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Abstract. Financial networks help firms manage risk but also enable financial shocks
to spread. Despite their importance, existing models of financial networks have several
limitations. Prior works often consider a static network with a simple structure (e.g., a
ring) or a model that assumes conditional independence between edges. We propose a
new model where the network emerges from interactions between heterogeneous
utility-maximizing firms. Edges correspond to contract agreements between pairs of
firms, with the contract size being the edge weight. We show that, almost always, there
is a unique “stable network.” All edge weights in this stable network depend on all
firms’ beliefs. Furthermore, firms can find the stable network via iterative pairwise
negotiations. When beliefs change, the stable network changes. We show that under
realistic settings, a regulator cannot pin down the changed beliefs that caused the net-
work changes. Also, each firm can use its view of the network to inform its beliefs. For
instance, it can detect outlier firms whose beliefs deviate from their peers. However, it
cannot identify the deviant belief: Increased risk-seeking is indistinguishable from
increased expected profits. Seemingly minor news may settle the dilemma, triggering
significant changes in the network.

Funding: This work was supported by the National Science Foundation [Grants 2217069, 2019844, and
DMS 2109155], McCombs Research Excellence Grants, and a Dell Faculty Award.
Supplemental Material: The computer code and data that support the findings of this study are available

within this article’s supplemental material at https: //doi.org/10.1287/opre.2022.0678.

Keywords:

financial networks « utility maximization « heterogeneous agents « dynamic games

1. Introduction

The financial crisis of 2008 showed the need for mitigat-
ing systemic risks in the financial system. There has
been much recent work on categorizing such risks
(Elliott et al. 2014; Glasserman and Young 2015, 2016;
Birge 2021; Jackson and Pernoud 2021). Although the
causes of systemic risk are varied, they often share one
feature. This shared feature is the network of intercon-
nections between firms via which problems at one firm
spread to others. One example is the weighted directed
network of debt between firms. If one firm defaults on
its debt, its creditors suffer losses. Some creditors may
be forced into default, triggering a default cascade
(Eisenberg and Noe 2001). Another example is the
implicit network between firms holding similar assets.
Sales by one firm can lead to mark-to-market valuation
losses at other firms. These can snowball into fire sales
(Caballero and Simsek 2013, Cont and Minca 2016,
Feinstein 2020, Feinstein and Sejmark 2021).

The structure of interfirm networks plays a vital role
in the financial system. Small changes in network struc-
ture can lead to jumps in credit spreads in over-the-
counter (OTC) markets (Eisfeldt et al. 2021). Network
density, diversification, and interfirm cross-holdings
can affect how robust the networks are to shocks and
how such shocks propagate (Elliott et al. 2014, Acemo-
glu et al. 2015). The network structure also affects the
design of regulatory interventions (Amini et al. 2015,
Galeotti et al. 2020, Calafiore et al. 2022, Papachristou
and Kleinberg 2022).

Despite its importance, many prior works use simplis-
tic descriptions of the network structure. For instance,
they often assume that the network is fixed and observ-
able. However, only regulators may have access to the
entire network. Furthermore, shocks or regulatory inter-
ventions can change the network. Others assume that
the network belongs to a general class. For instance,
Caballero and Simsek (2013) assume a ring network
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between banks. Amini et al. (2015) derive tractable opti-
mal interventions for core-periphery networks. How-
ever, financial networks can exhibit complex structure
(Peltonen et al. 2014, Eisfeldt et al. 2021). Leverage levels,
size heterogeneity, and other factors can affect the net-
work topology (Glasserman and Young 2016). Hence,
there is a need for models to help reason about financial
networks.

In this paper, we design a model for a weighted net-
work of contracts between agents, such as firms, coun-
tries, or individuals. The contracts can be arbitrary, and
the edge weights denote contract sizes. In designing
the model, we have two main desiderata. First, the
model must account for heterogeneity between firms.
This follows from empirical observations that differ-
ences in dealer characteristics lead to different trade
risk exposures in OTC markets (Eisfeldt et al. 2021).
Second, each firm seeks to maximize its utility and
selects its contract sizes accordingly. In effect, each firm
tries to optimize its portfolio of contracts (Markowitz
1952). The model must reflect this behavior. From this
starting point, we ask the following questions:

1. How does a network emerge from interactions
between heterogeneous utility-maximizing firms?

2. How does the network respond to regulatory
interventions?

3. How can the network structure inform the beliefs
that firms hold about each other?

Next, we review the relevant literature.

1.1. Imputing Financial Networks

We often have only partial information about the
structure of a financial network. For example, we may
know the total liability of each bank in a network.
From this, we want to reconstruct all the interbank lia-
bilities (Squartini et al. 2018). One approach is to pick
the network that minimizes the Kullback-Leibler
divergence from a given input matrix (Upper and
Worms 2004). Mastromatteo et al. (2012) use message-
passing algorithms, whereas Gandy and Veraart (2017)
use a Bayesian approach. However, such random
graph models often do not reflect the sparsity and
power-law degree distributions of financial networks
(Upper 2011). Furthermore, these models do not
account for the utility-maximizing behavior of firms.

1.2. General-Purpose Network Models

The simplest and most well-explored network model is
the random graph model (Erdos and Rényi 1959, Gil-
bert 1959). Here, every pair of nodes is linked indepen-
dently with probability p. Generalizations of this model
allow for different degree distributions and edge direc-
tionality (Aiello et al. 2000). Exponential random graph
models remove the need for independence, but param-
eter estimation is costly (Frank and Strauss 1986, Was-
serman and Pattison 1996, Hunter and Handcock 2006,

Caimo and Friel 2011). Several models add node-
specific latent variables to model the heterogeneity of
nodes. For example, in the stochastic blockmodel and
its variants, nodes are members of various latent com-
munities. The community affiliations of two nodes
determine their probability of linkage (Holland et al.
1983, Chakrabarti et al. 2004, Airoldi et al. 2008, Mao
et al. 2018). Instead of latent communities, Hoff et al.
(2002) assign a latent location to each node. Here, the
probability of an edge depends on the distance between
their locations.

All the latent variable models assume conditional
independence of edges given the latent variables. How-
ever, in financial networks, contracts between firms are
not independent. Two firms will sign a contract only if
the marginal benefit of the new contract is higher than
the cost. This cost/benefit tradeoff depends on all other
contracts signed with other firms. Unlike our model,
existing general-purpose models do not account for
such utility-maximization behavior.

1.3. Network Games

Here, the payoffs of nodes are dependent on the actions
of their neighbors (Tardos 2004). One well-studied class
of network games is linear-quadratic games, with linear
dynamics and quadratic payoff functions. Prior work
has explored the stability of Nash equilibria (Guo and
De Persis 2021) and algorithms to learn the agents’ pay-
off functions (Leng et al. 2020). However, our model
does not yield a linear-quadratic game except in excep-
tional cases. Instead, our process involves nonlinear
rational functions of the beliefs of firms. Thus, our set-
ting differs from linear-quadratic games. Recently, net-
work games have been extended to settings where the
number of players tends to infinity (Carmona et al.
2022). However, we only consider finite networks.

