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MOTIVATION 
With the significant advancement in organoid technology, there is a critical need of optimization pipeline that can 
evaluate the designs of organoid systems under controllable engineering parameters. Integrating micropatterning-
based organoid engineering and machine learning techniques, we can quickly analyze the total functional outputs 
of a single organoid and evaluate the impact of engineering inputs on organoid physiology from a cardiac 
organoid library with 7 geometric designs. AI-driven analytical approaches were applied to not only understand 
functional heterogeneity from single cardiac organoids, but also provide mechanistic insights of physiological 
enhancement associated with different geometric designs. 
 
SUMMARY 
Stem cell organoids are powerful models for studying organ development, disease modeling, drug screening, and 
regenerative medicine applications. The convergence of organoid technology, tissue engineering, and artificial 
intelligence (AI) could potentially enhance our understanding of the design principle for organoid engineering. In 
this study, we utilized micropatterning techniques to create a designer library of 230 cardiac organoids with 7 
geometric designs. We employed manifold learning techniques to analyze single organoid heterogeneity based on 
10 physiological parameters. We clustered and refined our cardiac organoids based on their functional similarity 
using unsupervised machine learning approaches, thus elucidating unique functionalities associated with 
geometric designs. We also highlighted the critical role of calcium rising time in distinguishing organoids based 
on geometric patterns and clustering results. This innovative integration of organoid engineering and machine 
learning enhances our understanding of structure-function relationships in cardiac organoids, paving the way for 
more controlled and optimized organoid design. 
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INTRODUCTION 
 
Stem cell organoids have served as valuable models for elucidating the intricate interplay between structural 
architecture and physiological functionality essential for proper tissue development. Various engineering 
techniques are employed to generate organoids, such as cell aggregation, surface patterning, and microfluidics, 
aiming to gain precise control over organoid tissue patterning, structure, and functions1–3. Heart organoids 
demonstrated great potential in recapitulating both morphogenic events and functional outputs. Notably, heart-
forming organoids were developed by embedding human induced pluripotent stem cell (hiPSC) aggregates in 
Matrigel and differentiating through modulation of the canonical WNT pathway4. These cardiac organoids 
showed distinctive spatial organization of myocardial, endocardial, and septum-transversum-like tissue layers. 
More importantly, cardiac organoids showed nascent chamber formation, resembling ventricular and atrial 
structures akin to embryonic hearts56,7. It is noteworthy that most cardiac organoids hitherto have been developed 
from 3D hiPSC aggregates, which typically lack precise control over size and geometry. Our cardiac organoids 
were produced using micropatterning techniques that allow geometric control of hiPSC differentiation and 
organoid formation8.  
 
Despite the advances in organoid technology, there is still a lack of optimization pipeline that can evaluate the 
design of organoid systems under controllable engineering parameters. Understanding organoid design principle 
necessitates a comprehensive analysis of multiple variables concurrently, thereby elevating the dimensionality of 
data analysis and visualization. Many toolsets like dimensionality reduction (DR) and machine learning (ML) 
techniques have been widely utilized in bioinformatics to process, analyze, and disseminate large quantities of 
complex high-dimensional data, while their applications remain largely untapped when it comes to the analysis of 
physiological properties of organoids. Particularly in cardiovascular research, ML has emerged as a powerful tool 
for risk prediction by detecting abnormal cardiac events from physiological data, such as electrocardiogram 
(ECG)9–12. For example, deep learning with embedded autoencoders exhibited remarkable accuracy in predicting 
arrhythmias from patient ECG data13. Beyond clinical applications, ML techniques are gaining momentum in 
hiPSC-based in vitro model systems and drug screening platforms14,15. Integrating ML with traditional peak-
analysis methods could mitigate data dimensionality, thereby enhancing predictions related to cardioactive effects 
and the mechanistic actions of cardioactive drugs. For example, our recent work demonstrated that nonlinear data 
processing techniques increased the accuracy of ML models to predict drug cardiotoxicity16. Recently, a 
convolutional neural network was trained to encode the membrane potential data collected from hiPSC-derived 
cardiomyocytes (hiPSC-CMs) for classification purposes. This deep learning-based approach enabled the 
calculation of EC50 value for tested drugs based on their proarrhythmic possibility and derivation of torsadogenic 
safety margin to classify the cardiotoxicity risk17. 
 
Despite the promising progress in the field of cardiotoxicity, there remains limited studies that apply AI 
techniques to the engineering design of cardiac organoids. The efficient contraction of cardiac muscles hinges on 
the proper tissue organization that facilitates their function. These concepts are increasingly applied in tissue 
engineering applications, shedding light on how biomaterial design can influence tissue structure and function18,19. 
However, reconceptualization of the design principles of cardiac organoids might require a full cycle of design, 
build, test, and learn from a relatively large organoid library created under controlled engineering parameters. 
With increasing sophistication of engineered heart models, the integration of ML approaches becomes 
increasingly valuable for evaluating how engineering parameters affect cardiac function. In this work, we took the 
advantages of micropatterning technique to create a cardiac organoid library with 7 geometric designs from 
circles, rectangles, to stars with varied aspect ratios, aiming to elucidate how organoid’s geometry would affect 
their physiological functions. To achieve this, we introduced an ML-based workflow to analyze over 200 cardiac 
organoids with 10 unique cardiac function variables from contractile motion and calcium transient analysis 
performed at Differentiation Day 20. Different AI-driven approaches (Figure 1a), including manifold learning, 
unsupervised data clustering, and ensemble learning, were further applied to not only understand functional 
heterogeneity from single cardiac organoids, but also provide mechanistic insights of physiological enhancement 
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associated with different geometric designs. Our unsupervised organoid refinement process based on network 
analysis could reduce the organoid heterogeneity without human bias and identify the shape-determining 
physiological properties. This AI-based workflow for organoid analysis and refinement can be potentially used for 
organoid optimization to tailor cardiac organoid morphogenesis and contractile functionality, providing unbiased 
guidelines for future “organoid-by-design”. 
 
RESULTS 
 
Generation of cardiac organoids from different geometric designs 
Using PEG-based surface micropatterning techniques20, we were able to micropattern hiPSCs and generate 
cardiac organoids with different 2D geometric designs: circles with varying sizes (200 µm, 600 µm and 1000 µm 
in diameter); rectangles and stars with same area as 600-µm diameter circles. Rectangle designs were varied based 
on length-width aspect ratio: 1:1 and 1:4. Star designs varied based on area ratio between center pentagon and 
triangular vertices. For star 1:1, both center pentagon and triangular vertices have the same area, giving large 
center area with short and blunt vertices, while for star 1:4, triangular vertices have the total area 4-times larger 
than the center pentagon, giving small center area with long and sharp vertices. The cardiac organoids were 
stained with cardiac troponin T (cTnT) and actin, which showed the cardiac tissues localized at the central region 
of the organoids (Figure 1b). Cardiac organoids were generated from micropatterned hiPSCs with calcium 
fluorescent reporter (GCaMP6f), enabling calcium transient analysis without using calcium dye (Figure 1c). 
Meanwhile, brightfield beating videos were taken from the same cardiac organoids for contractile motion analysis 
(Figure 1d & 1e). These two measurements gave us total 10 different physiological variables, including beat rate, 
contraction velocity (Cont_Vel), relaxation velocity (Relax_Vel), contraction-relaxation interval (Cont-Relax 
Interval), fluorescent amplitude (Ca Amp), calcium rising time (t0), calcium decay time (t50 and t75), pulse duration 
(FWHM), and area ratio between the projected area of GCaMP fluorescence) and the area of the original 2D 
pattern design (Area Ratio).  
 
