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Abstract. Financial networks help firms manage risk but also enable financial shocks 
to spread. Despite their importance, existing models of financial networks have several 
limitations. Prior works often consider a static network with a simple structure (e.g., a 
ring) or a model that assumes conditional independence between edges. We propose a 
new model where the network emerges from interactions between heterogeneous 
utility-maximizing firms. Edges correspond to contract agreements between pairs of 
firms, with the contract size being the edge weight. We show that, almost always, there 
is a unique “stable network.” All edge weights in this stable network depend on all 
firms’ beliefs. Furthermore, firms can find the stable network via iterative pairwise 
negotiations. When beliefs change, the stable network changes. We show that under 
realistic settings, a regulator cannot pin down the changed beliefs that caused the net
work changes. Also, each firm can use its view of the network to inform its beliefs. For 
instance, it can detect outlier firms whose beliefs deviate from their peers. However, it 
cannot identify the deviant belief: Increased risk-seeking is indistinguishable from 
increased expected profits. Seemingly minor news may settle the dilemma, triggering 
significant changes in the network.
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1. Introduction
The financial crisis of 2008 showed the need for mitigat
ing systemic risks in the financial system. There has 
been much recent work on categorizing such risks 
(Elliott et al. 2014; Glasserman and Young 2015, 2016; 
Birge 2021; Jackson and Pernoud 2021). Although the 
causes of systemic risk are varied, they often share one 
feature. This shared feature is the network of intercon
nections between firms via which problems at one firm 
spread to others. One example is the weighted directed 
network of debt between firms. If one firm defaults on 
its debt, its creditors suffer losses. Some creditors may 
be forced into default, triggering a default cascade 
(Eisenberg and Noe 2001). Another example is the 
implicit network between firms holding similar assets. 
Sales by one firm can lead to mark-to-market valuation 
losses at other firms. These can snowball into fire sales 
(Caballero and Simsek 2013, Cont and Minca 2016, 
Feinstein 2020, Feinstein and Søjmark 2021).

The structure of interfirm networks plays a vital role 
in the financial system. Small changes in network struc
ture can lead to jumps in credit spreads in over-the- 
counter (OTC) markets (Eisfeldt et al. 2021). Network 
density, diversification, and interfirm cross-holdings 
can affect how robust the networks are to shocks and 
how such shocks propagate (Elliott et al. 2014, Acemo
glu et al. 2015). The network structure also affects the 
design of regulatory interventions (Amini et al. 2015, 
Galeotti et al. 2020, Calafiore et al. 2022, Papachristou 
and Kleinberg 2022).

Despite its importance, many prior works use simplis
tic descriptions of the network structure. For instance, 
they often assume that the network is fixed and observ
able. However, only regulators may have access to the 
entire network. Furthermore, shocks or regulatory inter
ventions can change the network. Others assume that 
the network belongs to a general class. For instance, 
Caballero and Simsek (2013) assume a ring network 
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between banks. Amini et al. (2015) derive tractable opti
mal interventions for core-periphery networks. How
ever, financial networks can exhibit complex structure 
(Peltonen et al. 2014, Eisfeldt et al. 2021). Leverage levels, 
size heterogeneity, and other factors can affect the net
work topology (Glasserman and Young 2016). Hence, 
there is a need for models to help reason about financial 
networks.

In this paper, we design a model for a weighted net
work of contracts between agents, such as firms, coun
tries, or individuals. The contracts can be arbitrary, and 
the edge weights denote contract sizes. In designing 
the model, we have two main desiderata. First, the 
model must account for heterogeneity between firms. 
This follows from empirical observations that differ
ences in dealer characteristics lead to different trade 
risk exposures in OTC markets (Eisfeldt et al. 2021). 
Second, each firm seeks to maximize its utility and 
selects its contract sizes accordingly. In effect, each firm 
tries to optimize its portfolio of contracts (Markowitz 
1952). The model must reflect this behavior. From this 
starting point, we ask the following questions: 

1. How does a network emerge from interactions 
between heterogeneous utility-maximizing firms?

2. How does the network respond to regulatory 
interventions?

3. How can the network structure inform the beliefs 
that firms hold about each other?

Next, we review the relevant literature.

1.1. Imputing Financial Networks
We often have only partial information about the 
structure of a financial network. For example, we may 
know the total liability of each bank in a network. 
From this, we want to reconstruct all the interbank lia
bilities (Squartini et al. 2018). One approach is to pick 
the network that minimizes the Kullback-Leibler 
divergence from a given input matrix (Upper and 
Worms 2004). Mastromatteo et al. (2012) use message- 
passing algorithms, whereas Gandy and Veraart (2017) 
use a Bayesian approach. However, such random 
graph models often do not reflect the sparsity and 
power-law degree distributions of financial networks 
(Upper 2011). Furthermore, these models do not 
account for the utility-maximizing behavior of firms.

1.2. General-Purpose Network Models
The simplest and most well-explored network model is 
the random graph model (Erdös and Rényi 1959, Gil
bert 1959). Here, every pair of nodes is linked indepen
dently with probability p. Generalizations of this model 
allow for different degree distributions and edge direc
tionality (Aiello et al. 2000). Exponential random graph 
models remove the need for independence, but param
eter estimation is costly (Frank and Strauss 1986, Was
serman and Pattison 1996, Hunter and Handcock 2006, 

Caimo and Friel 2011). Several models add node- 
specific latent variables to model the heterogeneity of 
nodes. For example, in the stochastic blockmodel and 
its variants, nodes are members of various latent com
munities. The community affiliations of two nodes 
determine their probability of linkage (Holland et al. 
1983, Chakrabarti et al. 2004, Airoldi et al. 2008, Mao 
et al. 2018). Instead of latent communities, Hoff et al. 
(2002) assign a latent location to each node. Here, the 
probability of an edge depends on the distance between 
their locations.

All the latent variable models assume conditional 
independence of edges given the latent variables. How
ever, in financial networks, contracts between firms are 
not independent. Two firms will sign a contract only if 
the marginal benefit of the new contract is higher than 
the cost. This cost/benefit tradeoff depends on all other 
contracts signed with other firms. Unlike our model, 
existing general-purpose models do not account for 
such utility-maximization behavior.

1.3. Network Games
Here, the payoffs of nodes are dependent on the actions 
of their neighbors (Tardos 2004). One well-studied class 
of network games is linear-quadratic games, with linear 
dynamics and quadratic payoff functions. Prior work 
has explored the stability of Nash equilibria (Guo and 
De Persis 2021) and algorithms to learn the agents’ pay
off functions (Leng et al. 2020). However, our model 
does not yield a linear-quadratic game except in excep
tional cases. Instead, our process involves nonlinear 
rational functions of the beliefs of firms. Thus, our set
ting differs from linear-quadratic games. Recently, net
work games have been extended to settings where the 
number of players tends to infinity (Carmona et al. 
2022). However, we only consider finite networks.

1.4. Games to Form Networks
Several works study the stability of networks. In a 
pairwise-stable network, no pair of agents want to 
form or sever edges. This may be achieved via side- 
payments between agents, which our model also uses 
(Jackson and Wolinsky 2003). Pairwise stability has 
been extended to strong stability for networks (Jackson 
and Van den Nouweland 2005), and to weighted net
works with edge weights in [0, 1] (Bich and Morhaim 
2020, Bich and Teteryatnikova 2023). We introduce an 
analogous notion called higher-order Nash stability 
against any deviating coalition. However, the weights 
in our network are not bounded in [0, 1] and can be 
negative. Furthermore, our edge weights denote con
tract size, requiring agreement from both parties. In 
contrast, prior works typically interpret edge weights 
as the engagement level in an ongoing interaction.

Sadler and Golub (2021) study a network game with 
endogenous network formation, whose stable points 
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are both pairwise stable and Nash equilibria. We show 
similar results for our model. However, they consider 
unweighted networks and focus on the case of separa
ble games. In our setting, this corresponds to the case 
where all firms are uncorrelated. However, in financial 
networks, correlations are widespread and help firms 
diversify their contracts.