1.4. Games to Form Networks
Several works study the stability of networks. In a
pairwise-stable network, no pair of agents want to
form or sever edges. This may be achieved via side-
payments between agents, which our model also uses
(Jackson and Wolinsky 2003). Pairwise stability has
been extended to strong stability for networks (Jackson
and Van den Nouweland 2005), and to weighted net-
works with edge weights in [0,1] (Bich and Morhaim
2020, Bich and Teteryatnikova 2023). We introduce an
analogous notion called higher-order Nash stability
against any deviating coalition. However, the weights
in our network are not bounded in [0,1] and can be
negative. Furthermore, our edge weights denote con-
tract size, requiring agreement from both parties. In
contrast, prior works typically interpret edge weights
as the engagement level in an ongoing interaction.
Sadler and Golub (2021) study a network game with
endogenous network formation, whose stable points
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are both pairwise stable and Nash equilibria. We show
similar results for our model. However, they consider
unweighted networks and focus on the case of separa-
ble games. In our setting, this corresponds to the case
where all firms are uncorrelated. However, in financial
networks, correlations are widespread and help firms
diversify their contracts.

Several authors study the effect of exogenous inputs
on production networks (Herskovic 2018, Elliott et al.
2022). Acemoglu and Azar (2020) also model endoge-
nous network formation but differ from our approach.
Prices in their model equal the minimum unit cost of
production. For us, prices are determined by pairwise
negotiations between firms. Also, each firm in their
model only considers a discrete set of choices among
possible suppliers. In our model, firms can choose both
their counterparties and the contract sizes.

1.5. Risk-Sharing and Exchange Economies

The pricing of risk is a well-studied problem (Arrow
and Debreu 1954; Bithlmann 1980, 1984; Tsanakas and
Christofides 2006; Banerjee and Feinstein 2022). Most
models typically price risk via a global market. How-
ever, in our model, all contracts are pairwise, and the
contract terms and payments between a buyer and
seller are bespoke. There is no global contract or global
market price. Because contracts are pairwise, each firm
under our model must consider counterparty risks and
the correlations between them. A firm i may make large
payments and accept a negative reward for a contract
with firm j to diversify the risk from contracts with
other firms. Finally, in our model, agents can hedge
their risk by betting against one another. In contrast,
Bithimann equilibria always result in comonotonic
endowments, which firms cannot use as hedges for
each other (Yaari 1987, Banerjee and Feinstein 2022).

1.6. Network Valuation Adjustment

Some recent works price the risk due to exposure to the
entire financial network (Banerjee and Feinstein 2022,
Feinstein and Sejmark 2022). The network is usually
treated as exogenous and fully known to all firms. In
contrast, we consider endogenous network formation
resulting from pairwise interactions between firms.
The network valuation algorithm of Barucca et al.
(2020) works with incomplete information but is not
designed for network formation, and it needs firms to
share information not required to form their contracts.

1.7. Properties of Equilibria

Another line of work considers the efficiency or social
welfare of equilibria (Jackson and Pernoud 2021, Elliott
and Golub 2022). Galeotti et al. (2020) show that
welfare-maximizing interventions rely mainly on the
top or bottom eigenvectors of the network. Elliott et al.
(2022) show an efficiency-stability tradeoff for their

model of supply network formation. Like prior work,
we show that stable equilibria exist and are nondomi-
nated. However, our emphasis is on potentially valu-
able insights for regulators and firms. For instance, we
show a negative result about the ability of regulators
to infer the causes of changes to the network structure.
The linkage between firms’ utilities and their beliefs
and its effect on stability is not considered in prior
work.

1.8. Our Contributions

We develop a new network model of contracts between
heterogeneous agents, such as firms, countries, or indi-
viduals. Each agent aims to maximize a mean-variance
utility parametrized by its beliefs. But for two agents to
sign a contract, both must agree to the contract size. For
a stable network, all agents must agree to all their con-
tracts. We show that such constraints are solvable by
allowing agents to pay each other. By choosing prices
appropriately, every agent maximizes its utility in a sta-
ble network.

1.8.1. Characterization of Stable Networks (Section 2). We
show that unique stable networks exist for almost all
choices of agents’ beliefs. These networks are robust
against actions by cartels, a condition that we call
higher-order Nash stability. The agents can also con-
verge to the stable network via iterative pairwise nego-
tiations. The convergence is exponential in the number
of iterations. Hence, the stable network can be found
quickly. Finally, we show how to infer the agents’
beliefs by observing network snapshots over time,
under certain conditions.

1.8.2. Limits of Regulation (Section 3). A financial reg-
ulator can observe the entire network but not the
agents’ beliefs. Suppose firm i changes its beliefs about
firm j. Then the contract size between i and j will
change. Indirectly, other contracts will change too. We
show empirically that in realistic settings, the indirect
effects can be as significant as the direct effects. In such
cases, the regulator cannot infer the underlying cause
of changes in the network. Similarly, suppose the regu-
lator intervenes with one firm, affecting its beliefs. The
resulting network changes need not be localized to that
firm’s neighborhood in the network. Thus, targeted
interventions can have strong ripple effects. Broad-
based interventions aimed at increasing stability can
also have adverse effects. For instance, increasing mar-
gin requirements on contracts may even increase some
contract sizes.

1.8.3. Outlier Detection by Firms (Section 4). A firm i
can observe its contracts with counterparties but not
the entire network. Suppose another firm j (say, a real
estate firm) has beliefs that are very different from its
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peers. Then, we prove that under certain conditions, j’'s
contract size with i is also an outlier compared with
other real-estate firms. Therefore, firm i can use the net-
work to detect outliers and update its beliefs. How-
ever, suppose all real estate firms change their beliefs.
This changes all their contract sizes without creating
outliers. We show that i cannot determine the cause of
this change. For example, firm i would observe the
same change whether all real estate firms had become
more risk seeking or profitable. However, firm i may
want to increase its exposure if they are more profit-
able but reduce exposure if they are more risk seeking.
Because the data cannot identify the proper action,
firm i remains uncertain. Exogenous, seemingly insig-
nificant information may persuade firm i one way or
another. Thus, minor news may trigger drastic changes
in the network.

1.9. Notation

We use lowercase letters, with or without subscripts,
to denote scalars (e.g., ¢,);). Lowercase bold letters
denote vectors (m;,w), and uppercase letters denote
matrices (W, P, L;). We use M to refer to the jth com-
ponent of the vector w,;, and X for the (j, k) cell of
matrix ;. We use v to denote the transpose of a vec-
tor v, and ||-[|, to denote the £, norm of a vector or
matrix. We say A >0 if A is positive semidefinite,
A >0 if it is positive definite, and A> B if A—B>0.
The vectors ey, ...,e, denote the standard basis in R”,
and I, is the n X n identity matrix. If A € R™", B € RP
then A®BeR"™ denotes their tensor product:
(A® B)Z-j, ke = AixBjc. For an appropriate matrix M, tr(M)
calculates its trace, vec(M) vectorizes M by stacking its
columns into a single vector, and uvec(M) vectorizes
the upper-triangular off-diagonal entries of M. For an
integer r > 1, we use [r] to denote the set of integers
[]:=41,2,...,r}.

