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Fig. 1. Overview of GenSQL.

1 INTRODUCTION

Building generative models of tabular data is a central focus in Bayesian data analysis [28], proba-
bilistic machine learning [55] and in applications such as econometrics [4], healthcare [38] and
systems biology [84]. Motivated by these applications, researchers have developed techniques
for automatically learning rich probabilistic models of tabular data [1, 30, 36, 50, 69]. To fully
exploit these models for solving complex tasks, users must be able to easily interleave operations
that access both tabular data records and probabilistic models. Examples computations include
(i) generating synthetic data records that satisfy user constraints; (ii) conditioning distributions
specified by probabilistic models given observed data records; and (iii) using database operations
to aggregate the results of combined queries against tabular and model data. However, the majority
of existing probabilistic programming systems are designed for specifying generative models and
estimating parameters given observations. They do not support complex database queries that
combine tabular data with generative models specified by probabilistic programs.

GenSQL. This article introduces GenSQL, a novel probabilistic programming system for querying
generative models of database tables. GenSQL is structured as a declarative extension to SQL which
seamlessly enables queries that integrate access to the tabular data with operations against the
probabilistic model. Examples include predicting new data, detecting anomalies, imputing missing
values, cleaning noisy entries, and generating synthetic observations [25, 29, 46, 73]. GenSQL
introduces a novel interface and soundness guarantees that decouple user-level specification of
high-level queries against probabilistic models from low-level details of probabilistic program-
ming, such as probabilistic modelling, inference algorithm design, and high-performance machine
implementations. GenSQL extends SQL with several constructs:

e To complement SeLECT clauses that retrieve existing records from a table, GenSQL includes
the clause GENERATE UNDER m to generate synthetic records from a probabilistic model m.

e To complement WHERE clauses that filter data via constraints, GenSQL introduces the clause
m GIVEN e to condition a probabilistic model m on an event (i.e., a set of constraints) e.

e To complement joins between tables, GenSQL introduces a new mixed join clause t GENERATIVE
JOIN m to join each row of a data table ¢ with a synthetic row generated from a probabilistic
model m, whose generation can be conditioned in a per-row fashion on the values of t.

e To complement arithmetic expressions, GenSQL introduces PROBABILITY OF € UNDER m
expressions, which compute the probability (density) of an event e under a probabilistic
model m.
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In this work, we assume that an existing probabilistic program synthesis tool has been used to
automatically generate a probabilistic model of the user’s data satisfying a certain formal interface.
The user then uploads the data and model to GenSQL which automatically integrates them. The
user can then issue queries for a variety of tasks, as illustrated in Fig. 1. Although we envision
most users using automatically discovered models on their data, the GenSQL implementation also
supports hand-implemented or partly-learned probabilistic models. For instance, a user can develop
custom models for harmonization across different sources, as shown in Appendix A.3.

The core of GenSQL is formalized as a simply-typed extension of SQL (Section 3.1). This extension
includes standard SQL scalar expressions and tables as well as rowModels (probabilistic models of
tables) and events (a set of constructs that allow users to issue probabilistic queries that leverage
Bayesian conditioning). Together, rowModels and events enable a seamless integration of standard
SQL databases with probabilistic models, which include queries that interleave accesses to the
database records and probabilistic models.

The GenSQL query planner (Section 4) lowers queries into plans that execute against a new model
interface for probabilistic models of tabular data. This Abstract Model Interface (AMI) (Section 4.1)
provides a unifying specification of probabilistic models that are compatible with GenSQL. To
implement the AMI, the model must be able to: (i) generative samples from a (potentially approxi-
mate) conditional distribution; (ii) compute probability densities for specified points; (iii) compute
probabilities of sets in the support of the conditional distribution.

The open source GenSQL system includes a number of implementations of the AMI, including

e a Clojure implementation [61] of Gen [20], a general purpose probabilistic programming
language; see Appendix A.3 for an example.

e models produced by CrossCat [50], a probabilistic program synthesis tool;

e SPPL [73], a probabilistic programming language for exact inference.

We provide a measure-theoretic denotational semantics for the language (Section 3.2). This
semantics captures the interaction between deterministic SQL operations and probabilistic opera-
tions on the probabilistic model, enabling us to prove several correctness guarantees that query
results satisfy. Specifically, we prove guarantees for (i) the exact case, where exact inference about
marginal and conditional distributions of the probabilistic model is available (Theorem 4.2); and
(ii) a range of approximate cases, where answers to marginal and conditional queries are obtained
via approximate inference algorithms (Theorem 4.3).

We benchmark GenSQL on a set of representative queries, testing the runtime performance,
overhead of the query planner, and effect of our optimizations. The results show that all queries
execute in milliseconds against data tables of sizes up to 10,000 rows, with a speedup in the
range 1.7-6.8x against the most closely related baseline, and that the query planner’s overhead as
compared to hand-written code is small. We evaluate our system on two case studies to test its
applicability to solving real-world problems (conditional synthetic data generation for a virtual
wet lab and an anomaly detection in clinical trials), comparing against a generalized linear model
(GLM) and a conditional tabular generative adversarial network (CTGAN [88]) baseline.
Contributions. This paper makes the following contributions:

(1) The GenSQL language (Section 3.1), an extension of SQL with probabilistic models of tabular
data as first-class constructs and probabilistic constructs to allow the integration of queries
on these models with queries on the data.

(2) A unifying abstract interface for models of tabular data (Section 4.1), which bridges
the query language and probabilistic models of database tables, to which all models must
conform. The query planner lowers GenSQL queries on models to queries on this interface.

(3) Soundness theorems, which fall into two classes:
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e Exact: We show that if models satisfy the exact interface, all deterministic computations
will be exact (Theorem 4.2). This theorem works with an exact denotational semantics
(Section 4.3) that precisely characterize the behavior of exact models.

e Approximate: If approximate models implement consistent estimators (i.e., estimators that
converge to the true value), we prove that all queries return consistent results (Theorem 4.3).
This theorem works with a novel denotational semantics that combines measure-theoretic
aspects with sequences of random variables.

Together, these guarantees highlight some of the tradeoffs between using an exact model

(which deliver stronger guarantees but may be difficult to obtain in some use cases) and an

approximate model (which deliver weaker guarantees but are more easily available).

(4) An open-source implementation of GenSQL in Clojure (https://github.com/OpenGen/

GenSQL.query), which can be compiled into JavaScript and run natively in the browser.

(5) A performance evaluation of our approach (Section 5) which establishes that GenSQL

is competitive with hand-coded implementations and gives improved performance over a

competitive baseline. Two case studies further demonstrate the utility of GenSQL.

2 EXAMPLE

Figure 2 presents an example GenSQL query. In this example, we work with a probabilistic model
(health_model) derived from a national database of patient information, as well as a data table
(health_data) from a set of local hospitals. The query uses the probabilistic model to estimate the
mutual information—an information-theoretic measure used in data analysis— between the age
and bmi columns (from the probabilistic model) for specific valueso f patient weights (selected from
the data table). The mutual information is a statistical measure of the strength of the association
between these two columns, defined as a sum or integral, over the joint distribution of age and
bmi, of the logarithm of the ratio of the joint density and the product of the marginal density.

The query estimates the mutual information by Monte Carlo integration, i.e., it approximates
the integral by sampling. We first generate 1000 copies of each row in the health_data table (line
15) and then use the GenSQL generative join construct (line 16) to complete each row as follows.
For each such row r:

1 | SELECT weight, AVG(log_pxy_div_px_py) AS mutual_information

2 | FROM (

3 SELECT weight, LOG(pxy) - (LOG(px) + LOG(py)) AS log_pxy_div_px_py
4 FROM (

5 SELECT weight,

6 PROBABILITY OF h_model.age = table.age AND h_model.bmi = table.bmi
7 UNDER h_model GIVEN h_model.weight = table.weight AS pxy,

8 PROBABILITY OF h_model.age = table.age

9 UNDER h_model GIVEN h_model.weight = table.weight AS px,

10 PROBABILITY OF h_model.bmi = table.bmi

11 UNDER h_model GIVEN h_model.weight = table.weight AS py

12 FROM (

13 SELECT table.weight, table.age, table.bmi

14 FROM (

15 health_data DUPLICATE 1000 TIMES

16 GENERATIVE JOIN h_model

17 GIVEN h_model.weight = health_data.weight) AS table)))

18 | GROUP BY weight

Fig. 2. Estimating the conditional mutual information between age and bmi given patient weights.
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(1) arow r’ is sampled from a version of the model conditioned on the weight value of row r;
(2) the rows r and r’ are concatenated.

The resulting intermediate table is called table (line 17). Each synthetic row r’ is used as a sample
for the Monte Carlo integration of the conditional mutual information for the corresponding weight
value. From this intermediate table, we select the weight, age, and bmi columns (line 13). Note that
the weight column comes from the patient data while the age and bmi columns come from the
rows sampled from the probabilistic model.

For each weight in the patient data, we compute the Monte Carlo approximation of the mutual
information between age and bmi for that weight as

e T o S

where k is the number of patients with that specific weight, and (age;, bmi;) is a sample from the
model for that weight. To do so, lines 6-11 compute the probability densities p(age;, bmi;) (lines
6-7), p(age;) (lines 8-9), and p(bmi;) (lines 10-11). For instance, the GIVEN clause conditions the
model on the weight column of the model being equal to the weight column of table (line 11).
Line 10 then computes the probability density that the bmi column of the conditioned model is
equal to the corresponding column in table. GenSQL computes these probability densities by
invoking the logpdf function in the probabilistic model interface (Section 4.1).