Several authors study the effect of exogenous inputs 
on production networks (Herskovic 2018, Elliott et al. 
2022). Acemoglu and Azar (2020) also model endoge
nous network formation but differ from our approach. 
Prices in their model equal the minimum unit cost of 
production. For us, prices are determined by pairwise 
negotiations between firms. Also, each firm in their 
model only considers a discrete set of choices among 
possible suppliers. In our model, firms can choose both 
their counterparties and the contract sizes.

1.5. Risk-Sharing and Exchange Economies
The pricing of risk is a well-studied problem (Arrow 
and Debreu 1954; Bühlmann 1980, 1984; Tsanakas and 
Christofides 2006; Banerjee and Feinstein 2022). Most 
models typically price risk via a global market. How
ever, in our model, all contracts are pairwise, and the 
contract terms and payments between a buyer and 
seller are bespoke. There is no global contract or global 
market price. Because contracts are pairwise, each firm 
under our model must consider counterparty risks and 
the correlations between them. A firm i may make large 
payments and accept a negative reward for a contract 
with firm j to diversify the risk from contracts with 
other firms. Finally, in our model, agents can hedge 
their risk by betting against one another. In contrast, 
Bühlmann equilibria always result in comonotonic 
endowments, which firms cannot use as hedges for 
each other (Yaari 1987, Banerjee and Feinstein 2022).

1.6. Network Valuation Adjustment
Some recent works price the risk due to exposure to the 
entire financial network (Banerjee and Feinstein 2022, 
Feinstein and Søjmark 2022). The network is usually 
treated as exogenous and fully known to all firms. In 
contrast, we consider endogenous network formation 
resulting from pairwise interactions between firms. 
The network valuation algorithm of Barucca et al. 
(2020) works with incomplete information but is not 
designed for network formation, and it needs firms to 
share information not required to form their contracts.

1.7. Properties of Equilibria
Another line of work considers the efficiency or social 
welfare of equilibria (Jackson and Pernoud 2021, Elliott 
and Golub 2022). Galeotti et al. (2020) show that 
welfare-maximizing interventions rely mainly on the 
top or bottom eigenvectors of the network. Elliott et al. 
(2022) show an efficiency-stability tradeoff for their 

model of supply network formation. Like prior work, 
we show that stable equilibria exist and are nondomi
nated. However, our emphasis is on potentially valu
able insights for regulators and firms. For instance, we 
show a negative result about the ability of regulators 
to infer the causes of changes to the network structure. 
The linkage between firms’ utilities and their beliefs 
and its effect on stability is not considered in prior 
work.

1.8. Our Contributions
We develop a new network model of contracts between 
heterogeneous agents, such as firms, countries, or indi
viduals. Each agent aims to maximize a mean-variance 
utility parametrized by its beliefs. But for two agents to 
sign a contract, both must agree to the contract size. For 
a stable network, all agents must agree to all their con
tracts. We show that such constraints are solvable by 
allowing agents to pay each other. By choosing prices 
appropriately, every agent maximizes its utility in a sta
ble network.

1.8.1. Characterization of Stable Networks (Section 2). We 
show that unique stable networks exist for almost all 
choices of agents’ beliefs. These networks are robust 
against actions by cartels, a condition that we call 
higher-order Nash stability. The agents can also con
verge to the stable network via iterative pairwise nego
tiations. The convergence is exponential in the number 
of iterations. Hence, the stable network can be found 
quickly. Finally, we show how to infer the agents’ 
beliefs by observing network snapshots over time, 
under certain conditions.

1.8.2. Limits of Regulation (Section 3). A financial reg
ulator can observe the entire network but not the 
agents’ beliefs. Suppose firm i changes its beliefs about 
firm j. Then the contract size between i and j will 
change. Indirectly, other contracts will change too. We 
show empirically that in realistic settings, the indirect 
effects can be as significant as the direct effects. In such 
cases, the regulator cannot infer the underlying cause 
of changes in the network. Similarly, suppose the regu
lator intervenes with one firm, affecting its beliefs. The 
resulting network changes need not be localized to that 
firm’s neighborhood in the network. Thus, targeted 
interventions can have strong ripple effects. Broad- 
based interventions aimed at increasing stability can 
also have adverse effects. For instance, increasing mar
gin requirements on contracts may even increase some 
contract sizes.

1.8.3. Outlier Detection by Firms (Section 4). A firm i 
can observe its contracts with counterparties but not 
the entire network. Suppose another firm j (say, a real 
estate firm) has beliefs that are very different from its 
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peers. Then, we prove that under certain conditions, j’s 
contract size with i is also an outlier compared with 
other real-estate firms. Therefore, firm i can use the net
work to detect outliers and update its beliefs. How
ever, suppose all real estate firms change their beliefs. 
This changes all their contract sizes without creating 
outliers. We show that i cannot determine the cause of 
this change. For example, firm i would observe the 
same change whether all real estate firms had become 
more risk seeking or profitable. However, firm i may 
want to increase its exposure if they are more profit
able but reduce exposure if they are more risk seeking. 
Because the data cannot identify the proper action, 
firm i remains uncertain. Exogenous, seemingly insig
nificant information may persuade firm i one way or 
another. Thus, minor news may trigger drastic changes 
in the network.

1.9. Notation
We use lowercase letters, with or without subscripts, 
to denote scalars (e.g., c,γi). Lowercase bold letters 
denote vectors (mi, w), and uppercase letters denote 
matrices (W, P,Σi). We use mi;j to refer to the jth com
ponent of the vector mi, and Σi;jk for the (j, k) cell of 
matrix Σi. We use vT to denote the transpose of a vec
tor v, and ‖ · ‖p to denote the ℓp norm of a vector or 
matrix. We say A ≽ 0 if A is positive semidefinite, 
A ≻ 0 if it is positive definite, and A ≽ B if A�B ≽ 0. 
The vectors e1, : : : , en denote the standard basis in Rn, 
and In is the n × n identity matrix. If A ∈ Rm×n, B ∈ Rp×q 

then A⊗B ∈ Rmp×nq denotes their tensor product: 
(A⊗B)ij, kℓ � AikBjℓ. For an appropriate matrix M, tr(M)
calculates its trace, vec(M) vectorizes M by stacking its 
columns into a single vector, and uvec(M) vectorizes 
the upper-triangular off-diagonal entries of M. For an 
integer r ≥ 1, we use [r] to denote the set of integers 
[r] :� {1, 2, : : : , r}.

2. Proposed Model
We consider a weighted network W ∈ Rn×n between n 
agents (such as firms, countries, or individuals). The 
element Wij represents the size of a contract between 
agents i and j. We make no assumptions about the con
tent of the contract. For instance, the contract could be 
an interest rate swap, a stock swap, or an insurance 
contract. We assume that each pair of firms can form a 
contract of a standard type and negotiate only on the 
contract size and price (discussed below). Because con
tracts need mutual agreement, Wij �Wji. We take Wii to 
represent i’s investment in itself. A negative contract 
(Wij �Wji < 0) is a valid contract that reverses the con
tent of a positive contract. For example, if a positive 
contract is a derivative trade between two firms, the 
negative contract swaps the roles of the two firms.

Let wi denote the ith column of W (i.e., wi;j �Wji 
for all j). Each agent i would prefer to set its contract 
sizes wi to maximize its utility. However, other agents 
will typically have different preferences. Therefore, to 
achieve an agreement about the contract size Wij, 
agents i and j can agree on a price for the contract. For 
example, i may agree to pay j an amount Pji ·Wji in 
cash at the beginning of the contract. Because pay
ments are zero-sum and Wji � Wij, we must have 
Pji ��Pij. We do not model how firms raise funds to 
pay the price.