2. Proposed Model

We consider a weighted network W € R™" between n
agents (such as firms, countries, or individuals). The
element W;; represents the size of a contract between
agents 7 and j. We make no assumptions about the con-
tent of the contract. For instance, the contract could be
an interest rate swap, a stock swap, or an insurance
contract. We assume that each pair of firms can form a
contract of a standard type and negotiate only on the
contract size and price (discussed below). Because con-
tracts need mutual agreement, W;; = W;;. We take Wj; to
represent i’s investment in itself. A negative contract
(Wij = Wj; < 0) is a valid contract that reverses the con-
tent of a positive contract. For example, if a positive
contract is a derivative trade between two firms, the
negative contract swaps the roles of the two firms.

Let w; denote the ith column of W (i.e., w;; = W
for all j). Each agent i would prefer to set its contract
sizes w; to maximize its utility. However, other agents
will typically have different preferences. Therefore, to
achieve an agreement about the contract size Wy,
agents i and j can agree on a price for the contract. For
example, i may agree to pay j an amount Pj;- Wj; in
cash at the beginning of the contract. Because pay-
ments are zero-sum and Wj; = W;;, we must have
Pj; = —P;;. We do not model how firms raise funds to
pay the price.

Each contract yields a stochastic payout, and agents
have beliefs about these payouts. We represent agent
i’s beliefs by a vector u; of expected returns and a
covariance matrix X; > 0. Thus, X; represents firm i’s
perceived risk of trading with other firms, and in-
cludes both contract-specific risk and counterparty
risk. We do not assume that the contracts are zero-sum
or that the beliefs are correct, even approximately.
Thus, the overall expected return from all contracts of
iis w! (p; — Pe;), and the variance of the overall return
is w!Y;w;. We assume that each agent has a mean-
variance utility (Markowitz 1952):

agent i’s utility
8i(W,P) :=w/ (p; — Pe;) -y, w] Ziw, @)

where y, > 0 is a risk-aversion parameter. In practice,
we expect the set {,};c(, to be not too heterogeneous
(Metrick 1995, Kimball et al. 2008, Ang 2014, Paravi-
sini et al. 2017). Equation (1) ignores costs for contract
formation; we will consider these in Section 3.1. Also,
we assume that Pj; does not change the perceived
risk.

Example 1 (Insurance Contract). Suppose firm i buys
fire insurance from insurer j. Then, p;; is the buyer’s
expected insurance payout minus the insurance pre-
mium. The expected payout depends on the probabil-
ity of a fire, for which the buyer and insurer may have
different estimates. Also, the insurance contract is
negatively correlated with the buyer’s other contracts
(reflected in X;). This is because the buyer gains a pay-
out from the insurer in case of a fire but incurs losses
on other contracts. Hence, the buyer i may be willing
to accept a contract with negative expected reward,
and even pay a higher-than-usual premium P; per
contract.

Example 2 (Interest Rate Swap Contract). Suppose firm
i makes fixed-rate payments to firm j, and receives
floating-rate payments in return. Then, p;; is the
expected net present value of these payments for i
from a standard unit-sized contract. This value de-
pends on i’s forecast of future interest rates and need
for floating-rate income, for example, to match future
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liabilities. Hence, it may be quite different from p;;.
Also, the firms agree to a price P;; = —P;; per contract.
If P;; > 0, then firm j must pay firm i the price P;; - Wy;
if P;; < 0, then firm i makes the payment.

Example 3 (Loan Contract). Suppose borrower i takes a
loan of size Wj; from lender j. Then, p;; - Wj; represents
the lender j’s expected value for this loan. The ex-
pected value depends on the repayment schedule, the
collateral, j’s estimate of the probability of default, the
recovery rate in case of default, etc. The borrower’s
expected value p;; - Wj; depends on the planned use of
this loan. For example, if the borrower wants the loan
to purchase equipment, p;; is the net present value of
expected extra profits due to that equipment. Hence,
;; may not be a function of p;;. Now, the borrower
and lender must settle on a contract price to reach an
agreement on the contract size. If the standard loan
contract requires the lender to give cash to the bor-
rower at the beginning of the contract, this loan
amount can be adjusted for the price. Otherwise, if the
borrower firm needs to pay the price, it must arrange a
separate bridge loan.

The model above allows contracts between all pairs
of agents. However, some edges may be prohibited
due to logistical or legal reasons. For each agent i, let
Ji € [n] denote the ordered set of agents with whom i
can form an edge. Therefore, if k ¢ J; (and hence i ¢ Ji),
we have Wy =W =Py =P =0. Similarly, if i¢]J;,
then self-loops are prohibited (W; = P;; =0). We will
encode these constraints in the binary matrix W€
R where Wik =1 if k is the jth element of [, and
Wik = 0 otherwise. In other words, W; is obtained from
I,, by deleting the rows corresponding to the prohibited
counterparties of i. Thus, for any v € R”, W;v selects the
elements of v corresponding to J. If all edges are
allowed, we have WV; = I, for all i.

Definition 1 (Network Setting). A network setting (m;,y;,
Li,Wi)ie[n) captures the beliefs and constraints of n
agents. When there are no constraints (i.e., all edges
are allowed), we drop the W; =1, terms to simplify
the exposition. Finally, we will use M € R™" to denote
a matrix whose ith column is u;, and I' to denote a
diagonal matrix with I'; = y,.

2.1. Characterizing Stable Points

In the above model, every agent tries to optimize its
own utility (Equation (1)). We now characterize the
conditions under which selfish utility-maximization
leads to a stable network.

Definition 2 (Feasibility). A tuple (W, P) is feasible if
W =W, P=-P!, and W and P obey the constraints
encoded in (Wy);ep-

Definition 3 (Stable Point). A feasible (W, P) is stable if
each agent achieves its maximum possible utility given

prices P:
gi(w/ P) =

(W',P) Vie€|[n].
feasible(Wg}%)l(mde . {\I,i}gz( ) i€ [n]

Example 4. Suppose we only have two firms with the
following setting:

0 3
mean beliefs M =
1 4

1 0
covariance X1 = Xp =
0 2

risk aversion y, =y, = 1.

Therefore, both firms perceive a benefit from trading
(Mip > 0, My > 0). If trading is disallowed, the optimum
W is diagonal with Wy; =0 and Wy =1 (and P is the
zero matrix). The corresponding utilities are zero for
firm 1 and 2 for firm 2. Suppose we allow trading but
do not allow pricing (Figure 1(a)). Then, the two firms
can each improve their utility by trading, but achieve
their optimum utilities at different contract sizes. Hence,
they may be unable to agree to a contract. In Figure 1(b),
firm 2 pays firm 1 a specially chosen price of 5/3 per
unit contract. At this price, both firms achieve their opti-
mum utilities at the same contract size Wy, = Wy =2/3.
Hence, they can agree to a contract. By paying the price,
firm 2 shares some of its utility with firm 1 to achieve
agreement on the contract. This choice of W and P is a
stable point (Figure 1(c)). The following results show
that this is the only stable point. O

Define Q; = ‘I/iT(Z)/i‘I/iZ,"I/iT)_l‘I/i. When all edges are
allowed, W; =1, and Q; = (2)/1,2,4)71. Let F={(,j):1<
i <j < n,Wie; # 0} denote the ordered pairs i < j where
Pj is allowed to be nonzero. Note that |F| < n(n —1)/2.
For any n X n matrix X, let uvec(X), € R!*! be a vector
whose entries are the ordered set {X;|(i,]) € F}.