From 7 geometric designs (circle-200, circle-600, circle-1000, rectangle 1:1, rectangle 1:4, star 1:1, and star 
1:4), we collected 230 cardiac organoids, and each of them contained 10 physiological variables measured at 
Differentiation Day 20. First, we performed a hierarchical clustering of these organoids to evaluate the functional 
closeness of the organoids produced from different geometric designs (Figure S1a). Overall, circle-200 organoids 
showed a distinct functional profile compared to all the other organoids. The organoids from star shapes (1:1 and 
1:4) and rectangle 1:1 had a relatively closer relationship. Next, we examined the correlation between different 
physiological parameters for the organoids from different shapes (Figure S1b). In general, Ca decay time (t50 and 
t75), FWHM, and Cont-Relax Intervals had a strong positive correlation among themselves, but a negative 
correlation with beat rate. Interestingly, the area ratio had a positive correlation with calcium dynamics (FWHM, 
t50 and t75) for the large circle (600 and 1000) and rectangle 1:1 organoids, but a negative correlation for the 
rectangle 1:4 and small circle-200 organoids, indicating that geometric inputs altered the correlations between 
physiological functions of the cardiac organoids. Though these bulk analytical methods demonstrate the overall 
similarity among various organoid shapes, they are limited in capturing the inherent heterogeneity within the 
organoid population. 
 
Profiling single organoid heterogeneity using manifold learning 
To understand the functional heterogeneity from single organoids, we used unsupervised ML techniques to reduce 
10 physiological variables into 2D space for data visualization and clustering. Four manifold learning algorithms 
were used to visualize high-dimensional data and investigate the relationships within the same cardiac 
physiological dataset, including t-distributed stochastic neighbor embedding (t-SNE), uniform manifold 
approximation and projection (UMAP), triplet manifold approximation and projection (TriMAP), and pairwise 
controlled manifold approximation and projection (PaCMAP). These four algorithms have different strengths in 
regard to preserving the global or local structure of higher dimensional data (Figure 2a).  
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Both t-SNE and UMAP algorithms have been widely used in single-cell transcriptomics analysis. t-SNE assigns 
probability distributions over the high-dimensional data points in the low-dimensional map but skews more 
toward preserving local data structures21. UMAP improves upon t-SNE by using non-normalized exponential 
probability distribution that is not dependent upon Euclidean distances22. These two manifold learning algorithms 
showed similar organoid distribution with different geometric designs. Distinct separation was observed from 
small circle-200 organoids from the other larger organoids (Figure S2a and S2b). In addition, there is an obvious 
separation of star (1:1 and 1:4) organoids away from circle (600 and 1000) and rectangle 1:4 organoids. TriMAP 
improves the preservation of global data by using triplet constraints to embed into a lower dimensional space. 
Instead of just comparing two unique measures in the pairwise analysis of t-SNE and UMAP, TriMAP conducts a 
pairwise analysis of two possible neighbors with an additional third point outside of the nearest neighbors. This 
ensures that globally distance points remain distant at the expense of less accurate local pairings. TriMAP helped 
the separation of larger organoids (circle-600, circle-1000, and rectangle 1:4) over the smaller ones (Figure S2c). 
We also found that circle-200 organoids had a closer relationship to star-shaped organoids in TriMAP, in 
comparison to t-SNE and UMAP. Furthermore, we tested a manifold learning algorithm, PaCMAP, which 
conducts an adaptive pairwise analysis where a single point is trained on both a local neighbor and a distant 
neighbor within the same iteration, aiming to better preserve global higher dimensional data structures. In our 
data, PaCMAP sacrificed the clear separation among organoids that was observed from other learning algorithms 
(Figure S2d). However, it illustrated a gradient change of organoid functions cross different geometries: starting 
from the circle-200 organoids at the bottom-left of the graph to the star 1:1 organoids, next to a mixture of star 1:4 
and rectangle 1:1 organoids, and then rectangle 1:4 organoids, and lastly branching into circle-1000 and circle-
600 organoids at the top-right of the graph. Overall, different algorithms demonstrate their capability of mapping 
organoid heterogeneity, t-SNE and UMAP perform better on separation of organoid clusters, while TriMAP and 
PaCMAP perform better on elucidation of global relationship of organoids with different geometric designs. 
 
Unsupervised organoid clustering based on physiological functions 
Next, we clustered the organoids into 7 clusters using the k-means clustering algorithm based on the low-
dimensional data extracted from each manifold learning method (Figure 2b). This approach allows us to identify 
the organoids in close proximity to one another and to explore variations in clusters produced by different 
manifold learning algorithms. From the composition tables (Table S1), circle-200 organoids only grouped into 
one cluster across different methods (cluster 4 for t-SNE, UMAP, TriMAP, and cluster 5 for PaCMAP). Circle-
600 organoids had a better clustering efficiency (>60% coverage across different methods) than the circle-1000 
organoids, which showed higher heterogeneity in TriMAP and PaCMAP. In contrast, star-shaped organoids were 
grouped into several different clusters, indicating that complex geometries produced the cardiac organoids with 
highest functional heterogeneity. In addition, different manifold learning methods showed different efficiency in 
clustering rectangle-shaped organoids: t-SNE (cluster 2) and UMAP (cluster 6) had >90% coverage of rectangle 
1:4 organoids, while TriMAP (cluster 1) had 93% coverage of rectangle 1:1 organoids. This suggests that further 
analysis should be performed to investigate the overlapping organoids between the clusters produced from 
different manifold learning methods. 
 
