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Privacy-Preserving Gaze Data Streaming in Immersive Interactive
Virtual Reality: Robustness and User Experience
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Fig. 1: Top-left: Participants underwent an interactive VR experience while eye movements were passively recorded; Top-right:
Participants played an eye tracked VR game with privacy mechanisms applied to gaze streams; Bottom: An illustration of the eye
tracking pipeline in head-mounted virtual reality systems. After eye images are processed and gaze vectors are calculated, we can
apply privacy mechanisms to gaze vectors securely on the headset before passing values to potentially untrustworthy applications.

Abstract—Eye tracking is routinely being incorporated into virtual reality (VR) systems. Prior research has shown that eye tracking
data, if exposed, can be used for re-identification attacks [14]. The state of our knowledge about currently existing privacy mechanisms
is limited to privacy-utility trade-off curves based on data-centric metrics of utility, such as prediction error, and black-box threat
models. We propose that for interactive VR applications, it is essential to consider user-centric notions of utility and a variety of
threat models. We develop a methodology to evaluate real-time privacy mechanisms for interactive VR applications that incorporate
subjective user experience and task performance metrics. We evaluate selected privacy mechanisms using this methodology and
find that re-identification accuracy can be decreased to as low as 14% while maintaining a high usability score and reasonable task
performance. Finally, we elucidate three threat scenarios (black-box, black-box with exemplars, and white-box) and assess how well
the different privacy mechanisms hold up to these adversarial scenarios. This work advances the state of the art in VR privacy by

providing a methodology for end-to-end assessment of the risk of re-identification attacks and potential mitigating solutions.

Index Terms—Virtual reality, privacy, eye tracking.
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1 INTRODUCTION

Virtual reality (VR) technology has seen a rapid deployment of eye
tracking-enabled headsets over the past several years. Eye tracking has
many applications in VR, including as an interaction modality [9,19,23,
51,54,58], as an animation tool [53, 60, 65], for attention analysis [38,
76], for rendering optimizations [15,26,31,44,78,79,81], and for user
authentication [28,40,41,45,57].
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Recently, eye tracking movements alone have been found to function
as a biometric identifier [22,32]. Users can be uniquely identified in
small directories; in VR, users have been shown to be identifiable at up
to 85% accuracy [41]. This opens the risk of unwanted re-identification
in online VR usage. Eye gaze is a promising input device showcasing
very unique interactions and optimizations, but users should not have to
choose between these interactions or their own privacy. If eye tracking
data is shared with the proper safeguards, the risk of re-identification
attacks or unwanted data leakage for VR users is alleviated.

Some solutions have been proposed to protect users against re-
identification while still enabling eye tracking data utility. Existing
analyses of these mechanisms focus on data-centric utility, including
downstream processes such as area of interest analysis or gaze predic-
tion. However, analyses focusing on interactive VR need to consider
the user, who is likely to feel the effects when their eye tracking data
streams are perturbed to grant privacy. It is necessary to consider the
user first when designing privacy mechanisms that will be incorporated
into interactive VR experiences. Users may chafe at adopting privacy
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solutions that impact the interactive experience (which is the reason
for being in VR in the first place). Another limitation to current eye
tracking privacy methodologies is that they are framed as black-box
threat scenarios. In real world settings, however, malicious 3rd parties
have access to a number of strategies that aim to nullify the discussed
privacy efforts.

Our contributions: We first update current knowledge on re-
identification risk in interactive VR by using the state-of-the-art in
eye movement identity matching and developing an interactive VR ex-
perience to serve as an evaluation testbed, re-identifying N = 26 users at
an average accuracy of 67.3%. We measure the privacy capabilities of
multiple mechanisms, identifying the following as capable of protecting
privacy: Gaussian noise, spatial downsampling, and smoothing. Next,
we incorporate these mechanisms into an interactive VR experience
which uses eye tracking as the primary mode of control. We jointly
measure re-identification accuracy, task performance, and qualitative
subjective utility responses to firmly assess the privacy-utility trade-
off of these mechanisms. Our mechanisms decrease re-identification
rates as low as 14.1% while retaining high subjective usability and
reasonable task performance. Finally, we evaluate the mechanisms’
robustness against dedicated adversaries under three plausible threat
scenarios: black-box access, black-box access with exemplars, and
white-box access. Our provided methodology can serve as a guide for
future research of privacy mechanisms in interactive settings, measur-
ing along multiple axes. The evaluated privacy mechanisms can be
utilized as a basis for further innovation of novel privacy mechanisms.

Broader Impacts: This research contributes to the advancement
of eye tracking privacy mechanisms, specifically those that must be
applied to sample-level data in real-time. These mechanisms protect
users against detection, especially populations that could be vulnerable
if they are identified. Our work highlights a necessary shift in focus
for the virtual reality research community from data-driven notions of
utility to a user-centric design [48]. We additionally highlight that a
calculated re-identification rate is only the first step; in situations where
formal privacy guarantees can not be reached, we must consider real-
world threat scenarios in order to proactively protect against adversaries.
In addition, we make our collected datasets containing eye tracking data
in interactive VR scenes available at https://doi.org/10.5281/
zenodo. 10475455.

2 RELATED WORK

Eye tracking is becoming a prominent feature of VR experiences.
Research on eye tracked VR systems began more than two decades
ago [17,72]. In recent years, many commercial VR head-mounted
displays (HMDs) have released with embedded eye trackers (Magic
Leap 1 [3] in 2018, Vive Pro Eye [7] in 2019, HoloLens 2 [2] in 2019,
Vive Focus 3 [6] in 2021, Magic Leap 2 [4] in 2022, and Meta Quest
Pro [5] in 2023. The Apple Vision Pro [1] is set to release in early
2024). These hardware advancements have created a surge in interest
at the intersection between eye tracking and VR.

2.1 Applications of Eye tracking data in VR

Eye tracking enables many interactions in virtual scenes. These include
using gaze to directly interact with virtual objects, improving social
VR interactions, enabling foveated rendering optimizations, and gaze
analysis as a research tool.

Gaze-based interaction: Eye tracking movements allow users to
interact with virtual scenes, either on their own or paired with other
control modes [19,51]. Gaze direction can aim a cursor along with
button presses to select objects [23, 58], or gaze fixations can be used
for selection [9,23]. For example, in a VR application interactable
objects may glow when looked at, to indicate that they are dynamic.
Then by fixating while pressing a button, users can select these objects'.
The upcoming Apple Vision Pro will support gaze-controlled interfaces
paired with pinching gestures [1]. Gaze-based interactions in desktop

'https://www.uploadvr.com/polyarc-moss-psvr-2/

games are found to be more efficient and immersive than traditional
control modes [23, 54], which may persist into VRZ.