A traditional SQL select statement (line 5) propagates the patient weights and corresponding prob-
abilities pxy, px, and py to generate a table with four columns: the weight and the corresponding
probability densities for that weight. Line 3 computes log p(age;, bmi;)—log p(age;)p(bmi;) for each
of the rows, naming this ratio log_pxy_div_px_py. Note that there are 1000k log_pxy_div_px_py
values for each weight in the local patient data, where k is the number of patients with that specific
weight. Finally, line 1 computes the mutual information estimate between age and bmi, for each
weight, as the average of the log_pxy_div_px_py values for that weight. This example illustrates
the expressivity of GenSQL, but we note that our implementation has a primitive which directly
estimates conditional mutual information without the need to materialize intermediate tables.

3 SYNTAX AND SEMANTICS
3.1 Language

The core calculus extending SQL for querying from probabilistic models of tabular data is given
in Fig. 3, and the type-system is given in Fig. 4." As SQL is a subset of GenSQL, this calculus also
includes a simply-typed formalization of SQL where terms are given in a pair of context: a local
and a global one. We found this formalization interesting in its own right, as we could not find an
equivalent formalization in the programming languages literature.

There are several noteworthy differences with variables and contexts from traditional simply-
typed languages based on the lambda-calculus, which are explained below. We note early that
we distinguish two types of conditioning through constructs called events and events-0. Events-0
come from a technical difficulty well-known in the PPL and measure theory literature [78, 86]
when conditioning on a continuous variable taking a specific value. This creates a possible event of
probability 0, and requires special treatment.

Names and Identifiers. We assume a countable set C of names coL € C for the columns of tables
and rowModels, as well as a countable set J of identifiers 1D € 7 for naming tables and rowModels.

The core SQL-part of the language is minimal for expository purposes. Appendix E presents the formalization for a richer
language, including the operations GROUP BY and DUPLICATE used in Fig. 2.
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‘ Description ‘ SQL ‘ Probabilistic Extension ‘
Base/Event Type o u= o.|oy & == CYcov:0y,...,COL, : O}
| C°{cor; : oy,...,COLy, : On}

Table/RowModel Type | 7~ == T[ip]{coi; : 0y,...,COL, : 0, } | M == M][iD]{coL; : 01,...,COL, : On}
Table Expression I i— ID| RENAME ¢ AS ID t = ...

| t; JOIN tp | ¢ WHERE e | GENERATE UNDER m LIMIT €

| SELECT € AS COL FROM ¢ | t GENERATIVE JOIN m
RowModel Expression m = ID| M GIVEN ¢' | RENAME m AS ID
Scalar Expression e u= ID.COL| op(ey,...,en) e ... | PROBABILITY OF ¢’ UNDER m
Event Expressions ! uw= cdAc|cdve)|m.coLope
Event-0 Expressions & = c(l) A cg | m.coL=e
Primitive Domains: op € Op, D € 7, coL € C, o, € {Real, PosReal, Ranged(a, b), ...}, o4 € {Int, Str, Nat, Bool, ...}
Syntactic Sugar: € AS COL = €] AS COLy, ..., €, AS COL,.

Fig. 3. Syntax of GenSQL.

Base types. Cells of tables can have a base type o, which is either a continuous type o, or a discrete
type o4. Continuous types are Real for reals, PosReal for non-negative reals, or Ranged(a, b)
for reals in the range [a, b]. Discrete types are Nat for natural numbers, Int for integers, Str for
strings, Cat(Ny, ..., Ny) for a categorical type over k attributes, and Bool for Boolean.

Table and rowModel types. We denote these types by D[?1p]{co1; : 01,...,COLy : 0, }. D is either
T for tables or M for rowModels. 71D is an optional identifier, allowing access to columns of a table
or rowModel in a query. For instance, in sELECT ID.weight, the identifier 1D refers to a table and
weight to a column of that table. The identifier can be be optional, e.g. there is no default identifier
for a table created after a join. The notation {coL; : o7, ...,COL, : 0,} indicate that the table has
columns cor; of type o;. Therefore, we can think of each row of a table as an element of a record
type {coL; : 01,...,COL, : 0}, a bag of rows as a table, and a rowModel as a row generator.

Scalar Expressions. Op is a set of primitive operations on base types including standard operations
such as +, %, <, >, = on integers and reals, A, V on Booleans, as well as constants for every value of
a base type. For any op € Op, we write op : 03,...,0, — o if op has arity n, takes arguments of
base types o1, . . ., 0, and returns a value of type o. In particular, operations with no arguments are
constants of the appropriate type such as true and false at the boolean type. All base types have
an additional constant Null representing a missing value. This constant is preserved by primitive
operations (e.g. Null + 3 — Null, Null # 4.1 — Null). By convention, wHeRE Null clauses act as
WHERE false.

Table expressions. Apart from typical SQL operations, we have two ways to generate synthetic data.
GENERATE UNDER returns a synthetic table with a given number of rows specified by the LimiT clause,
where each row is generated by sampling from a given rowModel. GENERATIVE joIN takes a rowModel
and a table, and returns a synthetic table with the same number of rows, where each row is
generated by concatenating the current row of the table with a sample from the rowModel. The
model generating the samples can be conditioned on the current row of the table. RENAME renames
a table or rowModel with a new identifier, therefore changing the identifier in its type and the way
to access their column in a select of event clause.

Event and event-0 expressions. Events are Boolean expressions on tables and rowModels, which
include equality on discrete values but not on continuous values, which is reserved for events-0. The
only probability 0 events are impossible under a given model, e.g. x > 6 A x < 3, and those do not
require a separate treatment. Events and events-0 are used in the PROBABILITY OF and GIVEN constructs.
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(a) Type System for Table Expressions (c) Type System for rowModel Expressions
I, T[io]{coLs}; A+ 1D : T[] {coLs} I',M[ip]{coLs}; A+ 1D : M[D]{CoOLs}
T;A+ ¢t :T[?ip]{coLs} 1D’ fresh T;A+Fm: M[ip]{coLs}
T; A+ RENAME t AS 10’ : T[10’ | {coLs} I;A, M[mp]{coLs} F c! : C'{coLs}
;A F ty : T[] {cors} I; A+ mGIVEN ¢! : M[1p]{coLs}
I;A+ty: T[?Dg]{coLs’} coLsNcoLs’ = 0 I'; A, M[1p]{coLs} F ¢® : C®{coLs’}
T;AF t; JOIN , : T[|{coLs, coLs’} T; A+ 1D GIVEN ¢ : M[1p]{coLs}
T;AF¢t:T[ip]{coLs} T;A T[i]{coLs} F e:Bool I;AFm: M[ip]{coLs} 1D’ fresh
T;A+t WHERE e : T[1D]{coLs} ;A + RENAME m AS 10’ : M[1m0’ |{coLs}

[;A+Fm:M[ip]{coLs} T;AFre:Nat
T'; A+ GENERATE UNDER m

(d) Type System for Scalar Expressions

LIMIT e : T[]{coLs} ie{l....n}
;A T[ip]{coL; : 61,...,COL, : Op} F ID.COL; : O}
T;A+t:T[ip]{coLs} coLsNcoLs’ =0
T;A, T[] {coLs} + m : M[10’[{coLs’} LArm: M[ID]I{COLIS}
T; A + t GENERATIVE JOIN m : T[]{cots, cors’} ;A M[]{cots} k ¢ : C {coLs}

T;A + PROBABILITY OF ¢! UNDER m : Ranged (0, 1)
I;A+t:T[ip]{coLs}

;A T[]{cots} re;: o forl <i<n T;A+m: M[m]{cors} vars(c®) N condvars(m) = 0
€ AS COL := e; AS COLy, ..., e, AS COLp, I; A, M[m]{cors} + ¢’ : C°{cors’}
T.Ar SELECT & AS Cor T;A + PROBABILITY OF c” UNDER m : PosReal
FROM ¢ : T[]{coL; : 01,...,COLy, : O } IsAvej:ojforl<i<n op:oy,....,0np—>0

. I;AFop(er,....en) 0
(b) Type System for Event Expressions

TiAre:o; i€{l,...,n} (e) Type System for Event-0 Expressions
op € {<,>=} Voc.(oi,0p) # (0c,=) IAvre:o ie{l,...,n}
COoLs =coL; : 01,...,COL; : Oj,...,COL, : Op COLS =...,COL; : O, ...
I'; A, M[1p]{coLs} + Ip.coL; op e : C'{cors} T; A, M[1p]{coLs} + ID.coL; = e:C%{coL; : o}
I;AFc):C'{coLs} T;AFkc):C!'{coLs} I;A+Fc):C%coLs} T;AFc):C%{cors'}
I;A Fcl Ac): CH{coLs} coLs N coLs’ = 0
I;AFcl:C'{coLs} T;AFc):C!'{coLs} T;A+c) Ac): CPf{cots, coLs’}

I;AFcl vl : C'{coLs}

Fig. 4. Type system of GenSQL.

PROBABILITY OF takes an event (or event-0) expression and a rowModel to query and returns the
probability (or probability density) of the event under the model.?