To identify the key physiological differences associated with organoid clustering, we then performed statistical 
comparison of the physiological variables for different organoid clusters (Figure 2c). The circle-200 organoid 
cluster showed a significantly longer calcium transient duration (decay time and FWHM) and contractile cycle 
duration (Cont-Relax Interval). We also identified the organoid clusters with highest contractile motion velocity 
(Cont_Vel and Relax_Vel) from t-SNE (cluster 7), UMAP (cluster 2), and TriMAP (cluster 6) are mostly 
comprised of circle-600 organoids. The organoid clusters with largest area ratio were cluster 2 (t-SNE), cluster 6 
(UMAP), cluster 2 (TriMAP) and cluster 4 (PaCMAP), from which more than 60% organoids were generated 
from rectangle 1:4 shape. Notably, these clusters also had shortest calcium rising time (t0), indicating fast calcium 
handling capability. Surprisingly, a cluster that clearly stood out from all the dimensionality reduction (DR) maps 
(cluster 1 in t-SNE, cluster 7 in UMAP, cluster 7 in TriMAP, and cluster 6 in PaCMAP) was comprised of mostly 
star 1:4 organoids, which showed relatively faster contractile velocity (Cont_Vel and Relax_Vel) and longer 
contractile duration (FWHM and Cont-Relax Interval). 
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Unsupervised organoid refinement through network analysis on shared organoid communities. 
We generated a total of 28 organoid clusters from 4 manifold learning algorithms that re-grouped these shape-
patterned cardiac organoids based on functional similarity (Figure 3a). To further elucidate the interconnectivity 
among these organoid clusters, we performed a network analysis by identifying co-presenting organoids across 
the clusters from different DR maps (Figure 3b). For example, UMAP cluster 3 shared the organoids of star 1:1 
shape that also presented in the t-SNE cluster 5, TriMAP clusters 4 and 5, PACMAP clusters 2 & 5. Next, we 
computed the number of connecting clusters (Figure 3c) for each cluster to rank their interconnectivity. From this 
network analysis, we can easily conclude that circle-200 organoids are self-contained within the clusters that have 
least connectivity with other geometries. In contrast, PaCMAP had 3 clusters ranked in the top 6 clusters, 
including the top 1 cluster with the highest connectivity, indicating that PaCMAP method resulted in relatively 
poor organoid clustering due to its preservation of global organoid relationships. To better understand the 
community structure within our organoid cluster network, we performed fast greedy optimization that can gather 
the nodes into the communities where there are more connections within the community but fewer connections 
between them (Figure 3d). The organoid cluster network can be divided into 6 geometry-representing 
communities. Rectangle 1:1 community is the centroid of the network, while circle-200, rectangle 1:4, and star 
1:4 communities are distant satellites. Interestingly, only 6 organoid communities were grouped in comparison to 
7 geometric designs. Circle 1000 organoids were split into rectangle 1:4 communities and circle 600 communities, 
but not presented as the dominant organoid population in either community.  
 
From these organoid cluster communities, we refined our organoid population by only retaining the organoids 
presented within its own community and meanwhile pruning the organoids shared by two or more communities 
(Figure S3a). This network-based unsupervised organoid refinement can reduce the organoid heterogeneity 
observed in the clustering results and elevate the core organoid representatives for each geometric design (Figure 
S3b). This process improved the correlation between the physiological variables for the organoids (Figure S3c & 
S3d). For example, area ratio and contraction velocity showed much stronger positive correlation with contractile 
duration parameters (FWHM, Cont-Relax Interval, t50, and t75) after refinement than before. Interestingly, 
improved correlation indicated that area ratio had a positive relationship with contraction velocity but a negative 
relationship with relaxation velocity. More importantly, this unsupervised organoid refinement did not 
significantly alter the overall data distribution within each organoid design (Figure S4) but enhanced the 
statistical power for the comparison between different organoid shapes (Figure S5). It allows us to identify the 
unique physiological properties associated with geometric designs of the organoids (Figure 3e). Compared to the 
entire organoid population, refined circle-200 organoids had most physiological variables (6 variables), followed 
by refined rectangle 1:4 organoids with 5 variables, which can distinguish them from the other organoids. For 
example, refined circle-200 organoids had longer time durations (e.g. FWHM, t75), while refined rectangle 1:4 
organoids had shorter ones. For the other shapes, refined star 1:4 organoids intended to associate with smaller area 
ratio, refined star 1:1 organoids with longer Ca rising time t0, and refined rectangle 1:1 organoids with faster beat 
rate. Interestingly, refined circle-600 organoids were not significantly different from the entire organoid 
population, which makes them the baseline organoids for future comparison. 
 
Identifying shape-determining physiological variables using ensemble machine learning classifiers 
Finally, we used ML techniques as a hypothesis-generating platform to provide biological basis underlying the 
phenotypic changes of cardiac organoids attributed to different geometric conditions, as well as the driving force 
behind the apparent organoid clusters in different DR maps. We employed two ensemble machine learning 
techniques: Random Forest (RF) and Extreme Gradient Boosting (XGB), which construct hierarchical decision 
models in which each node makes a decision based on a conditional test. The resulting model comprises multiple 
decision nodes in a flowchart structure that loosely resembles a tree structure with multiple branches. Ensemble 
learning models also allow us to trace every optimized decision through the hierarchy of decisions and investigate 
the importance of each feature on the model's predictions. To assess feature importance, we employed the 
permutation feature importance method, which quantifies the reduction in impurity or uncertainty at each branch 
of the model when evaluated on a held-out testing group. 
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These two classifiers RF and XGB were trained in parallel using 10 physiological variables from 230 cardiac 
organoids (Figure 4a). The classification of cardiac organoids into different geometric shapes resulted in 
comparable accuracy for both algorithms (79% for RF and 76% for XGB). For the classification of cardiac 
organoids into corresponding clusters in different DR maps, XGB outperformed RF for the organoid clusters in t-
SNE and UMAP (accuracy: GB 95% vs RF 88%), but both models shared the same accuracy for the organoid 
clusters in TriMAP and PaCMAP (accuracy: 86%). These evaluations verified that our ML models can 
successfully classify the cardiac organoids based on their geometric shapes and functional clusters, thus we can 
use them to assess the feature importance from the classifiers trained to make corresponding predictions. We 
found that both RF and XGB classifiers trained to distinguish the organoids with different geometric shapes used 
Ca2+ rising time (t0) as the most important feature at ~20% of the model (Figure 4b), followed by contraction 
velocity and area ratio as second and third features. Surprisingly, Ca2+ decay time (t50 and t75), which generally 
are general indicators of arrhythmic behaviors of cardiac tissues, are not deemed as important features associated 
with geometry prediction. For classification of organoid clusters, both RF and XGB classifiers used the same 
feature as the geometry classification, Ca2+ rising time (t0), as the most important feature for model prediction 
(Figure S6). These suggested the consistency of the most important physiological function of cardiac organoids 
between geometric design and functional clustering. However, the second feature in classifying the organoid 
clusters was beat rate, indicating that organoid clustering based on manifold learning is more dependent on beat 
rate, instead of contraction velocity.   
 