Rendering Optimization: Foveated rendering is a critical opti-
mization to increase resolution and frame rate of VR headsets [25,44].
Foveated rendering sparsely renders samples outside of the fovea region,
which is determined through eye tracking signals. Because peripheral
vision has lower acuity than foveal vision, the image could be per-
ceptually similar to traditional rendering but vastly less expensive to
compute [31,78,79]. Gaze prediction algorithms [15,26,81] will enable
proactive foveated rendering and occlusion optimizations.

Avatar Animation: Recorded gaze can be used to drive eye anima-
tions in VR. More realistic eye movements have been shown in improve
the quality of interaction with virtual avatars [21] and to increase per-
ceived presence and avatar realism [65]. Gaze can enable virtual avatars
to display trust across multiple expressions and contexts [53], and mul-
tiple personality traits can be discerned solely through characters’ eye
motions [60]. By incorporating real gaze behaviors to embodied avatars,
each avatar feels more unique and personable.

Gaze-based Analytics: Eye tracking data can be a rich tool for
data analysis [67]. Examples include area of interest (AOI) calcula-
tion [14, 55], document classification and analysis [12, 62], and at-
tention visualization [37]. Researchers from multiple fields use eye
movements to analyze topics such as social behavior [59, 83], visual
attention [38, 76], and simulated responses under stress [68].

2.2

Though users can be identified based on several cues, including head
movements, body movements [50] and gestures [49], our focus is
identification based on eye movements. Iris patterns are a well known
biometric identifier [52], and David-John et al. examined user re-
identification using iris images and presented solutions to mitigate this
risk [29,30]. Note that the Meta Quest Pro headsets used in this study
do not pass on eye images or raw data to the applications. In addition
to hand-crafted features derived from gaze streams [22, 32,42, 64],
there are now deep-learning methods to classify users based on short
windows of eye movement data [28,40,41,45,57]. Eye Know You Too
(EKYT) is currently the top performing eye movement identification
model, reporting accuracies as high as 91.38% on 1000Hz data [41].

Physical and behavioral attributes such as personality [10], age [82]
or gender [61] have been inferred from eye movements. Some research
leverages eye movements to aid in medical diagnoses such as Autism
or Alzheimer’s [71,74,75]. While there are appropriate use cases to
learn this information, users can not consciously hide the attributes
embedded within eye tracking streams. The opportunity here is develop
methods to block these features from being extracted without users’
consent by malicious entities who acquire eye tracking data.

The threat of eye movement re-identification is larger for small sets
of users [20]. This may be a particular concern for marginalized users
who face disproportionate harm when privacy is compromised [63].

Identification Risk of Recorded Eye Movements

2.3 Gaze Data Privacy

Privacy mechanisms are mainly applied in three ways to the eye track-
ing pipeline. Aggregate-level mechanisms protect full datasets with
operations that average across multiple users’ data [11, 13,37, 70].
Feature-level mechanisms protect users by converting raw gaze signals
to features and applying privacy [11-13,70]. Sample-level mechanisms
operate on the actual data streams, perturbing gaze direction at every
frame [14,35]. In VR, we are mainly interested in sample-level mecha-
nisms [66], which could be applied securely by the VR platform before
eye tracking data is made available to third party applications [14].
With privacy mechanisms in place, users can experience novel interac-
tions and optimizations only possible with sample-level gaze streams
without risking information leakage. See Table 1 for a collection of eye
tracking privacy work.

2A list of VR games which incorporate eye tracking: https:
//www.psfanatic.com/here-are-all-the-psvr2-games-that-use-
eye-tracking-in-cool-ways/
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Application | Data Domain Data Format | Mechanism ID Accuracy Data-centric Utility User-centric Utility
Sample-level (Kalmdo) Spatlal nO} se 28% to 6% Activity classification -
with adaptive sampling [13]
Sample-level Gaussian noise [14] 85% to 30% Dwell time RMSE -
. Sample-level Temporal downsampling [14] 85% to 79% Dwell time RMSE -
Constrained VR
onstrame Sample-level | Spatial downsampling [14] 85% t048% | Dwell time RMSE N
Gaze-based Sample-level Gaussian noise [14] 33% to 9% KL-divergence of saliency maps -
analytics Sample-level Temporal downsampling [14] 9% to 7% KL-divergence of saliency maps -
Sample-level Spatial downsampling [14] 47% to 29% KL-divergence of saliency maps -
Aggregate- lete-rence— and c‘hunk—based 100% to 28% Document cl.a581ﬁ.cat10n; )
. level Fourier perturbation [11] gender classification
Conventional - - - -
. Aggregate- Exponential mechanism Document classification;
eye tracking . 100% to ~10% R . -
level applied to features [70] gender classification
{Zﬁflregate— k-same-synth [13] 28% to 7.5% Activity classification -
Aggregate- Event-synth- .. . .
28% to 14.2 Activity classificat -
level plausible deniablity [13] 8% to % ctivity classtheation
Gaze-based Webcam' Sample-level (Kaleldo) Spatlal no'lse ~84% to ~8% scan path Slmll?:l%'lty; Game erTjoyment;
interaction eye tracking with adaptive sampling [35] latency trade-off task performance
Interactive VR Sample-level Ours 67.3% to 14.1% Area of interest retention Subjective usability;
task performance

Table 1: Collection of eye tracking privacy work that successfully protected against re-identification while retaining one or more measure(s) of utility.

Real-time privacy operations will be critical to ensure privacy during
online eye tracking interactions [9, 58] and to enable optimizations [44],
but have yet to be explored in real-time VR settings. The goal of
privatization is to protect sensitive attributes while keeping the data
usable with respect to a given task. Existing research primarily mea-
sures data-driven utility via post-processing tasks, such as gaze-based
analytics [11, 12,37] or rendering optimization [15]. However, the im-
pact of privacy mechanisms on the user’s performance and subjective
experience in interactive VR has not been considered prior to this work.

3 RE-IDENTIFICATION IN INTERACTIVE VR

We begin by establishing the risk of re-identification in interactive VR
and identifying viable privacy mechanisms. We collect a dataset of
eye tracking-enabled interactive VR tasks to serve as an evaluation
testbed. We then quantify the re-identification risk on our dataset using
the state of the art architecture and define and evaluate multiple privacy
mechanisms on our dataset.

On conventional eye trackers at high frequencies, users can be iden-
tified at very high accuracies (91.38% identification rate, 3.66% equal
error rate) [41]. In VR settings, it is less clear how reliably users can be
identified, due to less precise sensors and extraneous user movements.
An evaluation of 360° VR image and video datasets using a prior iden-
tification method [22] yielded identification rates ranging from 9%
to 85% [14]. The same analysis also evaluated an interactive dataset
where users viewed a scene of moving animals [26], yielding only a
3% identification rate. The level of interactivity and amount of user
movement in VR setups could negatively correlate with the potential
to be identified in VR [73]. In this paper, we present an up-to-date
evaluation of re-identification risk in interactive VR tasks using the
state-of-the-art identification model.