Theorem 1 (Existence and Uniqueness of Stable Point).
Define n x n matrices A, B; ;), and C; ;) as follows:

Aij = elTQ]Me], B(1,]) = eie]TQi,

Cip = B,y — Biin) — (B — B

Let Zr be the |F| X |F| matrix whose rows are the ordered
sets {uvec(C; )| (i,j) € F}. Then, we have the following:

1. A stable point (W, P) under {WV;} exists if and only if
uvec(A — AT lies in the column space of Z.

2. If a stable point (W, P) exists, then Zruvec(P)p =
uvec(A — AT),.

3. A unique stable point always exists if Zp is full rank.

Theorem 1 is proved in the appendix, Section A.1.
When the X; are random variables, we give a simple
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Figure 1. Example of a Stable Point for a Borrower (Firm 1) and a Lender (Firm 2)

(a) No payments allowed

0z 00
W= L‘ 1] P= [O O]

(b) Firm 2 pays 5/3 per contract

(c) Network

<
5.0 5.0 ~ ! g™
_______________ g/ ‘@
- P R 0 ) oo
251 | ] 2 %! g3
2 —— Firm 1 2 e =0 g ”

= I . s ] =\
= 00 Firm 2 5 00 ~ o CC)J ~
— Firm1 \ E

=25 e R Firm 2
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Contract size x

Contract size x

Notes. (a) When the borrower cannot pay the lender an additional payment, the firms may be unable to agree to a contract, even if trading
improves their utilities. (b) By allowing for contract-specific payments, both firms can agree on a contract size. In effect, the borrower (Firm 2)
shares its utility with the lender (Firm 1) to achieve agreement. (c) The stable network is shown.

sufficient condition that a stable point exists and is
unique with probability 1 (see Sections A.1 and A.2 in
the supplemental material). Also, the appendix, Section
8.2, provides closed-form formulas for the stable point
when all agents have the same covariance (X; = £ for
all i € [n]). This occurs when the risk of a contract is pri-
marily counterparty risk (so X;j depends on j and k,
not 7), and there is reliable public data on such risks
(say, via credit rating agencies).

Next, we consider some properties of the stable point.
For two feasible tuples (Wy, P1) and (Wa, Py), let (W5, P,)
dominate (W, P,) if for all i € [n],g;(Wq,P1) < gi(Wa, Py),
with at least one inequality being strict.

Theorem 2 (Stable Points Cannot Be Dominated). Suppose
a stable point (W, P) exists. Then, there is no feasible (W', P")
that dominates (W, P).

The proofs of Theorem 2 and all subsequent claims
are provided in the supplemental material.

The stable point obeys a strong form of robustness
that we call higher-order Nash stability. This strengthens
the notions of pairwise stability (Hellmann 2013) and
pairwise Nash (Calvo-Armengol and Ilkilig 2009, Sadler
and Golub 2021) by allowing for agent coalitions,
instead of just considering pairs of agents. It is also
closely related to the concept of strong Nash equilibrium,
which strengthens Nash equilibrium by requiring that
no subset of agents can deviate at equilibrium without
at least one agent being worse off (Mazalov and Chir-
kova 2019).

Definition 4 (Agent Action). At a given feasible point (W,
P), an “action” by agent i is the ordered set (w] ;,p; ;);ej,,
where ; C [n] is the set of permissible edges for agent i.
The action represents a set of proposed changes to i's
existing contracts. Each agent j € J; responds as follows:

1. If the new (wj; pj;) raises j’s utility, then j agrees to
the revised contract and price.

2. Otherwise, i must either keep the existing contract
or cancel it (w;; = p; = 0). We assume that i cancels the
contract if and only if this strictly increases i’s utility.

We call the shifted (W’, P’) the resulting network.

Definition 5 (Higher-Order Nash Stability). A feasible (W,
P) is higher-order Nash stable if:

1. Nash equilibrium: No agent i has an action such
that the resulting network (W’, P’) is strictly better for i.

2. Cartel robustness: For any proper subset S C [n] of
agents, there is no feasible point (W’,P’) that differs
from (W, P) only for indices {i, j} with i€ S,j € S such
that all agents in S have higher utility under (W’,P’)
than (W, P).

Theorem 3 (Higher-Order Nash Stability). Any stable point
(W, P) is higher-order Nash stable.

2.2. Finding the Stable Point via Pairwise
Negotiations

To compute the stable point in Theorem 1, we must
know the beliefs of all agents. However, in practice, con-
tracts are set iteratively by negotiations among pairs of
agents. We will now formalize the process of pairwise
negotiations and characterize the conditions under which
such negotiations can converge to the stable point.

We propose a multiround pairwise negotiation pro-
cess. In round t + 1, every pair of agents i and j update
the price P;(t) to Pj(t +1) (and hence Pj(t) to Pj(t +1))
as follows. First, they agree to a price P}, between them-
selves, assuming optimal contract sizes with all other agents
at the current prices P(t). In other words, we assume that
the other agents will accept the prices in P(f) and the
contract sizes preferred by i and j. Under this condition,
P}; is the price at which i’s optimal contract size with j is
also j’s optimal size with i. We provide an explicit for-
mula for Pj; in Section A.5 of the supplemental material.
All pairs of agents calculate these prices simultaneously.
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We create a new price matrix P’ from these prices.
Then, we set P(t+1) = (1 — n)P(t) + nP’, where € (0,1)
is a dampening factor chosen to achieve convergence.
Algorithm 1 shows the details.

Algorithm 1 (Pairwise Negotiations)
1: procedure Pamwise(n € (0,1))
2: te0

P(0) «<— any skew-symmetric matrix

while P(t) has not converged do
Vi,j € [n], P}; < pairwise-negotiated price for
(i, ) (Section A.5 in the supplemental material)
P(t+1) « (1 —n)P(t) +nP’
te—t+1

end while

9: end procedure

P®ND

Example 5 (Pairwise Negotiations for Loan Contracts).
Consider a three-firm loans network containing a
national bank (firm 1), local bank (firm 2), and local
firm (firm 3). Suppose that the local firm cannot access
the national bank, so the edge between firms 1 and 3
is prohibited. The other parameters are

1 025 075
T =X, =Y3= (025 1 06 |,
075 06 1
0 09 09
M=1]075 0 095|,5,=y,=y;=1.
05 08 0

Figure 2 shows how pairwise negotiations via Algo-
rithm 1 converge to the stable network.

Figure 2. Pairwise Negotiations for the Setting of Example 5

National Bank

Local Bank [SeZ) .

Local Firm

Now, we will show that Algorithm 1 converges.
First, we define global asymptotic stability (following
Callier and Desoer 1994).

Definition 6 (Global Asymptotic Stability). The pairwise
negotiation process is globally asymptotically stable
for a given network setting and dampening factor 7 if,
for any initial price matrix P(0), there exists a matrix P*
such that the sequence of price matrices P(t) converges
to P* in Frobenius norm: lim;_,||P(t) — P*||r = 0.

When pairwise negotiations are globally asymptoti-
cally stable, the limiting matrix P* must be skew-
symmetric because each P(t) is skew-symmetric. Also,
because prices are updated whenever two agents dis-
agree on the size of the contract between them, all
agents agree on their contract sizes at P*. Hence, P*
must be a stable point for the given network setting.

Now, we show that for a range of 1, pairwise nego-
tiations are globally asymptotically stable (Section A.7
in the supplemental material presents an example).