Experimental validation of AI discovery. 
Based on the results of unsupervised machine learning, we found that rectangle 1:4 organoids were significantly 
enriched in the organoid population during the organoid refinement process due to their unique functionality with 
enhanced calcium handling capability. In comparison, the physiological properties of circle-600 organoids 
showed no significant difference from the entire organoid population, which makes them the baseline organoids 
to represent overall cardiac organoid physiology. Therefore, we compared rectangle 1:4 organoids (function-
enhanced organoids) and circle 600 organoids (baseline organoids) using an ACTN2-reporter hiPSC line to 
visualize the sarcomere structures. We tracked the morphological changes of the same living organoids during the 
cardiac differentiation (Day 0 – Day 20) (Figure 5a & 5b). Overall, we observed that the onset expression of 
sarcomere a-actinin started from Day 8/9 for both rectangle and circle organoids. On Day 20, we fixed the 
ACTN2-organoids for confocal microscopy and reconstructed 3D organoid images of rectangle and circle 
organoids (Figure 5c). From zoom-in individual images of these organoids, we observed better alignment of 
sarcomere structures in the rectangle 1:4 organoids, but random sarcomere organization from the circle 600 
organoids due to the lack of anisotropic geometric confinement (Figure 5d). Quantitative sarcomere analysis 
showed no significant difference in sarcomere distance (Figure 5e), but a higher sarcomere orientation score from 
rectangle 1:4 organoids, indicating better sarcomere alignment (Figure 5f). Lastly, we observed that the height of 
the circle 600 organoids was taller than the rectangle 1:4 organoids (Figure 5g), which indicated anisotropic 
patterns might limit the organoid growth in 3D. 
 
Next, we performed bulk RNA sequencing on rectangle 1:4 and circle 600 organoids to elucidate the 
transcriptomics difference between these two distinct organoid populations. Principle component analysis (Figure 
6a) and hierarchical clustering (Figure 6b) showed a clear separation between rectangle and circle organoids and 
significant difference in gene expression patterns. Overall, we observed that rectangle 1:4 organoids showed 
enhanced expression of sarcomere-related genes (MYL2, MYL4, MYH6, MYH7, TNNT2, and TNNC1), calcium 
handling (RYR2, CACNA1C), and epicardial differentiation (TBX18, WT1, TCF21) (Figure 6c). The gene 
associated with gap junction (GJA1), ion exchanges (ATP1A1, ATP1B1, ATP2A2), and stromal cell 
differentiation (TAGLN, ACTA2, SMTN) were found no significant difference between these two cardiac 
organoid populations. Surprisingly, rectangle 1:4 organoids showed an increased expression of transcriptional 
factors related to the first heart field (TBX5 and NKX2.5), but a decreased expression of ISL1 which is related to 
the second heart field. Rectangle 1:4 organoids showed up-regulation of cardiac-specific genes (MYL2, NPPA, 
GATA4), while down-regulation of early developmental genes (SOX2, MSX2, WNT3A, FOXD3) (Figure 6d). 
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Based on all the up-regulated genes in rectangle 1:4 organoids, we performed gene enrichment analysis and found 
rectangle organoids showed enhanced genetic patterns in cardiac development and contraction (GO biological 
processes), calcium signaling and cardiac contraction (KEGG), and calcium regulation and cardiac progenitor 
differentiation (WikiPathways) (Figure 6e).  
 
Last, we validated whether our ML models can be used to predict these two organoid shapes in a blinded fashion. 
A separate testing dataset was created from a new batch of cardiac organoid differentiation from rectangle 1:4 and 
circle 600 patterns. We projected the new data from rectangle 1:4 organoids and circle 600 organoids into our 
previously learned UMAP embeddings based on the original dataset, which allows us to quickly visualize the new 
dataset relative to the original dataset (Figure S7a). We observed that rectangle 1:4 organoids were neatly 
projected into an expected portion of the UMAP embedding, indicating that newly differentiated rectangle 1:4 
organoids had similar behaviors to the same population of the original dataset. New circle 600 organoids also 
cluster close to the original circle 600 organoids, though 3 of the new circle 600 organoids were projected to the 
region of the star geometries. Next, we utilized the two ensemble machine learning models (RF and XGB) that 
were built based on the original dataset to predict the geometries (rectangle 1:4 and circle 600) of the new dataset 
(Figure S7b). For RF, the accuracy for the classification of geometric designs dropped from 76% with the 
original validation dataset to 61% with the new testing dataset. For XGB, the classification accuracy dropped 
from 79% with the original validation dataset to 68% with the new testing dataset. The precision of predicting 
rectangle 1:4 organoids (0.75 for RF and 0.93 for XGB) was much higher than the precision of predicting circle 
600 organoids (0.6 for RF and 0.55 for XGB), indicating a higher reproducibility of rectangle 1:4 organoids 
resisting to the differentiation batch variations. Overall, the model performance is acceptable for evaluating a 
completely new dataset produced with batch variations from hiPSC differentiation. These results showed the 
generalizability of our models for incorporating future new datasets and learning from a larger organoid library. 

 
DISCUSSION 
 
In this work, we generated an organoid library with various geometric designs and integrated an AI-driven 
workflow to enhance organoid analysis in an unsupervised manner without human bias (Figure 7). We were able 
to visualize and cluster the cardiac organoids based on their physiological outputs based on different manifold 
learning techniques. Particularly, PaCMAP-based dimensionality reduction better preserves the global organoid 
relationship among different geometric designs in a continuous way, highlighting a gradient change in 
physiological properties from star 1:4 organoids to circle 1000 organoids, although this technique has its 
limitation on poor clustering results (Figure 2). More importantly, we developed a network-based organoid 
refinement process that can reduce the organoid heterogeneity and feature the organoid representatives for each 
geometric design (Figure 3). Using supervised machine learning models, we identified that calcium handling 
capability, particularly calcium upstroke, is the most important physiological parameter to distinguish different 
organoid shapes (Figure 4). Additionally, we compared the organoid development, sarcomere organization, and 
transcriptomics profile between rectangle 1:4 organoids with enhanced calcium handling and circle 600 organoids 
as baseline organoids (Figure 5 & 6), further confirming the importance of calcium signaling and regulation in 
organoid optimization predicted by the ML models. 
 
Organoid engineering with geometric constraints 
Cell patterning methods have been widely used to guide 2D stem cell differentiation via varying geometric 
constraints23–28. For instance, micropatterned human embryonic stem cells (hESCs) could self-organize into 
distinct radial domains, expressing germ layer-specific markers reminiscent of early gastrulation29,30. Previous 
research conducted in our laboratory highlighted the impact of micropattern geometry on the architecture of 
cardiac organoids generated from simple circular patterns with varying sizes31. We posited that variations in 
mechanosensitive responses could be attributed to cellular localization within patterned cell colonies due to cell-
edge contact. To delve deeper into this phenomenon, we designed more complex geometric patterns to generate a 
library of shaped cardiac organoids to study how changes in these intricate geometries influenced tissue 
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functionalities. Notably, a recent study demonstrated that cells exhibited higher initial growth rates when 
subjected to complex geometries, such as cross- and star-shaped pores, in contrast to square-shaped ones32. 
Computational simulations revealed that the branches of cross-shaped pores were rapidly populated by cells, 
whereas the convex points remained minimal cell growth until local curvature became positive. These findings 
suggest that our micropatterned hiPSCs in star shapes underwent mesoderm induction at different cell cycles, 
leading to heterogeneous differentiation across the various regions (center, edge, or vertex) of the cell colonies. 
Early differentiation heterogeneity results in significant variations in contractile functions within star-shaped 
cardiac organoids, as evidenced by our organoid clustering results. 
 