For this analysis, we distinguish eye tracking data sources into three
categories. Conventional eye tracking utilizes high quality static sensors
at 1000Hz or greater [24], and produces highly identifiable data [41].
Eye movements collected in VR can be separated into two categories:
Interactive VR is presented in a natural way. Users directly interact with
dynamic objects in the virtual scene, and different users experience
the scene at their own rate. This is reflective of consumer applications,
such as VR games or dynamic training scenarios. On the other hand,
constrained VR is representative of existing experimental setups. User
movements are limited, such as sitting in a chair [69] or placing the
head on a chinrest [39], and the tasks are standardized such that all
users experience the same stimuli at the same rates. In this section, we
answer the following research questions:

* How do current state of the art eye movement re-identification

algorithms perform in interactive VR?
¢ What real-time privacy mechanisms are effective at protecting
against re-identification in interactive VR tasks?

We present an updated evaluation of the risk of identification in
VR. Prior work only considered identification risk on constrained VR
setups using models trained on hand-crafted features [14]. We first
construct a dynamic VR game representative of interactive VR. We then
present an analysis of the current state of the art architecture trained
both on conventional eye tracking data and VR data, evaluating on
conventional eye tracking data (GazeBase [24]), constrained VR data
(GazeBaseVR [39]), and interactive VR data (our dataset). We then
discuss our results, giving insights to the current risk of identification in
consumer VR and the relationship between re-identification potential
and the amount of data made available. Using the same dataset, we then
evaluate multiple privacy mechanisms that can be applied to protect eye
tracking data in VR. We evaluate these mechanisms across increasing
intensities to derive well saturated privacy curves.

3.1

We describe the protocol for our collected dataset which serves as a
testbed to evaluate identification in interactive VR.

Participants: Survey participants were recruited under IRB ap-
proved protocol via several communication channels including word
of mouth and electronic mailing list advertisements (N = 26; 57.69%
male, 42.31% female). No monetary compensation was provided, but
some participants received extra credit for undergraduate courses. Eligi-
ble participants required normal or corrected-to-normal vision without
the use of eye glasses. The racial-ethnic distribution is 61.54% White,
19.23% Indian Asian, 15.38% Black or African American, 7.69% East-
ern Asian, and 7.69% Hispanic/Latino; 11.54% of participants report
two or more races. 34.62% of participants were age 18-20, 50% 21-29,
11.54% 30-39, and 3.85% 50-59. 88.46% of participants reported some
level of experience with VR, and 30.77% reported some experience
with using eye tracking as a control mode.

Procedure: Participants were instructed to act as employees in a
sandwich shop, and were tasked with assembling as many sandwiches
as possible in a 90 second time frame. Plates of stacked ingredients
were organized on the sandwich assembling counter on each side. In
the center of the counter, participants would assemble their sandwiches
on an empty plate (See Figure 1a). After a sandwich was completed, a
small animation would play and the plate would be cleared, allowing
participants to begin the next sandwich. A digital timer could be seen
which displayed the amount of time remaining.

Before beginning the main task, participants were encouraged to
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practice picking up and assembling ingredients. In the experiment,
participants did not use controllers; instead, grabbing was driven by
hand tracking technology to provide a more immersive experience [36].
Participants underwent 4 trials of the same task and were allowed time
to rest between trials.

As participants performed the tasks, gaze data was collected pas-
sively to evaluate the potential of re-identification attacks and to store
area of interest (AOI) data. Each ingredient plate, the assembly plate,
and the timer were all AOI regions with fully-covering bounding boxes
being used for AOI collision detection.

Validation: Data was collected using the Meta Quest Pro [5] (1920
x 1800 pixels per eye, 72Hz refresh rate). Before the experiment, each
participant underwent the headset’s eye tracking calibration procedure.
Participants gazed directly at spheres which appeared at random points
on the screen and gradually shrank until no longer visible. To validate
the accuracy of collected gaze data, participants performed an eye
tracking validation task. Participants faced a 3 x 3 checkerboard of
red targets situated 2 meters away spanning a 38.58° angle vertically
and horizontally. Participants were instructed to gaze directly at the
active target, which would become green. The active target cycled
uniformly; each target was active for 2 seconds total, with no downtime
until the next dot became active. We report a spatial accuracy error of
U =2.64°, o = 1.24. This protocol is comparable with recent analysis
of the Quest Pro [77].

3.2 Privacy Mechanisms

Collected gaze streams over a full VR session can be represented as a
time series of gaze angles in spherical coordinates 6, ¥ and their corre-
sponding time stamps #: X = {(60, Yo, t0), (61, ¥1,11),+, (6n, Y, tn) }-
The gaze angles are localized relative to the recorded position of the
headset, i.e. head pose, thus are constrained roughly to the human field
of view. As our privacy mechanisms are implemented in real-time, the
operations are applied directly on the frame which the gaze is sampled.

We implement three privacy protection mechanisms proposed by
David-John et al. [14]: additive Gaussian noise, temporal downsam-
pling, and spatial downsampling. We also introduce linearly weighted
average smoothing as a novel mechanism. These mechanisms are
designed to be feasible in real-time settings, suitable for streamed
sample-level eye tracking data in VR applications.

Gaussian Noise: Gaussian noise is sampled independently for the
0,y gaze angles for every frame. We use the standard deviation of the
noise sample o to control the privacy-utility trade-off provided by the
method, yielding the following per-frame operation: X, = (6, +x ~
N(0,0), Y +y~AN(0,0),t).

Temporal Downsampling: Temporal downsampling effectively
lowers the sampling rate of a stream of data by a factor K. Data entries
with indices where K is not a factor are removed from the data stream,
yielding a stream with N/K total entries after downsampling.

A real-time application may expect a gaze vector at all frames.
Thus, we preserve the original data format by simply copying the gaze
directions from the prior time step on frames that would traditionally
be removed. Given a downsampling factor K,

ifn%K=0
otherwise

O, Y, 1)
X, = (
" { (9;1_1-,1//,/1_175)

Spatial Downsampling: Spatial downsampling lowers the spatial
resolution of the gaze data, e.g., multiple nearby full-resolution points
would be mapped to a single down-sampled point, lowering the spatial
fidelity. To apply spatial downsampling to continuous gaze angles, we
first map the angles into a set of discrete points large enough to preserve
data quality, choosing 2160 points to cover a 180° field of view. We
achieve spatial downsampling by remapping the gaze angles into a
smaller domain equal to the reference domain divided by L. We map
the 0, y angles into the discrete domain of M = 2160/L, providing a

step size of § = %. This yields the following per-frame operation:

X, =(16/5]-6,|y/8]-5.1).
Smoothing: We introduce a smoothing operation as a novel privacy
protection mechanism. Smoothing streamed gaze data can remove

Algorithm 1 Linearly weighted average smoothing

B « size of window
window < Queue()
D+0
for i < 1to Bdo
window.add([0,0])
D« D+i
end for
while application is running do
X < current gaze vector
window.pop()
window.add(X)
X" =(0,0)
for i< 1toBdo
X'[0] + X'[0]+window[i][0] * i
X'[1] « X'[1]+windowl[i][1] x i
end for
X' «X'/D
end while

> Note that this Queue pops at the 07" index

> Initializing the window

identifiable features without displacing individual samples in a jarring
way as the above mechanisms can. Because of this, we hypothesize
that users will be accepting of smoothing; they can consciously correct
for the gaze stream’s behavior by fixating at an objects for a second
longer, for example.

