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Abstract
BACKGROUND Laparoscopic surgery videos offer valuable insights into the intraopera-

tive skills of surgeons. Traditionally, skill assessment has focused on trainees, but analyz-

ing the operative techniques of established surgeons can reveal behaviors that are

associated with surgical expertise. Computer vision (CV), a domain of artificial intelli-

gence (AI), facilitates scalable, video-based assessment, enabling the discovery of novel

associations between surgical skill and clinical outcomes. For this study, we developed an

AI-powered CV model capable of autonomously recognizing fine-grained surgical actions

in laparoscopic videos and uncovering associations between these actions and operative

blood loss and surgical experience.

METHODS We utilized a dataset of laparoscopic surgical videos from 243 patients who

underwent cholecystectomy. We used a subset of these videos to train an AI-powered CV

model to recognize 150 fine-grained surgical action triplets (SATs) comprising unique

combinations of three components: surgical instruments (16 total), motions (13), and ana-

tomical structures (19). We then used the trained AI model to recognize these SATs in all

243 case videos. We considered estimated blood loss, as reported postoperatively by the

performing surgeon, and refined this measure using retrospective video review by experi-

enced surgeons, yielding operative blood loss. We also considered surgeon experience,

defined as the number of postresidency years of the operating surgeon. We used a logistic

regression model to infer blood loss and surgical experience on the basis of AI-identified

surgical actions in the laparoscopic videos. We subsequently analyzed the relationships

among surgical actions, operative blood loss, and surgical experience.
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RESULTS The operating surgeons in the video dataset

had 8 to 31 years of surgical experience. Estimated opera-

tive blood loss among patients ranged from 0 to 175ml.

Our model predicted binary blood loss (low vs. moderate)

with an area under the receiver operator characteristic

(AUROC) of 0.81 and binary surgical experience (low vs.

high) with an AUROC of 0.78. Higher blood loss was sig-

nificantly associated with increased duration of use of a

laparoscopic suction irrigator to dissect the cystic pedicle

(P=0.04) and with use of the irrigator to aspirate blood

(P=0.03) or irrigate the cystic pedicle (P=0.04). High sur-

gical experience was moderately associated with longer

duration of dissection of connective tissue with L-hook

electrocautery (P=0.07) and with total duration of the

case (P=0.07). High surgical experience was strongly

associated with elective cases (P<0.001).

CONCLUSION This study demonstrates the capability of

AI CV models to analyze intricate surgical activity in large

volumes of video data. By training the CV model on a set

of laparoscopic cholecystectomy videos and then deploy-

ing it to recognize surgical actions in a larger cohort, we

obtained novel and scalable insights without labor-

intensive manual review. We specifically demonstrate the

capability of AI-powered CV models to correlate surgical

experience and technique with intraoperative outcomes

(blood loss). (Funded by the Stanford Clinical Excellence

Research Center and others.)

Introduction

T he impact of operative skill on postoperative
outcomes has been widely recognized, with
population-based studies establishing associa-

tions between surgeons and outcomes such as mortality
and readmission.1-3 However, understanding the precise
influence of specific procedural maneuvers on outcomes
remains elusive. In 2013, Birkmeyer et al.4 made signifi-
cant strides toward that end by establishing a correlation
between surgical skill and clinical outcomes in a pivotal
study on complication rates following bariatric surgery.
That study relied on a manual review of video footage to
obtain peer ratings of intraoperative technical skill; the
labor-intensive annotation process limited data acquisition

to a set of only 20 cases in a year. Despite revealing the
connection between lower aggregate peer ratings of surgi-
cal skill and higher complication rates and mortality,
further exploration has been hindered by the time-
consuming nature of manual video annotation.

In the decade since the Birkmeyer et al.4 study, advance-
ments in artificial intelligence (AI) have revolutionized
data analysis capabilities. We hypothesize that AI can
unravel more intricate associations between surgeon tech-
niques and patient outcomes compared with prior manual
review. The growing prevalence of laparoscopic proce-
dures,5-10 with their easily recorded and stored video
feeds, presents an ideal setting for training deep neural
network–based computer vision (CV) models. These mod-
els can autonomously recognize and document surgical
events and actions from videos to enable the correlation
of such events with clinical outcomes across multiple sur-
geons and institutions on an unprecedented scale.