To study the biological tissues with varied designs, integration of experimental platforms with microfabricated 
posts and computational simulation based on finite element analysis (FEA) have been instrumental in 
understanding how geometric constraints influence tissue morphogenesis and mechanical properties33–35. For 
example, these in vitro models were developed to determine mechanical properties of microtissues under 
geometric constraints36 and predict the necking and failure of the biological tissues due to high local stresses37. 
With the same effort, we also established a similar experimental platform to explore how geometric designs 
influenced the remodeling of hiPSC-derived stromal tissues38. To complement this effort, we integrated 
computational simulation based on volumetric contraction to predict the deformations of these constrained tissues. 
Although these experiment-simulation integrated models offer mechanistic insights into tissue mechanics and 
remodeling under geometric constraints, computational simulations face substantial challenges when modeling 
organoid development, which involves dynamic cell differentiation and tissue morphogenesis. Consequently, this 
study adopts data-driven approaches to illustrate how geometric constraints influence organoid development. 
 
AI applications in organoid research 
AI techniques have emerged as a popular solution for imaging enhancement and analysis across a broad organoid 
landscape, especially when considering that manual screening is both labor-intensive and susceptible to human 
error. In organoid research, analysis of the vast volume of images and videos has been one of the most demanding 
and time-consuming challenges to extract insights regarding organoid morphology, size, quantity, and function, 
serving as vital indicators of organoid development and their responses to environmental changes. For example, a 
convolutional neural network (CNN) architecture, specifically ResNet, has been effectively employed to trace the 
dynamic evolution of organoid cultures, thereby profiling their growth and morphological transformations during 
the development39. In tumor organoids, ML-based imaging analysis was applied to monitor the dynamic responses 
of patient-derived tumor organoids by acquiring and segmenting images at distinct timepoints to classify organoid 
resistance to various drugs40. Recently, several open-source packages have surfaced to facilitate the training of 
deep learning models tailored for organoid analysis, including MOrgAna41, OrganoID42, and D-CryptO43, each 
offering unique capabilities and enhancing the accuracy of organoid segmentation, tracking, and phenotyping. 
 
Particularly in the field of hiPSC-based cardiac models, the physiological functions of beating hiPSC-CMs can be 
quantified through time-series imaging datasets, which are then analyzed using traditional peak detection 
methods15,44,45. More recently, an ML-based analytical pipeline has been employed to automate and enhance the 
assessment of Ca2+ transient abnormalities obtained from hiPSC-CMs. Similarly, different AI-based approaches 
have been successfully applied in categorizing hiPSC-CMs based on their drug responses and genetic deficiencies 
with high accuracy46. In our study, we integrated feature extraction commonly used in the field of cardiac 
physiology and ML algorithms used to analyze multi-dimensional datasets, thus gaining a better understanding of 
design optimization of cardiac organoids. Based on single organoid analysis, we profiled the heterogeneity in 
organoid functionality in association with original engineering designs. More importantly, we demonstrated that 
ML classifiers can provide interpretable explanations for their predictions on organoid geometry, so they can be 
used as a hypothesis-generating tool to identify key physiological changes, specifically calcium rising time (t0) 
and contraction velocity (Cont_Vel), associated with organoid’s design variations. 
 
Calcium upstroke for cardiac organoid quality control. 
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Ca2+ handling is a fundamental function in heart excitation-contraction coupling, linking electrical and mechanical 
properties to complete cardiomyocyte contraction. During the action potential depolarization, L-type Ca2+ 
channels open for Ca2+ influx, which triggers Ca2+ release from the sarcoplasmic reticulum (SR) via ryanodine 
receptor (RyR2) channels, leading to cytosolic Ca2+ increase (Ca2+ upstroke measured by Ca2+ rising time). This 
initiates the crossbridge cycle for cardiomyocyte contraction until Ca2+ returns to baseline, mainly facilitated by 
the SERCA-2 pump (Ca2+ decay measured by Ca2+ decay time). Compared to adult cardiomyocytes, hiPSC-CMs 
have been long recognized as embryonic-like immature cells with inefficient calcium handling, featured as 
reduced Ca2+ transient amplitude and slower Ca2+ upstroke47. In contrast, growing hiPSC-CMs into engineered 3D 
aligned tissues could improve calcium signaling and responsiveness to caffeine, as an indicator of maturation48. 
Previous studies showed that hiPSC-derived cardiac microtissues had higher calcium amplitude, as well as longer 
upstroke and decay times on the stiffer substrates, indicating that cardiomyocytes can sense and respond to the 
changes in the local microenvironment49. In our study, Ca2+ rising time was used as the most important feature by 
the ML models to classify both pattern geometries and organoid clustering, indicating that the extracellular 
environment could alter the cardiac organoid physiology mainly through calcium handling. It is likely that 
calcium upstroke might serve as a critical link between tissue geometric designs and its corresponding 
physiological functions. As a result, ML models repeatedly used this variable to further delineate the 
heterogeneity within rectangle and star-shaped organoids, which was further confirmed by our bulk RNA 
sequencing results. If calcium upstroke can be modulated by overexpressing RyR2 channels or promoting t-tubule 
formation, we might be able to optimize cardiac organoid development, promote cardiac maturity, and reduce 
organoid heterogeneity. 
 
In conclusion, integration of hiPSC technology, organoid engineering, and AI holds the potential to enhance our 
understanding and optimization of functional outcomes of in vitro engineered organoids. Our approaches open up 
possibilities for uncovering the relationships between organoid geometric designs and their physiological 
functions that traditional analytical methods might overlook. It can also serve as a valuable tool in guiding the 
design optimization for engineered cardiac organoids with specifically tailored physiological functions. This early 
success in utilizing machine learning for cardiac organoid analysis suggests broader applicability in cardiac-
related research, such as predicting organoid pathology and responses to drug toxicity.  
 