Each contract yields a stochastic payout, and agents 
have beliefs about these payouts. We represent agent 
i’s beliefs by a vector mi of expected returns and a 
covariance matrix Σi ≻ 0. Thus, Σi represents firm i’s 
perceived risk of trading with other firms, and in
cludes both contract-specific risk and counterparty 
risk. We do not assume that the contracts are zero-sum 
or that the beliefs are correct, even approximately. 
Thus, the overall expected return from all contracts of 
i is wT

i (mi �Pei), and the variance of the overall return 
is wT

i Σiwi. We assume that each agent has a mean- 
variance utility (Markowitz 1952):

agent i’s utility

gi(W, P) :�wT
i (mi �Pei)� γi ·w

T
i Σiwi, (1) 

where γi > 0 is a risk-aversion parameter. In practice, 
we expect the set {γi}i∈[n] to be not too heterogeneous 
(Metrick 1995, Kimball et al. 2008, Ang 2014, Paravi
sini et al. 2017). Equation (1) ignores costs for contract 
formation; we will consider these in Section 3.1. Also, 
we assume that Pji does not change the perceived 
risk.

Example 1 (Insurance Contract). Suppose firm i buys 
fire insurance from insurer j. Then, mi;j is the buyer’s 
expected insurance payout minus the insurance pre
mium. The expected payout depends on the probabil
ity of a fire, for which the buyer and insurer may have 
different estimates. Also, the insurance contract is 
negatively correlated with the buyer’s other contracts 
(reflected in Σi). This is because the buyer gains a pay
out from the insurer in case of a fire but incurs losses 
on other contracts. Hence, the buyer i may be willing 
to accept a contract with negative expected reward, 
and even pay a higher-than-usual premium Pji per 
contract.

Example 2 (Interest Rate Swap Contract). Suppose firm 
i makes fixed-rate payments to firm j, and receives 
floating-rate payments in return. Then, mi;j is the 
expected net present value of these payments for i 
from a standard unit-sized contract. This value de
pends on i’s forecast of future interest rates and need 
for floating-rate income, for example, to match future 
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liabilities. Hence, it may be quite different from mj;i. 
Also, the firms agree to a price Pij ��Pji per contract. 
If Pij > 0, then firm j must pay firm i the price Pij ·Wij; 
if Pij < 0, then firm i makes the payment.

Example 3 (Loan Contract). Suppose borrower i takes a 
loan of size Wij from lender j. Then, mj;i ·Wij represents 
the lender j’s expected value for this loan. The ex
pected value depends on the repayment schedule, the 
collateral, j’s estimate of the probability of default, the 
recovery rate in case of default, etc. The borrower’s 
expected value mi;j ·Wij depends on the planned use of 
this loan. For example, if the borrower wants the loan 
to purchase equipment, mi;j is the net present value of 
expected extra profits due to that equipment. Hence, 
mi;j may not be a function of mj;i. Now, the borrower 
and lender must settle on a contract price to reach an 
agreement on the contract size. If the standard loan 
contract requires the lender to give cash to the bor
rower at the beginning of the contract, this loan 
amount can be adjusted for the price. Otherwise, if the 
borrower firm needs to pay the price, it must arrange a 
separate bridge loan.

The model above allows contracts between all pairs 
of agents. However, some edges may be prohibited 
due to logistical or legal reasons. For each agent i, let 
Ji ⊆ [n] denote the ordered set of agents with whom i 
can form an edge. Therefore, if k ∉ Ji (and hence i ∉ Jk), 
we have Wik �Wki � Pik � Pki � 0. Similarly, if i ∉ Ji, 
then self-loops are prohibited (Wii � Pii � 0). We will 
encode these constraints in the binary matrix Ψi ∈

R | Ji | ×n where Ψi;jk � 1 if k is the jth element of Ji, and 
Ψi;jk � 0 otherwise. In other words, Ψi is obtained from 
In by deleting the rows corresponding to the prohibited 
counterparties of i. Thus, for any v ∈ Rn, Ψiv selects the 
elements of v corresponding to Ji. If all edges are 
allowed, we have Ψi � In for all i.

Definition 1 (Network Setting). A network setting (mi,γi, 
Σi,Ψi)i∈[n] captures the beliefs and constraints of n 
agents. When there are no constraints (i.e., all edges 
are allowed), we drop the Ψi � In terms to simplify 
the exposition. Finally, we will use M ∈ Rn×n to denote 
a matrix whose ith column is mi, and Γ to denote a 
diagonal matrix with Γii � γi.

2.1. Characterizing Stable Points
In the above model, every agent tries to optimize its 
own utility (Equation (1)). We now characterize the 
conditions under which selfish utility-maximization 
leads to a stable network.

Definition 2 (Feasibility). A tuple (W, P) is feasible if 
W �WT, P ��PT, and W and P obey the constraints 
encoded in (Ψi)i∈[n].

Definition 3 (Stable Point). A feasible (W, P) is stable if 
each agent achieves its maximum possible utility given 

prices P:

gi(W, P) �
max

feasible(W′, P) under {Ψi}
gi(W′, P) ∀i ∈ [n]:

Example 4. Suppose we only have two firms with the 
following setting:

mean beliefs M �
0 3
1 4

" #

covariance Σ1 � Σ2 �
1 0
0 2

" #

risk aversion γ1 � γ2 � 1:

Therefore, both firms perceive a benefit from trading 
(M12 > 0, M21 > 0). If trading is disallowed, the optimum 
W is diagonal with W11 � 0 and W22 � 1 (and P is the 
zero matrix). The corresponding utilities are zero for 
firm 1 and 2 for firm 2. Suppose we allow trading but 
do not allow pricing (Figure 1(a)). Then, the two firms 
can each improve their utility by trading, but achieve 
their optimum utilities at different contract sizes. Hence, 
they may be unable to agree to a contract. In Figure 1(b), 
firm 2 pays firm 1 a specially chosen price of 5/3 per 
unit contract. At this price, both firms achieve their opti
mum utilities at the same contract size W12 �W21 � 2=3. 
Hence, they can agree to a contract. By paying the price, 
firm 2 shares some of its utility with firm 1 to achieve 
agreement on the contract. This choice of W and P is a 
stable point (Figure 1(c)). The following results show 
that this is the only stable point. w

Define Qi �Ψ
T
i (2γiΨiΣiΨ

T
i )
�1Ψi. When all edges are 

allowed, Ψi � In and Qi � (2γiΣi)
�1. Let F � {(i, j) : 1 ≤

i < j ≤ n,Ψiej ≠ 0} denote the ordered pairs i < j where 
Pij is allowed to be nonzero. Note that |F | ≤ n(n� 1)=2. 
For any n × n matrix X, let uvec(X)F ∈ R |F | be a vector 
whose entries are the ordered set {Xij | (i, j) ∈ F}.

Theorem 1 (Existence and Uniqueness of Stable Point). 
Define n × n matrices A, B(i, j), and C(i, j) as follows:

Aij � eT
i QjMej, B(i, j) � eieT

j Qi,

C(i, j) � (B(i, j)�B(j, i))� (B(i, j) �B(j, i))
T
:

Let ZF be the |F | × |F | matrix whose rows are the ordered 
sets {uvec(C(i, j))F | (i, j) ∈ F}. Then, we have the following: 

1. A stable point (W, P) under {Ψi} exists if and only if 
uvec(A�AT)F lies in the column space of ZF.

2. If a stable point (W, P) exists, then ZFuvec(P)F �
uvec(A�AT)F.

3. A unique stable point always exists if ZF is full rank.

Theorem 1 is proved in the appendix, Section A.1. 
When the Σi are random variables, we give a simple 
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sufficient condition that a stable point exists and is 
unique with probability 1 (see Sections A.1 and A.2 in 
the supplemental material). Also, the appendix, Section 
8.2, provides closed-form formulas for the stable point 
when all agents have the same covariance (Σi � Σ for 
all i ∈ [n]). This occurs when the risk of a contract is pri
marily counterparty risk (so Σi;jk depends on j and k, 
not i), and there is reliable public data on such risks 
(say, via credit rating agencies).