To operate in real-time, we define the current gaze vector as a linearly
weighted average of B preceding samples. Preceding samples are stored
in a sliding window that is updated every frame. The smoothed value is
a weighted average of the B values in the window, with each sample
weighed by its index in the buffer.

! _ Xn—B +2(Xn+l—B) + 3(Xn+2—B) +- +B(Xn)
= L)

Larger window sizes equal a more intense smoothing operation,
which is more successful at removing identifying features, but intro-
duces a larger temporal delay between the input and output gaze vectors.
Implementation details are shown in Algorithm 1.

3.3 Evaluation Methodology

We evaluate the identification potential of EKYT models trained on
conventional eye tracking data (GazeBase [24]) and constrained VR
data (GazeBaseVR [39]). Both models are trained at 125Hz to best
match the frequency of our collected data. We follow the training and
testing methodology of Lohr et al.3 [41], and present the rank-1 identity
retrieval rate averaged across all tasks in the dataset.

To our knowledge, there is no existing interactive VR dataset at
the scale required to train the EKYT model effectively. Therefore,
we assess the effectiveness of training on constrained VR data and
evaluating on interactive VR data, versus using a model solely trained
on conventional eye tracking data.

To evaluate the identification potential on our collected data, we
define the following protocol. First, embeddings are generated from
the raw eye movement data. Each 90-second trial of the game is
separated into 5-second segments sliding over a 1-second interval.
These 5-second segments are linearly interpolated to a constant 125Hz
and processed by the EKYT model to create 512D feature embeddings
Emb, which are stored along with labels L for the individuals as records.

Records are separated into folds according to the trials of the game.
So, all records corresponding to the first trial exist in the first fold, and
so on. We then compare pair-wise each fold as a distinct query and
reference set. For each individual, all query records are compared with
the records in the embedding set. So, for N individuals and M records
per individuals, Query, = {Emb, 1,Emb, 5, ... Emby ;, } and reference

Ref = {Emby, : ¥n € N,Ym € M}. The record from the query is

Shttps://dataverse.tdl.org/dataset.xhtml?persistentId=
doi:10.18738/T8/61ZGZN
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Duration Test Data Train Data
Conventional | Constrained
Eye Tracking VR

Conventional Eye Tracking 66.09% 18.04%

5s Constrained VR 27.04% 33.87%

Interactive VR 22.44% 26.92%

Conventional Eye Tracking 81.42% 32.36%

10s Constrained VR 36.00 % 45.14%

Interactive VR 19.23% 22.76%

Conventional Eye Tracking 90.00% 54.58%

30s Constrained VR 48.57% 55.42%

Interactive VR 40.06% 41.35%

Conventional Eye Tracking 90.78% 58.57%

60 s Constrained VR 49.98% 55.09%

Interactive VR 56.73% 54.81%

90 s Interactive VR 68.27% 67.31%

Table 2: Average re-identification accuracy using the EKYT architec-
ture [41] trained and evaluated on different data types. All models are
trained at 125Hz.

matched to the closest reference embedding using cosine similarity as
a distance metric and the associated label is stored. For an individual n,
the predicted label L, j, is:

M
Lp,n = argmax <ZLZ>
L m

)

if (1 Q”eryn,m . Refn’,m’

where 7z = argmin —
gln:l ( HQ”eryn,mH |Refn’7m’|)>

n m

The returned labels are aggregated between each query embedding
Queryy ,, and all embeddings in the reference set to determine a final
prediction L, ,. If Ly, , equals the true label L,, the individual has been
successfully identified.

The reported metrics are an average over all individuals and all pair-
wise combinations of distinct trials, readable as an average identification
accuracy over the full dataset, or the likelihood of any individual being
successfully identified.

When evaluating privacy mechanisms, before processing the set of
trials which make up the query set, the mechanism is applied at a given
strength. The privatized results are then processed and compared to the
reference set. This represents the following threat scenario:

An adversary acquires a privatized data record without knowing
the identity, then queries against a dataset of records which have
known identities attached.

To provide an initial data-centric representation of utility, we mea-
sure AOI intersections before and after privatization. We calculate the
multi-class weighted precision and recall and overall F1 score which
can be interpreted as the mechanism’s ability to retain original AOI
behavior and after privatization.

3.4 Results

We organize our results according to the initial analysis of EKYT mod-
els on across conventional and VR data domains and the performance
of privacy mechanisms on our collected dataset.

3.4.1 Re-identification Capability of EKYT Models

Our findings are reported in Table 2. We report the accuracies between
the 2 training and 3 test setups. We additionally report results varying
the duration of each data record. These results are calculated using the
explained methodology but first limiting the amount of data to the first
N seconds per data record.

We find that the model trained on conventional eye tracking data
performs well when evaluated in the same domain, reaching identifica-
tion accuracies of 66.09% and 90.78% on 5 second and 60 second data
records, respectively. However, the conventional model performs much
less effectively in when applied to VR, achieving 27.04% @5s and
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Fig. 2: Identification accuracy (solid lines) and AOI retention (dotted
lines) of privacy mechanisms applied at various strengths. X axes have
been scaled to provide roughly the same privacy falloff so that utility can
be directly compared. Vertical lines indicate the chosen low and high
strengths of each mechanism.

49.98% @60s on constrained VR and 22.44% @5s and 56.73% @60s on
interactive VR data.

On the other hand, the constrained VR model favors VR data at
a lower duration (18.04% @5s for conventional, 33.87% @5s for con-
strained VR, 26.92% @5s for interactive VR) but performs roughly
equal on all domains at higher duration (58.57% @60s for conventional,
55.09% @60s for constrained VR, 54.81% @60s for interactive VR).

We find performance on interactive VR data to be roughly equal
between the two models. While the conventional eye tracking model is
trained on a larger dataset, the constrained VR model has closer spatial
precision and more similar setup to our data. For the rest of this paper,
we use the constrained VR EKYT model to compute identification
accuracies.

3.4.2 Privacy Mechanism Performance

We compute identification accuracies for each mechanism at multiple
strengths to define a privacy curve and measure against AOI F1 scores
to estimate the anticipated utility trade-off. We measure Gaussian
noise up to o = 20°, spatial downsampling up to L = 256, temporal
downsampling up to K = 30, and smoothing up to B = 300. The
privacy/ utility trade-off can be seen in Figure 2.