RowModel expressions. GIVEN takes a rowModel and an event (or event-0) expression, and returns
a new rowModel, the conditional distribution of the original rowModel on the event. The event
expression can be given by a list of inequalities on arbitrary variables and equalities on discrete
variables, in which case GIVEN acts as a set of constraints on the possible returned values of the
model. Otherwise, the event expression can be a set of equalities on possibly continuous values
and is understood as conditioning the model on the given values.

Contexts. Expressions are typed in a pair of contexts I'; A containing table and rowModel types.
As these types include identifiers, there is no need for the more classical notation x : 7 pairing
a variable with its type. T is a set of types, while A is an ordered list of types. In the premise of a

2Tt may be confusing for people familiar with probabilistic programming languages (PPLs) to use PROBABILITY OF for
both a probability mass and a probability density. Our implementation has two versions of the syntax: a strict one
and a permissive one. The strict syntax distinguishes between the two, and in particular on events-0 one the primitive
is PROBABILITY DENSITY OF. The permissive syntax allows to use PROBABILITY OF for both, and the system will
automatically choose the right version based on the type of the event.
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typing rule such as PROBABILITY OF , only the last element of A will be accessible to an expression.
We denote the empty context by []. Intuitively, I' contains the ambient tables in the database
schema and any loaded models, and within T, all identifiers 1D are assumed distinct. A is the value
environment, and contains only tables that are “in scope” for a particular expression. Scalar, event,
and event-0 expressions all depend on the value environment. If an expression has a table in scope,
it will be iterated over the rows of that table and can only access the current row. If a PROBABILITY OF
expression has a rowModel in scope, it will query the model for the probability of an event under
that model. If it’s a GIVEN expression, it will condition that model on an event.

Typing rules. Judgments are of the form I'; A + e : t where e is an expression (t, e, m, cl, ¥ in

Figure 3); t is a type (0, 7, &, M in Figure 3), and I'; A is a context. Given some loaded tables and
rowModels forming environment T, the objects of interest are “closed expressions” of table type,
i.e., expressions of the form T; [] + ¢ : T[?ip]{coLs}. “Closed” here refers to A being empty, not
T'. Notable rules include those that need the same identifier twice, such as the PROBABILITY OF or
the wHERE rule. For instance, in the t WHERE e rule, where t has identifier 1D, a valid SQL e would
be Ip.coL = 3 where coL is a column of ¢. This reflects the fact that the expression e should have
access to the identifier 1D in its local environment, and that the column coL of ¢ will be iterated
over by the expression e.

Notations used in the type system. ?1D indicates an optional identifier and 1p. “ID’ fresh” means
that 10’ is not in the contexts I', A or in the type of a subterm of the expression. We will often
abbreviate {coL; : oy,...,coL, : 0,} as {coLs}. We write coLs N coLs’ = () when the set of
column names in coLs and in cors’ should be disjoint. In the first typing rule for events, we write
Vo.(0, op) # (0c, =) to mean that op cannot be an equality on a continuous type. We recursively
define the following two macros:

vars(1p.coL op t) = {coL} vars(c A ¢’) = vars(c) U vars(c’) vars(c V ¢’) = vars(c) U vars(c’)

condvars(m GIven ¢°) = vars(c’) condvars(m Given ¢!) = condvars(m) condvars(ip) = 0

Restrictions imposed by the type system. If the same identifier 1D appears twice in the premise of
a typing rule, the two identifiers must equal, and two different identifiers 1p and 10" must be distinct.
The joIN and GENERATIVE JOIN operations require that the columns of the two tables have disjoint
names. As explained above, events are disallowed to be equalities on continuous types. A model can
only be conditioned once on an event-0, which is enforced by the restriction 1p GIVEN ¢’. Events-0
follow a linear typing system to avoid contradictory statements such as 1p.cor = 1.0 A ID.coL = 2.0.
Events-0 in a PROBABILITY OF query on a conditioned model cannot refer to the conditioned columns
of the model, which is enforced by the restriction vars(c®) N condvars(m) = 0.3

Syntactic sugar. Our implementation includes various syntactic sugars that are not present
in the formalization but which are used in several figures. Given t:T[1p]{coL;:01, ..., COL,:0,},
m:M[1p’[{coL}:07, ..., coLy:0, }, we have the following equivalences:

® SELECT # FROM { ~» SELECT ID.COLy, ..., ID.COL, FROM f

® PROBABILITY OF * ~» PROBABILITY OF e for any query of the form SELECT PROBABILITY OF
UNDER M GIVEN C FROM t, where e := ID’.COL] = ID.COL; A ... A ID’.COL;, = ID.COLy,.

® M GIVEN * ~» m GIVEN e within a SELECT FROM ¢ query. The event e := ID.COL] =ID.COL; A...A
ID’.COL] = ID.COL;,, where the coL;; are columns ¢ that do not appear in the seLecT clause.

® s EXCEPT ID.COL removes the column cot from list of columns that * selects.

30ur implementation is less restricted. It allows join variants such as SQL’s left join where the tables do not have disjoint
columns. It also allows multiple conditionings on the same model, which are then normalized to the form above. See
Appendix D.1 for details about the normalization.
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3.2 Semantics

We define denotational semantics using measure theory, shown in Fig. 5. Even though the SQL subset
of GenSQL is not probabilistic, our probabilistic semantics ensures compositional reasoning about
the semantics of SQL queries combined with probabilistic GenSQL expressions, such as synthetic
tables generated by rowModels. Per usual, the semantics of expressions is defined compositionally
on typing judgement derivations, and [ e] is a shorthand for [T;A + e : t].

Base types (Fig. 5¢). We assign to each type o a measure space [o] := (Xo, Zx,., Vs) consisting of
a set X,, a sigma-algebra Ex_, and reference measure v,. Z denotes the set of integers, N natural
numbers, and B Booleans, which are equipped with the discrete sigma-algebra. We equip the reals
R with the Borel sigma-algebra. We interpret Null by adding a fresh element {x} to the standard
interpretation of each base type, equipped with the discrete sigma-algebra. The semantics of a base
type o is then given by the smallest sigma-algebra making {*} measurable, as well as ensuring
that every previously measurable set remains measurable. (This construction is also called the
“direct-sum sigma-algebra” [24, 214L]).

The base measure on discrete types oy such as Int, Nat, Bool, Str is the counting measure. On
continuous types o, such as Real, the base measure is the Lebesgue measure A. These are extended
to base measures v, on [[o] by using the dirac measure §(,} on {x}, e.g. the base measure on [R]
is Ar + 8x}. We write y ® v for the product of measures. We extend the reference measure to the
product space [],<;<,[0:] by taking the product of the reference measures v := ), _;, Vo:-

Table types (Fig. 5a). Our semantics has two modes of interpreting table types, a “tuple mode”
Tup[[—]), and a “table mode” Tab[[—]|. Tab[[—]] interprets tables as measures on bags of tuples, while
Tup[[—] interprets a table as a tuple, representing the current row of the table being processed
by a scalar, event or event-0 expression. More precisely, we denote by £ (X) the measurable
space of probability measures on the standard Borel space X [32]. The table semantics interprets
table types as measures on bags of tuples Tab[[ T[?1p]{coLs} | = Bag(Tup[[T[?1p]{coLs}]), where
Bag(X) = {f : X > N | f(x) = 0 except for finitely many x}. Bag(X) is equipped with the least
sigma-algebra containing the generating sets {b € Bag(X) | b contains exactly k elements in A}
for measurable sets A of X [21].

Contexts (Fig. 5b). We interpret the global context I' with the table semantics Tab[[-] and the
local context A with the tuple semantics Tup[[—]]. We write y for an element of Tab[[T], and see
it as a finite map from identifiers to values. Likewise, we write é for an element of A. We write
S[1D - o] for the extended finite map mapping 1D to v.

Scalar expressions (Fig. 5d). We then interpret scalar expressions I'; A + e : o as measurable
functions Tab[[T']| x Tup[[A] — [o]. We lift operations op to interpret Null, and write op, for the
extended version of op which sends * to *.

Event expressions (Fig. 5g). An event expression [[c! : C'{coLs}](y, ) is interpreted as a measur-
able subset S of [[coLs] (disjoint union of hyper-rectangles [73]). Depending on the expression, this
set S is used in different ways. We interpret the probability clause PROBABILITY OF ¢! UNDER m as
/[[com]] 1sdy, where p is the measure denoting the model m, i.e. S is used in an indicator function 1.
When used in a GIVEN clause, we constrain the model to the event S, which is then renormalized.
If the event has probability 0, we instead return a row of Null. A similar situation to wHERE Null
arises for GIVEN, e.g. in GIVEN ID.coOL op Null. Following the principle of least surprise, Null acts
by convention as a unit for conditioning, i.e. ID GIVEN ID.coL op Null behaves the same as . To
ensure this we interpret boolean expressions op differently in the semantics of events, and write
op; for the extended version of op which sends x to true. The denotation of 1p.coL op Null will
therefore be the entire space, and conditioning a model on this event will not change its denotation.
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(a) Semantics of Table and rowModel Types (b) Semantics of Contexts
Tup[T[?p]{coL; : 01, ..., coLy : on}] = [Ti<i<nloil Tup[[A == T, A"] = Tup[ 7] x Tup[A"]
[M[?mp]{coL; : 07, ..., coL, :on}t] = Pdem( Hlsignﬂo'l’]]) Tup[[A = M, A'] = [M] x Tup[A']
Tab[[T := 7,T"] = Tab[ 7] x Tab[T']
Tab[T[?p]{coLy : 071,.. ., COL, :on}] = PBag( Hlsisn[[oy-]]) Tab[[T = M,I'] = Tab[ M] x Tab[T']

