes with 10
long pauses, a comparison of the raw counts of long pauses would
show that these assignments were similar. However, it would be
noteworthy that a student took just as many long pauses in an
assignment that required only half the code. So, we normalize the
pause lengths across each assignment per student by dividing the
number of pauses in each bin by the total number of keystrokes.
For example, if a student completed an assignment with 3000 short
keystrokes, 100 medium keystrokes, and 10 long keystrokes, we
would characterize their pausing behavior with a 3-dimensional
vector [3990 100 40-] = [0.965,0.032,0.003]. This provides the
proportion of latencies in each pause length.

After the raw counts are normalized, we scale the proportions
for the parallel coordinate chart for visualization purposes, as over
90% of the latencies for every task are in the short pause bin. For
each pause length in each assignment, we take the median of the
proportions across submissions. Once the medians were collected
for each assignment, we min-max scaled the values of each pause
length between one and zero based on the other values in the pause
length across assignments. As such, the assignment that had the
highest proportion of pauses in a given pause length would be one,
and the assignment that had the lowest proportion in a pause length
would be zero. See Figure 2. Only the normalized values (before
min-max scaling) were used in the ANOVA described in Section 4.3.
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Figure 1: Boxplots of (a) total keystrokes per assignment and
(b) latencies thresholded at 45 seconds per assignment.

4 RESULTS
4.1 Descriptive statistics

Figure 1a shows the total keystrokes across the eleven assignments.
The total completion time distribution mirrors the keystroke dis-
tribution. Figure 1b shows latencies with a lower threshold of 45
seconds (e.g., latencies where students have a higher chance of
being disengaged and could have a larger cognitive load). Assign-
ment 7 has the most variability in thresholded pauses, as well as the
highest median latency, which could signify that it had the highest
cognitive load and potential for a working memory overload. The
quartiles for total latencies (i.e., without a 45-second threshold) fall
between 0 and 2 seconds for all assignments and show relatively
little variation. Figure 1b) does not show outliers because there are
many, due to the large number of keystrokes.

4.2 Parallel coordinates

Figures 2 and 3 show parallel coordinate charts that visualize the
scaled short, medium, and long pauses for each assignment. Figure
2 compares the pausing behavior of Turtle graphics-based assign-
ments against all other assignments. The Turtle graphic-based as-
signments (i.e., A4 — A6) share very similar latency patterns, even
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1.0 Non-Graphics

—— Graphics
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Figure 2: Parallel coordinates of graphics vs. non-graphics
assignments.

though Assignment 5 took students more keystrokes and time to
complete than the other graphic assignments (see Figure 1a).

4.3 Assignment groups and pause length
comparison

We performed K-means clustering on the scaled vectors of pause
length counts to discover if there were different groups of pausing
behavior among assignments. We used the elbow method to select
the number of clusters. This is accomplished by plotting the number
of clusters against the model’s Sum of Squares Error (SSE) and
looking for a K value where the SSE sharply stops decreasing (e.g.,
the "elbow"). We chose K to be 3. The cluster centers are reported
in Table 2 and the groups are visualized in Figure 3.

In Group 1, students are taking an average number of short and
medium pauses, relative to other assignments, and occasionally take
a long pause. Group 2 includes assignments 7 and 8. This group is
characterized by the smallest proportions of short pauses and the
largest proportions of long pauses, meaning students take a higher
proportion of long pauses in these assignments, compared to the
others. Group 3 includes assignments 2 and 10. This group has the
highest proportions in short pauses and the lowest proportions in
medium and long pauses, meaning students are not taking many
medium or long pauses.

To test our first research question, which was whether assign-
ments differed from each other in their pausing behavior, we ran a
repeated measures ANOVA for each pause length between assign-
ments 2, 4, and 8, which are representative of cluster Groups 3, 1,
and 2, respectively. We used a repeated-measures ANOVA because
the same sample was used for each of the three assignments in the
test and the test distributions are normal (Table 3). Figure 4 shows
the distributions of students’ proportion of pauses in each of the
pause lengths for each of the selected assignments. The test results
are reported in Table 4. There was a statistically significant differ-
ence for each pause length, meaning that at least one assignment
significantly differed from the others in every pause length.