Of the previously proposed mechanisms, additive Gaussian noise and
spatial downsampling are effective at providing privacy. The proposed
smoothing mechanism also provides privacy, albeit at a higher trade-off
in AOI retention. We have not found temporal downsampling to be
an effective privacy mechanism. It is likely that by retaining N/K real
samples, the model can still associate real samples and distinguish users
until K reaches a point far beyond usable utility.

We introduced smoothing as a novel mechanism to protect user eye
movements. On our data, smoothing shows potential for privacy pro-
tection with similar levels of privacy attained as Gaussian noise and
spatial downsampling. However, AOI retention is lowest for smoothing
on the tested dataset, indicating that an application receiving smoothed
data would have less reliable accuracy per-sample than other mecha-
nisms. However, as we will see in Section 4, lower AOI retention is not
reflective of smoothing’s impact to user experience.

4 EVALUATING USER-CENTRIC UTILITY

The majority of privacy literature surrounding eye tracking movements
have considered privacy as a post-process operation. However, in
the context of interactive VR, privacy must be provided before being
passed to the application; the user subsequently sees the impacts of
privatization. It is important to consider the user and the trade-off in
user-centric utility, rather than solely relying on data-centric metrics.
In this section, we answer the following research question:
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Fig. 3: Collected metrics of the immersive VR game with gaze controls. For identification accuracy (first column), lower values indicate more privacy.
For all utility metrics, a higher score indicates higher utility. Each subplot illustrates no privacy mechanism compared against the low and high
strengths of each mechanism. Wilcoxon signed-rank test significance for utility metrics (p < 0.05) are denoted with color-coded asterisks. Vertical

lines indicate Standard Error of the Mean (SEM) =

=o/V/N.

* What is the impact to user-centric utility metrics when eye track-

ing privacy mechanisms are applied live in interactive VR?

We investigate user-centric utility through an interactive VR experi-
ence which uses eye gaze as the primary control mode. Before being
processed by the application, the eye movement data is processed by the
3 viable privacy mechanisms: Gaussian noise, spatial downsampling,
and smoothing.

4.1 Data Collection Methodology

We describe the protocol for our collected dataset in which privacy
mechanisms were applied in real-time, allowing us to measure user-
centric utility after privatization in interactive VR.

Participants: Survey participants were recruited under IRB ap-
proved protocol via several communication channels including word of
mouth and electronic mailing list advertisements (N = 18; 77.78% male,
22.22% female). Eligible participants required normal or corrected-
to-normal vision without the use of eye glasses. The racial-ethnic
distribution is 33.33% White, 22.22% Indian Asian, 11.11% Black
or African American, 16.67% Hispanic/Latino, 5.56% Eastern Asian,
5.56% Central Asian, and 5.56% Middle Eastern. 27.78% of partic-
ipants were age 18-20 and 66.67% 21-29. 88.89% of participants
reported some level of experience with VR, and 16.67% reported some
experience with using eye tracking as a control mode. The smoothing
mechanism was incorporated into the study after 10 participants had
undergone a version with only Gaussian noise and spatial downsam-
pling, so for all measures of smoothing, there are N = § participants
represented. This detail is addressed in our results.

Procedure: Participants played a first person shooter game where
they remained in a static position and defeated enemies that periodically
spawned and travelled towards the player. Two types of entities would
alternatively spawn in random positions and move towards the player.
Friendly entities served as visual distractors [33] and enemy entities
served as targets; participants were instructed to destroy targets before
they could reach the player. Entities would spawn randomly from 7
uniformly spaced points on a 90° arc spaced 10 meters from the player
position. Participants could see a translucent gaze cursor indicating
their current gaze direction. In trials with privacy mechanisms applied,
the cursor illustrated the effective gaze direction after privatization. See
Figure 1b for a participant’s typical view.

Each trial of the game lasted for ~30 seconds. 30 entities (15 targets
and 15 distractors) spawned, increasing in speed from 1 m/s to 5 m/s
over the duration of the trial. By increasing difficulty over the course

of the trial we can derive useful performance metrics from participants
regardless of skill level. For each experimental condition, participants
would undergo two trials of the game sequentially, followed by the
Post-Study System Usability System Usefulness subscale (PSSUQ
SYSUSE) [34].

We adopted a within-subjects design; all participants underwent
every condition. Privacy mechanism conditions were either no privacy
mechanism applied or {Gaussian noise, spatial downsampling, smooth-
ing} at {low, high} strength, presented in random order. The privacy
mechanism strengths chosen were derived from the re-identification
accuracies found in initial analysis the data presented in Section 3.4.2%.
For Gaussian noise, low o = 1° and high o = 3°. For spatial, low
L =48 and high L = 144. For smoothing, low B = 50 and high B = 150.

We implement two control modes for facilitating the selection of
targets. The first control mode is gaze-only; if the gaze vector from
the participant’s left eye was consistently within a target’s bounds for
500 ms, the target was destroyed. The other control mode is gaze-plus-
gesture; participants’ gaze vectors indicated the selection of targets. If,
for a given frame, the player gaze vector intersected with a target’s AOIL
and the participant performed a pinch gesture with their left hand, the
selected target was destroyed.

Participants underwent all privacy mechanism conditions in ran-
dom order with one control mode, then all privacy conditions again in
random order with the remaining control mode. To mitigate an order-
effects bias, the order of control mode was counterbalanced among
participants.

Validation: Data was collected using the Meta Quest Pro [5]. Be-
fore undergoing the experiment, each participant underwent the same
validation protocol as in Section 3.1, but this time underwent 3 trials
rather than 1 (spatial accuracy error u = 2.78, ¢ = 1.45). Participants
also performed gesture validation. Again facing a 3 x 3 board of targets,
participants were instructed to place a cursor at the center of the field
of view over the target and make a pinching gesture to confirm their
placement (error u = 2.94, 6 = 1.68). While gestures were not explic-
itly calibrated per participant, this served as a primer for participants so
that they were familiar with the headset’s gesture recognition before
undergoing the main tasks.

4Using preliminary results from Section 3.4.2, the parameters which initially
decreased re-identification accuracy below 40% and 20% were chosen for low
and high strengths.
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Fig. 4: Breakdown of PSSUQ SYSUSE scores [34] across conditions by individual question. Vertical lines indicate SEM.

4.2 Evaluation Methodology

We analyze identification accuracies alongside multiple notions of
user-centric utility to clearly measure whether the addition of privacy
mechanisms have any negative impact to users. These metrics are:

* % of targets destroyed: This is a simple measure of task perfor-
mance, conveying on average how many targets were successfully
destroyed before reaching the participant.

* Average distance of targets destroyed: Also measuring task
performance, this metric gives a better estimate of how easy/
challenging the task was for users.

Usability score: The average PSSUQ SYSUSE response, repre-
senting users’ perceived satisfaction with the given control mode
and privacy mechanism combination.