Next, we consider some properties of the stable point. 
For two feasible tuples (W1, P1) and (W2, P2), let (W2, P2) 
dominate (W1, P1) if for all i ∈ [n], gi(W1, P1) ≤ gi(W2, P2), 
with at least one inequality being strict.

Theorem 2 (Stable Points Cannot Be Dominated). Suppose 
a stable point (W, P) exists. Then, there is no feasible (W′, P′)
that dominates (W, P).

The proofs of Theorem 2 and all subsequent claims 
are provided in the supplemental material.

The stable point obeys a strong form of robustness 
that we call higher-order Nash stability. This strengthens 
the notions of pairwise stability (Hellmann 2013) and 
pairwise Nash (Calvó-Armengol and Ilkiliç 2009, Sadler 
and Golub 2021) by allowing for agent coalitions, 
instead of just considering pairs of agents. It is also 
closely related to the concept of strong Nash equilibrium, 
which strengthens Nash equilibrium by requiring that 
no subset of agents can deviate at equilibrium without 
at least one agent being worse off (Mazalov and Chir
kova 2019).

Definition 4 (Agent Action). At a given feasible point (W, 
P), an “action” by agent i is the ordered set (w′i, j, p′i, j)j∈Ji

, 
where Ji ⊆ [n] is the set of permissible edges for agent i. 
The action represents a set of proposed changes to i’s 
existing contracts. Each agent j ∈ Ji responds as follows: 

1. If the new (w′ij, p′ij) raises j’s utility, then j agrees to 
the revised contract and price.

2. Otherwise, i must either keep the existing contract 
or cancel it (wij � pij � 0). We assume that i cancels the 
contract if and only if this strictly increases i’s utility.

We call the shifted (W′, P′) the resulting network.

Definition 5 (Higher-Order Nash Stability). A feasible (W, 
P) is higher-order Nash stable if: 

1. Nash equilibrium: No agent i has an action such 
that the resulting network (W′, P′) is strictly better for i.

2. Cartel robustness: For any proper subset S ⊂ [n] of 
agents, there is no feasible point (W′, P′) that differs 
from (W, P) only for indices {i, j} with i ∈ S, j ∈ S such 
that all agents in S have higher utility under (W′, P′)
than (W, P).

Theorem 3 (Higher-Order Nash Stability). Any stable point 
(W, P) is higher-order Nash stable.

2.2. Finding the Stable Point via Pairwise 
Negotiations

To compute the stable point in Theorem 1, we must 
know the beliefs of all agents. However, in practice, con
tracts are set iteratively by negotiations among pairs of 
agents. We will now formalize the process of pairwise 
negotiations and characterize the conditions under which 
such negotiations can converge to the stable point.

We propose a multiround pairwise negotiation pro
cess. In round t + 1, every pair of agents i and j update 
the price Pij(t) to Pij(t+ 1) (and hence Pji(t) to Pji(t+ 1)) 
as follows. First, they agree to a price P′ij between them
selves, assuming optimal contract sizes with all other agents 
at the current prices P(t). In other words, we assume that 
the other agents will accept the prices in P(t) and the 
contract sizes preferred by i and j. Under this condition, 
P′ij is the price at which i’s optimal contract size with j is 
also j’s optimal size with i. We provide an explicit for
mula for P′ij in Section A.5 of the supplemental material. 
All pairs of agents calculate these prices simultaneously. 

Figure 1. Example of a Stable Point for a Borrower (Firm 1) and a Lender (Firm 2) 

(a) No payments allowed (b) Firm 2 pays 5/3 per contract (c) Network

Notes. (a) When the borrower cannot pay the lender an additional payment, the firms may be unable to agree to a contract, even if trading 
improves their utilities. (b) By allowing for contract-specific payments, both firms can agree on a contract size. In effect, the borrower (Firm 2) 
shares its utility with the lender (Firm 1) to achieve agreement. (c) The stable network is shown.
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We create a new price matrix P′ from these prices. 
Then, we set P(t+ 1) � (1� η)P(t) + ηP′, where η ∈ (0, 1)
is a dampening factor chosen to achieve convergence. 
Algorithm 1 shows the details.

Algorithm 1 (Pairwise Negotiations) 
1: procedure PAIRWISE(η ∈ (0, 1))
2: t← 0
3: P(0) ← any skew-symmetric matrix
4: while P(t) has not converged do
5: ∀i, j ∈ [n], P′ij← pairwise-negotiated price for 

(i, j) (Section A.5 in the supplemental material)
6: P(t+ 1) ← (1� η)P(t) + ηP′
7: t← t+ 1
8: end while
9: end procedure

Example 5 (Pairwise Negotiations for Loan Contracts). 
Consider a three-firm loans network containing a 
national bank (firm 1), local bank (firm 2), and local 
firm (firm 3). Suppose that the local firm cannot access 
the national bank, so the edge between firms 1 and 3 
is prohibited. The other parameters are

Σ1 � Σ2 � Σ3 �

1 0:25 0:75

0:25 1 0:6

0:75 0:6 1

2

6
6
4

3

7
7
5,

M �

0 0:9 0:9

0:75 0 0:95

0:5 0:8 0

2

6
6
4

3

7
7
5,γ1 � γ2 � γ3 � 1:

Figure 2 shows how pairwise negotiations via Algo
rithm 1 converge to the stable network.

Now, we will show that Algorithm 1 converges. 
First, we define global asymptotic stability (following 
Callier and Desoer 1994).

Definition 6 (Global Asymptotic Stability). The pairwise 
negotiation process is globally asymptotically stable 
for a given network setting and dampening factor η if, 
for any initial price matrix P(0), there exists a matrix P?
such that the sequence of price matrices P(t) converges 
to P? in Frobenius norm: limt→∞‖P(t)�P?‖F � 0.

When pairwise negotiations are globally asymptoti
cally stable, the limiting matrix P? must be skew- 
symmetric because each P(t) is skew-symmetric. Also, 
because prices are updated whenever two agents dis
agree on the size of the contract between them, all 
agents agree on their contract sizes at P?. Hence, P?
must be a stable point for the given network setting.

Now, we show that for a range of η, pairwise nego
tiations are globally asymptotically stable (Section A.7 
in the supplemental material presents an example).

Theorem 4 (Convergence Conditions and Rate). Let Qi 
be defined as in Theorem 1. Define the following n2 × n2 

matrices:

K :�
Xn

r�1
ereT

r ⊗Qr +Qr ⊗ ereT
r

L(i�1)n+j, (i�1)n+j �Qi;j, j +Qj;i, i ∀i, j ∈ [n]

(L is diagonal):

Let L† denote the pseudoinverse of L, and (L†K) |R denote 
the principal submatrix of L†K containing the rows/col
umns (i� 1)n+ j such that the edge (i, j) is not prohibited. 

Figure 2. Pairwise Negotiations for the Setting of Example 5

Notes. The contracts matrix Wt and payments matrix Pt after t � 0, 5, 10 steps of Algorithm 1 (η � 0:5) converge to the stable point 
(W, P) � (W∞, P∞). Cells corresponding to forbidden edges are empty.
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Let λmax,λmin be the largest and smallest eigenvalues of the 
matrix (L†K) |R respectively. Let η∗ � 2

λmax
. Then, we have: 

1. For all η ∈ (0,η∗), pairwise negotiations with η are 
globally asymptotically stable.

2. For such an η, the convergence is exponential in the 
number of rounds t:

‖P(t)� P?‖F ≤
αt

1� α · ‖P(1)� P(0)‖F,

where α � max{|1� ηλmin | , |1� ηλmax | }:

Here, P? is the stable point to which the negotiation 
converges.

Remark 1. For clarity of exposition, we restrict η ∈ (0, 1)
in Algorithm 1. However, Theorem 4 shows that we 
only need η < η∗ for convergence to the stable point.