Although recent works have shown the promise of AI in
recognizing surgical actions in videos, they have yet to
explore the relationship between such actions and surgical
outcomes. To our knowledge, this study introduces the first
AI-powered investigation of a large, multi-institutional
dataset of surgical videos, focusing on correlating specific
surgical actions in laparoscopic cholecystectomy with
intraoperative surgical outcomes. We used our AI model to
temporally segment laparoscopic videos into identified sur-
gical actions. We then conducted a statistical analysis to
reveal which summary features, derived from these surgical
actions, best explained reported clinical outcomes and attri-
butes. We focused specifically on estimated blood loss and
surgeon experience. Our analysis identified key markers of
effective surgery at a level of granularity previously unat-
tainable because of the necessity for laborious, case-by-
case, manual review.

Methods
In this retrospective study, we examined patients who
underwent laparoscopic cholecystectomy within the Inter-
mountain Health (IH) system between July 2021 and
November 2022. Our primary objective was to identify
specific surgical maneuvers associated with positive indi-
cators of surgical performance and high surgical skill.
Operative blood loss was used as an indicator of good sur-
gical performance (adjusted for severity of cholecystitis),
and surgical experience in years was used as a proxy for
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surgical skill. We gathered laparoscopic video footage and
relevant clinical data for each patient. The dataset com-
prised more than 90hours of laparoscopic video from 243
patients, 24 surgeons, and 7 hospitals (Table S1 in the Sup-
plementary Appendix). Utilizing a CV AI model, we con-
ducted an in-depth analysis of surgical activity in the
videos. Using a statistical model, we then associated the
findings with operative blood loss and surgical experience.
The study received approval from the Institutional Review
Boards of Stanford University and IH.

PARTICIPATING SURGEONS AND ANNOTATORS

To facilitate the training of an AI model to autonomously
recognize detailed surgical activity in laparoscopic videos,
12 annotators labeled occurrences of surgical actions in 114
of the 243 patient cases. The annotators — surgical resi-
dents, nurse practitioners, and physician assistants from
Stanford Health Care (SHC) and IH — participated in two
training sessions to become familiar with the cholecystec-
tomy ontology11-15 utilized in this study (Fig. S1). One
attending surgeon from SHC, one from IH, and one from
Johns Hopkins University, together with an IH surgical resi-
dent, arrived at a consensus on the components of

laparoscopic cholecystectomy to be labeled, building on
prior work11,12,16 in AI-based surgical activity recognition.
These prior works have illustrated the segmentation of lap-
aroscopic surgery into sequences of shorter surgical action
components.15

This study defines surgical action triplets (SATs) as unique
combinations of three components, consistent with prior
work11,12,17: the instrument in use, the instrument’s
motion, and the manipulated anatomy. We identified 16
instruments, 13 motions, and 19 anatomical structures,
leading to 150 clinically pertinent combinations (Table
S3), filtered to prevent invalid combinations such as
“Suction Irrigation, Clip, Gallbladder.” Our team of expert
clinicians and highly trained research personnel provided
manual labels of fine-grained SATs on 114 of the 243 lapa-
roscopic videos available, yielding 4057minutes of labeled
video, encompassing 8470 labeled actions. Using the
expert annotations, we trained a state-of-the-art
AI-powered CV model to identify actions from video.
Details of this model are provided in Figure 1 and Section
6 of the Supplementary Appendix (see Figs. S3-S7). We
subsequently used the model to detect the prevalent SAT
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Figure 1. Automated Computer Vision Analysis of Laparoscopic Cholecystectomy Videos.
Panel A shows an example timeline of surgical action triplets (SATs; i.e., instrument, verb, target interactions) detected by our model for
one laparoscopic cholecystectomy case (a portion of the timeline is enlarged for visibility). Panel B shows laparoscopic video frames at
several time points during the case along with the corresponding detected SATs. The legend in Panel C indicates the set of SAT
components detected by our model. GI denotes gastrointestinal.
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at every moment in the original 114 cases and the remaining
129 videos, generating an additional 5792minutes of SAT
annotations without requiring any human labor (Fig. 2).