4.3 Results

We present our results across identification accuracy and the task-
specific notions of utility defined above. Note that when computing
identification accuracy, we pair-wise compare the first and second trial
of a given mechanism against those of no privacy mechanism to form
our query and reference setups. We test for statistical significance
using the Wilcoxon signed-rank test after collapsing the results of
all game trials to a single data point per participant and condition,
reporting values of p < 0.05 as significant. We compare against the
non-privatized trials when testing significance. Results are visualized
in Figure 3.

We first see a lower identification accuracy (4 = 48.61%) on this
dataset than the dataset of Section 3.1. This is to be expected, as session
lengths are ~30 seconds rather than 90. In this new experimental setup,
the high strength privacy mechanisms all provide a noticeable level of
privacy.

The percentage of targets destroyed and distance targets are de-
stroyed at function as measurements of task performance. For gaze-
only controls, we see a decrease in performance across all privacy
mechanisms. For the % of targets destroyed, Gaussian (z = —3.73)
and spatial (z = —3.01) are significantly lower than the baseline at high
strengths. For the average distance, Gaussian (z = —2.94) and spatial
(z = —3.72) are significant at low strength, and Gaussian (z = —3.72)
and spatial (z = —3.1) are significant at high strength. It is more difficult
for the application to measure continuous fixations with the perturbed
data, so performance decreases. Interestingly, we see less of an effect
when participants used gaze-plus-gesture controls. For % of targets de-
stroyed, spatial (z = —2.57) is significant at low strength, and Gaussian
(z = —2.98) and spatial (z = —3.06) are significant at high strength.
For average distance, spatial (z = —2.63) is significant at low strength

and Gaussian (z = —3.03) and spatial (z = —2.98) are significant at the
high strength. Generally, the average percentage of targets destroyed
remains high, though the average distance decreases. This indicates that
the task became slightly more difficult but remained trivial to complete.
Across both task performance metrics, we see Gaussian noise utility
decrease at a high rate compared to the other mechanisms.

Focusing on usability, we see noticeable differences in average per-
formance (illustrated in Figure 4). For gaze-only controls, Gaussian
(z = —2.82) and spatial (z = —2.74) are significant at low strength
and Gaussian (z = —3.64) and spatial (z = —2.59) are significant at
high strength. For gaze-plus-gesture controls, Gaussian (z = —3.59)
and spatial (z = —2.1) are significant only at high strength. Gaussian
noise again impacts utility at a higher rate than other mechanisms.
Interestingly, smoothing seems to slightly increase usability when ap-
plied at a low strength. There could be a low amount of noise present
in the eye tracker’s raw data stream which smoothing corrects. Yet,
there is not sufficient statistical evidence to prove this claim. For both
non-Gaussian mechanisms, overall usability remains high even after
applying the high strength variant of the mechanisms.

We conducted a three-way ANOVA on the participants which under-
went all privacy mechanisms (N = 8) to examine the effect of privacy
mechanism, strength, and type of control mode on the average PSSUQ
response. We find the main effects of mechanism and strength to
be significant (p < 0.01). There are significant interactions between
mechanism and strength (F (4,28) = 7.3979, p = 0.0003) and between
mechanism and control mode (F(2,14) = 4.2953, p = 0.0351). These
findings evidence that the different control modes could be affected by
the application of privacy mechanisms disproportionately.

Note that because smoothing was implemented midway through data
collection, statistical tests of smoothing consider N = 8 participants,
thus there is less statistical power than other conditions. However,
across utility metrics, smoothing appears comparable to spatial down-
sampling across all categories with comparable variance.

5 ANTICIPATED ADVERSARIAL THREATS

So far, we have presented an analysis of the identification potential
in interactive VR and presented privacy solutions which can mitigate
the risk of identification while retaining user-centric utility. However,
this is only the first step. We must also consider the robustness of
any privacy solution, as a dedicated adversary will make efforts to
counteract and nullify any privacy-preserving operation.

The eye tracking community has explored formal privacy guarantees
such as differential privacy (DP) [11,37,70], k-anonymity or plausible
deniability [12, 13]. However, as the privacy guarantee is tied to high



level features and applied to full collections of users, these methods
are not suitable for sample level eye tracking data being privatized
in real time. Kalgeido has developed a sample-level method with DP
guarantees [35], but has a high overhead (8ms), and 15-20ms overall
latency in VR can introduce sickness and nausea [8]. Thus, privacy
mechanisms proposed for live gaze-based interactions must be proac-
tively evaluated against adversarial threats. In this section, we answer
the following research question:

* Are the proposed privacy mechanisms robust against malicious
adversaries?

We address the robustness of our proposed mechanisms under three
realistic threat models in which adversaries have varying levels of
domain information. We then define and evaluate an example attack
under each threat model. For this analysis, we use the larger dataset
defined in Section 3.1 and implement privacy mechanisms at their high
strength.

5.1 Threat Models

We explore multiple threats to eye tracking re-identification that we ex-
pect to become plausible in the next decade as eye tracking technology
and VR become more mainstream. Our threat models are organized
according to the information or resources that the adversary has access
to; as an adversary becomes more informed of the privacy mechanism,
they become increasingly able to counteract the privacy efforts. We
conceptualize an example scenario and attack for each threat model.

In all cases, we make the assumption that the adversary’s goal is to
obtain the identity of an acquired query gaze stream. There may be
sensitive information connected to either the query gaze stream or exist-
ing dataset records, and a successful attack can link the user’s identity
or quasi-identifier(s) to the sensitive information. These sensitive at-
tributes could be concrete records, such as health information or group
membership, or could be implicit knowledge embedded within in the
actual gaze stream (such as personality [10], age [82] or gender [61]).

Black-box Access: In this scenario, an adversary has acquired a
privatized gaze stream but has no knowledge regarding the mechanism
applied. The adversary can attempt to query the privatized record
against non-privatized records sourced from elsewhere, such as public
datasets. Before querying, it is possible for the adversary to perform
a filtering operation in an attempt to render the privacy mechanism
ineffective [56].

A malicious VR gaming application (the adversary) records eye
tracking data that has been securely privatized by a user’s VR
hardware. By enabling the posting of high scores to social media,
the adversary learns the user’s identity. The adversary can then
query against released datasets with associated medical diagnosis
(autism, alzheimer’s, depression, etc.), attempting to verify the
user’s membership in the dataset. If successful, the adversary has
a platform to perform fraud or blackmail.

Black-box Access with Exemplars: Similar to the above scenario,
the adversary does not have knowledge about the implementation of
the applied mechanism. However, the adversary has access to a large
number of privatized records, possibly paired with a number of non-
privatized records. From here, the adversary could attempt to approxi-
mate the mechanism, or perform regression analysis to learn an inverse
function of the mechanism.

An adversary has a new VR headset which only releases privatized
gaze data streams and an older model which releases raw gaze
vectors. They recruit a number of users to perform the same tasks
while wearing both headsets. When they have a sufficient amount
of data, they model a function to invert the privacy mechanism,
increasing the chance of re-identification. From this point on, they
can apply that function to other records collected through the same
hardware.

