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Abstract: Over the past decades, mesenchymal stromal cells (MSCs) have been extensively investigated 
as a potential therapeutic cell source for the treatment of various disorders. Differentiation of MSCs from 
human induced pluripotent stem cells (iMSCs) has provided a scalable approach for the biomanufacturing 
of MSCs and related biological products. Although iMSCs shared typical MSC markers and functions as 
primary MSCs (pMSCs), there is a lack of lineage specificity in many iMSC differentiation protocols. 
Here, we employed a stepwise hiPSC-to-iMSC differentiation method via intermediate cell stages of 
neural crest and cytotrophoblast to generate lineage-specific MSCs with varying differentiation 
efficiencies and gene expression. Through a comprehensive comparison between early developmental cell 
types (hiPSCs, neural crest, and cytotrophoblast), two lineage-specific iMSCs, and six source-specific 
pMSCs, we were able to not only distinguish the transcriptomic differences between MSCs and early 
developmental cells, but also determine the transcriptomic similarities of iMSC subtypes to postnatal or 
perinatal pMSCs. Additionally, we demonstrated that different iMSC subtypes and priming conditions 
affected EV production, exosomal protein expression, and cytokine cargo. 
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Abbreviations 
hiPSCs: human induced pluripotent stem cells 
NC-iMSCs: mesenchymal stromal cells differentiated from hiPSCs via neural crest intermediate stage. 
CT-iMSCs: mesenchymal stromal cells differentiated from hiPSCs via cytotrophoblast intermediate 
stage. 
BM-pMSCs: primary mesenchymal stromal cells derived from bone marrow. 
AD-pMSCs: primary mesenchymal stromal cells derived from adipose tissue. 
DP-pMSCs: primary mesenchymal stromal cells derived from dental pulp. 
UC-pMSCs: primary mesenchymal stromal cells derived from umbilical cord. 
CP-pMSCs: primary mesenchymal stromal cells derived from chorionic plate. 
CV-pMSCs: primary mesenchymal stromal cells derived from chorionic villi. 
EVs: extracellular vesicles. 
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INTRODUCTION 
Multipotent mesenchymal stromal cells (MSCs) have shown promises for tissue repair and regeneration, 
autoimmune diseases, and chronic disorders due to their therapeutic potentials in differentiation capacity, 
growth factor secretion, immunomodulation, and anti-inflammatory responses1-4. Though MSCs can be 
found in various tissues, many tissue-specific MSCs are not easily accessible for patient care due to limited 
availability of tissue source or the need for invasive surgical operation. Common MSC tissue sources, 
such as bone marrow and adipose tissue, can only yield ~2% nucleated cells5. In addition, limited sources 
of perinatal tissues (umbilical cord, amniotic membrane, etc.) makes it difficult to obtain large amounts 
of MSCs from these tissues. More importantly, primary MSCs (pMSCs) collected from elderly donors 
suffer from fewer high-quality cells, less therapeutic potency, and faster decline in proliferation and cell 
plasticity over repeated passages6,7. To overcome these challenges, researchers are exploring the 
differentiation of MSCs from pluripotent stem cells, such as human induced pluripotent stem cells 
(hiPSCs), as a limitless cell source for biomanufacturing purposes8-10. 
 
pMSCs originating from different tissue sources show similar cell morphology, marker identity, and multi-
lineage differentiation capacity, but exhibit variations in growth rate, transcriptomic profile, secretome 
signature, anti-inflammatory and immunomodulatory capacities11-13. For example, a study reported that 
bone marrow-derived pMSCs (BM-pMSCs) and adipose tissue-derived pMSCs (AD-pMSCs) collected 
and paired from 14 healthy donors showed distinct gene expression patterns related to their tissue origin13. 
However, it seems impossible to perform such paired comparative study between postnatal tissue-derived 
MSCs (e.g., BM-pMSCs) and perinatal tissue-derived MSCs (e.g., amniotic membrane-derived MSCs) 
from a single donor, which has led to contradictory results in the literature14,15. Such variability might 
originate from donor genetic and epigenetic background, tissue preparation techniques, cell culture and 
priming conditions, thus highlighting the need for standardization in both fundamental MSC biology and 
translational MSC therapy. 
 