Limitations of the study 
One limitation of this study is that the organoids were generated exclusively from a single hiPSC line (WTC11), 
though our previous research has demonstrated the successful generation of cardiac organoids from other hiPSC 
lines31. To enhance the robustness and generalizability of ML algorithms in classifying organoid phenotypes, 
future studies should incorporate a more extensive and diverse range of hiPSC lines from healthy donors with 
varying backgrounds, encompassing factors such as sex, ethnicity, and race. The inclusion of organoid data 
generated from other hiPSC lines will be essential to address population-level variability in organoid physiology. 
Another limitation in experiments is that only contractile motion and Ca2+ transient measurements were utilized in 
this study, while other physiological characterizations (e.g., action potential) might be critical to obtaining a 
comprehensive understanding of organoid properties. In this work, structural parameters were only limited to the 
Area Ratio as an indicator of cardiomyocyte differentiation, while the inclusion of other structural information, 
such as sarcomere organization or organoid volume, might alter the refinement outcomes and better profile the 
structural heterogeneity. Especially, the 2D measurement of Area Ratio based on the projected area of GCaMP 
fluorescence could not 100% represent the variations in the volume of the organoids. In the future, we aim to 
perform organoid volumetric measurement and calcium transient measurement simultaneously from each cardiac 
organoid using ACTN-GFP hiPSC line coupled with RFP or NIR calcium dye to further enrich our physiological 
readouts. As our dataset expands through the collection of other physiological parameters from cardiac organoids, 
we anticipate the ability to integrate and establish cardiac physiomics datasets for further mechanistic studies. 
 
An essential consideration when training ML algorithms is the dataset size, which, in our study, was constrained 
due to the time-consuming and labor-intensive process of generating cardiac organoids. Moreover, the efficiency 
of generating cardiac organoids from smaller patterns (circle-200) was relatively low, resulting in an imbalanced 
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dataset with fewer organoids from specific pattern geometries. Using an unbalanced dataset in ML models often 
leads to a potential bias towards the majority class and poor generalization to the minority class. Though we have 
tried to address this issue by proper selection of ML models and fine-tuning of hyperparameters, enlarging the 
sample pool of organoids for specific pattern geometries will still be critical to achieving balanced and accurate 
predictions. In addition, testing a completely new dataset dropped the accuracy of ML prediction, which indicates 
the batch variability from hiPSC differentiation has a significant impact on the ML model establishment and 
generalizability. Creating a larger organoid library with different hiPSC lines and different differentiation batches 
might potentially address this issue. 
 
Ultimately, it is plausible that a deep learning model, trained directly on raw calcium transient signals or 
fluorescent videos, could emerge as a more effective approach. While deep learning methods have garnered 
significant attention and hold potential for organoid applications, they typically demand extensive training data to 
establish a robust and broadly applicable model. Additionally, deep learning models could minimize data loss and 
maximize information retention, while it's worth noting that this approach might compromise interpretability 
without feature extraction processes based on traditional quantitative peak analysis.  
 
 
STAR METHODS 
 
Detailed methods are provided in the online version of this paper and include the following: 
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o Lead contact 
o Materials availability 
o Data and code availability 
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o Immunofluorescence staining and morphological characterization 
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FIGURE 

 
Figure 1. The data-driven single organoid analysis workflow for the cardiac organoid design library. (a) 
Total 230 cardiac organoids were generated from 7 geometric designs and analyzed for 10 physiological 
variables. These organoids were analyzed using both supervised and unsupervised machine learning. The cardiac 
organoids were generated from circle shapes (1000 µm, 600 µm, and 200 µm in diameters), rectangle shapes (1:1 
and 1:4 aspect ratio), and star shapes (1:1 and 1:4 area ratio between central pentagram and five vertices). (a) 
Representative fluorescent images of cardiac organoids stained by cardiac marker (cardiac troponin T) and F-
actin. (b) Representative fluorescent images of cardiac organoids for calcium transient analysis, and (c) their 
corresponding brightfield images for contractile motion analysis, (d) which can generate motion heat map. All the 
images/videos were taken and analyzed at Differentiation Day 20. 



 13 

 
Figure 2. Organoid clustering based on different manifold learning algorithms. (a) The cardiac organoids 
were analyzed using t-SNE, UMAP, TriMAP, and PaCMAP algorithms to generate dimensionality reduction 
graphs to visualize the spatial relationship of organoids generated from different geometries. (b) The cardiac 
organoids were re-grouped based on functional similarity using K-means clustering, which gave 7 organoid 
clusters for each dimensionality reduction graph. (c) Statistical analysis showed that each organoid cluster had 
unique contractile properties based on 10 physiological variables.  
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Figure 3. Network analysis on organoid clusters. (a) The organoid composition for each cluster determined by 
different manifold learning algorithms. (b) Cluster interconnectivity among the clusters across four manifold 
learning algorithms. (c) Quantifying the heterogeneity of organoid composition within each cluster based on its 
connections to the other clusters. (d) Organoid cluster network was regrouped into 6 shape-representing 
communities using Greedy optimization technique. (e) Statistical analysis on refined organoids showed unique 
physiological functions related to specific geometry.   
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Figure 4. Feature importance analysis based on ensemble learning algorithms. (a) Two ensemble learning 
models, random forest, and gradient boost, were able to classify the organoids based on their geometric designs or 
their organoid clusters in each dimensionality reduction graph with relative high accuracy (>75%). (b) Feature 
importance analysis showed the determining physiological variables that were used by the machine learning 
models to make predictions on geometric designs of the cardiac organoids.  
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Figure 5. Structural comparison between rectangle 1:4 and circle 600 organoids. Kymographs of organoid 
differentiation over time for (a) one circle 600 organoid and (b) one rectangle 1:4 organoid generated from the 
ACTN2-reporter hiPSC line. (c) Confocal microscopy images of a circle 600 organoid and a rectangle 1:4 
organoid with corresponding orthogonal views. (d) Representative images of sarcomere structures of a circle 600 
organoid and a rectangle 1:4 organoid. (e) No significant difference was found for the sarcomere distance between 
circle 600 and rectangle 1:4 organoids. (f) Rectangle 1:4 organoids had better sarcomere alignment than the circle 
600 organoids, (g) while circle 600 organoids were higher than the rectangle 1:4 organoids. Statistics: two-sided 
Student t-test. *p < 0.05.  
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Figure 6. Transcriptomics comparison between rectangle 1:4 and circle 600 organoids. (a) Principal 
component analysis (PCA) showed the separation of circle 600 organoids and rectangle 1:4 organoids. (b) 
Heatmap and hierarchical clustering showed distinct transcriptome profiles between circle 600 organoids and 
rectangle 1:4 organoids. (c) Selected genes associated with sarcomere structure, transcription factors, calcium 
handling, ion channels, and endocardial/stromal differentiation showed differential expression between circle 600 
organoids and rectangle 1:4 organoids. (d) Volcano plots showed rectangle 1:4 organoids upregulated the genes 
associated with cardiac differentiation and sarcomere structures, and downregulated the genes associated with 
early embryonic development and WNT signaling. (e) Gene enrichment analysis showed rectangle 1:4 organoids 
highly enriched the genes associated with heart development, calcium signaling and contractile functions.  
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Figure 7. Summary on AI-driven unsupervised organoid analysis. The integration of a design library of 
cardiac organoids and an AI-driven workflow to achieve unsupervised organoid refinement. Refined cardiac 
organoids showed shape-specific physiological properties, which allows us to determine the geometric designs 
with improved cardiac functionality and elucidate mechanistic insights with biological investigations. 
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STAR METHODS 
 
RESOURCE AVAILABILITY 
 
Lead Contact 
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead 
contact, Zhen Ma (zma112@syr.edu). 
 