Tab[M[?iD]{coL; : 01, . .., oLy, :ont] = Padm( ﬂlgisnﬂoi]])

(c) Semantics of Base Types (d) Semantics of Scalar Expressions
[Bool] := (BU {x}, P(BU {x}), vs) [tp.coL;] (y,8) = m:(5(1p)) where T[?1D]{coLs} € A
[Int] = (ZU {*x}, P(ZU {x}), vz) [op(er,....en)] (v, 8) = ops ([er] (v, 8), ... [en] (. 6))
[Str] == (Str U {x}, P(Str U {*}), i) [ PROBABILITY OF c! UNDER m] (y,8)= [m](y,8).meas([¢'] (1. 5))
[Real] := (RU {*}, B(RU{*}), %) | PROBABILITY OF ¢’ UNDER m](y,3) = let (r,0) =
[PosReal] := (&7 {(x}, BETU (1), ver) [ (y, 8010 > [m] (v, 8) Din [m] (v, 8).pdf(v)

(e) Semantics of Table Expressions
[mp: T[?p]{cors} | (y, ) = y(1p) [ RENAME ¢t AS 10" || (y, 8) = [£] (v, 8)
[ JOIN £2] (. ) = (Ax, y.map2 (Ary, r2.(r1,72)) x ) ([1] (v, 8) ® [£2] (. 8))
[ : T[?m]{cois} WHERE ¢] (y,5) = (Ax.ﬁlter r[e] (v, 5[ = r])) x) [£1(y.5)
[ GENERATE UNDER m LIMIT e]| (y,8) =let n = [[e] (y, ) in ()L(xl ,,,,, Xn)- Uls,-gn{xi})* R1<i<nlml(y, 5) meas

[ SELECT e; AS coLy, .. ., en AS COL, FROM ¢ : T[?ip]{coLs}] (y, ) =
(Ax.map r.([ei] (v, 8[D = 71),..... [enl (v, [0 = 71))) x)*[[t]](y, d)
[(¢:T[?1p]{coLs}) GENERATIVE JOIN m] (y,8) = [¢] (y, ) >= (Ay.fold A, ropp>=

(Axl(/l{r’}‘x U {(r,")})«] GENERATE UNDER m LIMIT 1]|(y, 8[1D r])‘meas) oy y)

(f) Semantics of rowModel Expressions
[1o : M[?1D]{coLs} ] (y,S) = (y(1D).meas, y (1D).pdf) [ RENAME m AS 10" || (y, 8) = [m] (v, )
[m GIVEN ¢! : C'{cors} ] (y, ) = Cond([m] (v, 8). [c' | (v, 5[D — [m] (y,5)]))
[0 GIVEN ¢° : C%{cors’}] (y,8) = let (,0) = [¢°] ((y,8[1D — [1D] (y,8)])) in Dis(y (1), 7, 0)

(g) Semantics of Event Expressions (h) Semantics of Event-0 Expressions
[NA1<i<z i1 (r:8) = Mi<icalle; 1 (. &) I A Ny, 8) = {let 1siz2(fio00) = [} (1, 6) in
[Visisz C}]](Yﬁ) = Ulgiszﬂcl%]]()/ﬁ) 1<i<2 (Ax.(fi(x). fo(x)), (01, 22))

[1p.cor; op e : C{cors}] (y,8) = {(x1,..., xn) € [cors] | x; op; [e]l(y.8)} [1ip.cor; = e](y,d) = (mi el (y.5))

Fig. 5. Denotational semantics of GenSQL.

Event-0 expressions (Fig. 5h). [ ¢° : C°{covLs}] (y, §) is interpreted as a pair of a projection function
7 and a value v in the codomain of the projection. v is used to specify the point at which we want to
condition or evaluate a density, and « is used to project the model to the relevant subspace, which
we detail in the paragraph on rowModel expressions.

Table expressions (Fig. 5e). We interpret closed tables expressions - t : T[?ID]{coLs} as measures
on their columns, i.e. elements of P(Tab[T[?ID] {COLS}]]). We write p>>= k for the composition

of a measure y on X with a kernel X — PV, defined by u>=x(dy) = f k(x, dy)u(dx). Given a
measurable function f : X — Y, we denote the pushforward measure by f,u(A) := p(f~1(A)).
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We use functional programming notation for the mathematical functions filter , map , map2 ,
fold . Given a bag S and a function f : S — B, we define the bag filter f S := {x € S| f(x) # 0}.
Likewise, we define map S := {f(x) | x € S} andmap2 f ST := {f(x,y) | x € S,y e T}. A
function f : X X Y — Y is commutative [21] if f(x1, f(x2,vy)) = f(x2, f(x1,7)) for all x1, x2, y.
Given a commutative function f : X X Y — Y, we further define fold f : Y X Bag(X) — Y by
fold f yo{x1,....xn} = f(x1, f(x2, ... f(xn,y0) .. .))-

RowModel expressions (Fig. 5f). The semantics of rowModels is more involved, as conditioning
statements GIVEN ¢” require conditioning on events of probability 0. We first review the minimal
setting that helps us define conditioning on event-0 expressions. Given measurable spaces A, B
with reference measure v4, vg, a measure p on A X B admits an (A, B) disintegration if we can write
1 = v4 ® k for some measure kernel k such that for all a € A, k(a) has a density p(— | a) w.r.t. vg.
A wvalid decomposition (A, B) for [];<;<,[0:] is given by A = [];¢;[ o] for some J € {1,...,n}
and B = [ljeq1,. nj—slloj]l. A measure p € P([1;<;<plloi]) is admissible if it admits an (A, B)
disintegration for all valid decompositions (A, B) of [1;<;<n[[o:]-

We consider measures p on spaces X with chosen disintegrations and (marginal) densities w.r.t.
the reference measure. More precisely, we interpret a rowModel 1D from the global contextI" as a
quadruple Tab[p] := (y, p, {ka}a, {p}a)- Here, u is a measure denoting the unconditioned model,
and p a density of 1 w.r.t. the reference measure. For each valid decomposition (A, B) of the columns
of 1D, the kernel x4 is an (A, B)-disintegration of p. For all a € A, ps(— | a) is a density for x4 (a)
w.r.t. the reference measure vg. If v is a partial assignment of the variables in B, we also write
pa(v | a) for the marginal density of x4(a) at v obtained from pa(— | a) by integrating out the
missing variables in v. We denote by Pagm(X) the set of such quadruples (g, p, {ka}a, {p}a), where
y is a measure on X. Given m € P,am(X), we write m.meas for its first component y, m.pdf for
the density p, m.A for the kernel x4, and m.A.pdf for the density p4. Using this notation, given an
event-0 ¢’ denoting a projection 7 and value v, the expression m.pdf(v) gives a marginal density of
the model m at v; i.e. m.pdf(v) is a version of the density of z.m.meas evaluated at v. We assume
that all the models in the context are admissible, which is enforced in the semantics of contexts.

The models used in queries are built from admissible models and will carry chosen densities,
which is enforced in the semantics of rowModel expressions. We write Pgens(X) for the set of pairs
(p, p) where p is a measure on X := Xj X ... X X, and p is either a density of y w.r.t. the reference
measure, or of the form A(xy,...,x,).q(xi,, ..., x; ) for some iy, ..., iy, and where g is a marginal
density of p on X;, X ... X X;, w.r.t. the reference measure. The second case is used to represent the
density of a model conditioned on an event-0 expression.

Conditioning on events-0 requires access to a disintegration of the model at the point v, which is
possible thanks to the restriction from the type-system. For m € Ppgm(X), 7 : X — Y a projection
function, and v € Y, we define Dis(m, ,v) := (m.7(X)(v) ® 8y, m.7(X).pdf(v)).

For conditioning on events, given m € Pens(X) and a measurable S C X, we define

¢ m.meas(SNS’) 1s(x)m.pdf(x)
cond(m, S) := mmeas(S) ~~  m.meas(S)

if m.meas(S) > 0
(8t Li(nm)}) otherwise

4 ABSTRACT MODEL INTERFACE AND QUERY PLANNER

This section presents a query planner that automatically lowers GenSQL queries to programs that
operate on tables and rowModels. This lowering depends on the Abstract rowModel Interface (AMI)
which we assume all loaded rowModels must satisfy. The AMI is a flexible interface that many
rowModel implementations can easily satisfy. This flexibility means that model implementations
can strike different expressiveness-speed-accuracy trade-offs, and give different guarantees.
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Appendix A.2 compares an exact SPPL backend to an approximate Gen.clj backend on 5 queries.

In what follows, we define the AMI and show how to lower GenSQL queries to programs that
access rowModels through the AMI interface. We showcase the flexibility of the AMI by proving
formal guarantees for two different implementations of the AMI. We show in Section 4.3 that if the
AMI is implemented in a PPL with exact inference, then GenSQL queries can be lowered to programs
in a semantics-preserving way. We then show in Section 4.4 that if the AMI is implemented in a
PPL with approximate inference, then GenSQL queries can be lowered to programs that encode
asymptotically sound estimators for PROBABILITY OF expressions and asymptotically sound samplers
for GENERATE UNDER expressions.