Theorem 4 (Convergence Conditions and Rate). Let Q;
be defined as in Theorem 1. Define the following n* X n*
matrices:

n
K:= ZererT ®Q, +Q,®ee!
r=1

L1ty (-1n+j = Qij + Qi Vi, j € [n]

(L is diagonal).
Let Lt denote the pseudoinverse of L, and (L'K)|r denote

the principal submatrix of L'K containing the rows/col-
umns (i — 1)n +j such that the edge (i, j) is not prohibited.

Wo

National Bank | (010/0]

Local Bank | (01¢le)

Local Firm

Po

Notes. The contracts matrix W, and payments matrix P, after t = 0, 5, 10 steps of Algorithm 1 (=0.5) converge to the stable point

(W, P) = (W, Poo). Cells corresponding to forbidden edges are empty.
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Let Amax, Amin e the largest and smallest eigenvalues of the
matrix (LYK) | respectively. Let * = -2—. Then, we have:

1. For all ne(0,n"), pairwise negotlatzons with 1 are
globally asymptotically stable.

2. For such an n, the convergence is exponential in the
number of rounds t:

IPG) = P'lle < £ IP() = PO,

where a = max{|1 — NAminl, |1 — NAmax| }-

Here, P* is the stable point to which the negotiation
converges.

Remark 1. For clarity of exposition, we restrict 1 € (0, 1)
in Algorithm 1. However, Theorem 4 shows that we
only need 1 < 1" for convergence to the stable point.

2.3. Pairwise Negotiations Under Random
Covariances

Thus far, we made no assumptions about agents’
beliefs. In this section, we analyze the convergence of
pairwise negotiations for “data-driven” agents. Specifi-
cally, each agent i now estimates its covariance matrix.
For this section only, we will call the covariance matrix
%; instead of ¥; to emphasize that it is an estimated
quantity.

Suppose each agent i observes m independent data
samples. Each sample is a vector of the returns of unit
contracts with all n agents. The samples for agent i are
collected in a matrix X; € R, with one column per
sample. The sample covariance of these data is 3.

We assume that all agents observe samples from the
same return distribution, which has covariance X.
Under a wide range of conditions, | — X -0 in
probability (Vershynin 2018). Hence, at convergence,
the maximum allowed dampening rate " in Theorem
4 would be a function of . However, for finite sample
sizes, each agent’s ﬁi can be different. Hence, the maxi-
mum dampening 17 may be less than 1*. The smaller
the 1%, the worse the rate of convergence of pairwise
negotiations. However, even with a few samples, 7" is
close to 17*, as the next theorem shows.

Theorem 5 (Small Sample Sizes Are Sufficient for Fast
Convergence). Suppose that ||Z|], ||~ YLITY, and [[T7Y|

are O(1) with respect to n and all edges are allowed. Also,
suppose that each sample column of X; is drawn indepen-
dently from a N(0, L) distribution, and let =15 X;and
Si= L3 (X — )X — ). Let 4* be the maximum
dampening factor using (%; )ie[n] 8 deﬁned in Theorem 4.
Let n* be the dampening fuctor if £; were replaced by T
for all i. If m=[nlogn], then for large enough n, 7>
(1 —o(1))n* with probability at least 1 — exp(—Q(n)).

Theorem 5 shows that data-driven agents using a broad
range of dampening factors are still likely to find the

stable point via pairwise negotiations. Furthermore,
the amount of data they need is comparable to the
number of agents (up to a logarithmic factor). We note
that if firms use data sets of fixed sizes my, ..., m,, then
the conclusion of Theorem 5 still holds, as long as
min; m; > [nlogn]. For example, firms might use dif-
ferent look-back periods for covariance estimation.

2.4. Inferring Beliefs from the Network Structure
Suppose we are given a network that lies at a unique
stable point as defined in Theorem 1. How can we infer
the beliefs of the agents?

2.4.1. Nonidentifiability of Beliefs. Suppose we are
given a network W that is generated using a single
covariance Z; =X >0. We want to infer the agents’
beliefs (M, T, X). By Corollary A.1,

1
Evec(M +MT) =T L +X®T)vec(W).

Clearly, the agents’ beliefs can only be specified up to
an appropriate scaling of M, I', and . But even if we
specify a scale (e.g., tr[I'] = tr[X] =1), for any valid
choice of I' and X we can find a corresponding M. Thus,
even in the simple setting of identical covariance and
fixed scale, the network W cannot be used to select a
unique combination of the parameters (M,I,X). By a
similar argument, we cannot identify the underlying
beliefs even if we observe multiple networks generated
using the same X and I' (but different M). Thus, we
need further assumptions in order to infer beliefs.

Assumption 1. Consider a sequence of networks W(t) over
timesteps t € [T]. We assume that (a) T'(t) =1 and L;(t) =
L for all t € [T], (b) for all i,j € [n], Myj(t) varies indepen-
dently according to a Brownian motion with the same para-
meters for all (i, j), and (c) trL = 1.

The first assumption is motivated by the observa-
tions in portfolio theory that errors in mean estimation
are far more significant than covariance estimation
errors (Chopra and Ziemba 1993). Therefore, account-
ing for variations in X may be less important than varia-
tions in M (but see Remark 2). The homogeneity of risk
aversion was noted in Section 2, and this justifies set-
ting I' = I. The second assumption is common in the lit-
erature on pricing models (Geman et al. 2001, Bianchi
et al. 2013). The third assumption fixes the scale, as dis-
cussed above.

Proposition 1. Finding the maximum likelihood estimator
of X under Assumption 1 is equivalent to the following
semidefinite program (SDP):
T-1
min Z||Z(W(t+ 1) — W(b) + (W(t +1) — W(t)Z|[2

t=1

s.t. Z>=0,tr(X) = 1.
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Remark 2 (Generalization to Time-Varying ). Instead of
a constant covariance X, the time range may be split
into intervals, with covariance Z(]-) in interval j. Then,
we can add a regularizer v - Zj||2(j+1) — Xl for some
v>0 to the objective of the SDP to penalize differ-
ences between successive covariances. This allows the
covariance to evolve while keeping the objective con-
vex. The time intervals can be tuned based on heuris-
tics or prior information.

3. Insights for Regulators

A financial regulator can observe the network but does
not know the firms’ beliefs. The regulator may ask the
following. What changes in beliefs caused recently
observed changes in the network? What are the side
effects of different regulatory interventions? To answer
these questions, we need to know how changes in
firms” beliefs or utility functions affect the network.
That is the subject of this section.

3.1. Effect of Friction in Contract Formation
Our model imposes no costs for contract formation.
This is reasonable for large firms where the fixed costs
associated with contract negotiations may be small rel-
ative to the contract sizes. However, in an overheating
market, a regulator may impose frictions by penaliz-
ing large contracts, for example by increasing margin
requirements.

We model contract costs via an adding a penalty
term F;(w;) to the utility of agent 7 in Equation (1):

agent i’s utility
8i(W,P) :=w] (m; — Pe;) — v, w] Zaw; — Fi(wy).  (2)

Theorem 6. Consider a network setting where X; = ¥ and
all edges are allowed. Suppose that for each firm i € [n], the
function F;: R" — R is twice differentiable, and there exist
strictly increasing functions f;; : R — R such that for all
x € R", VF;(x) = [f1i(x1),. .., m(xn)]T. Then, there exists a
unique stable point.