We calculated intermediate, human-interpretable deriva-
tives from these actions (e.g., average duration of an activ-
ity) and used them to fit a statistical model for estimating
operative blood loss and surgical expertise. Operative
blood loss was estimated by the surgeon in the postopera-
tive report and refined through a standardized review of
the operative video by an independent surgeon. We also
recognized that disease severity acts as a confounder
in appropriately assessing surgical skill. Therefore, we
adjusted for severity using the Parkland Grading Scale18

(PGS). PGS ratings (see Table S2 and Fig. S2), labeled by
two attending surgeons and two surgical residents for all
243 cases, were used as the primary control for case
complexity.

Separately, as an additional clinical covariate, a surgical res-
ident labeled binary critical view of safety (CVS) achieve-
ment in 69 cases, which given annotation resources, was
sufficient for training an effective model to recognize CVS

achievement in all cases. Through this fine-grained associa-
tion of surgical actions and clinical covariates with relevant
outcomes, we were able to shed light on the relationship
between positive patient outcomes and surgeon technique,
paving the way for automated and standardized surgical
skill assessment.

OUTCOMES

The primary outcomes in this study were operative blood
loss and surgical experience. We categorized operative
blood loss into two groups: minimal blood loss (�10ml)
and significant blood loss (>10ml). This threshold was
chosen to capture the difference in the nature of bleeding
in laparoscopic cholecystectomy. For example, 100ml of
blood loss may be reflective of an adverse intraoperative
event, such as involuntary injury of a major blood vessel,
even if the absolute magnitude of this blood loss does not
lead to any significant postoperative consequence. In addi-
tion, it is standard practice for 10ml of blood to be marked
in the operative report if there is minimal bleeding. Thus,
after an extensive review of operative blood loss in our
cohort, we chose 10ml or less of blood loss as an indicator
that no significant bleeding was present in the case,
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Figure 2. Distribution of Surgical Action Triplets (SATs) Detected by Our Model on All Cases versus
the Distribution of Human Annotations on the Labeled Subset.

This figure shows a comparison of our model’s detected SAT labels on the entire cohort with the ground truth annotations provided by
human annotators on a subset of our cohort. Panel A shows the percentage of SAT labels with each laparoscopic instrument. Panel B
shows the percentage of SAT labels involving a particular motion. Panel C shows the percentage of SAT labels with particular anatomy as
the target of the action. We demonstrated that our artificial intelligence model is able to capture a similar distribution of key surgical
elements as a human annotator. GI denotes gastrointestinal.
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whereas larger values indicated technical error and/or
case severity.

Similarly, we divided surgical experience into two catego-
ries: low experience and high experience, with the thresh-
old set at 15 years of experience since commencing
general surgery residency. All supervising attending sur-
geons in our cohort perform at least 50 laparoscopic chole-
cystectomy procedures each year. The group of surgeons
in the hospitals included in our study cohort perform over
3000 laparoscopic cholecystectomy procedures each year.
A secondary outcome was the achievement of the CVS,
which was used as a covariate in a statistical model of
operative blood loss.

STATISTICAL ANALYSIS

Surgical actions offer a detailed perspective of surgeries
yet are not directly interpretable. Consequently, we pro-
cessed the detected SATs into interpretable measures.
These serve as a proxy for components of widely adopted
surgical skill rating systems, such as Global Operative
Assessment of Laparoscopic Skills (GOALS)19 and Objec-
tive Structured Assessment of Technical Skill (OSATS).20

For example, the GOALS system includes a scale that
measures efficiency, with low ratings indicating uncertain,
inefficient efforts characterized by numerous tentative
movements and constant focus shifts. To encapsulate this
surgical behavior, we computed the frequency of specific
surgical actions, which, unlike total duration, captures
focus shifts. The OSATS scale assesses operative flow,
which we capture through the average idle time between
detected actions.