4.1 Abstract Model Interface (AMI)

A rowModel represents a probability distribution on rows with a fixed set of columns. The AMI
captures the intuition that a model should be able to produce samples and compute probabilities
and densities for all conditioned versions of the distribution it represents. For each rowModel
M[?mp]{coLs}, the AMI requires the existence of the following three methods:

simulatey, : (C°{coLs’}, C*{cors}) — T[?mp]{coLs}
logpdf,, : (C°{cors’}, C*{cors}, C’{cors”’}) — Real
proby, : (C°{cors’}, C*{coLs}, C*{cors}) — Ranged(0, 1).

where coLs’, corLs” C coLs. These methods should behave as follows:

e simulate,(c?, c!) returns a sample from a model with identifier 1D, conditioned on the event-0
¢ and event c!.

e logpdfiy(c’, ¢!, ¢)) returns the (marginal if coLs” ¢ coLs) log-density of the model 1p condi-
tioned on the event-0 ¢® and event ¢!, at the point cg.

. probID(co, cl, c%) returns the probability of the event c; under the model 1D, conditioned on
the event-0 c® and event c'.

A non-conditioned model is recovered by letting the subset coLs’ to be empty. The precise usage
of these methods is given in the next section. The AMI methods can have different formal semantics,
capturing different aspects of the backend probabilistic model it abstracts. These semantics reflect
different implementation strategies implementing conditional sampling and probability evaluation.
Appendix C shows how different model classes can implement the AMI. In particular, we show
that SPPL [73] and truncated multivariate Gaussians satisfy the exact AMI, and that any PPL
implementing ancestral sampling will satisfy the approximate AMI. We next describe how the
GenSQL query planner lowers queries to programs that rely on the AMI, before giving details about
the semantics and correctness guarantees.

4.2 Lowering GenSQL to Queries on the AMI

The lowering procedure from GenSQL to a lowered language is given in two steps: (i) a normalization
transform for GenSQL queries; and (ii) a program transform to the lowered language.

Normalization of GenSQL Queries. The normalization (see Appendix D.1) simply simplifies RENAME
statements and aggregates events in a single conditioning statement. It leads to the following normal
forms, where GIVEN clauses are optional:

e Probability queries: PROBABILITY OF ci UNDER (ID GIVEN ¢” GIVEN c!).

e Generate queries: GENERATE UNDER (ID GIVEN ¢” GIVEN c!) LImMIT e and
 GENERATIVE JOIN (ID GIVEN ¢’ GIVEN c!).
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base type o == 0. | 04 ground type oy = 0o | (01,...,0n) event type & = C! [og] | Co[og]
type 7 ::= Bag[oy] operator op ==+ |~ | x|+ |A|V|= rowModel M := M[ay]

primitives f ::= mapreduce | map | filter | replicate | join | exp

| singleton | simulate;y, | probyy, | logpdfip ety ZCO[O}}] Friy: CO[UgZ]
termtu=c | D | f(t, .. otn) | x| (1. tn) | mit | t1op b Tkt Aty : COloy, 07]
Trt:Cl log] Trtz: Cl[ffg] op € {A,V} Trt:o; ope{=<>} (o1,0p) # (0c,=)
Trtyopty: Cloyl I,ip: M[(oy,...,0n)] + (1D,0) opt : C1[(o1,...,0n)]

I, : M[aoy] + ¢l Ci[ag] I,ip: M[aog] + ci : Cl [og4] I,10: M[og] + ¢ Ci(o1,...,0n)]
I, 1D : M[oy] F probp(c?, cl,c%,) : Ranged(0, 1) I, 10 : M[oy] + simulaters (0, c!) : Bag[oy]
TFrt:o; T, : M[og] + ¢t Ci[ag] [0 : M[ag] + c(l) : Co[ag]
I,mo: M[(o1,...,0n)] F (1D, i) =t : CO[0;] T, 10 : M[oy] + logpdfip(c?, cl,c(l)) : Real

Fig. 6. A selected subset of the syntax and type system of the lowered language.

Lowering Language (Fig. 6). 1t is a first-order simply-typed lambda calculus with second-order
operations acting on bags, and primitives for the AMI. It also contains a version of events and
events-0 which can be used by AMI primitives. Operations like map , filter and exp have their
usual meaning, and their typing along with those for constants, tuples, projections, and arithmetic
operations are standard and recalled in Appendix D (Fig. 20). join takes two bags of tuples and
returns their Cartesian product. replicate evaluates its bag argument n times and returns the union
of all the resulting bags. mapreduce takes a bag of tuples and a function f from tuples to bags,
and returns the union of all the bags obtained by applying f to each tuple in the input bag.

Lowering program transform (Fig. 7). After obtaining a normal form query, the planner applies a
program transformation 75 {-} from normalized GenSQL queries to the lowered language, defined
by pattern matching on the structure of the query. It carries a local context § of variables (a finite
map from identifiers to variable names) which are bound in the surrounding program. Similarly
to the local context A in GenSQL, 6 will start empty [] at the root of the syntax tree. It is used
to rename variables in the lowered query. The rationale is that a table identifier 1p in A will be
transformed to a variable r representing a tuple being iterated over by a map or fold primitive. A
rowModel identifier 1D, on the other hand, will be uniquely accessible and identified from the global
context I, thanks to the normalization procedure which ensures that no rowModel is renamed in
the normalized query. A simple proof by induction shows that the transformation preserves typing.

ProposiTiON 4.1. IfT, [] + t : T[?mD]{coLs}, then T {I'} + Iy {t} : T {T[?m]{coLs}}.

4.3 Lowering Guarantees for Exact Backend

A large class of models supports exact inference, e.g. those expressible in SPPL [73] and truncated
multivariate Gaussians. These models satisfy the exact AMI and are able to return exact samples
from simulate, and compute exact marginal logpdf and prob queries, even for conditioned models.
We make this precise by giving a measure semantics on the lowered language (Fig. 21) and show
that the program transform 7 {-} preserves the semantics of the lowered query (Theorem 4.2).
In particular, all the scalar computations in the query are deterministic and that the generated
synthetic data comes from exact conditional distributions.

The denotational semantics (Appendix D, Fig. 21) of the lowered language is mostly standard
and resembles the measure-theoretic semantics of GenSQL given in Fig. 5. Terms I' + e : o, are
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(a) Translating Types and Contexts (b) Translating Event and Event-0 Expressions
TA{T[?p]{cor; : 01,.. ., COL, : 0n}} = Bag[(oy,..., on)] 75 {1p.coL; = e} = (D, i) = T5 {e}
T {M[?p]{CcoL] : 01,...,COLy, : O} } = M[(01,...,0n)] TJs {ip.coL; > e} = (mp,i) > T5 {e}
T{C*{coL; : 01,...,coL, : op}} = C'[ (01, ..., 0n)] 75 {1p.coL; < e} = (p,i) < 75 {e}
7 {T,T[?ip]{coLs}} = T {T},>: 7 {T[?p]{coLs}} Ts{c1 Aea}t = Ts {c1} A Ts {c2}
T {T,M[?1p]{coLs}} = T{T},m>: T {M[?p]{coLs}} T5{c1 Vel =T5{c1} v 75 {c2}
T{ot=0 TA{ll}=1I] (c) Translating RowModel Queries

75 { PROBABILITY OF cj UNDER ID GIVEN ¢’ GIVEN c'} = exp(logpdfi, (75 {c°}, 75 {c'}. 75 {c3}))
75 { PROBABILITY OF c) UNDER ID GIVEN ¢’ GIVEN c'} = proby, (75 {c°}, 75 {c'}, 75 {c}}.)
75 { GENERATE UNDER ID GIVEN c” GIVEN ¢! LIMIT e} = replicate (75 {e} , simulate,, (75 {c’}, 75 {c'}))
75 {t : T[1D’ | {coLs} GENERATIVE JOIN ID GIVEN ¢’ GIVEN ¢'} =
mapreduce (Ar.join (singleton(r), simulater, (75 (/- r] {co} s T [’ r] {cl})) ,Ts {t})
(d) Translating Scalar Expressions
Ts{c} =c Tsppmsr] {.cOL;} =i (r)  T5{op(er.....en)} = op(T5{er}.... 5 {en})
(e) Translating Table Expressions o
75 { RENAME t ASD} = 75 {t}; 75 {ID} =1D SELECT e AS cOL
75 {11 JOIN 5} = join(T5 {11}, T5 {#1}) d { FROM £ : T[ID]{COLS}} )
Ts {t : T[1D]{coLs} WHERE e} = filter (Ar.T5[inr) {€}, 75 {t}) map (Ar.Ts(mr) 1€}, Ts {t})

Fig. 7. The lowering transformation 7 {-}.

interpreted as deterministic measurable functions [I'[lexact = [0y ]lexact- Terms T + e : Bag[oy]
are interpreted as probability kernels [T [|exact = PBag([[ oy ] exact), where substitution for these
programs is interpreted using the Kleisli composition for the point process monad [21]. By induction
on the structure of GenSQL programs ¢ in context I'; A, we can show (proof in Appendix D.3):

THEOREM 4.2 (ExacT AMI GUARANTEE). Let T, [] + ¢ : T[?mD]{coLs}. Then, for every evaluation
of the context y,

I[t]] (}/, []) = |I7I] {t}]]exact(}/)~

4.4 Approximate Backend Guarantee

By relying on approximate probabilistic inference, general-purpose PPLs can express large classes
of models in which exact inference is intractable. In addition, programmable inference [51] ensures
PPLs can support a diverse class of probabilistic models without sacrificing inference quality. We
give a new denotational semantics for the lowered language that is appropriate for reasoning in
scenarios where the rowModels are implemented in PPLs with approximate Monte Carlo inference.