Example 6. By imposing frictions, the regulator may

increase the sizes of certain contracts. For example, let

Fi(w;) =e-w+A- Z#iw;?;j for some A >¢e>0. Thus,

the cost of interfirm trades scales with the square of the

contract size (we assume € = (). Consider a network set-

ting with three firms, with y, =1, ;=X = {8:1 Oil 8:;] ,
0 1000 111.233 0105 1

and M = [1000 1 01 |. Then, Wy = W3, ~ 0 with-
1000 0.1 1

out frictions (when F;(w;) = 0) but | Wy | > 0 for A > 0.

3.2. Effect of Changes in Firms’ Beliefs
Regulatory actions can change the risk and expected
return perceptions of firms. The next theorem shows
the effect of such belief changes on the stable point.

Theorem 7. Suppose L; = 1. for all firms and let M be the
matrix of expected returns.

1. Change in beliefs about expected returns: Let X
have the eigendecomposition ¥ = VAVT. Then for i,j,k,
te(n],

8Wi]» _ 1
N

_ Z VisVisVitVar + Vis Vs Vit Vig
As + Ay '

®)

s, te[n]

In particular, Wy; is monotonically increasing with respect to
M;;.

é. Risk scaling: If the covariance X changes to cX (c >
0), then W changes to (1/c)W.

3. Increase in perceived risk: Suppose y; =y for all i,
and the covariance T increases to X' > Y. Let W and W’
be the stable points under L. and Y respectively. Then,
tr(MT(W’ — W)) < 0.

This shows that, in general, an increase in risk leads
to a decrease in the weighted average of the contract
sizes. The weights are given by the expected return
beliefs of the firms. However, individual contracts
between firms can increase, as can the norm ||W||g.
This is because increases in the covariance X may also
increase correlations, which can offer better hedging
opportunities. By hedging some risks, larger contract
sizes can be supported.

Theorem 7 also shows that a change in the perceived
expected return M;, affects all contracts Wj;. Can we
trace the changes in W back to the underlying changes
in M? For instance, consider the following problem.

Definition 7 (Source Detection Problem). Suppose that a
financial regulator observes two networks W and W’,
with the only difference being a small change in a sin-
gle entry of M (say, M;). Can the regulator identify
the pair (i, j)?

One approach is to try to infer all beliefs of all firms,
and then identify the changed belief. However, as dis-
cussed in Section 2.4, the beliefs are only identifiable
under extra assumptions and more data. An alterna-
tive approach for the source detection problem is to
find the entry (i, j) with the largest change |Wj; — Wj.
The intuition is that a change in M;; has a direct effect
on Wj; and (hopefully weaker) indirect effects on other
contracts. Thus, the source detection problem is closely
tied to the following:

Definition 8 (Targeted Intervention Problem). Can a reg-
ulator induce a small change in a single entry of M
(say, M;) such that the change in Wj; is significantly
larger than changes in other entries of W?

When all eigenvalues of X are equal (that is, X cI,),
a change in My, only affects Wy, (= W), as can be seen
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from Corollary A.1. However, when the eigenvalues
are skewed, the terms in Equation (3) corresponding
to the smallest eigenvalues have greater weight. In
such circumstances, the indirect effect of a change in
My on other Wj; can be significant. The following
empirical results show that this is indeed the case.

3.2.1. Empirical Results for the Source Detection Prob-
lem (Simulated Data). Here, we set the covariance
Y = D'2(R + £)D'/?, where D is a diagonal matrix, R a
correlation matrix, and £ a noise matrix. If £ =0, then
D;; would be the variance of firm i. We set D;; according
to a power law: Dj; =i~ for an a > 0. Larger values of o
correspond to greater skew in the variances. We choose
R to be an equi-correlation matrix with one along the
diagonal and p € (0,1) everywhere else. We draw the
error matrix £ from a scaled Wishart distribution: £ =
IR]l, - W(+/e - I, n) /n for some chosen the noise level €.
As € increases, the noise £ dominates R.

Figure 3 shows the success rate of source detection
over 1,000 experiments for various values of (e, a) for
p=0.1 and n = 50. As a increases, the variances be-
come more skewed, and the source detection can fail
even with € = 0 noise. When € grows, the success rate
for the source detection problem goes to zero. This
suggests that skew combined with noise makes source
detection difficult. These trends occur even if we only
test whether the source belongs to the 10 most changed
contracts (Figure 3(b)), as opposed to single largest
change (Figure 3(a)). We observe similar results for
real-world choices of L, as we show next.

3.2.2. Empirical Results for the Source Detection Prob-
lem (Real-World Data). We consider two data sets: (a) a
trade network between 46 large economies (OECD
2022) and (b) a simulated network between 96 portfolio

managers following various Fama-French strategies
(Fama and French 2015). For each data set, we construct
a “ground-truth” covariance X using all available data
(the details are in Section B of the supplemental materi-
als). Then, using m independent samples x; ~ N'(0, L),
we build a “data-driven” covariance % = (1/(m —1))
S (e — ) (xi— ), where i =(1/m)> 1 x; is the
sample mean. We use this X to construct the finan-
cial network.

Figure 4 shows the success rate over 500 experiments
for various choices of the sample size m. The success
rate increases monotonically with m. The reason for
this behavior lies in the spectra of © and ¥. We find
that in both data sets, the largest and smallest eigenva-
lues of X are separated by several orders of magnitude.
This gap becomes even more extreme in the data-

driven ¥; the fewer the samples 1, the greater the gap
(Figure 5). In fact, we observe that the smallest eigen-
value of ¥ is much smaller than the second-smallest
eigenvalue: A, < A,_1. Zhao et al. (2019) make similar
observations.

In summary, the experiments on both simulated and
real-world data sets highlight the difficulty of source
detection and targeted intervention in realistic net-
works. The reason is the skew in the eigenvalues cou-
pled with noise, which affects the eigenvectors. Skewed
eigenvalues correspond to trade combinations (eigen-
vectors) that are seemingly low risk. Hence, firms use
such trades to diversify. This implies that these eigen-
vectors have an outsized effect on the network and how
it responds to local changes. Intuitively, if these eigen-
vectors are “random,” the effect of a changed belief My,
affects the rest of the network randomly. Hence, the
direct effects on Wy, may be less than the indirect effects
on other Wj;. We explore this theoretically in Section
A.12 of the supplemental material.

Figure 3. Source Detection Problem in a Noisy Scaled Equi-Correlation Model of X

(a) Predict most shifted contract as source
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(b) Predict top-10 most shifted contracts
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Notes. We rank the entries of W by the magnitude of change induced by a change in one entry of M (Mj). (a) Fraction of times W;; is most-
changed entry of W. (b) Fraction of times W; is among the top 10 most changed entries of W. The success rate goes to zero as & and € increase.
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Figure 4. Source Detection Problem on Real-World Data

(a) Simulated network of 96 portfolio managers
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(b) 46-country (OECD) trade network
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Note. The success rate scales monotonically with the number of samples used to construct the data-driven covariance matrix 3.

4. Insights for Firms

Until now, we treated the beliefs of firms as fixed and
exogenous. In this section, we consider how a firm can
use its contracts to gain insights into other firms and
update its beliefs.