2.3. Pairwise Negotiations Under Random 
Covariances

Thus far, we made no assumptions about agents’ 
beliefs. In this section, we analyze the convergence of 
pairwise negotiations for “data-driven” agents. Specifi
cally, each agent i now estimates its covariance matrix. 
For this section only, we will call the covariance matrix 
Σ̂i instead of Σi to emphasize that it is an estimated 
quantity.

Suppose each agent i observes m independent data 
samples. Each sample is a vector of the returns of unit 
contracts with all n agents. The samples for agent i are 
collected in a matrix Xi ∈ Rn×m, with one column per 
sample. The sample covariance of these data is Σ̂i.

We assume that all agents observe samples from the 
same return distribution, which has covariance Σ. 
Under a wide range of conditions, ‖Σ̂i�Σ‖ → 0 in 
probability (Vershynin 2018). Hence, at convergence, 
the maximum allowed dampening rate η? in Theorem 
4 would be a function of Σ. However, for finite sample 
sizes, each agent’s Σ̂i can be different. Hence, the maxi
mum dampening η̂? may be less than η?. The smaller 
the η̂?, the worse the rate of convergence of pairwise 
negotiations. However, even with a few samples, η̂? is 
close to η?, as the next theorem shows.

Theorem 5 (Small Sample Sizes Are Sufficient for Fast 
Convergence). Suppose that ‖Σ‖, ‖Σ�1‖, ‖Γ‖, and ‖Γ�1‖
are O(1) with respect to n and all edges are allowed. Also, 
suppose that each sample column of Xi is drawn indepen
dently from a N (0,Σ) distribution, and let m̂ � 1

m
P

iXi and 
Σ̂i :� 1

m�1
P

i(Xi� m̂)(Xi� m̂)T. Let η̂? be the maximum 
dampening factor using (Σ̂i)i∈[n] as defined in Theorem 4. 
Let η? be the dampening factor if Σ̂i were replaced by Σ 
for all i. If m � ⌈n log n⌉, then for large enough n, η̂? ≥
(1� o(1))η? with probability at least 1� exp(�Ω(n)).

Theorem 5 shows that data-driven agents using a broad 
range of dampening factors are still likely to find the 

stable point via pairwise negotiations. Furthermore, 
the amount of data they need is comparable to the 
number of agents (up to a logarithmic factor). We note 
that if firms use data sets of fixed sizes m1, : : : , mn, then 
the conclusion of Theorem 5 still holds, as long as 
mini mi ≥ ⌈n log n⌉. For example, firms might use dif
ferent look-back periods for covariance estimation.

2.4. Inferring Beliefs from the Network Structure
Suppose we are given a network that lies at a unique 
stable point as defined in Theorem 1. How can we infer 
the beliefs of the agents?

2.4.1. Nonidentifiability of Beliefs. Suppose we are 
given a network W that is generated using a single 
covariance Σi � Σ ≻ 0. We want to infer the agents’ 
beliefs (M,Γ,Σ). By Corollary A.1,

1
2 vec(M+MT) � (Γ⊗Σ+Σ⊗ Γ)vec(W):

Clearly, the agents’ beliefs can only be specified up to 
an appropriate scaling of M, Γ, and Σ. But even if we 
specify a scale (e.g., tr[Γ] � tr[Σ] � 1), for any valid 
choice of Γ and Σ we can find a corresponding M. Thus, 
even in the simple setting of identical covariance and 
fixed scale, the network W cannot be used to select a 
unique combination of the parameters (M,Γ,Σ). By a 
similar argument, we cannot identify the underlying 
beliefs even if we observe multiple networks generated 
using the same Σ and Γ (but different M). Thus, we 
need further assumptions in order to infer beliefs.

Assumption 1. Consider a sequence of networks W(t) over 
timesteps t ∈ [T]. We assume that (a) Γ(t) � I and Σi(t) �
Σ for all t ∈ [T], (b) for all i, j ∈ [n], Mij(t) varies indepen
dently according to a Brownian motion with the same para
meters for all (i, j), and (c) trΣ � 1.

The first assumption is motivated by the observa
tions in portfolio theory that errors in mean estimation 
are far more significant than covariance estimation 
errors (Chopra and Ziemba 1993). Therefore, account
ing for variations in Σ may be less important than varia
tions in M (but see Remark 2). The homogeneity of risk 
aversion was noted in Section 2, and this justifies set
ting Γ � I. The second assumption is common in the lit
erature on pricing models (Geman et al. 2001, Bianchi 
et al. 2013). The third assumption fixes the scale, as dis
cussed above.

Proposition 1. Finding the maximum likelihood estimator 
of Σ under Assumption 1 is equivalent to the following 
semidefinite program (SDP):

min
Σ

XT�1

t�1
‖Σ(W(t + 1)�W(t)) + (W(t + 1)�W(t))Σ‖2F

s:t: Σ ≽ 0, tr(Σ) � 1:
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Remark 2 (Generalization to Time-Varying S). Instead of 
a constant covariance Σ, the time range may be split 
into intervals, with covariance Σ(j) in interval j. Then, 
we can add a regularizer ν ·

P
j‖Σ(j+1) �Σ(j)‖ for some 

ν > 0 to the objective of the SDP to penalize differ
ences between successive covariances. This allows the 
covariance to evolve while keeping the objective con
vex. The time intervals can be tuned based on heuris
tics or prior information.

3. Insights for Regulators
A financial regulator can observe the network but does 
not know the firms’ beliefs. The regulator may ask the 
following. What changes in beliefs caused recently 
observed changes in the network? What are the side 
effects of different regulatory interventions? To answer 
these questions, we need to know how changes in 
firms’ beliefs or utility functions affect the network. 
That is the subject of this section.

3.1. Effect of Friction in Contract Formation
Our model imposes no costs for contract formation. 
This is reasonable for large firms where the fixed costs 
associated with contract negotiations may be small rel
ative to the contract sizes. However, in an overheating 
market, a regulator may impose frictions by penaliz
ing large contracts, for example by increasing margin 
requirements.

We model contract costs via an adding a penalty 
term Fi(wi) to the utility of agent i in Equation (1):

agent i’s utility

gi(W, P) :�wT
i (mi�Pei)� γi ·w

T
i Σiwi� Fi(wi): (2) 

Theorem 6. Consider a network setting where Σi � Σ and 
all edges are allowed. Suppose that for each firm i ∈ [n], the 
function Fi : Rn→ R is twice differentiable, and there exist 
strictly increasing functions fji : R→ R such that for all 
x ∈ Rn, ∇Fi(x) � [f1i(x1), : : : , fni(xn)]

T. Then, there exists a 
unique stable point.

Example 6. By imposing frictions, the regulator may 
increase the sizes of certain contracts. For example, let 
Fi(wi) � ɛ ·w2

i;i +λ ·
P

j≠iw2
i;j for some λ > ɛ > 0. Thus, 

the cost of interfirm trades scales with the square of the 
contract size (we assume ɛ ≈ 0). Consider a network set

ting with three firms, with γi � 1, Σi � Σ �
0:1 0:1 0:1
0:1 1 0:5
0:1 0:5 1

� �

, 

and M �
0 1000 111:233

1000 1 0:1
1000 0:1 1

� �

. Then, W23 �W32 ≈ 0 with

out frictions (when Fi(wi) � 0) but |W23 | > 0 for λ > 0.

3.2. Effect of Changes in Firms’ Beliefs
Regulatory actions can change the risk and expected 
return perceptions of firms. The next theorem shows 
the effect of such belief changes on the stable point.

Theorem 7. Suppose Σi � Σ for all firms and let M be the 
matrix of expected returns. 

1. Change in beliefs about expected returns: Let Σ 
have the eigendecomposition Σ � VΛVT. Then for i, j, k, 
ℓ ∈ [n],

∂Wij

∂Mkℓ
�

1
2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γiγjγkγℓ

p

·
X

s, t∈[n]

VisVksVjtVℓt +VisVℓsVjtVkt

λs +λt
: (3) 

In particular, Wij is monotonically increasing with respect to 
Mij.