Measures considered in this study include total video
duration, total durations of each unique SAT, the time
until the first clipping and cutting actions, the total time
between the first and last port insertion, the average idle
time between labeled actions, the number of times an
L-hook electrocautery or grasper is used within 10 seconds
of bleeding, the number of times a clip is applied immedi-
ately before and after an instance of bleeding, the number
of L-hook or grasper dissections of the gallbladder or cys-
tic pedicle immediately before gallstone or bile spillage,
and the frequency of actions 1minute before an adverse
bleeding or bile spillage event. All durations and time
periods were measured in seconds (Table S4). Additional
clinical attributes were included as covariates: elective sta-
tus (urgent/nonurgent), preoperative diagnosis, assisting
resident level, PGS severity, and achievement of CVS. We

controlled for disease severity in our analysis using expert-
labeled PGS, which grades acute cholecystitis severity on
the basis of intraoperative images assessing inflammation
and anatomy (Supplementary Appendix, Section 4). We
also trained our algorithm to detect CVS achievement as
an additional clinical covariate. Following prior work on
automated CVS detection,21,22 we constructed a CV model
capable of capturing CVS achievement (Supplementary
Appendix, Section 4).

We conducted a comprehensive statistical analysis of the
SATs detected by our AI model. We fit four multivariate
logistic regression models with an L1 or Lasso penalty23 on
features derived from SATs and relevant clinical features
to classify the minimal versus significant operative blood
loss in all cases, mild PGS 1 to 2 cases only, moderate to
severe PGS 3 to 5 cases only, and low versus high surgical
experience in all cases. We used 10-fold crossvalidation to
find the optimal shrinkage factor lambda for the Lasso
penalty. The receiver operator characteristic curves were
constructed using predictions from the 10-fold crossvali-
dation procedure. Only predictions when the samples
were held out in the test folds were used. Lasso regulariza-
tion aids in preventing overfitting and reduces the number
of variables from the large number of SATs and other
derived measures to a meaningful subset. To account for
feature selection, we used selective inference to correct
the P value and confidence interval estimation for the
model coefficients.24 Note that odds ratios depend on
the chosen unit of measurement (1 second) and scale with
the duration of an observation. This is of particular rele-
vance when considering that laparoscopic cholecystec-
tomy operative times vary from tens of minutes to
multiple hours.

Results
Our study dataset comprised 243 unique patient cases of
laparoscopic cholecystectomy from IH. Among the 243
patients, 72 had a clinician-reported blood loss of 10ml or
less, and 171 had blood loss greater than 10ml. Surgeons
had 15 years of experience or less in 128 cases and more
than 15 years in the remaining 115 cases. Annotators pro-
vided manual labels of fine-grained SATs on 114 of the
243 laparoscopic videos. This subset was used to train our
AI model, which we then used to detect SATs in all 243
cases. A surgical resident labeled binary CVS achievement
in 69 cases; these labels were used to train a separate
model for recognizing CVS achievement for all cases. PGS
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disease severity ratings, labeled by two attending surgeons
and two surgical residents, were used for all 243 cases.

OPERATIVE BLOOD LOSS

We used our CV model to detect SATs in all 243 patient
videos. We then extracted features from these AI-detected
surgical behaviors for use in a statistical model of out-
comes. A multivariate logistic regression model for esti-
mating blood loss using these features achieved an area
under the receiver operator characteristic (AUROC) of
0.81 on the full cohort, and regression models for the PGS
1 to 2 and PGS 3 to 5 cohorts both achieved an AUROC of
0.73 (Fig. 3).

In cases with a gallbladder of PGS 1 or 2, higher operative
blood loss was strongly associated with longer durations
of the suction irrigator aspirating blood (P=0.01) and
coagulation of blood through L-hook electrocautery
(P=0.02). Additionally, in cases with PGS 3 disease sever-
ity or higher, higher intraoperative blood loss was found to
be significantly associated with longer usage of the suction
irrigator for dissection of the cystic pedicle (P=0.04).
Moreover, in moderate to severe cases, higher blood loss
was associated with longer usage of the irrigator to irrigate
the cystic pedicle (P=0.04) and with longer durations of
the irrigator aspirating blood (P=0.03).