For instance, suppose a firm j faces a crisis, for exam-
ple, a looming debt payment that may make it insol-
vent. The firm may then become risk seeking (i.e.,
lower its ;), hoping that the risks pay off. Another firm
i may be unaware of the crisis, so i’s risk perceptions
(perhaps based on historical data) would be outdated.
Can firm i infer the lower y;, solely from i’s contracts w;
with all firms? What if a group of firms become risk-
seeking, and not just one firm?

4.1. Detecting Outlier Firms
Intuitively, firm i will try to answer these questions by
comparing the behavior of firm j against other similar

firms. We formalize this by assuming that each firm j
belongs to a community 0;, for example, banking, real
estate, or insurance, and so on. The community of each
firm is publicly known. Firms in the same community
are perceived to have similar return distributions:

M = (0, 6)) +€p,;, Ly = 8(05,6)),
Vi = h(@,) + €; (4)

for some unknown deterministic functions f(.), g(.),
and h(.) and random error terms €; and €}, i We also
assume that all firms use the same covariance X.

Now, suppose one firm j is an outlier, with very dif-
ferent beliefs from other firms in its community. For
firm i to detect the outlier firm j, the contract size Wj
should deviate from a cluster of contracts {W;; |0y = 0;}
of other firms from the same community as firm j. Now,
outlier detection methods often assume independent

Figure 5. Eigenvalues of Estimated Covariance Matrices Are Skewed, and the Degree of Skew Depends on the Number of Samples m

(a) Simulated network of 96 portfolio managers
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(b) 46-country (OECD) trade network
Spectra of Z, 3 from OECD Quarterly International Trade Data
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Note. Asm decreases, so does the smallest eigenvalue A, and the ratio A, /A,_1.
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Figure 6. Success Rate for Detecting Outlier Risk-Seeking Firms
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Note. Detection is easier when there are fewer firms and when the risk-seeking firm’s y_ .., is more standard deviations away from the y of the

normal firms.

datapoints. In our model, all contracts are dependent.
However, we can still do outlier detection if the con-
tracts are appropriately exchangeable. We prove below
this is the case.

Definition 9. An intracommunity permutation is a per-
mutation 7t:[n] — [n] such that 7(/) = implies that
91‘ = 9]

Proposition 2. Suppose M, L, I" exhibit community struc-
ture (Equation (4)), and all the error terms (€;);e, and
(€5, )i jetny are independent and identically distributed.
Let 1 : [n] — [n] be any intracommunity permutation, and
let TT: R" — R" be the corresponding columm-permutation
matrix: I1(e;) = ey(;). Then, W and [T'WIT are identically
distributed.

Corollary 1. Let fi,...,ju € [n] belong to the same com-
munity: 0; =---=0;,. Suppose the conditions of Proposi-
tion 2 hold. Then, for any i € [n], the joint distribution of
(Wi, ..., Wi;,) is exchangeable.

4.1.1. Empirical Results for Outlier Detection. We gen-
erate community-based networks (Equation (4)) such
that y, ~ N(1,0?) truncated to [0.5,1.5]. The smaller the
o, the more closely the y; values cluster around one. For
the outlier risk-seeking firm, we set y_ ... =0.5. For
clarity of exposition, we set e’ = 0 everywhere.

To detect outliers under exchangeability (Corollary
1), we can use methods based on conformal prediction
(Guan and Tibshirani 2022). Here, we use a simpler
approach: pick the firm j with the largest contract
size as the outlier;  := arg maxe(,, ... i,y | Wi ;|- To test
sensitivity to false negatives, we also test whether the
outlier is among the five largest contracts in {|W; ;] :
j=ji,--., jm}. We run 500 experiments for each choice
of ¢ and count the frequency with which the outlier

firm is detected via its contract size. Further details
are presented in Section B.3 of the supplemental
material.

Figure 6 shows the results. We characterize the degree
of outlierness by how many standard deviations away
Youtlier 18 from the baseline of one. The smaller the o, the
more the outlierness. The success rate increases with
increasing outlierness, as expected. It also increases
when the number of firms 7 is reduced. This is because
contract sizes depend on the y values of all firms; fewer
firms reduces the chances of any one firm attaining large
contract sizes due to randomness.

4.2. Risk Aversion vs. Expected Returns

The discussion above shows that a firm can detect out-
lier counterparties. However, the firm cannot determine
why the counterparty is an outlier, as the following theo-
rem shows.

Theorem 8 (Nonidentifiability of Risk Aversion Versus
Expected Returns). Consider two network settings S = (m;,
LY it and S = (i, 2,y )iepw) that differ only in the risk
aversions of firms | = {jl)/j #7; } C [n]. Then, there exists a
setting S* = (L, 7,)icpn such that p; = pf for all i¢]
and the stable networks under S* and S’ are identical.

Thus, one cannot determine whether an outlier is
more risk seeking than its community or expects higher
profits. However, risk-seeking behavior may be indica-
tive of stress while higher profits than similar firms are
unlikely. Hence, in either case, the firm detecting the
outlier may choose to reduce its exposure to the outlier.
However, this approach fails if an entire community
shifts its behavior. The following example illustrates
the problem.

Example 7. Consider two communities numbered 1
and 2, with n; and #n;, firms, respectively. Let the setting
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S of Theorem 8 correspond to
a if 61' = 6] =1
M,']'= b if9i=6j=2

c/2  otherwise
1 if 9,‘ = 6] =1
Zi]‘= 1 1f91=6]=2 )/1':1'

0 otherwise

Now, suppose that under setting S’, y, 7y, +0 for
some small 6 for all nodes i in community 1. The
change in the network would be the same if we had
updated the columns corresponding to community 1
in the M matrix instead (setting S*):

M} = My + A(6;, 6,)A(6;, ) + O(5%)

—(361/2 if 91':9]':1
= 76b'n2/(711+n2) if9i=2,9j=1
0 if 0, =2.

Thus, a firm from community 2 cannot determine
whether the network change was due to a change in
(Y:)o,1 Or (1;)g,1 - For instance, when b > 0, an increase
in risk-seeking (6 < 0) looks the same as an increase in
trading benefits (A(1,2) > 0). In the former case, firms
in community 2 should reduce their exposure to com-
munity 1 firms. However, in the latter case, they should
increase exposure. Because the data cannot be used to
choose the appropriate action, the behaviors of firms
may be guided by their prior beliefs or inertia. When
such beliefs change due to external events (e.g., due to
news about one firm in community 1), the resulting
change in the network may be drastic.

5. Conclusions

We proposed a model of a weighted undirected finan-
cial network of contracts. The network emerges from
the beliefs of the participant firms. The link between
the two is utility maximization coupled with pricing.
For almost all belief settings, our approach yields a
unique network. This network satisfies a strong higher-
order Nash stability property. Furthermore, the firms
can converge to this stable network via iterative pair-
wise negotiations.

The model yields two insights. First, a regulator is
unable to reliably identify the causes of a change in net-
work structure, or engage in targeted interventions.
The reason is that firms seek to diversify risk by exploit-
ing correlations. We find that in realistic settings, there
are often combinations of trades that offer seemingly
low risk. Hence, all firms aim to use such trades. The

overdependence on a few such combinations leads to a
pattern of connections between firms that thwarts tar-
geted regulatory interventions.