Monte Carlo algorithms are typically parameterized by a positive integer n specifying a compute
budget, such as the number of particles in a sequential Monte Carlo (SMC) algorithm [18] or
the number of samples in a Markov Chain Monte Carlo (MCMC) algorithm [64]. The algorithm
specifies a sequence of distributions or estimators that converge in some sense to a quantity of
interest as n — oo. In the case of approximate sampling algorithms, most typically the distribution
of the generated samples converges weakly to the target distribution, and in the case of parameter
estimation the algorithm produces a strongly consistent estimator of the target parameter [18, 64].
Random variable semantics. Our denotational semantics for approximate AMI implementations
is motivated by the above discussion. We assume the existence of an ambient probability space
(Q, 7,P) and associate with each term a sequence of random variables approximating the term
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in the exact semantics. As an example, the approximate semantics of [map (x.t1) #2 ] approx in the
context y and at the “random seed” w € Q is given at the n-th approximation by
[ 2 Tlapprox (v> @)n 3= (AS.return {Ax".[t1 |approx (y[x = X1, @0)n y |y € S}) .

This means that we first obtain the n-th approximation of the input t,, which is a measure on
tables, which we then evaluate to obtain a concrete table, S. We then apply the function to each
row obtained by the n-th approximation of t;. The full semantics is given in Appendix D.4, Fig. 23.
We assume the following hold:

e For each rowModel identifier 10 : M[ (o7, ..., 0x)] inenvironment y, eventc! : C*[(oy, ..., 0%)],
and event-0 ¢ : C°[(oy, ..., 0x)], there exists a sequence of probability measures
n k .
{'UID§|ICO]]appr0x(Y)n:l[cl]]approx(}/)n} on Bag Hi:l [[O—l]]’
e for v, y, ¢! and ¢” as above, and ¢} : C'[(01, ..., 0%)], there exists a sequence of real ran-
dom variables {P" which takes values in [0, 1] P-almost
{ ID;HCOJ]approx(Y)n»[[clj]approx(Y)m[[céllapprox(y)n} [ ]
surely;
o for b, y, ¢! and c” as above, and ¢ : C°[ (o7, ..., ok)], there exists a sequence of real random

n
ID;[[cOJ]appmx(y)n,[lclllappmx(y)n,llcgllappmx(y)n}'
These random sequences represent the sequences of approximations produced by the implemen-
tation of the AMI. In general, for a given term ¢ the convergence of sequences associated with
its sub-terms do not imply that the sequence associated with ¢ converges. For instance, consider
evaluating the following query in an appropriate context (y, §):

SELECT ID.COL FROM ID WHERE ID.COL < ( PROBABILITY OF ID".COL" = 7).

If the value of the term PROBABILITY OF ID’.cOoL’ = 7 is approximated, even if we can make this
approximation arbitrarily accurate, the output of the query need not converge. For example, if the
table 1D contains a row in which the value of coL is exactly [ ProBaBILITY OF ID".coL’ = 7] (y, §)
but the approximation converges to the true value from below, this row will not be included in the
query result no matter the accuracy of the approximation. Intuitively, this arises from the fact that
the indicator functions of half intervals are not continuous.

In order for the lowered queries to denote asymptotically sound estimators for the original
queries, we require that the implementation of the AMI methods are asymptotically sound, and
write lim, y, to denote an evaluation of the context y in which each random variable is replaced by
its limit as n — oco. In Appendix D.4, we formalize the notions of safe queries and asymptotically
sound AMI implementations and details of the proofs. We then give the following guarantee.

variables {L

THEOREM 4.3 (CONSISTENT AMI GUARANTEE). LetT,[] + t: T[?mp]{coLs} be a safe query and
suppose the AMI methods have asymptotically sound implementations. Then, for every evaluation of
the context y, P-almost surely

lim ([T {¢Hlapproe) (v) = [ limy, []).

5 EVALUATION

The performance of an open-source Clojure implementation of GenSQL is evaluated against other
systems that have similar capabilities. We test runtime, the effect of optimizations, and runtime
overhead of our system over alternative implementations of the same task. Experiments were run
on an Amazon EC2 Cé6a instance with Ubuntu 22.04, 4 vCPUs and 8.0 GiB RAM.

The probabilistic models used in the evaluation are obtained using probabilistic program synthe-
sis [74, Chapter 3]. Each model is an ensemble of “MultiMixture” probabilistic programs [69, Section
6], which are posterior samples from the CrossCat model class [50], generated using ClojureCat [16].
An ensemble of 10 probabilistic programs is used in Section 5.1 and 12 programs in Section 5.2.
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Table 1. Runtime (sec) comparison of GenSQL and - Runtime (sec) Normalized Stdev (sec)
BayesDB [52] on 10 benchmark queries (Appendix F) for ‘ 104
evaluating probability densities of measure-zero events. 10°4 0.8
.
GenSQL BayesDB Speedup 7 0.6 4
(ClojureCat Backend)  (CGPM Backend) 10°9 0t
01 0.24 £ 0.03 059 £ 0.16 2.5% 107
Q2 0.29 + 0.03 115+ 0.2 4.0x TACH pennam———
03 0.43 £ 0.06 1.72 £ 0.28 4.0x 0 ' 1 0o ' '
Q4 0.48 + 0.06 2.25 £ 0.27 4.7x 10°3 1071 1073 107!
QS 0.57 + 0.07 2.68 + 0.36 4.7x Pr[condition] Pr[condition]
Q6 0.33 + 0.06 0.55 + 0.23 1.7x GenSQL (Exf{ct I?lference u‘sing S?PL .Backend)
—4— BayesDB (Rejection Sampling using Fixed Samples)
Q; giz * ggg 12? * g;? z;x —4— BayesDB (Rejection Sampling using Fixed Acceptance Rate)
.46 + 0. 81 +0. .9x
89 0.37 + 0.03 251 + 0.32 6.8% Fig. 8. Runtime/stdev comparison of GenSQL and
Q10 0.45 + 0.04 2.87 £ 0.39 6.4x BayesDB [52] on 5 benchmark queries for evalu-
Mean 0.41 + 0.1 1.77 + 0.83 4.3x ating probabilities of positive measure events.

5.1 Performance and Usability

Runtime comparison. Table 1 compares the runtime on 10 benchmark queries (Appendix F)
adapted from Charchut [16, Tables 4.2 and 4.3] using GenSQL (with the ClojureCat backend)
and BayesDB (with the CGPM backend [66]) for evaluating exact probability densities. Section 5
compares the runtime and standard deviation for computing the probabilities of positive measure
events. GenSQL (with the SPPL backend [73]) delivers exact solutions, whereas BayesDB delivers
approximate solutions using rejection sampling. Two rejection strategies in BayesDB are shown in
Section 5: a fixed number of samples (faster but higher variance) or a fixed acceptance rate (slower
but lower variance), which both are inferior to exact solutions from GenSQL.

The performance gains in GenSQL are due to three main reasons: the ClojureCat backend is faster
than the CGPM backend in BayesDB, GenSQL has optimizations (discussed below) that exploit
repetitive computations, and GenSQL itself is implemented in Clojure, a performant language.
Optimizations and system overhead. GenSQL leverages two classes of optimizations: caching
(of the likelihood queries and conditioned models) and exploiting independence relations between
columns. The latter allows us to simplify a query such as PROBABILITY OF ID.X > 42 UNDER ID GIVEN
ID.y = 17 to the semantically equivalent query PROBABILITY OF ID.x > 42 UNDER ID if the columns x
and y are independent. Appendix B gives a detailed account of the optimizations.

In Fig. 9, the unoptimized GenSQL queries have a 1.1-1.6x overhead compared to the pure

ClojureCat baseline. The optimizations reduce the overhead and can sometimes drastically improve
performance, while caching significantly reduces the variance in the runtime of the queries. In
Fig. 9b, the effect of the independence optimization varies between replicates, as these are different
CrossCat model samples, which explains the higher variance in query runtime.
Code comparison. Figure 10 compares the code required in GenSQL, pure Python using SPPL [73],
and pure Clojure using ClojureCat [16], for a conditional probability query. Figure 10a shows how
GenSQL gains clarity by specializing in data that comes from database tables. In contrast, both
SPPL and ClojureCat require users to hand-write the looping/mapping over the data, which is
error prone. For instance, the code in Fig. 10c will crash if the table has missing values. In Fig. 10b,
ClojureCat requires conditions to be maps. Users can decide if they encode columns with strings,
symbols, or keywords. If this choice does not align with the key type returned by the CSV reader,
the query will run but conditioning will result in a null-op.