Materials Availability 
 
This study did not generate new unique reagents. 
 
Data and Code Availability 
 

o The RNA sequencing data is available at GEO with identifier listed in the key resources table. The 
functional data of cardiac organoid library have been deposited at Zenodo and is publicly available as of 
the date of publication. DOIs are listed in the key resources table. All relevant data reported in this paper 
can be shared by the lead contact Dr. Zhen Ma upon request. 

o The code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are 
listed in the key resources table. 

o Any additional information required to reanalyze the data reported in this paper is available from the lead 
contact upon request.  

 
 
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS 
 
Cell Lines 
Two human induced pluripotent stem cell (hiPSC) lines were used in this study: GCaMP6f-GFP hiPSCs and 
ACTN2-GFP hiPSCs. GCaMP6f-GFP hiPSC line was obtained from Dr. Conklin lab at Gladstone Institute of 
Cardiovascular Diseases. ACTN2-GFP hiPSC line was purchased from Coriell Institute with cell line ID (AICS-
0075-085). Both cell lines were genetically engineered based on parent hiPSC line (WTC11, GM25256) derived 
from adult skin (leg) fibroblasts (race: Asian, ethnicity: Japanese, sex: male, age: 30 years old). All the hiPSCs are 
maintained using Essential 8 (E8) medium (Life Technologies, cat. no. A1517001) in the 6-well plates coated 
with diluted Geltrex hESC-qualified matrix (Life Technologies, cat. no. A1413302).  
 
 
METHOD DETAILS 
 
Micropatterning of tissue culture surface 
Surface micropatterning on tissue culture polystyrene was carried out using the selective etching approach 
described previously8. Poly(dimethyl siloxane) (PDMS) was cast from SU8 wafers with designed features to 
produce thin elastomeric stencils with clear-through holes. Non-fouling poly(ethylene glycol) (PEG) solution 
(PEGMMA 1000 and PEGDA 400 mixture) was grafted onto 6-well tissue culture plates and cured under UV 
light exposure (Dymax UV Illuminator; model no. 2000EC). Micropatterns were fabricated by selective oxygen 
plasma etching (Oxygen plasma treatment system, PlasmaEtch PE50XL) of the PEG layer using the PDMS 
stencils. Micropatterned tissue culture plates were sterilized by immersing in 70% ethanol for 1 hour and 
subsequent washing with sterile phosphate buffered saline (PBS).  
 
Generation of cardiac organoids 
Micropatterned surfaces were coated with diluted Geltrex hESC-qualified matrix (Life Technologies, cat. no. 
A1413302) and seeded with GCaMP6f-GFP hiPSCs (calcium reporter) or ACTN2-GFP hiPSCs (sarcomere 
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reporter) in Essential 8 (E8) medium (Life Technologies, cat. no. A1517001). Cardiac differentiation was initiated 
(Day 0) when the micropatterns reached confluency and performed via small molecules 50,51 of GSK3 inhibitor 
CHIR99021 (Day 0) (Stem Cell Technologies, cat. no. 72054) and WNT pathway inhibitor IWP4 (Day 2) (Stem 
Cell Technologies, cat. no. 72554) in RPMI 1640 medium (Life Technologies, cat. no. 11875093) supplemented 
with B27-minus insulin (RPMI/B27 minus insulin) (Life technologies, cat. no. A1895601). On Day 6 onward, 
organoids were maintained in RPMI 1640 medium supplemented with complete B27 supplement (RPMI/B27 
Complete) (Life Technologies cat. no. 17504044) until Day 20 for contractile and structural analysis. 
 
Immunofluorescence staining and morphological characterization 
Organoids were characterized based on immunofluorescence staining of cardiac tissue with cardiac troponin T 
(cTnT) and entire organoid structure with actin (Phalloidin). Samples were fixed with 4% (vol/vol) 
paraformaldehyde (PFA) for 10 minutes, permeabilized with 0.2% (vol/vol) Triton X-100 and blocked with 2% 
(wt/vol) bovine serum albumin (BSA). Samples were incubated with primary antibody against cTnT (dilution 
1:200) for 1 hour and then incubated with secondary antibody, together with Phalloidin for 1 hour at room 
temperature. Leica Thunder upright fluorescent microscope with a 40X water immersion objective was used to 
capture z-stacks of the organoids for height measurements and Z-projection in ImageJ. The Area Ratio was 
measured by using the circular or elliptical tool to approximate the area of fluorescence of GCaMP flux for 
cardiac tissue and normalizing this area relative to the entire pattern area of original geometric design. Confocal 
microscopy (Zeiss U880) was used to characterize the organoid’s morphology and sarcomere structure. Z-stack 
with 6.5 um spacing between slices was employed to reconstruct the 3D organoid for height measurement8. 
Sarcomere analysis was performed on the selected slices from image z-stacks for sarcomere distance and 
organization measurements52.   
 
RNA sequencing 
On day 20, cardiac organoids were sacrificed to extract mRNA. The organoids were collected by the cell scraper, 
centrifuged, and washed with PBS several times to remove all the remaining medium. mRNA was extracted using 
Trizol (Invitrogen, #15596026), Chloroform (Serva, #39553.01), and isopropanol (Fisher, BP2618). The RNA 
pellet was dissolved into 40uL UltraPureTM DEPC treated water (Invitrogen, #750023) and reserved at -80 °C. 
The RNA was quantified using a NanoDrop Microvolume UV-Vis Spectrophotometer (Thermo Scientific). The 
RNA quality was evaluated using Agilent 2100 Bioanalyzer at Molecular Analysis Core, SUNY Upstate Medical 
University. The samples with RIN ≥ 8.0 and concentration ≥ 50 ng/µL were used for bulk RNA sequencing. 
The Illumina Ribo-Zero rRNA removal kit was used for rRNA depletion of all the samples. The samples were 
sequenced using Illumina HiSeq with 2 x 150 bp configuration, single index, paired end reads per lane. 
 
The raw FASTQ files were analyzed using the Partek Flow software, courtesy of a shared license provided by 
SUNY Upstate Medical Genomics Core. The unaligned reads were trimmed for bases to obtain a Phred quality 
score > 20, and then aligned using the Spliced Transcripts Alignment to a Reference (STAR) to the human 
genome (hg38). The post-alignment assessment was conducted for quality assurance (QA) and quality control 
(QC), which showed the percentage of alignment for each sample was > 75%. The average base quality score per 
read was between 35.8 and 38.7, indicating good quality reads. Post-alignment quantification was applied to an 
annotation model and normalized based on recommended parameters of counts per million (CPM). The 
downstream analysis included principal component analysis (PCA), differential gene expression (DESeq), 
hierarchical clustering, gene ontology (GO) and pathway analysis. 
 