The differentiation of MSCs from pluripotent sources (iMSCs) offers opportunities for scalable 
biomanufacturing of these cells. It has been extensively reported that iMSCs exhibit similar multi-
differentiation potential and immunomodulation functions as pMSCs, but higher purity and potency due 
to their early developmental privilege16-19. The iMSC differentiation has been improving and optimizing 
over the years, and recent progress suggests that controlled lineage specification of iMSCs through defined 
stepwise differentiation processes gave rise to end-stage iMSC subtypes with developmental lineage 
specificity. For example, iMSCs have been successfully differentiated through defined intermediate 
developmental stages of mesoderm20, neural crest21-23, and trophoblast-like cells24. A close comparison 
between iMSCs derived through mesoderm and through neuroepithelium indicated differences in 
paracrine signaling: mesoderm-iMSCs had stronger HGF and EGF signaling for wound healing, while 
neuroepithelium-iMSCs had stronger VEGF and FGF signaling for angiogenesis25. Sharing a similar 
concept, lineage-specific osteoprogenitor cells derived via the intermediate stages of paraxial mesoderm, 
lateral plate mesoderm and neural crest showed unique transcriptomic signatures associated with their 
developmental trajectories26. Despite these early efforts, a systematic comparison of iMSCs from different 
lineages and pMSCs from different tissues is needed to define the developmental signatures of iMSCs and 
understand their commonalities and differences with pMSCs. 
 
In this study, we differentiated two iMSC subtypes via two intermediate cell types of neural crest (NC-
iMSCs) and cytotrophoblast (CT-iMSCs) using serum-free chemical-defined media. We also obtained six 
pMSCs from commercially available vendors, including bone marrow-derived primary MSCs (BM-
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pMSCs), adipose tissue-derived primary MSCs (AD-pMSCs), dental pulp-derived primary MSCs (DP-
pMSCs), umbilical cord-derived primary MSCs (UC-pMSCs) chorionic villi-derived primary MSCs (CV-
pMSCs), and chorionic plate-derived primary MSCs (CP-pMSCs). We performed a comprehensive 
comparison of lineage-specific iMSCs and tissue-specific pMSCs under the same serum-free culture 
conditions. The results showed that iMSCs partially retained early developmental signatures compared to 
pMSC, meanwhile NC-iMSCs and CT-iMSCs had a closer transcriptomic pattern to postnatal and 
perinatal pMSCs, respectively. Transcriptomic analysis suggested that iMSCs and placental pMSCs had 
better potentials in EV biogenesis and trafficking than postnatal pMSCs. Furthermore, single-cell RNA 
sequencing results showed heterogeneity in iMSC population, following a developmental trajectory from 
cycling pre-MSCs, to MSCs, and then osteochondro-progenitors. At the protein level, we further 
confirmed that CT-iMSCs had slightly better exosomal EV production than NC-iMSCs, making CT-
iMSCs a better candidate for therapeutic EV biomanufacturing. 
 
RESULTS 
iMSC differentiation via neural crest lineage 
There have been several studies demonstrating successful derivation of iMSCs via an intermediate stage 
of neural crest. During embryonic neurulation, neural crest cells are a transient cell type that develops at 
the border between neural plate and non-neural ectoderm, delaminates via epithelial-mesenchymal 
transition, and further differentiates into craniofacial musculoskeletal tissues. To differentiate the iMSCs 
with a neural crest signature, we first differentiated hiPSCs into neural crest cells by switching E8 media 
to E6 media supplemented with GSK3β inhibitor (CHIR99021), ALK inhibitor (SB431542), and bFGF 
(Day 0)21,27. At Day 6, as Multipotent Passage #0 (MP0), the neural crest cells were then replated into the 
MSC serum-free medium for further differentiation into iMSCs (Figure 1A). We observed significant 
morphological changes from large hiPSC colonies transitioning into cuboidal-shaped epithelial-like cells 
(neural crest), and then MSC-characteristic spindle-like fibroblastic morphology starting at MP2 (Day 
18), when the cells can be grown on 1% gelatin coating (Figure 1B).  
 