SURGICAL EXPERIENCE

For surgical experience, we fit another logistic regression
model using the AI-derived features, which achieved an
AUROC of 0.78. Higher surgical experience was strongly
associated with the elective status of the cholecystectomy
(P<0.001), whereas lower experience was moderately
associated with longer duration of dissection of connective
tissue through L-hook electrocautery (P=0.07) and total
duration of the case (P=0.07).

Discussion
In this study, we analyzed 243 laparoscopic cholecystec-
tomy cases from multiple institutions and developed a CV
model to detect surgical activity. We then extracted fea-
tures from the detected actions and used a statistical
model to examine the association between surgical activ-
ity and outcomes. Our cohort of laparoscopic cases with
extensively labeled surgical actions represents the most
extensive dataset of unique patient cases examined with
AI. Whereas previous studies have explored the develop-
ment of AI models for recognizing surgical actions,11,12,25

most have been restricted to datasets derived from the
Cholec80 laparoscopic surgery dataset,15 which consists of
only 80 unique videos and lacks postoperative data.
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Figure 3. Receiver Operating Characteristic (ROC) Curves for the Operative Blood Loss Model and
the Surgeon Experience Model.

Panel A shows the ROC curve for our statistical model fitted on clinical covariates, such as disease severity (as measured by the Parkland
Grading Scale) and artificial intelligence–derived video-based features for classifying operative blood loss. Panel B shows the ROC curve
for our model of surgeon experience. Twenty covariates were included in the final fitted model for the full cohort, which showed a strong
association between higher blood loss and longer durations of the laparoscopic suction irrigator aspirating blood (P=0.02) or suction-
irrigating blood (P=0.04) (Table 1). AUROC denotes area under the receiver operating characteristic.
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Derivative datasets such as CholecT40 and Cho-
lecT45,17,25,26 which have been used in work on recogniz-
ing SATs, are limited to less than 50 unique patients.
None of these prior studies have leveraged the automation
capabilities of CV to analyze a large number of surgical
videos and investigate relationships between surgical
activity and clinical outcomes.

We demonstrate that our framework is capable of system-
atically uncovering associations between surgical activity
and intraoperative adverse outcomes and can generalize
automated analysis capabilities across laparoscopic videos
from multiple institutions in a large health care network.
A unique feature of this study is the metadata that accom-
pany the laparoscopic video data. Surgical experience and
the skills of practicing surgeons are difficult to assess from
most existing datasets.17,25 Many, if not all, video datasets
may include portions of the operation performed by trai-
nees. Our unique dataset, in collaboration with multiple
institutions, allowed us to identify a subset of cases with-
out trainee involvement.

A decade since the seminal work of Birkmeyer et al.4 dem-
onstrated manual video review to assess surgical skill, our
work revisits surgical skill assessment through the lens of
modern AI. Our findings demonstrate the value of using
AI to recognize fine-grained surgical behaviors in large
numbers of laparoscopic videos to predict surgical out-
comes and assess surgical skill. In our cohort, our AI
model indicates that, in cases classified as moderate to
severe on the basis of disease severity, longer usage dura-
tions of the suction irrigator for cystic pedicle dissection
are significantly associated with higher intraoperative
blood loss. This implies a relationship between irrigator
usage and case difficulty because these cases tend to be
more inflamed and prone to bleeding, prompting the use
of the irrigator as a less traumatic blunt dissector. In
milder cases (PGS 1 to 2), our model indicates that aspira-
tion or coagulation of blood is strongly correlated with
high blood loss, a confirmatory finding illustrating the
potential for CV to effectively and autonomously identify
expected surgical maneuvers in response to adverse
intraoperative events, such as bleeding. Additionally, we
find that AI can detect clear associations between intrao-
perative outcomes and identifiers of disease severity. Spe-
cifically, more inflamed gallbladders, as measured by
PGS, substantially increase the risk of high blood loss,
whereas CVS achievement decreases the odds of blood
loss (Table 1). Although these findings did not reach

statistical significance, we believe that this is in part
because of our use of selective inference, which makes the
threshold for significance more stringent, and that those
findings will be confirmed with larger datasets in the
future. These findings have clinical importance because
the CVS method was designed to minimize the risk of
common bile duct injury, a life-altering complication, dur-
ing laparoscopic cholecystectomy. No prior findings, to
our knowledge, showed an increase in blood loss with
poor CVS achievement, but our findings point to the fact
that the more thorough dissection required to achieve
CVS is also protective against increased blood loss.