5 DISCUSSION

5.1 Assignment pausing behavior
differentiation
Our first research question is: Are assignments different from each

other in student pausing behavior? Differences in pausing behavior
can be seen in the parallel coordinates charts. In addition to these
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Cluster Asgmts Short | Medium | Long

Group 1 | 1,3,4,5,6,9,11 | 0.638177 | 0.429329 | 0.277252
Group 2 7,8 0.144536 | 0.742248 | 0.963668
Group 3 2,10 0.974385 | 0.062096 | 0.029890

Table 2: K-means Cluster Centers for short pauses, medium
pauses, and long pauses

1.0 Group 1

Group 2
Group 3
Cluster Center 1
Cluster Center 2

05 Cluster Center 3

0.0

Medium Pauses

Short Pauses Long Pauses

Figure 3: Parallel coordinates of K-means groups.

Asgmt Short Medium Long
12(2) | P-value | y?(2) | P-value | y?(2) | P-value
A2 2.9 0.2 0.8 0.7 5.6 0.06
A4 2.3 0.3 2.5 0.3 2.6 0.3
A8 0.6 0.7 1.8 0.4 3.0 0.2

Table 3: D’Agostino-Pearson normality test results

Pause Length | F Value | P-value 7712, 90% CI
Short Pauses 75.9 (2,52) | 3.8¢71° [ 0.7 | [0.6, 0.8]
Medium Pauses | 44.7 (2,52) | 5.2¢"2 [ 0.6 | [0.5,0.7]
Long Pauses | 42.9 (2,52) | 1.0e™1! [ 0.6 | [0.5,0.7]

Table 4: Repeated-measures ANOVA results

visual measures, K-means clustering and the repeated-measures
ANOVA also provide evidence that assignments in CS1 are dif-
ferent in their pausing behavior. This could suggest that different
assignments cause different cognitive loads.

As reported in Section 4.2, Figure 2 shows that all of the Turtle
graphics assignments (i.e., assignments 4, 5, and 6) share a strik-
ingly similar pattern of scaled pauses across the three pause lengths.
These assignments involved more creativity and less use of unfamil-
iar programming language constructs. This is seen in their pausing
behavior. They all have a relatively high proportion of short pauses
and middle to lower proportions of medium and long pauses. This
signifies that, relative to other assignments, students tend to spend
more time engaged with the assignment and do not have as high of
a chance of being disengaged or experiencing a working memory
overload. This similarity in pausing behavior is noteworthy, given
that assignment 5 has the highest median keystroke count and total
completion time out of all assignments (Figure 1a). Since this as-
signment took students a long time to complete, one might assume
that it also had a high cognitive load. However, assignment 5 still
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shares similar pausing behavior to assignments 4 and 6, which have
considerably lower median keystroke counts and time spent.

In addition to visually separating the data through parallel co-
ordinates, K-means clustering found three groups of assignments
that differ in their pausing behavior (Figure 3 and Table 2). The first
group included most assignments evaluated in this study. Students
took fewer breaks in these assignments. This group could signify
the “normal” cognitive load for a CS1 assignment. Relative to other
assignments, students spend most of their time engaged with their
assignment, but may occasionally take a break in the medium or
long pause range. Group 2 includes assignments 7 and 8, which
could have the highest cognitive load. This group’s cluster centers
show students take a higher proportion of medium and long pauses
when compared to other assignments. The characteristics of this
group are discussed in detail in the next subsection, but both assign-
ments require students to implement object-oriented programming
more than other assignments. The number of scaled long pauses
in this group suggests that these assignments have more pauses
where students are disengaged than all other assignments. This
could be caused by a working memory overload. Because of this,
it is possible that these assignments did not provide enough scaf-
folding to keep students in the ZPD. The third group discovered
by K-means also contains two assignments, assignments 2 and 10.
These assignments have the highest scaled value of short pauses
and the lowest value of medium and long pauses. These assign-
ments could have a light cognitive load and are where students are
the least likely to become disengaged. Neither of these assignments
introduced anything new, so it is possible that students did not
have to spend a lot of time thinking about the assignment. The
three groups discovered by k-means clustering have clear visual
distinctions in pausing behavior.

The final test to tell if there was a differentiation between pausing
behavior in assignments was a repeated-measures ANOVA between
assignments 2, 4, and 8 (i.e., groups 3, 1, and 2, respectively). This
test found a difference across all pause lengths between these as-
signments. This test statistically confirmed that CS1 assignments
do differ from each other in their pausing behavior.