We confirmed that hiPSCs highly expressed pluripotent markers of NANOG, OCT4 and SOX2 
(Supplemental Figure 1A), and a high-yield neural crest cell differentiation based on positive 
immunostaining of SOX10, neural growth factor receptor (NGFR), ETS1, cytokeratin-19 (KRT19), and 
SNAI2 (Figure 1C). We were able to obtain robust neural crest-to-iMSC (NC-iMSCs) differentiation 
based on positive immunostaining of typical MSC markers of CD90, CD105, CD73, CD166, CD44 and 
CD146 (Figure 1D), and negative of pluripotent markers of NANOG, OCT4 and SOX2 (Supplemental 
Figure 1B). Furthermore, our NC-iMSCs showed differentiation potentials into adipogenic (oil red O), 
osteogenic (osteocalcin) and chondrogenic (aggrecan) lineages (Figure 1E). We confirmed that NC-
iMSCs can be grown on the plastic surface (6-well plate) without any additional protein coating. To ensure 
our protocol can be robustly reproduced using another hiPSC line, we also differentiated NC-iMSCs from 
the hiPSC line obtained from Yale University (Supplemental Figure 2A).  
 
To further visualize the cell fate transition during NC-iMSC differentiation, we performed gene expression 
profiling for pluripotency, neural crest, MSC, and hematopoietic stem cell (HSC) markers (Figure 1F). 
As expected, hiPSCs showed high gene expression of NANOG, OCT4, and SOX2. The neural crest-
related genes (FOXD3 and NGFR) showed a transient expression at the stages of neural crest cells (MP0) 
and early iMSC differentiation (MP1). Strong induction of typical MSC surface markers occurred around 
MP3 during the differentiation (CD73, CD105, CD13, CD44), while other MSC surface markers were 
also expressed in hiPSCs and neural crest cells (CD90, CD146, CD166). This result indicated that CD13 
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and CD73 might be good surface markers to identify and purify the NC-iMSC population. Surprisingly, 
CD106, a gene highly associated with bone marrow-derived MSCs, showed almost no expression from 
our NC-iMSCs. We also selected three transcription factors (EVT5, SOX11 and FOXP1) that have been 
reported to relate to MSC identity, while only FOXP1 showed strong correlation with iMSCs. In addition, 
we confirmed no expression of HSC-related genes (CD45, CD34 and CD14) from our NC-iMSCs. 
 
iMSC differentiation via an extraembryonic lineage 
The extraembryonic cells are typically derived from trophectoderm (TE), amniotic ectoderm (AME), and 
extraembryonic mesoderm (EEM) that give rise to the perinatal tissues to help sustain fetal growth and 
development. Early attempts to derive trophoblast-like stem cells from hiPSCs were achieved based on 
ALK inhibition (A8301), FGF inhibition (PD173074) and BMP4 induction28. However, recent studies 
indicated that induction of trophoblast differentiation from primed hiPSCs might result in cytotrophoblast 
cells present at post-implantation stage, instead of trophoblast stem cells present at pre-implantation 
stage29. Herein, we differentiated our iMSCs from hiPSCs via cytotrophoblast lineage without converting 
hiPSCs to the naive stage. First, we determined whether it is necessary to inhibit FGF signaling during the 
cytotrophoblast differentiation, since a previous study reported successful iMSC differentiation via a 
trophoblast-like stage without the use of FGF inhibitor24. Meanwhile, we explored whether we could 
replace ALK inhibitor A8301 by SB431542 for cytotrophoblast differentiation, in order to keep it 
consistent with previous neural crest induction. Therefore, we tested the combination of BMP4 and 
PD173074 with different concentrations (0 µM, 0.1 µM, 0.25 µM, and 0.5 µM), together with either 
A8301 or SB431542, and then evaluated the gene expression associated with extraembryonic lineages 
(Supplemental Figure 3). Overall, the results demonstrated a high expression of cytotrophoblast genes 
(KRT7, TFAP2A, TFAP2C, PODXL), while relative low expression of extraembryonic mesoderm genes 
(RASIP1, LAMA4). We found there was no significant difference between A8301 and SB431542 for 
cytotrophoblast induction. We also confirmed that there was a critical need of FGF inhibition for higher 
expression of cytotrophoblast genes. Finally, we decided to use BMP4, SB431542 and low concentration 
of PD173074 (0.1 µM) for cytotrophoblast differentiation. 
 