White-box Access: In this scenario, the adversary knows the exact
implementation of the mechanism that has been applied. This could
be learned from data leaks of design documents or code [47], or by
guessing simpler mechanisms by observing a sufficient number of
samples and approximating parameters.

An insider of a VR hardware company posts the confidential pri-
vacy algorithm to an online forum. From there, any adversary
who obtains the algorithm can attempt to leverage that knowledge
against privatized data records obtained from the device.

5.2 Evaluation Methodology

We illustrate the risk of each defined threat scenario with toy example
attacks, simulating an adversary with the corresponding amount of
knowledge. These attacks are not optimized or exhaustive, but illustrate
the additional risks of data leakage that have not been widely considered
in eye movement privacy literature.

Wavelet Denoising: In the black-box threat scenario, an adversary
can perform an uninformed filtering attack to attempt to nullify the
effectiveness of the privacy mechanism. Time series perturbations
that are implemented on independent samples are prone to filtering
attacks, which can vastly reduce uncertainty if the pattern can be filtered
out [56].

We illustrate this by applying a wavelet denoising filter [16] over
the privatized data stream. The implementation’ assumes a level of
noise and estimates ¢ automatically, requiring no knowledge of the
mechanism at hand.

CNN Data Regression: In the black-box with exemplars scenario,
the adversary has acquired a number of data samples with and without
privatization. Data driven approaches could be implemented in an at-
tempt to approximate the privacy mechanism or to directly approximate
an inverse function.

We illustrate this concept with a simple convolutional neural network
(CNN) which trains to reconstruct input privatized data streams back
to the original data streams. Our implementation inputs and outputs 5
seconds of data. The model consists of 4 [1D Convolution, 1D Batch
normalization, Tanh] blocks. For each condition, we train a model
on 50% of data then evaluate on 50%, repeat the process with reverse
train-test splits, then report the averaged accuracy.

Mechanism Applied to Reference Data: In the white-box scenario,
the adversary knows the implementation details at hand. Obviously,
if the mechanism is deterministic it becomes possible to reconstruct
the original data by reversing the process. However, in stochastic
mechanisms a level of uncertainty remains.

We investigate the white-box scenario by leveraging the adversary’s
inside knowledge to apply the same operation to the reference set.
If the adversary does not know the query identity, but does know the
identities of non-privatized reference records, the adversary could apply
the privacy mechanism’s algorithm across the board for a more equal
comparison.

5.3 Results

We report the results of our toy examples for each threat scenario in
Table 3. We find that Gaussian noise is vulnerable to attacks across all
threat scenarios. Spatial downsampling and smoothing are not vulnera-
ble to the black-box scenario’s filtering attack, but all mechanisms are
vulnerable to a degree to each scenario in which adversaries have addi-
tional knowledge. However, these mechanisms significantly increase
the amount of knowledge and effort required to successfully re-identify
users. Presumably, a white-box with exemplars threat scenario would
have access to attacks that are even more successful.

In the black-box with exemplars scenario, both Gaussian and smooth-
ing identification accuracies after CNN regression are higher than the
original re-identification rate. It is possible that the CNN'’s inverse
approximation accentuated some important features from the original
data stream, potentially making the undone data streams slightly more
identifiable.

Smoothing is more vulnerable than spatial in the black-box with
exemplars scenario, being brought above the original identification
accuracy. This can be attributed to our smoothing implementation
being a fully deterministic process; as a result, the original signal
can be fully reconstructed if the first real data value and exact buffer

5https ://scikit-image.org/docs/stable/api/skimage.
restoration.html#skimage.restoration.denoise_wavelet
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Mechanism A D Black-box . Black-box ‘White-box
ccuracy with exemplars
None 67.31% / / /
Gaussian 14.1% 63.14% 68.39% 64.74%
Spatial 21.79% 21.79% 61.47% 58.33%
Smoothing 14.1% 14.1% 69.49% 55.13%

Table 3: Identification accuracies before and after performing attacks on
privatized data across three threat scenarios.

size is known. However, there are a number of small optimizations
which could be made to the smoothing process, such as non-uniformly
initializing the buffer or adding random variance to the impact of each
weight.

6 DiscussION

We find that there is some risk of re-identification from eye movements
collected in VR applications. On 125Hz data and using models trained
and/or evaluated on VR data, we report accuracies of up to 33.87% @5s,
58.57% @60s, and 68.27% @90s. Our upper measure of 90 seconds
approaches reliable identification; yet, commercial VR applications
such as games or virtual training scenarios can have much longer
sessions. Countermeasures should be designed with this in mind.

We find that across all user-centric metrics of utility, Gaussian noise
is lower than the other evaluated mechanisms. Conversely, smoothing
has the lowest data-centric AOI retention but highest user-centric utility.
This finding highlights that when developing privacy mechanisms for
interactive VR, it is critical to be user-centric. The findings from
Section 3.4.2 and prior work [14] both would suggest Gaussian noise
to be the best of evaluated mechanisms, but our analysis suggests that
Gaussian noise should be rejected from a user experience standpoint.
Spatial downsampling and smoothing are viable as privacy mechanisms
in interactive contexts, but more work should be done to increase
robustness against knowledgeable adversaries.

Broader Impacts: This work extends the discussion of privacy in
eye tracking and VR by placing a focus on the real-world implications
when applying privacy mechanisms to future applications. A large em-
phasis should be placed on user-centric notions of utility for gaze-based
interaction applications, rather than only evaluating data-centric utility.
If user experience is compromised, users will not be willing to engage
in VR experiences in the first place. When evaluating privacy mecha-
nisms, on top of the simplest case where re-identification accuracies are
compared before and after privatization, researchers should test against
more challenging threat models grounded in real world scenarios.

The evaluated privacy mechanisms could be applied to a larger set
of eye tracking applications, such as augmented reality (AR) settings
or to webcam eye trackers. We believe VR technology to be the most
pressing use case currently; eye gaze is a promising input device show-
casing unique interactions and enabling critical optimizations such as
foveated rendering, but users should not have to choose between these
features or their own privacy.

Limitations: Our user-centric evaluation relies on a single interac-
tive VR dataset. This dataset includes gaze-only selection and gaze-
with-gesture selection. This does not represent the full diversity of
gaze-based interactions in VR, each of which may have their own nu-
ances and thresholds for what is a reasonable level of utility traded
for privacy gained. For example, consider an eye tracking-enabled
competitive gaming context. Users in that context are unlikely to accept
any privacy mechanism that compromises performance.

The analysis in Section 5 highlights the importance of robustness;
however, our list of threat models are not exhaustive. There are a large
number of adversaries and attack methods yet to be considered.

Future Work: In Section 5.3, we mentioned some improvements
to smoothing that could introduce randomness. These improvements
could increase smoothing’s robustness while retaining a level of usabil-
ity. Additionally, composition of simple operations may yield better
mechanisms (passing spatial downsampled values into the smoothing
buffer, for example, could be explored).