With respect to surgical experience, a statistical model can
reliably utilize known correlates of surgical experience
with case information, such as elective status (e.g., none-
lective cases are less routinely performed by experienced
practitioners, who tend to perform more elective surger-
ies). Additionally, the model can also identify associative
features detected by AI that provide insight into relation-
ships between surgical maneuvers and experience. For
example, our model finds that longer time spent using the
L-hook electrocautery for dissection of the gallbladder off
the liver bed is moderately associated with less surgical
experience. This is consistent with notions of surgical pro-
ficiency because the time taken to address gallbladder
removal can be indicative of a novice or expert surgeon.
These types of insights could significantly impact surgical
practice because AI-enabled, large-scale analysis could
reveal hidden relationships between surgical actions and
proficiency (Table 2).

These preliminary findings have direct implications for initia-
tives like the American College of Surgeons’ National Surgi-
cal Quality Improvement Program (NSQIP).27 Launched in
1994, NSQIP aims to systematically gather preoperative,
intraoperative, and postoperative data for patients under-
going surgery at participating institutions. This multi-
institutional benchmarking facilitates efforts to decrease
postoperative mortality and morbidity.27 As storage and
analysis of laparoscopic video data become increasingly
available at these institutions, incorporating objective
intraoperative features derived from AI could serve as a nat-
ural extension to electronic health record–based predictions
of complications.28 Current NSQIP data from individual
patient records lack the detailed intraoperative analysis
that AI can potentially provide on a large scale. By integrat-
ing AI-derived, objective intraoperative features, existing
NSQIP data could be enriched with granular intraoperative
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Table 1. Selected Features Associated with Operative Blood Loss for All Cases, Mild Severity Cases, and Moderate- to High-Severity Cases*

Feature Odds Ratio P Value CI (Low) CI (High)

Full Cohort

PGS 1.2087 0.16 0.6703 2.0374

Endoloop Ligature Puncture Abdominal Wall 1.0366 0.31 0.7580 1.3573

Port Retract Abdominal Wall 1.0121 0.42 0.7588 1.3612

Suction Irrigation Suction/Irrigation Blood 1.0103 0.04 0.9949 1.0746

Maryland Dissector Grasp adhesion 1.0088 0.88 0.0000 1.8994

Grasper Grasp Cystic Pedicle 1.0073 0.50 0.8272 1.0769

L-hook Electrocautery Coagulate Gallbladder 1.0053 0.73 0.3127 1.4376

Maryland Dissector Grasp Gallbladder 1.0052 0.60 0.4734 1.5232

Grasper Retract Liver 1.0048 0.16 0.9817 1.0394

Suction Irrigation Aspirate Blood 1.0041 0.02 1.0009 1.0267

Hemoclip Applier Clip Cystic Artery 1.0038 0.55 0.8960 1.0450

L-hook Electrocautery Coagulate Connective Tissue 1.0026 0.54 0.8922 1.0844

Suction Irrigation Dissect Cystic Pedicle 1.0025 0.31 0.9815 1.0261

L-hook Electrocautery Coagulate Blood 1.0018 0.83 0.7374 1.0464

Maryland Dissector Grasp Cystic Duct 1.0012 0.79 0.6549 1.0759

Total Duration 1.0004 0.49 0.9990 1.0013

L-hook Electrocautery Coagulate Cystic Plate 0.9997 0.43 0.9979 1.0016

L-hook Electrocautery Dissect Adhesion 0.9990 0.73 0.9845 1.0835

Grasper Grasp Fat 0.9757 0.71 0.6765 4.4333

CVS 0.6720 0.17 0.0266 2.4193

Mild Severity Cases (PGS 1–2)