To differentiate our iMSCs with an extraembryonic signature, we first differentiated hiPSCs into 
cytotrophoblast cells based on optimized protocol (Day 0). At Day 6, as Multipotent Passage #0 (MP0), 
the cytotrophoblast cells were then replated into the MSC serum-free medium for further differentiation 
into iMSCs (Figure 2A). We observed significant morphological changes from dense-compacted hiPSC 
colonies to polygonal-shaped cytotrophoblast-like cells, and then MSC-characteristic spindle-like 
fibroblastic morphology starting at MP2 (Day 18), when the cells can be grown on 1% gelatin coating 
(Figure 2B). We confirmed successful cytotrophoblast differentiation based on positive immunostaining 
of CDX2, cytokeratin-7 (KRT7), epithelial cellular adhesion molecule (EPCAM), TEAD4 and GATA3 
(Figure 2C). We were able to obtain robust cytotrophoblast-to-iMSC (CT-iMSCs) differentiation based 
on positive immunostaining of typical MSC markers of CD90, CD105, CD73, CD166, CD44 and CD146 
(Figure 2D), and negative of pluripotent markers of NANOG, OCT4 and SOX2 (Supplemental Figure 
1C). Furthermore, our CT-iMSCs showed differentiation potentials into adipogenic (oil red O), osteogenic 
(osteocalcin) and chondrogenic (aggrecan) lineages (Figure 2E). nWe confirmed that CT-iMSCs can be 
grown on the plastic surface (6-well plate) without any additional protein coating. Similarly, our CT-iMSC 
differentiation can be reproduced using the Yale hiPSC line (Supplemental Figure 2B).  
 
Similar to NC-iMSC differentiation, we also performed gene expression profiling for cell fate transition 
during CT-iMSC differentiation (Figure 2F). The cells lost the expression of pluripotent markers 
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(NANOG, OCT4, and SOX2) rapidly during the differentiation, and meanwhile early trophoblast markers 
(GATA2, GATA3, TEAD4, and TFAP2A) showed a transient expression at the stages of cytotrophoblast 
cells (MP0) and early iMSC differentiation (MP1). Our CT-iMSCs showed a similar pattern of iMSC 
marker expression as NC-iMSCs, further confirming that CD73, CD105, CD13, and CD44 were more 
exclusive to iMSCs in comparison to hiPSCs, neural crest, or cytotrophoblasts. However, CD146 and 
CD90 expression were significantly reduced at the cytotrophoblast stage, compared to the neural crest 
stage. Compared to NC-iMSCs, CT-iMSCs only showed robust expression of EVT5 as a key MSC 
transcription factor, but very low expression of SOX11 and FOXP1, which are highly related to germ 
layer differentiation. In addition, we also confirmed there was no expression of HSC-related genes (CD45, 
CD34 and CD14) from the CT-iMSCs. 
 
Cell heterogeneity in iMSC development 
To study how iMSCs emerged during two lineage-specific differentiation processes, we performed flow 
cytometry to track iMSC population (CD73+, CD105+, CD90+, CD45-) from MP0 to MP7 
(Supplemental Figure 4A). For neural crest-to-iMSC differentiation, we observed that NC-iMSC 
population rapidly increased within the first 12 days (Supplemental Figure 4B). At MP2, differentiation 
of CD90+ cells reached a plateau (~80%), while CD73+ cells and CD105+ cells were only ~60% and 
~30%, respectively, indicating that CD105 was expressed relatively late during the differentiation. For 
cytotrophoblast-to-iMSC differentiation, CT-iMSC population increased at a slower pace compared to the 
NC-iMSCs (Supplemental Figure 4C). At MP6 and MP7, it seemed that CD90+ and CD73+ cells were 
relatively stable at ~80%, but CD105+ cells were still ramping up. Comparing the iMSC population at 
MP7 between two lineage-specific differentiation, NC-iMSCs had a higher yield in all three markers (~90% 
of CD73+/CD90+/CD105+ cells) than the CT-iMSCs (~85% of CD73+/CD90+ cells, while ~75% of 
CD105+ cells) (Supplemental Figure 4D). In addition, CD45+ cells were lower than 2% in average for 
both differentiation pathways.  
 