2. Risk scaling: If the covariance Σ changes to cΣ (c >
0), then W changes to (1=c)W.

3. Increase in perceived risk: Suppose γi � γ for all i, 
and the covariance Σ increases to Σ′ ≻ Σ. Let W and W′
be the stable points under Σ and Σ′ respectively. Then, 
tr(MT(W′�W)) < 0:

This shows that, in general, an increase in risk leads 
to a decrease in the weighted average of the contract 
sizes. The weights are given by the expected return 
beliefs of the firms. However, individual contracts 
between firms can increase, as can the norm ‖W‖F. 
This is because increases in the covariance Σ may also 
increase correlations, which can offer better hedging 
opportunities. By hedging some risks, larger contract 
sizes can be supported.

Theorem 7 also shows that a change in the perceived 
expected return Mkℓ affects all contracts Wij. Can we 
trace the changes in W back to the underlying changes 
in M? For instance, consider the following problem.

Definition 7 (Source Detection Problem). Suppose that a 
financial regulator observes two networks W and W′, 
with the only difference being a small change in a sin
gle entry of M (say, Mij). Can the regulator identify 
the pair (i, j)?

One approach is to try to infer all beliefs of all firms, 
and then identify the changed belief. However, as dis
cussed in Section 2.4, the beliefs are only identifiable 
under extra assumptions and more data. An alterna
tive approach for the source detection problem is to 
find the entry (i, j) with the largest change |Wij�W′ij | . 
The intuition is that a change in Mij has a direct effect 
on Wij and (hopefully weaker) indirect effects on other 
contracts. Thus, the source detection problem is closely 
tied to the following:

Definition 8 (Targeted Intervention Problem). Can a reg
ulator induce a small change in a single entry of M 
(say, Mij) such that the change in Wij is significantly 
larger than changes in other entries of W?

When all eigenvalues of Σ are equal (that is, Σ∝ In), 
a change in Mkℓ only affects Wkℓ(�Wℓk), as can be seen 
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from Corollary A.1. However, when the eigenvalues 
are skewed, the terms in Equation (3) corresponding 
to the smallest eigenvalues have greater weight. In 
such circumstances, the indirect effect of a change in 
Mkℓ on other Wij can be significant. The following 
empirical results show that this is indeed the case.

3.2.1. Empirical Results for the Source Detection Prob
lem (Simulated Data). Here, we set the covariance 
Σ �D1=2(R+ E)D1=2, where D is a diagonal matrix, R a 
correlation matrix, and E a noise matrix. If E � 0, then 
Dii would be the variance of firm i. We set Dii according 
to a power law: Dii � i�α for an α > 0. Larger values of α 
correspond to greater skew in the variances. We choose 
R to be an equi-correlation matrix with one along the 
diagonal and ρ ∈ (0, 1) everywhere else. We draw the 
error matrix E from a scaled Wishart distribution: E �
‖R‖2 ·W(

ffiffiffi
ɛ
√
· In, n)=n for some chosen the noise level ɛ. 

As ɛ increases, the noise E dominates R.
Figure 3 shows the success rate of source detection 

over 1,000 experiments for various values of (ɛ,α) for 
ρ � 0:1 and n � 50. As α increases, the variances be
come more skewed, and the source detection can fail 
even with ɛ � 0 noise. When ɛ grows, the success rate 
for the source detection problem goes to zero. This 
suggests that skew combined with noise makes source 
detection difficult. These trends occur even if we only 
test whether the source belongs to the 10 most changed 
contracts (Figure 3(b)), as opposed to single largest 
change (Figure 3(a)). We observe similar results for 
real-world choices of Σ, as we show next.

3.2.2. Empirical Results for the Source Detection Prob
lem (Real-World Data). We consider two data sets: (a) a 
trade network between 46 large economies (OECD 
2022) and (b) a simulated network between 96 portfolio 

managers following various Fama-French strategies 
(Fama and French 2015). For each data set, we construct 
a “ground-truth” covariance Σ using all available data 
(the details are in Section B of the supplemental materi
als). Then, using m independent samples xi ~ N (0,Σ), 
we build a “data-driven” covariance Σ̂ � (1=(m� 1))
Pm

i�1(xi� m̂)(xi� m̂)T, where m̂ � (1=m)
Pm

i�1 xi is the 
sample mean. We use this Σ̂ to construct the finan
cial network.

Figure 4 shows the success rate over 500 experiments 
for various choices of the sample size m. The success 
rate increases monotonically with m. The reason for 
this behavior lies in the spectra of Σ and Σ̂. We find 
that in both data sets, the largest and smallest eigenva
lues of Σ are separated by several orders of magnitude. 
This gap becomes even more extreme in the data- 
driven Σ̂; the fewer the samples m, the greater the gap 
(Figure 5). In fact, we observe that the smallest eigen
value of Σ̂ is much smaller than the second-smallest 
eigenvalue: λn≪ λn�1. Zhao et al. (2019) make similar 
observations.

In summary, the experiments on both simulated and 
real-world data sets highlight the difficulty of source 
detection and targeted intervention in realistic net
works. The reason is the skew in the eigenvalues cou
pled with noise, which affects the eigenvectors. Skewed 
eigenvalues correspond to trade combinations (eigen
vectors) that are seemingly low risk. Hence, firms use 
such trades to diversify. This implies that these eigen
vectors have an outsized effect on the network and how 
it responds to local changes. Intuitively, if these eigen
vectors are “random,” the effect of a changed belief Mkℓ 
affects the rest of the network randomly. Hence, the 
direct effects on Wkℓ may be less than the indirect effects 
on other Wij. We explore this theoretically in Section 
A.12 of the supplemental material.

Figure 3. Source Detection Problem in a Noisy Scaled Equi-Correlation Model of Σ 

(a) Predict most shifted contract as source (b) Predict top-10 most shifted contracts

Notes. We rank the entries of W by the magnitude of change induced by a change in one entry of M (Mij). (a) Fraction of times Wij is most- 
changed entry of W. (b) Fraction of times Wij is among the top 10 most changed entries of W. The success rate goes to zero as α and ɛ increase.
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4. Insights for Firms
Until now, we treated the beliefs of firms as fixed and 
exogenous. In this section, we consider how a firm can 
use its contracts to gain insights into other firms and 
update its beliefs.

For instance, suppose a firm j faces a crisis, for exam
ple, a looming debt payment that may make it insol
vent. The firm may then become risk seeking (i.e., 
lower its γj), hoping that the risks pay off. Another firm 
i may be unaware of the crisis, so i’s risk perceptions 
(perhaps based on historical data) would be outdated. 
Can firm i infer the lower γj, solely from i’s contracts wi 
with all firms? What if a group of firms become risk- 
seeking, and not just one firm?

4.1. Detecting Outlier Firms
Intuitively, firm i will try to answer these questions by 
comparing the behavior of firm j against other similar 

firms. We formalize this by assuming that each firm j 
belongs to a community θj, for example, banking, real 
estate, or insurance, and so on. The community of each 
firm is publicly known. Firms in the same community 
are perceived to have similar return distributions:

Mij � f (θi,θj) + ɛ
′
θi, j, Σij � g(θi,θj),

γi � h(θi) + ɛi (4) 

for some unknown deterministic functions f (:), g(:), 
and h(:) and random error terms ɛi and ɛ′θi, j. We also 
assume that all firms use the same covariance Σ.

Now, suppose one firm j is an outlier, with very dif
ferent beliefs from other firms in its community. For 
firm i to detect the outlier firm j, the contract size Wij 
should deviate from a cluster of contracts {Wij′ |θj′ � θj}

of other firms from the same community as firm j. Now, 
outlier detection methods often assume independent 

Figure 5. Eigenvalues of Estimated Covariance Matrices Are Skewed, and the Degree of Skew Depends on the Number of Samples m 

(a) Simulated network of 96 portfolio managers (b) 46-country (OECD) trade network

Note. As m decreases, so does the smallest eigenvalue λn and the ratio λn=λn�1.