The second insight is that firms can use the network
to update their beliefs. For instance, they can identify
counterparties that behave very differently from their
peers. However, the cause of the outlierness remains
hidden. If all firms in one line of business become more
risk-seeking, the result is indistinguishable from that
business becoming more profitable. Innocuous events
(such as a news story) may cause beliefs to change sud-
denly, leading to drastic changes in the network. In
addition to identifying risky counterparties, firms may
use the network to update their mean and covariance
beliefs. For example, a firm that suffers significant
losses on its current trades may be judged by others to
be a riskier counterparty for future trades. We leave
this for future work.

Our work focuses on mean-variance utility, but
some of our results are applicable in other settings
too. A second-order Taylor approximation of a twice-
differentiable concave utility matches the form of a
mean-variance utility. Hence, results based on mean-
variance utility can be useful guides for small pertur-
bations around a stable point. Some of our results for
pairwise negotiations and targeted interventions are
based on such perturbation arguments.

Finally, contract formation under budget constraints
is an important direction for future work. In Theorem 6,
we only consider contract frictions that depend on a
firm’s contract sizes. To model budget constraints, we
must also consider the contract prices. These require
different techniques than our approach, which is based
on results from Sandberg and Willson (1972) (see Sec-
tion A.15 in the supplemental material).
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Appendix

A.1. Proof of Theorem 1

Recall that Q;=WI(Q2y,W,r, W) "W, F={(lj):1<i<j<
n,Wie; # 0}, and uvec(X) € R is a vector whose entries are
the ordered set {Xj|(i,j) € F}. Note that W] is positive
definite because it is a principal submatrix of the positive defi-
nite matrix X;.

Proof of Theorem 1. For clarity of exposition, we first prove
the result when all edges are allowed, and then consider the
case of disallowed edges.

(1) All edges allowed. Here, E ={i,j|1 <i <j < n}, and
we use uvec(.) and Z to refer to uvec(.); and Zg in the theo-
rem statement. For any price matrix P with P = —PT, consider
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the matrix W whose jth column has the utility-maximizing
contract sizes for agent j:

Wy = el W] (2y,W,5,W)) W) (M — Pe;
=e; Q;(M — P)e;.

The tuple (W, P) is stable if W = WT. Therefore, for all i < j,
we require

Wi = W;i (A1)
=e/Qj(M—P)ej = e/ Qi(M — P)e;
= e/ Q;Me; — e Q;Me; = e/ Q;Pe; — e/ Q;Pe;
—el(A—AT)e; =] (QiP — (QiP)")e;. (A.2)

Because P = —PT, we must have P = R — RT, where R is upper-
triangular with zero on the diagonal. Hence, using Q; = Q7,

we have
el (QiP — (QiP)")e; = el (Q;P + PQ))e;
= trP(e]-eiTQ]- + Qie]-e[T)
= tr(R — R")(By; + B, )
= trRTC(,»,j)
= uvec(R)Tuvec(C(,-, )

where we used the upper-triangular nature of R in the last
step. Plugging into Equation (A.2), a stable point exists if and
only if there is an appropriate vector p := uvec(R) € R""~1/2
such that for all 1 <i<j<mn, el (A—AT)e = uvec(C(,j) p.
This is equivalent to uvec(A — AT) = Zp. If such a solution
vector p exists, then by definition, it corresponds to a matrix
P=—PTviaP =R~ RTand p = uvec(R).

(2) Disallowed edges. If {i, j} is a prohibited edge then
Wie;=Wie; =0, so B =B()=0, so eTZ 0. Also, Aj=
A,, =0 so uvec(A — A"); = 0. Therefore, the equality el (A —
AT)ej = uvec(Cy;, ])) x is achleved for any solution vector x if
{i, j} is a prohibited edge. We can therefore reduce the linear
system Zp = uvec(A — AT) from part (1) by deleting rows of
Z corresponding to prohibited edges.

Similarly, because the system is constrained by p;; =0 for
prohibited edges {i, j}, the columns of Z corresponding to
such edges have no effect on the solution set.

We conclude that the linear system in (1) is equivalent to
the (unconstrained) reduced system Zrp; =uvec(A —AT)g.
Each solution p; corresponds to a skew-symmetric P by con-
struction. Finally, if Zp has full rank then the unique reduced
solutionis pp = Zzluvec(A — AT).. O

A.2. Stable Network for the Shared Covariance Case
In the case of a shared covariance matrix for all agents, we
can give a closed form expression for the stable network.

Corollary A.1 (Shared %, All Edges Allowed). Suppose ¥; = &
and V; = 1, for all i € [n]. Let (A;,v;) denote the ith eigenvalue and
eigenvector of T~ 12LT /2. Then, the network W can be written in

two equivalent ways:

1
vec(W) =@ +X ®TI) 'vecM +MT),

i=1 j=1

ol T-1/2
2(A; + /\])

(M + MT)F_l/zv 0;0; )T‘l/z

The prices can be written as

veeP) =T 'or ' +2 ' @I ") 'vec(z 'MI!

—T M2
Tl—'l/Z

- (ZZ/\ A

i=1 j=1

EIMr - T MTE Y 000! )rl/z

Proof. We first prove the identity with vec(W).

For each agent i the optimal set of contracts is given as
w; = (Zini)_l(M — P)e;. Because X; = L for all i, we obtain
W=12"'(M—-P)''. Hence M — P = 2LWT. Using W = W'
and PT = —P for a stable feasible point (W, P), we obtain
WL +TWE =1(M+M").

Vectorization lmphes T ®X+EZ®T)vec(W) = Lvec(M +MT).
It remains to show that (T' ® £ + X ®T') is invertible.

Let K:=(T® L +X®T) for shorthand. Notice K = (I'/? ®
2 (1er=12y 1712417125112 [)(T'? @T/?). Let K’ =
([T V2xr12 4 1712512 ®1). Because (I'/>@T"?) is in-
vertible, it suffices to show K’ is invertible.

Properties of Kronecker products imply that if a matrix A €
R has strictly positive eigenvalues, then c(I@ A+ A®I) =
{A+u: A, uea(A)} counting mutiplicities (Horn and Johnson
1994). Let v # 0. Then, because X > 0 and I Y2 >0, we obtain
oI 1250129 = (1-120)'2(0/?v) > 0. Hence, I 1/25r1/2
>0, so K’ is invertible, and hence K is invertible. This proves
the first identity.

Next, we prove the second identity. Properties of Kronecker
products 1mply that (K’)"! has eigendecomposition (K’) "
P Z; =17, +/\ T (0 ®0)(v; ®v])

Therefore, because (I'/2 @ T1/2) 7!

vec(W)

_(1" 1/2®r I/Z)ZZA A(vz®v])

i=1 j=1

T
(v;i® v]v)T(l"’l/2 oI ?)vec (@)

=T 2®T"/?), we obtain

= (T~ 1/2 I 1/2 1—'71/2 T 1—*71/2
=T e );;2@ A)Vec( (M+M"r1/2)

n Trfl/Z

(712 oT-1/2 - Y T\[=1/2) - T
(r12er )vec(ZZz(Ai+/\j)(M+M ) v]v,v])

i=1 j=1

n T 1/2
W=r"12 <222(Ar+ 1 )(M + MO 00,0] >F‘1/2.

i=1 j=1
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Finally, the formulas for vec(P) and P follow from similar rea-
soning, usingW=W"and W=12'(M-PI"". O
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