A methodology for further improved mechanisms could be to intro-
duce temporal perturbations alongside sample-level perturbations. As
the operation needs to be possible in real-time, it is difficult to introduce
temporal inconsistencies without some form of delay. Potential avenues
to explore would be to leverage context of objects from the scene [18]
to modulate dwell times and durations between fixations, or to jointly
perform privatization and gaze prediction to offset any delays.

There is a strong correlation between the ability to be identified and
the amount of data available. An evaluation could be done on long data
sessions (say, 30+ minutes continuously) to further quantify this risk
at durations expected in VR applications. One mitigation would be
to apply a random mechanism from a selection of viable mechanisms
every | or 2 minutes, making the full session unreliable for queries.

It is currently unclear what potential impacts our mechanisms would
impose on other user-experience enhancing research focused on eye
tracking in VR. Future work could explore concepts such as spatial per-
ception [80], cybersickness [27,43], and multisensory perception [46]
and the level of impact that eye tracking privacy mechanisms would
have on these metrics.

7 CONCLUSION

We analyzed the re-identification risk associated with eye tracking-
enabled interactive VR applications and evaluated multiple privacy
mechanisms which could serve as potential solutions for mitigating
risk. In this work, a large emphasis was placed on user-centric notions
of utility. While prior work has focused on data-centric utility, there is a
necessary shift towards user-first design for applications where the user
directly interfaces with the eye tracking functionality. We also further
investigate real-world feasibility, modeling multiple threat scenarios
where adversaries can attempt to counteract privacy efforts.

This work shows that there is re-identification risk associated with
eye tracking in interactive VR, though the risk is less prominent than
prior analyses with conventional eye tracking systems. Of the mecha-
nisms evaluated, we found spatial down sampling and smoothing to be
viable for practical applications. These mechanisms provide privacy
while retaining high subjective usability and reasonable task perfor-
mance, yet each mechanism is vulnerable against highly informed
adversaries.

We hope that this work will aid further research regarding privacy
protection in interactive VR applications. By placing a focus on user-
centric utility and highlighting real world threat scenarios, we provide
a methodology for the analysis of privacy mechanisms that puts the
user first.
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APPENDIX
A DESCRIPTION OF PRIVACY MECHANISMS
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Fig. 5: Visualizations of the privacy mechanisms implemented in our
experiments.

Here we provide illustrations and short descriptions of the concepts
of our privacy mechanisms. See Figure 5 for illustrations. Gaussian
noise offsets each gaze data point independently at each frame by draw-
ing upon a Gaussian distribution. As the noise sampling is independent,
no temporal patterns can be discerned to identify individuals; however,
the mechanism is susceptible to filtering to recover the original signal.
Spatial downsampling maps the continuous range of gaze values to an
equirectangular grid of discrete points. The true gaze angle is mapped
to the closest discrete value at every frame. Temporal downsampling ef-
fectively decreases the sampling rate, copying the true value of a frame
into the next N frames. Smoothing applies a linear weighted moving
average to a range of gaze values. The weighting gives recent frames
a higher weight than less recent frames. The result appears to have a
slight delay to the user, but by fixating on an object, the smoothed gaze
value quickly reaches the intended point.

B RUNTIME ANALYSIS OF PRIVACY MECHANISMS

We provide a simple performance analysis of each of our mechanisms,
measuring the impact on device memory and on execution time. We
measure the impact on device memory by reporting the average mem-
ory across trials within each privacy mechanism. We report the total

12

Mechanism | System Memory (kb) | Runtime (FPS)
No Mechanism 311825 + 12443 70.94 £ 0.076
Gaussian Noise 318181 + 12490 70.95 4+ 0.083
Spatial Downsampling | 316606 + 13338 70.94 £ 0.076
Smoothing 322041 + 4818 70.94 £+ 0.080

Table 5: Performance analysis of privacy mechanisms on our prototype
Unity environment.

reserved memory by the application and the system memory reported by
Unity3D’s Memory Profiler®. To measure execution time, we report the
average frames per seconds of each trial for each privacy mechanism.

We see in Table 4 that these mechanisms have little to no impact to
performance. Runtime is not impacted, and system memory increases
only slightly on average. We do see a more noticeable increase in
memory usage with smoothing, as it is the only mechanism which
stores a continuous array of past gaze samples needed to compute the
current gaze sample. Overall, the mechanisms evaluated are quick to
compute and provide negligible performance overhead.

In our experiments, we process gaze samples provided by the Oculus
SDK and apply privacy mechanisms before utilizing the gaze samples
in the application. In a real-world deployment, these mechanisms could
be securely implemented on VR HMDs before passing gaze samples
to applications. Figure 1 illustrates the general eye tracking pipeline
for VR headsets. Along with other operations taken to model and
process gaze vectors, these privacy mechanisms can be applied on
the device securely, then privatized gaze vectors can be provided to
potentially untrustworthy applications opened by the VR user. With
current mechanisms’ low overhead, these could be implemented on
headset software with little performance impact. Hardware-accelerated
implementations could also be explored, and may be more necessary
as privacy mechanisms become more complex.

C ADDITIONAL DATA COLLECTION DETAILS

The dataset collected for this publication is available at https://
doi.org/10.5281/zenodo.10475455. In this section we discuss
the implementation of our data logging process and the data collected.

The experiments are implemented in Unity3D using the Oculus SDK
to interface with the Meta Quest Pro headsets used for data collection.
At every frame, we query the SDK for gaze samples, process these gaze
samples using the current privacy mechanism, then pass the privatized
gaze sample for use by the rest of the application.

We log data at every visual frame. Because the eye gaze provided
by the Oculus SDK is only available at every frame’s update, gaze data
is collected at the application’s frame rate. Data was logged locally to
the VR headset’s internal storage, then moved after each participant’s
session.

In headset_data.csv we log frames, timestamps, active trial con-
ditions, and the position and rotations of the headset, hands, and eyes
at every frame. We also log the non-privatized rotations of the eyes
in Experiment 2 for possible comparison. event_data.csv contains
experiment-relevant events, such as area of interest intersection info,
the start and end of trial periods, and the completion of tasks, such
as completing a sandwich in Experiment 1 and destroying an enemy
in Experiment 2. survey_data.csv reports user responses to the
PSSUQ questionnaire after each condition. The dataset also included
processed files, which contain streamlined information on conditions,
frame, and timestamp and the localized rotations of the eyes. This
processed information is trimmed to only contain frames in which the
experiment was active.

In Experiment 1, each participant underwent 4 identical trials of
90 seconds, yielding 9360 seconds of active trial data for N = 26
participants. In Experiment 2, each participant underwent 2 trials of
30 seconds for each privacy mechanism, strength, and control mode
pairing, yielding 28 trials for participants which underwent smoothing

6h‘ctps ://docs.unity3d.com/Manual /ProfilerMemory.html
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and 20 for those who did not, yielding 13,200 seconds of active trial
data for N = 18 participants.
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