L-hook Electrocautery Coagulate Blood 1.0446 0.02 1.0100 2.7803

Maryland Dissector Grasp Gallbladder 1.0404 0.14 0.5832 44.1470

Maryland Dissector Dissect Gallbladder 1.0391 0.81 0.0000 860.0842

Port Retract Abdominal Wall 1.0296 0.14 0.9050 1.5246

L-hook Electrocautery Coagulate Cystic Pedicle 1.0259 0.74 0.1936 1.3443

Grasper Grasp Liver 1.0206 0.51 0.5520 1.4687

Grasper Grasp Cystic Pedicle 1.0108 0.70 0.4584 1.1919

Suction Irrigation Aspirate Blood 1.0082 0.01 1.0032 1.0333

L-hook Electrocautery Coagulate Liver 1.0080 0.07 0.6890 1.1401

Maryland Dissector Dissect Adhesion 1.0078 0.90 0.0000 2.8643

Suction Irrigation Dissect Cystic Pedicle 1.0032 0.28 0.9661 1.0717

Grasper Retract Liver 1.0026 0.67 0.8375 1.0786

Grasper Grasp Gallbladder 1.0006 0.39 0.9762 1.0149

Endocatch Bag Pack Gallbladder 0.9985 0.70 0.9562 1.1610

Suction Irrigation Dissect Connective Tissue 0.9434 0.64 0.6972 4.4759

Grasper Dissect Connective Tissue 0.5004 0.61 0.0197 260,314.0929

Moderate- to High-Severity Cases (PGS 3–5)

Suction Irrigation Suction/Irrigation Cystic Pedicle 1.2100 0.04 0.9477 2.0717

Scissors Cut Gallbladder 1.0163 0.72 0.1554 1.3154

Suction Irrigation Dissect Cystic Pedicle 1.0037 0.04 0.9990 1.0151

Suction Irrigation Aspirate Blood 1.0016 0.03 0.9999 1.0071

Grasper Retract Liver 1.0006 0.72 0.9512 1.0080

L-hook Electrocautery Dissect Connective Tissue 0.9995 0.34 0.9848 1.0104

Grasper Grasp Connective Tissue 0.9946 0.67 0.8488 1.8145

* The odds ratios for the features selected (i.e., nonzero coefficients) were determined by the Lasso logistic regression model for measuring operative blood loss
in the full cohort, the PGS 1–2 group, and the PGS 3–5 group. CI denotes confidence interval; CVS, critical view of safety; and PGS, Parkland Grading Scale.
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insights, bolstering both surgeons’ and hospitals’ capacity to
understand and prevent avoidable complications.

Despite these promising results, our study has limitations.
The primary limitation is the exclusive focus on cholecys-
tectomy; the approach should be validated for other lapa-
roscopic procedures to demonstrate its clinical utility.
Ultimately, the goal is to identify intraoperative factors
that lead to clinically relevant postoperative conse-
quences, and this is challenging for cholecystectomies
given the very low complication rates of this procedure.
We also used surgical experience as a surrogate for surgi-
cal proficiency, which may represent a bias, because more
clinical experience does not necessarily equate to higher
laparoscopic proficiency. Additionally, although laparo-
scopic video is abundant, patient privacy concerns and
data collection challenges could hinder the development
of effective deep learning models for surgical activity
recognition.

In conclusion, our study highlights the potential of AI in
facilitating detailed and large-scale analyses of laparo-
scopic surgical videos and in uncovering intricate relation-
ships between surgical activity and operative outcomes. An
AI model trained to recognize fine-grained surgical actions
in laparoscopic cholecystectomy produced interpretable
features associated with adverse intraoperative events, like
bleeding. This study represents the first investigation into
the link between AI-derived, visual surgical activity fea-
tures and operative outcomes in laparoscopic surgery. By
examining the activity of surgical practitioners at scale, we
can gain insights into key markers of successful surgery in
one of the most common procedures. This study not only
confirms the potential for AI models to scale and reveal
new insights on large surgical cohorts, it also may inspire
new research into the use of surgical videos to enhance sur-
gical training and reduce complications.
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