Figure 4. Source Detection Problem on Real-World Data 

(a) Simulated network of 96 portfolio managers (b) 46-country (OECD) trade network

Note. The success rate scales monotonically with the number of samples used to construct the data-driven covariance matrix Σ̂.
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datapoints. In our model, all contracts are dependent. 
However, we can still do outlier detection if the con
tracts are appropriately exchangeable. We prove below 
this is the case.

Definition 9. An intracommunity permutation is a per
mutation π : [n] → [n] such that π(i) � j implies that 
θi � θj.

Proposition 2. Suppose M,Σ,Γ exhibit community struc
ture (Equation (4)), and all the error terms (ɛi)i∈[n] and 
(ɛ′θi, j)i, j∈[n] are independent and identically distributed. 
Let π : [n] → [n] be any intracommunity permutation, and 
let Π : Rn→ Rn be the corresponding column-permutation 
matrix: Π(ei) � eπ(i). Then, W and ΠTWΠ are identically 
distributed.

Corollary 1. Let j1, : : : , jm ∈ [n] belong to the same com
munity: θj1 �⋯� θjm . Suppose the conditions of Proposi
tion 2 hold. Then, for any i ∈ [n], the joint distribution of 
(Wi, j1 , : : : , Wi, jm) is exchangeable.

4.1.1. Empirical Results for Outlier Detection. We gen
erate community-based networks (Equation (4)) such 
that γi ~ N(1,σ2) truncated to [0:5, 1:5]. The smaller the 
σ, the more closely the γi values cluster around one. For 
the outlier risk-seeking firm, we set γoutlier � 0:5. For 
clarity of exposition, we set ɛ′ � 0 everywhere.

To detect outliers under exchangeability (Corollary 
1), we can use methods based on conformal prediction 
(Guan and Tibshirani 2022). Here, we use a simpler 
approach: pick the firm j with the largest contract 
size as the outlier; ĵ :� arg maxj∈{j1, : : : , jm} |Wi, j | . To test 
sensitivity to false negatives, we also test whether the 
outlier is among the five largest contracts in { |Wi, j | :

j � j1, : : : , jm}. We run 500 experiments for each choice 
of σ and count the frequency with which the outlier 

firm is detected via its contract size. Further details 
are presented in Section B.3 of the supplemental 
material.

Figure 6 shows the results. We characterize the degree 
of outlierness by how many standard deviations away 
γoutlier is from the baseline of one. The smaller the σ, the 
more the outlierness. The success rate increases with 
increasing outlierness, as expected. It also increases 
when the number of firms n is reduced. This is because 
contract sizes depend on the γ values of all firms; fewer 
firms reduces the chances of any one firm attaining large 
contract sizes due to randomness.

4.2. Risk Aversion vs. Expected Returns
The discussion above shows that a firm can detect out
lier counterparties. However, the firm cannot determine 
why the counterparty is an outlier, as the following theo
rem shows.

Theorem 8 (Nonidentifiability of Risk Aversion Versus 
Expected Returns). Consider two network settings S � (mi, 
Σ,γi)i∈[n] and S′ � (mi,Σ,γi

′)i∈[n] that differ only in the risk 
aversions of firms J � {j |γj ≠ γ′j} ⊆ [n]. Then, there exists a 
setting S† � (m†

i ,Σ,γi)i∈[n] such that mi � m†
i for all i ∉ J 

and the stable networks under S† and S′ are identical.

Thus, one cannot determine whether an outlier is 
more risk seeking than its community or expects higher 
profits. However, risk-seeking behavior may be indica
tive of stress while higher profits than similar firms are 
unlikely. Hence, in either case, the firm detecting the 
outlier may choose to reduce its exposure to the outlier. 
However, this approach fails if an entire community 
shifts its behavior. The following example illustrates 
the problem.

Example 7. Consider two communities numbered 1 
and 2, with n1 and n2 firms, respectively. Let the setting 

Figure 6. Success Rate for Detecting Outlier Risk-Seeking Firms 

(a) Predict largest contract as outlier (b) Predict the top-5 largest contracts

Note. Detection is easier when there are fewer firms and when the risk-seeking firm’s γoutlier is more standard deviations away from the γ of the 
normal firms.
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S of Theorem 8 correspond to

Mij �

8
>>><

>>>:

a if θi � θj � 1

b if θi � θj � 2

c=2 otherwise

Σij �

8
>>><

>>>:

1 if θi � θj � 1

1 if θi � θj � 2

0 otherwise

γi � 1:

Now, suppose that under setting S′, γi ⊢→ γi + δ for 
some small δ for all nodes i in community 1. The 
change in the network would be the same if we had 
updated the columns corresponding to community 1 
in the M matrix instead (setting S†):

M†
ij �Mij +∆(θi,θj)∆(θi,θj) +O(δ2)

�

�δa=2 if θi � θj � 1

�δb · n2=(n1 + n2) if θi � 2,θj � 1

0 if θj � 2:

8
>><

>>:

Thus, a firm from community 2 cannot determine 
whether the network change was due to a change in 
(γi)θi�1 or (mi)θi�1. For instance, when b > 0, an increase 
in risk-seeking (δ < 0) looks the same as an increase in 
trading benefits (∆(1, 2) > 0). In the former case, firms 
in community 2 should reduce their exposure to com
munity 1 firms. However, in the latter case, they should 
increase exposure. Because the data cannot be used to 
choose the appropriate action, the behaviors of firms 
may be guided by their prior beliefs or inertia. When 
such beliefs change due to external events (e.g., due to 
news about one firm in community 1), the resulting 
change in the network may be drastic.

5. Conclusions
We proposed a model of a weighted undirected finan
cial network of contracts. The network emerges from 
the beliefs of the participant firms. The link between 
the two is utility maximization coupled with pricing. 
For almost all belief settings, our approach yields a 
unique network. This network satisfies a strong higher- 
order Nash stability property. Furthermore, the firms 
can converge to this stable network via iterative pair
wise negotiations.

The model yields two insights. First, a regulator is 
unable to reliably identify the causes of a change in net
work structure, or engage in targeted interventions. 
The reason is that firms seek to diversify risk by exploit
ing correlations. We find that in realistic settings, there 
are often combinations of trades that offer seemingly 
low risk. Hence, all firms aim to use such trades. The 

overdependence on a few such combinations leads to a 
pattern of connections between firms that thwarts tar
geted regulatory interventions.

The second insight is that firms can use the network 
to update their beliefs. For instance, they can identify 
counterparties that behave very differently from their 
peers. However, the cause of the outlierness remains 
hidden. If all firms in one line of business become more 
risk-seeking, the result is indistinguishable from that 
business becoming more profitable. Innocuous events 
(such as a news story) may cause beliefs to change sud
denly, leading to drastic changes in the network. In 
addition to identifying risky counterparties, firms may 
use the network to update their mean and covariance 
beliefs. For example, a firm that suffers significant 
losses on its current trades may be judged by others to 
be a riskier counterparty for future trades. We leave 
this for future work.

Our work focuses on mean-variance utility, but 
some of our results are applicable in other settings 
too. A second-order Taylor approximation of a twice- 
differentiable concave utility matches the form of a 
mean-variance utility. Hence, results based on mean- 
variance utility can be useful guides for small pertur
bations around a stable point. Some of our results for 
pairwise negotiations and targeted interventions are 
based on such perturbation arguments.