In Appendix A.1, we compare a single line query on a conditioned model in GenSQL to the
equivalent code in Scikit-learn [60] on the Iris data from the UCI ML repository. The model querying
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Runtime (ms) Runtime (ms) Runtime (ms)
300 4 —*— GenSQL (Optimized) 1204 4000
GenSQL (Unoptimized)
400 | = ClojureCat 1004 3000
. 2000 1
400 4 80
200 60 1000 //
T : : : : T T T T T T T T T T
1 2 3 4 5 4 6 8 10 12 2000 4000 6000 8000 10000
Number of Conditions and Targets Nurmber of Conditions Nurmber of Rows

(a) Varying number of conditions  (b) Varying number of conditions in  (c) Varying number of rows in a data
and targets in the PROBABILITY OF  GIVEN clause for GENERATE UNDER table used in the FROM clause of SE-
queries shown in Table 1. queries (caching does not apply). LECT with a PROBABILITY OF query.

Fig. 9. Runtime comparison between GenSQL (ClojureCat backend) and raw ClojureCat [16].

event = {
SELECT PROBABILITY OF "Period_minutes": 98.6
Per1od_m1nu1l:es_="98.6, i "Type_of_Orbit": "Sun-Synchro.",
Type_of_Orbit = Sun-Synchr(?. . "Contractor”: "Lockheed Martin”,
Contractor = "Lockheed Martin"
UNDER model GIVEN Country_of_Operator, Launch_Mass_kg cols_in_condition = ["Country_of_Operator", "Launch_Mass_kg"]
FROM data
targets = {sppl.transforms.Identity(k): v for k, v in event.
(a) GenSQL items()}
constraints = [
(let {
[event {:Period_minutes 98.6 sppl.transforms.Identity(column): value
:Type_of_Orbit "Sun-Synchro." for column, value in row.items()
:Contractor "Lockheed Martin"} if column in cols_in_condition
cols-in-condition [:Country_of_Operator, }
:Launch_Mass_kg]] for _, row in data.iterrows()
(->> data ]
(map #(select-keys cols-in-condition %)) print([exp(spe.constrain(constraint).logpdf(targets)) for
(mapv #(exp (gpm/logpdf model event %))))) constraint in constraints])
(b) ClojureCat (Clojure) (c) SPPL (Python)
Fig. 10. Comparison of GenSQL, ClojureCat [16], and SPPL [73] code for a conditional probability query.
[ a b c ] [ a b x y z ]
ag by co a b 4.2 41 06 ALTER TABLE bar ADD COLUMN ¢ TEXT
a; by cy a, by -4.4 -5.4 0.2 UPDATE bar SET c = 'placeholder'
a by ¢ a, by 37 62 05 INSERT INTO bar SELECT
a b, co a b, 62 -42 01 a,b, NULL AS x, NULL AS y, NULL AS z, c
FROM foo
(a) Table foo (b) Table bar to build model
INFER a, b, ¢, x, y, z
SELECT * FROM foo GENERATIVE JOIN bar_model GIVEN * ‘ FROM bar WHERE rowid > [num rows in foo]
(c) GenSQL (d) BayesDB

Fig. 11. Comparison of GenSQL and BayesDB [52] code. The latter does not support GENERATIVE JOIN .

alone in Scikit-learn is more than 50 lines long and clearly error prone, and we find that GenSQL
offers a significant advantage in simplicity over such baselines.

Code comparison with BayesDB. Figure 11 shows GenSQL and its closest relative, BayesDB [52],
on a GENERATIVE JOIN query on synthetic data. The GenSQL code is more concise and simpler than
BayesDB’s code, which is possible due to the language abstractions for manipulating models. In
BayesDB, the user must exit to SQL and hand-code column manipulations to fit the expected fixed
pattern to query a model. Section 6 provides a detailed comparison of GenSQL and BayesDB.

5.2 Case Studies on Real World Data

We present two case studies to demonstrate the application of GenSQL to real-world problems:
one in medicine (clinical trial data) and one in synthetic biology (wetlab data). The datasets can be
costly to obtain and researchers are interested in understanding and analyzing their data.
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[ BMI  exercise health_status age smoker ]

SELECT 38 yes Above average 40-49 never
BMI, exercise, health_status, age, smoker 33 yes Well above average 30-39 never
FROM clinical_trial_records 33 yes Well above average ~ 50-59 never
WHERE 35 yes Above average 40-49 never
(BMI > 20.3) AND 37 yes Well above average 40-49 never
(BMI < 38.4) AND 33 yes Well above average 50-59 never
(PROBABILITY OF BMI UNDER clinical_trial_model GIVEN *) < 0.01 36 yes Above average 30-39 former
35 yes Above average 40-49 former

(a) Find anomalous BMI values, defined by P(BMI | (b) Result from the query in (a). Eight anomalous par-
%) < 0.01 for all BMI values within the 5th (20.3) and ticipants are returned: all are clinically obese but re-
95th (38.4) percentiles in the US. port above-average health status and exercise.

P(BMI > 30 | EXERCISE, HEALTH STATUS) Frequency P(BMI | %)

Participant exercises: 102

0.6

« Not Anomaly

yes + Anomaly

no

o)
=}

0.4
10t
0245

10°

T T T T T
Well below Below  Average  Above Well above
Health Status compared to average BMI P(BMI)

(c) Conditonal probabilites encoded (d) Compare anomalous BMI values to  (e) Compare conditional
by the underlying model. normal ones. and marginal BMI.

Fig. 12. Case study: Anomaly detection in clinical trials.

In the first case, we show how anomaly detection in GenSQL can be used to check for probable
mislabelling of the data. The anomalous rows can also be investigated further to understand the
reasons for the anomaly. In the second case, we show how GenSQL can be used to generate
accurate synthetic data, capturing the complex relationships between different host genes and
experimental conditions. Capturing these relationships with the model helps predict whether a
certain experimental condition or modification of the genome has cascading downstream effects
through the interrelations between the genes. Such effects can render the cell toxic and kill the
bacterium, leading to a failed experiment. The virtual wet lab allows researchers to check for such
effects before running costly experiments in the real world.

Anomaly detection in clinical trials. The (BEAT19) clinical trial [87] contains data about COVID-
19 and records behavior, environment variables, and treatments. Figure 12a shows a query used
for anomaly detection [15]. For each row, it computes the model likelihood of the value BMI
given the other values of the row. The trial participants labeled anomalous (Fig. 12b) all report
above-average or well-above-average health and that they exercise, while meeting the World Health
Organization’s definition of clinical obesity [83]. Fig. 12d compares the overall population in the
trial (grey), anomalous individuals (red), and the subset of the population with the same behavioral
covariates (exercise, health status, etc.) as the anomalous individuals (black). For similar individuals,
the data generally suggests a lower BMI. We can also compare the marginal and the conditional
probability of BMI values in the table of clinical trial records (Fig. 12d). Anomalous data (red) is
lower than the diagonal line, highlighting the “contextualization” of BMI values that happens by
conditioning the models: the BMI values are less likely given the context of the other values in
the row, while not necessarily extreme. To demonstrate this effect, we first apply a wHERE filter
that removes BMI values outside of the 5th and the 95th percentile, excluding one-dimensional
extreme values (Fig. 12a). We then compute the conditional probabilities of the BMI values in each
row for the remaining data and return anomalies. Fig. 12c shows the posterior predictive over the
ensemble of models (line) and for each individual model (dots) for a BMI above 30 given exercise
and health status.
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Ihg0 tyrR qorA

o SELECT . 60

30 GENERATE | 15

20
SELECT * FROM gene_expression_data
10

GENERATE UNDER gene_expression_model P s 2
LIMIT 1000 0 . 0
0 50 100 150 200 250 0 1 2 3 4 0 10 20 30
eno ginL atpD
(a) Overall population (b) 6 genes from the overall population.
IhgO tyrR qorA
30 . *  SELECT 60
SELECT * FROM gene_expression_data CRNEAIE | 15
WHERE Ara. = "not added" AND IPTG = "added" 20 " 10 »
GENERATE UNDER gene_expression_model 10 5 20 :
GIVEN Ara. = "not added" AND IPTG = "added" e .‘,-.
LIMIT 1000 0 T T . T T T T T T 0+ T T T
o 50 100 150 200 250 o 1 2 3 4 o0 10 20 30
eno glnl. atpD.
(c) Add IPTG but not Arabinose (d) 6 genes from (c).
lhgO tyrR qorA
20 ©  SELECT L 60
SELECT * FROM gene_expression_data CENETE| 15
WHERE Ara. = "added" AND IPTG = "added" 2 o 40
GENERATE UNDER gene_expression_model 10 5 20 L
GIVEN Ara. = "added" AND IPTG = "added" <o AR ¥
LIMIT 1000 0 0
0 50 100 150 200 250 0 1 2 3 4 o0 10 20 30
eno ginL atpD
(e) Add both IPTG and Arabinose (f) 6 genes from (e).

Fig. 13. Case study: Conditional synthetic data generation for a virtual wet lab.

lhgO tyrR qorA

+ SELECT * FROM gene_expression.data

lhgO tyrR qorA

OM gene_expression_data

T T v T v
0 50 100 150 200 250
eno glnl atpD

(b) Comparison of real and generated data from CTGAN (compare to Fig. 13b).
Fig. 14. Linear models and conditional generative adversarial networks (CTGAN [88]) produce less accurate
synthetic virtual wet lab data as compared to the synthetic data from GenSQL shown in Fig. 13b. In (b), the
default model and inference parameters in the open source implementation of CTGAN is used.