5.2 Assignments that cause long pauses

Our next research question is What types of assignments cause stu-
dents to take the highest proportion of longer pauses? Assignments 7
and 8 (i.e., group 2) have the highest scaled value of long pauses
(e.g., the cluster center is at .97). Assignment 8 also has the high-
est value of medium pauses. The higher occurrence of medium
and long pauses in these assignments could signify an increase
in students’ overall cognitive load, as suggested by Lee et al [18].
The higher number of medium pauses could be caused by a lack of
room in a student’s working memory, which prohibits them from
storing the necessary information to continue with the assignment,
forcing them to search other material [20]. Additionally, the rel-
atively extreme proportion of long pauses signifies that students
could be spending more time being disengaged in these assignments
[14], which could be caused by a working memory overload and
frustration, which stops learning [28].

Assignments 7 and 8 are similar in many ways. Both assignments
involve creating a virtual environment where users enter input into
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Figure 4: Assignment pause length comparisons.

a program to interact with virtual pets/beings (e.g., users can feed
the pet, or ask to see the dimensions of a virtual being). The students
must implement object-oriented programming methods to complete
these assignments by creating classes for the pet/being that include
multiple modules and functions. Students also need to consider
how user input will affect the various aspects of the class, such as a
timer that keeps track of the “age” of the pet/being. Other aspects
of object-oriented programming, such as private data or operator
overloading, are applied in these assignments. Students create a
“main” file to tie together all of their other code in a program that
asks for input from the user, who can interact with the pet/beings
until they quit.

Assignments 6 and 11 also implement classes but do not have
as high proportions of medium and long pauses. Assignment 6
included starter code that took care of the structure of the class.
Students just had to fill in the Turtle graphics code. Assignment
11 also had starter code provided, but students still had to create
some of the structure of the class. Since assignment 11 does not
have as many long pauses as assignment 7 or 8, it is possible that it
was not as intricate, or students had sufficient practice with classes
by this assignment. Both of the descriptions for the assignments
in group 3 (i.e., assignments 7 and 8) specifically mention that the
assignment involves multiple tasks or problems, and one of the keys
to completing the assignment is to break the assignment down into
smaller pieces. These assignments have starter code and detailed
assignment descriptions to help provide scaffolding to the students
as they create the different classes. However, given the pausing
behavior shown in our analyses, it is possible that the scaffolding
is not enough and students fail to stay in the ZPD.

5.3 Threats to validity

There are several threats to the validity of this study. One is the rel-
atively small sample size. The data is only from one class, that was
taught in Python. It is possible that different instructors, assignment
setups, and programming languages would yield different pausing
behavior across constructs. It is also possible that the increased
pausing behavior in object-oriented programming assignments is
caused by other factors, such as students looking through starter
code or switching between files, instead of a cognitive overload.
Further research is needed to validate our findings. Additionally,
we are basing our assumptions of cognitive load on pauses, which
O’brien suggested are difficult to relate to cognitive load on their
own [22]. While this was in another context, and more recent
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studies have suggested a relation between keystroke latencies and
cognitive load [20], it could be beneficial to include another mea-
sure of cognitive load, such as a student’s self-reported cognitive
load, as was implemented in by Stachel et al., to corroborate the
latency analysis [26]. Thirdly, while breaking out the tasks in each
assignment did provide a more detailed view of pausing behavior by
assignment construct, some tasks did have the same due date. The
students’ time management of when they completed all the tasks
could have led some to be fatigued when completing the final task
of the whole assignment, which may have affected their pausing
behavior. Finally, our comparisons of assignment pausing behavior
are all relative. We scale the pause length counts based on the other
assignment pause length counts. It is possible that the addition of
different assignments would change the scaled values.

6 CONCLUSIONS

This study has presented an empirical framework for using student
pausing behavior to describe the possible cognitive load of eleven
assignments in a CS1 course indicating which assignments could
need more scaffolding. We find strong evidence that pausing behav-
ior varies from assignment to assignment, suggesting that cognitive
load also varies across assignments. This may seem obvious, but
no study of which we are aware has quantitatively shown such
differences in assignments. We find no evidence that pausing be-
havior is correlated with how long an assignment takes to complete,
suggesting that length is an ineffective measure of difficulty. We
also find that object-oriented principles may have caused students
to pause more often, indicating, at least in the context of the dataset
we used, that object-oriented assignments may need more scaffold-
ing to keep assignments in the Zone of Proximal Development for
most students.

Our future work will include a questionnaire where students can
self-report their cognitive load and perceived assignment difficulty,
allowing us to investigate whether pausing behavior can predict
perceived difficulty. We are also considering expanding studies to
other courses and languages, allowing us to further generalize our
results.
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