Finally, contract formation under budget constraints 
is an important direction for future work. In Theorem 6, 
we only consider contract frictions that depend on a 
firm’s contract sizes. To model budget constraints, we 
must also consider the contract prices. These require 
different techniques than our approach, which is based 
on results from Sandberg and Willson (1972) (see Sec
tion A.15 in the supplemental material).
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Appendix 
A.1. Proof of Theorem 1
Recall that Qi �Ψ

T
i (2γiΨiΣiΨ

T
i )
�1Ψi, F � {(i, j) : 1 ≤ i < j ≤

n,Ψiej ≠ 0}, and uvec(X)F ∈ R |F | is a vector whose entries are 
the ordered set {Xij | (i, j) ∈ F}. Note that ΨiΣiΨ

T
i is positive 

definite because it is a principal submatrix of the positive defi
nite matrix Σi.

Proof of Theorem 1. For clarity of exposition, we first prove 
the result when all edges are allowed, and then consider the 
case of disallowed edges. 

(1) All edges allowed. Here, E � {i, j |1 ≤ i < j ≤ n}, and 
we use uvec(:) and Z to refer to uvec(:)E and ZE in the theo
rem statement. For any price matrix P with P ��PT, consider 
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the matrix W whose jth column has the utility-maximizing 
contract sizes for agent j:

Wij � eT
i Ψ

T
j (2γjΨjΣjΨ

T
j )
�1Ψj(M�P)ej

� eT
i Qj(M�P)ej:

The tuple (W, P) is stable if W �WT. Therefore, for all i < j, 
we require

Wij �Wji (A.1) 

� eT
i Qj(M�P)ej � eT

j Qi(M�P)ei

� eT
i QjMej � eT

j QiMei � eT
i QjPej� eT

j QiPei

� eT
i (A�AT)ej � eT

i (QjP� (QiP)T)ej: (A.2) 

Because P ��PT, we must have P � R�RT, where R is upper- 
triangular with zero on the diagonal. Hence, using Qi �QT

i , 
we have

eT
i (QjP� (QiP)T)ej � eT

i (QjP+PQi)ej

� trP(ejeT
i Qj +QiejeT

i )

� tr(R�RT)(B(j, i) +BT
(i, j))

� trRTC(i, j)

� uvec(R)Tuvec(C(i, j)), 

where we used the upper-triangular nature of R in the last 
step. Plugging into Equation (A.2), a stable point exists if and 
only if there is an appropriate vector p :� uvec(R) ∈ Rn(n�1)=2 

such that for all 1 ≤ i < j ≤ n, eT
i (A�AT)ej � uvec(C(i, j))

Tp. 
This is equivalent to uvec(A�AT) � Zp. If such a solution 
vector p exists, then by definition, it corresponds to a matrix 
P ��PT via P � R�RT and p � uvec(R).

(2) Disallowed edges. If {i, j} is a prohibited edge then 
Ψiej �Ψjei � 0, so B(i, j) � B(j, i) � 0, so eT

ijZ � 0T. Also, Aij �

Aji � 0 so uvec(A�AT)ij � 0. Therefore, the equality eT
i (A�

AT)ej � uvec(C(i, j))
Tx is achieved for any solution vector x if 

{i, j} is a prohibited edge. We can therefore reduce the linear 
system Zp � uvec(A�AT) from part (1) by deleting rows of 
Z corresponding to prohibited edges.

Similarly, because the system is constrained by pij � 0 for 
prohibited edges {i, j}, the columns of Z corresponding to 
such edges have no effect on the solution set.

We conclude that the linear system in (1) is equivalent to 
the (unconstrained) reduced system ZFpF � uvec(A�AT)F. 
Each solution pF corresponds to a skew-symmetric P by con
struction. Finally, if ZF has full rank then the unique reduced 
solution is pF � Z�1

F uvec(A�AT)F. w

A.2. Stable Network for the Shared Covariance Case
In the case of a shared covariance matrix for all agents, we 
can give a closed form expression for the stable network.

Corollary A.1 (Shared S, All Edges Allowed). Suppose Σi � Σ 
and Ψi � In for all i ∈ [n]. Let (λi, vi) denote the ith eigenvalue and 
eigenvector of Γ�1=2ΣΓ�1=2. Then, the network W can be written in 

two equivalent ways:

vec(W) � 1
2 (Γ⊗Σ+Σ⊗ Γ)

�1vec(M+MT),

W � Γ�1=2

 
Xn

i�1

Xn

j�1

vT
i Γ
�1=2

2(λi +λj)

(M+MT)Γ�1=2vjvivT
j

!

Γ�1=2:

The prices can be written as

vec(P) � (Γ�1 ⊗ Σ�1 + Σ�1 ⊗ Γ�1)�1vec(Σ�1MΓ�1

� Γ�1MTΣ�1)

P � Γ1=2

 
Xn

i�1

Xn

j�1

vT
i Γ

1=2

λ�1
i + λ

�1
j

(Σ�1MΓ�1 � Γ�1MTΣ�1)Γ1=2vjvivT
j

!

Γ1=2:

Proof. We first prove the identity with vec(W).
For each agent i the optimal set of contracts is given as 

wi � (2γiΣi)
�1
(M�P)ei. Because Σi � Σ for all i, we obtain 

W � 1
2Σ
�1(M�P)Γ�1. Hence M�P � 2ΣWΓ. Using W �WT 

and PT ��P for a stable feasible point (W, P), we obtain 
ΣWΓ+ ΓWΣ � 1

2 (M+MT).
Vectorization implies (Γ⊗Σ+Σ⊗ Γ)vec(W) � 1

2 vec(M+MT). 
It remains to show that (Γ⊗Σ+Σ⊗ Γ) is invertible.

Let K :� (Γ⊗Σ+Σ⊗ Γ) for shorthand. Notice K � (Γ1=2 ⊗

Γ1=2)(I⊗ Γ�1=2Σ Γ�1=2 + Γ�1=2ΣΓ�1=2 ⊗ I)(Γ1=2 ⊗ Γ1=2). Let K′ �
(I⊗ Γ�1=2ΣΓ�1=2 + Γ�1=2ΣΓ�1=2 ⊗ I). Because (Γ1=2 ⊗ Γ1=2) is in
vertible, it suffices to show K′ is invertible.

Properties of Kronecker products imply that if a matrix A ∈
Rn×n has strictly positive eigenvalues, then σ(I⊗A+A⊗ I) �
{λ+µ : λ,µ ∈ σ(A)} counting mutiplicities (Horn and Johnson 
1994). Let v ≠ 0. Then, because Σ ≻ 0 and Γ�1=2 ≻ 0, we obtain 
vTΓ�1=2ΣΓ�1=2v � (Γ�1=2v)TΣ(Γ�1=2v) > 0. Hence, Γ�1=2ΣΓ�1=2 

≻ 0, so K′ is invertible, and hence K is invertible. This proves 
the first identity.

Next, we prove the second identity. Properties of Kronecker 
products imply that (K′)�1 has eigendecomposition (K′)�1

�
Pn

i�1
Pn

j�1
1
λi+λj
(vi ⊗ vj)(vi ⊗ vj)

T.
Therefore, because (Γ1=2 ⊗ Γ1=2)�1

� (Γ�1=2 ⊗ Γ�1=2), we obtain

vec(W)

� (Γ�1=2 ⊗ Γ�1=2)
Xn

i�1

Xn

j�1

1
λi +λj

(vi ⊗ vj)

(vi ⊗ vj)
T
(Γ�1=2 ⊗ Γ�1=2)vec M+MT

2

� �

� (Γ�1=2 ⊗ Γ�1=2)
Xn

i�1

Xn

j�1

1
2(λi +λj)

vec(Γ�1=2(M+MT)Γ�1=2)

� (Γ�1=2 ⊗ Γ�1=2)vec
 
Xn

i�1

Xn

j�1

vT
i Γ
�1=2

2(λi +λj)
(M+MT)Γ�1=2vjvivT

j

!

W � Γ�1=2

 
Xn

i�1

Xn

j�1

vT
i Γ
�1=2

2(λi +λj)
(M+MT)Γ�1=2vjvivT

j

!

Γ�1=2:
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Finally, the formulas for vec(P) and P follow from similar rea
soning, using W �WT and W � 1

2Σ
�1(M�P)Γ�1. w
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