Functional characterization of cardiac organoids 
GCaMP6f hiPSC-derived cardiac organoids were imaged in an onstage microscope incubator (OkoLab Stage Top 
Incubator, UNO-T-H-CO2) at 37 ˚C and 5% CO2 to maintain standard physiological conditions on a Nikon Ti-E 
inverted microscope with Andor Zyla 4.2+ digital CMOS camera. Videos of contracting cardiac organoids were 
recorded at 50 frames per second for ten seconds in brightfield and exported as a series of single frame image 
files. Contraction physiology was assessed using video-based motion tracking software that computes motion 
vectors based on pixel movement53. The motion vectors were assimilated into a contraction motion waveform 
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representative of contractile physiology. Contraction physiology was also assessed by recording the calcium 
transient of organoids. Videos were taken under 488 nm excitation at 40 milli-seconds exposure time with 25 
frames per second. Calcium flux signals were exported as Z-axis profiles in ImageJ. The fluorescence bleaching 
decay was corrected and related parameters t0, t50, t75 were computed using in-house MATLAB scripts53. The 
rising time t0 is defined as the time it takes for the calcium flux to reach peak fluorescence intensity, whereas 
decay time t50 and t75 represent the time it takes for the calcium flux to decay 50% and 75% of the peak 
fluorescence, respectively. Data pre-processing was accomplished in RStudio utilizing the base function for 
scaling54 and the dplyr library55. We used standard z-score scaling to center the data to improve both our machine 
learning models and manifold learning algorithms. For newly added testing dataset, we standardized the new 
measurements according to the mean and standard deviations to correctly match the scale of the original dataset. 
We identified and removed 4 outliers which returned negative values for time measurements. 
 
Manifold learning and dimensionality reduction 
Manifold learning algorithms were used to embed higher dimensional data into a 2D space, thus allowing to 
visualize the relationships of many parameters. t-Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold 
Approximation and Projection (UMAP) were conducted with the statistical programming language R54. t-SNE 
graphs were created using a Barnes-Hut implementation with the R package Rtsne56 with a max perplexity of 15. 
UMAP analysis was conducted utilizing the package uwot57 with the nearest neighbor of 15. TriMAP analysis 
was conducted in Python58 with 15 nearest neighbors selected using the TriMAP library59. PaCMAP analysis was 
also conducted in Python with PaCMAP library60 with a nearest neighbor of 15 for a max of 5,000 iterations. 
Projecting the newly acquired testing dataset into the learned manifold embeddings was accomplished based on 
the learned UMAP embedding from the original dataset.  
 
Organoid clustering 
Unsupervised machine learning algorithm K-means was used to explore apparent clustering patterns within each 
nonlinear dimensionality reduction graph. In essence, K-means aims to partition the available data into a 
predefined ‘K’ number of clusters. In our case, every data point in the reduced 2D space is assigned to the nearest 
centroid within each cluster. Initially, centroids are randomly chosen and iteratively adjusted to minimize average 
geometric distance to the centroid of each cluster, resulting in the formation of 'k' clusters61. K-means clustering 
was performed using the base stats library within R. With a selection of 7 clusters for k we utilized Hartigan and 
Wong’s algorithm which continually updates the centroid for each cluster62. 
 
Machine learning classification and feature importance 
Random forest (RF) algorithm is used for classification by constructing a number of decision trees, where each 
decision at a branch is determined from a specific feature63. The randomness within the forest is introduced 
through a bootstrapping method, where a random subset of the training data is left out during the model’s training 
by using a random vector of the sampled data. This reduces overfitting, a common issue in hierarchal decision 
models for classification. Extreme gradient boosting (XGB) builds upon RF by boosting the gradient for decision 
trees to improve the decision-making based on the ensemble of decisions created previously within the model64. 
RF tends to classify data with a degree of randomness, whereas XGB generates more precise classification 
predictions by leveraging the information within its decision trees. The open-source library scikit-learn was used 
to implement and optimize both RF and XGB algorithms65. Random train-test splits allocated 2/3 of the data to 
the training set and reserved 1/3 for a validation set for classification tasks. A completely new testing dataset 
unique to the initial training and validation dataset was also introduced to gauge the generalizability of our 
proposed model. This additional testing set was obtained from a new batch of cardiac organoid differentiation ~2 
years after the original dataset was acquired. The differentiation, culture, and characterization techniques are the 
same. For hyperparameter tuning, the default configuration builds 100 trees within a forest with no limitations on 
the forest depth. The maximum number of considered features was set to the standard square root of the total 
features available. Gini impurity was utilized as the criterion for tree splitting, as well as the basis for calculating 
feature importance. A fixed learning rate of 0.1 was employed for gradient boosting. The model performance was 
evaluated using a confusion matrix to compute accuracy, F1 score, precision, and recall. 
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Confusion matrix Prediction 

Actual 
True positive (TP) False negative (FN) 
False positive (FP) True negative (TN) 

 

 

 

 
 
Network analysis 
To investigate the relationships between clusters across the four DR algorithms, we utilized the network analysis 
package igraph in R66. While network analysis is commonly used to find user similarities within social networks, 
we used this analysis to investigate not only the functional similarities of our organoids with different geometries, 
but also the relations within the data that are captured by each DR + K-mean clustering. In the network, each node 
within the graph represents a cluster from one DR technique, and each connecting edge represents a shared 
organoid between the clusters across four DR algorithms. More edges between two nodes mean more shared 
organoids tagged by both clusters. Next, we performed fast greedy clustering on our organoid cluster network. It 
is a hierarchal agglomeration algorithm available within the R package igraph. It is widely utilized to find 
communities of similar nodes within a network. It seeks to greedily increase the modularity score, related to the 
number of edges within dense clusters of all nodes. This is accomplished by merging nodes into communities to 
maximize the local optima for the modularity of the entire network67. This rapid method does not require 
hyperparameter tuning and gives a good approximation for communities existing within the network. 
 
Organoid refinement 
Organoids were refined to ensure that each clustered community effectively represents each geometric shape. We 
refined the organoid measurements using the dplyr library55. For example, circle-600 organoids contained within 
network greedy community #2 were retained as the refined circle-600 organoids, while the other 600 organoids 
were pruned. The organoids for the other geometric designs were refined in the same manner. 
 
 
QUANTIFICATION AND STATISTICAL ANALYSIS 
 
For single comparisons between two individual groups, a two-sided Student’s t-test was used, and p ≤ 0.05 was 
considered significant. For comparisons between more than two groups, one-way analysis of variance (ANOVA) 
was performed and p ≤ 0.05 was considered significant. ANOVA analysis was supplemented with Tukey’s 
multiple comparison test to determine significance between every two groups, or with Dunnett’s comparison test 
to determine significance between one group and all the others. 
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