Conditional synthetic data generation for virtual wet lab. Figure 13 shows synthetic gene
expression data generated using GenSQL, given a dataset from an experiment testing genetic
circuits [56] in Escherichia coli. The synthetic data aligns with the overall population characteris-
tics (Figs. 13a and 13b) and accurately reflects the outcomes of actual experimental interventions
(Figs. 13c to 13f). In synthetic biology, the prospect of implementing genetic circuits has fundamental
implications for medical device engineering [53], bio-sensing [82] and environmental biotechnol-
ogy [89]. These circuits require input which is typically provided by adding inducer substances to
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the culture mediums where the organisms are grown. Our figures show the effect of adding two
such inducer substances, Arabinose and IPTG on 6 different host genes.

Producing standard RNA sequencing data can be costly [48], especially for new, engineered
organisms that are not mass-produced. When it is produced, RNA sequencing will yield measure-
ments for gene expressions for thousands of annotated host genes [9]. These genes are highly
interrelated, and knowledge of the relations is only partially available [44]. Thus, the application
of generative models to these data presents a challenging high-dimensional modeling problem,
further compounded by the inherent non-linearity in the data, as illustrated in Figs. 14a and 14b.

The most popular approach to modeling gene expression data is linear regression [22], as models
are easy to interpret and readily available in data analysis libraries. For non-numerical data, linear
regression requires analysis-specific re-coding of discrete values. That aside, the low capacity
of the model means that it fails to faithfully reproduce in the actual wet lab data, as shown in
Fig. 14a. Conditional generative adversarial networks(CTGAN) [88], though more complex, are also
an appropriate baseline because they are domain-general and effective at modeling multivariate,
heterogeneous data. However, GANSs are hard to interpret and as RNA sequencing data acquisition
is so costly, the number of available training examples (943) renders it unsuitable for CTGANSs.
Fig. 14b depicts this model class failing to accurately model the gene expression data.

6 RELATED WORK

Probabilistic databases. Probabilistic databases systems [79, 81] develop efficient algorithms for
inference queries on discrete distributions over databases, often based on variants of weighted
model counting, for which hardness complexity results were shown and algorithms were developed
for tractable cases and efficient approximations. Cambronero et al. [13] integrate probabilities into
a relational database system to support imputation, while Hilprecht et al. [39] use probabilistic
circuits to improve query performance. Jampani et al. [42] use probabilistic databases to support
random data generation and simulation. Cai et al. [12] provides Gibbs sampling support in the
space of database tables to a SQL-like language, enabling bayesian machine learning workload
such as linear regression or latent Dirichlet allocation. These languages are typically extensions to
SQL or relational algebra but with limited support for probabilistic models, which they tradeoff for
performance. Schaechtle et al. [76] presents a preliminary design for extending SQL to support
probabilistic models of tabular data. Our work differs in that it presents (1) a formalization of the
system; (2) a denotational semantics; (3) soundness guarantees for the system; (4) a unified interface
that probabilistic models implement; (5) a lowering transform and target lowering language; (6) an
extensive performance evaluation; and (7) two new case studies on real-world data.

Semantics of probabilistic databases. Barany et al. [3] and Grohe et al. [34] give a semantic
account to probabilistic databases by giving a probabilistic semantics and guarantees to an extension
of Datalog. Dash and Staton [21] give a monadic account and denotational semantics for measurable
queries in probabilistic databases. Their semantics of SQL-like expressions inspired the semantics
of our table expressions. Grohe and Lindner [35] established a formal framework for reasoning
about infinite probabilistic databases. Benzaken and Contejean [5] formalized the semantics of SQL
in Coq while Borya [11] formalized relational algebra and a SQL-like syntax using a model checker.

Probabilistic program synthesis. GenSQL has been designed with the possibility to lever-
age powerful probabilistic program synthesis techniques based on Bayesian [1, 50, 69] or non-
Bayesian [17, 30, 36, 41, 57] probabilistic model discovery. The AMI provides a unifying approach
to expressing powerful Bayesian inference workflows in these probabilistic programs using a high-
level SQL-like language. Extending the interface to handle synthesized models of time series [70, 72]
and/or relational data [71] is a promising avenue for future work.
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Probabilistic programming systems. While we used a Clojure version [16] of CrossCat [50]
in our experiments, our system supports any probabilistic program that satisfies the rowModel
interface. We can thus reuse models written in the variety of PPLs developed in the literature, such
as models written in languages supporting approximate inference [8, 14, 20, 26, 54, 75, 85] and exact
inference [27, 40, 73, 90]. Our model interface is inspired by the SPPL interface [73] and the CGPM
interface [68]. Gordon et al. [33] propose a probabilistic programming system using a functional
syntax similar to the stochastic lambda calculus, specialized to inference over relational databases,
implemented on top on Infernet. It can perform inference tasks such as linear regression and
querying for missing values which enable data imputation, classification, or clustering. Borgstrom
et al. [10] present a probabilistic DSL and semantics for regression formulas in the style of the
formula DSL in R. Domain-specific PPLs for tabular data have also been designed to solve tasks
such as data cleaning [46, 63].

BayesDB. Although BayesDB [52] was motivated by similar goals as GenSQL, GenSQL introduces
novel semantics concepts and soundness theorems that BayesDB did not. GenSQL also improves
upon BayesDB in terms of expressiveness and performance, as shown in Section 5. For example,
GenSQL queries can be nested and interleaved with SQL, and also combine results from multiple
models. GenSQL also provides an exact inference engine for a broad class of sum-product prob-
abilistic programs [73]. BayesDB, on the other hand, has interesting features that GenSQL does
not yet support such as iterating over model and columns (e.g. to find pairs of columns with the
highest mutual information) [67] and similarity search between rows [65]. BayesDB also has a
“meta-modeling” DSL [66] for composing probabilistic programs from various sources.

Automated Machine Learning. Several systems [6, 23, 43, 45, 58, 80] have been developed to
automate the use of discriminative machine learning methods for analyzing tabular data. Unlike
GenSQL, they do not support the use of generative probabilistic programs for tabular data satisfying
a unified interface (for sampling, conditioning, and evaluating probabilities or densities) which
enables a single model to be reused across many different tasks.

7 CONTRIBUTIONS

GenSQL specializes probabilistic programming languages to applications with tabular data. It is
differentiated from general purpose PPLs in three main ways:

e Through the AMI, GenSQL enables multi-language workflows. Users from different
domains and with different expertise should be able to use probabilistic models for their queries
without having to learn all the details of the PPL in which the model is written. The AMI enables
this separation of concerns by providing a well-specified interface. It enables the integrating
probabilistic models of tabular data in different languages, as it can be implemented in either a
general-purpose or domain-specific PPL (Appendix C). There is no standard way to jointly query
models in different PPLs or use the result of a query in one language against a model in another
language. As different PPLs focus on different workloads, users of GenSQL can work with several
models written in different PPLs. GenSQL thus provides a natural multi-language workflow, and
our experiments already use multiple backends (Gen.clj, SPPL, and ClojureCat).

e GenSQL enables declarative querying. No current PPL offers a simple declarative syntax
for evaluating complex queries (e.g., containing elaborate joins and nested selects) interleaving
calls on probabilistic models and database tables. A number of PPLs provide declarative syntax for
specifying and conditioning models, but the user must decide which operations on what conditional
distributions to evaluate and then manually combine the results of these operations. GenSQL
relieves the users of such concerns, reducing the chances of programming errors.
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e GenSQL enables reusable performance optimizations. Widely used database management
systems (DBMS) have been optimized by many engineer-hours of effort over several decades. These
optimizations are highly reusable because they are independent of the application domain and
specific languages that the DBMS interfaces with. GenSQL enables analogous optimizations for
workloads that interleave ordinary database queries with probabilistic inference and generative
modeling. GenSQL’s optimizations can carry over to many domains and workflows, avoiding the
need for project-specific performance optimizations involving probabilistic models of tabular data.

We see two interesting avenues for GenSQL to impact database applications and design.

Integration of GenSQL with database management systems (DBMS). First, GenSQL could serve
as a query language, allowing users to query generative models of tabular data directly from the
DBMS. One use case of rapidly increasing practical importance is querying synthetic data, generated
on the fly to meet user-specified privacy-utility trade-offs, instead of querying real data that cannot
be shared due to privacy constraints. Other potential applications for synthetic data include testing,
performance tuning, and sensitivity analysis of end-to-end data analysis workflows. In all these
settings, GenSQL implementations could also draw on performance engineering innovations from
DBMS engines, optimized further using the generative models themselves (e.g., to reduce variance
for stratified sampling approximations to SQL aggregates [2]).

Modularized development of queries and models. GenSQL introduces abstractions that isolate
query developers and query users from model developers. This separation of concerns is analogous
to the physical data independence property achieved by relational databases [19]. Most database
users do not need to know the details of how data is stored and indexed to be able to query it
efficiently, but some experts do understand how to tune indices to ensure that databases meet the
necessary performance constraints. Most GenSQL users need not be experts on the details of the
algorithms, modeling assumptions, and software pipelines that produced the underlying generative
models. Expert statisticians and generative modelers can still ensure the models are of sufficient
quality and tune trade-offs between performance, maintenance costs, and accuracy, improving
models without invalidating user workflows. With GenSQL, both typical users and experts can
more easily and interactively query generative models to test their validity, both qualitatively and
quantitatively. This division of responsibility between users, generative modelers, and probabilistic
programming system developers could potentially help our society more safely and productively
broaden the deployment of generative models for tabular data.

DATA-AVAILABILITY STATEMENT

An artifact providing a version of GenSQL, and reproducing our experiments, is available [77].
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