To better determine the iMSC development and heterogeneity, we performed single-cell RNA sequencing 
(scRNAseq) on NC-iMSCs and CT-iMSCs to investigate the heterogeneity of the iMSC population. A 
total of 5088 cells were captured for NC-iMSCs (n = 2865) and CT-iMSCs (n = 2223). From uniform 
manifold approximation and projection (UMAP) plots, we observed that NC-iMSCs and CT-iMSCs 
overlapped with each other (Figure 3A), and entire cell populations were divided into 5 clusters (Figure 
3B) based on graph-based clustering technique. From our gene expression projection on UMAPs, we 
observed cluster 1-4 highly expressed all MSC surface markers (CD44, D105, CD73 CD166 and CD90) 
and transcription factors (PRRX1, TWIST1, MSX1, SOX11, and GATA6) (Supplemental Figure 5). In 
addition, clusters 1-4 also expressed genes related to growth factor production (VEGF, FGF2, PDGFA, 
and EGF), while PGF expression seems to be low and more located to CT-iMSC population. Cluster 1-4 
showed high potential in osteogenic and chondrogenic differentiation (RUNX2, SOX9, and SDC1), but 
less in adipogenic potential (PPARG and FABP4). All these results indicated that cells from cluster 1-4 
were iMSCs (~ 95% of total cell population), while cells from cluster 5 were non-iMSCs (only ~5%) for 
both NC-iMSCs and CT-iMSCs (Figure 3E). 
 
To identify cluster signature, we plotted top differentially expressed genes associated with each cluster in 
the UMAP (Supplemental Figure 5) and the dot plot (Figure 3G) for cell annotation. Similarly, we 
observed high expression of MSC markers from cluster 1-4, annotated as PRRX1+/CD73+ MSCs. Cluster 
1 highly expressed cell cycle gene (CDK1), but relatively lower expression of MSC markers (CD90 and 
CD105), thus we annotate cluster 1 as cycling pre-iMSCs. Cluster 2 highly expressed early 
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chondrogenesis gene (ITGA10), while cluster 3 highly expressed osteogenesis gene (ALPL) but reduced 
expression of SOX11 compared to cluster 2, indicating a cell fate progression from cluster 2 (MSCs) to 
cluster 3 (early osteochondro-progenitors). Cluster 4 and 5 expressed genes associated with cell stress and 
hemopoiesis (TLR2, FYB1, and SPI1). Due to the MSC identity associated with cluster 4, we believe this 
cluster represented the stimulated MSCs, while cells from cluster 5 were non-MSC stromal cells. The 
composition percentile of these 5 cell clusters is comparable between NC-iMSCs and CT-iMSCs (Figure 
3F). Next, we selected the top 1000 genes that were differentially expressed across these 5 clusters (Figure 
3H) and performed gene and pathway enrichment analysis (Figure 3I). Cycling pre-MSCs (cluster 1) 
were highly enriched in genes associated with cell cycle, cell division and DNA replication, while MSCs 
(cluster 2) and osteochondro-progenitors (cluster 3) were highly enriched in genes associated with cell 
differentiation, tissue development, and cell-ECM interaction. Stimulated MSCs (cluster 4) and non-MSC 
stromal cells (cluster 5) were both enriched in genes associated with cell stress and cell senescence, while 
non-MSC stromal cells expressed the genes associated with neural diseases and hemopoiesis.  
 
We further performed pseudo-time trajectory analysis on these cells using Monocle 3 to elucidate their 
expression patterns in an ordered differentiation path (Figure 3C). We observed that cycling pre-MSCs 
were located at the beginning of the trajectory, indicating their earlier developmental stages. The cells 
progressed to the intermediate stage of MSCs, and then branched into either osteochondro-progenitors 
(cluster 3) or stimulated cells with activated inflammatory responses (cluster 4 and cluster 5) (Figure 3D). 
We also profiled MSC/stromal-related genes across the entire pseudo-time. The gene expression of NT5E 
(CD73), CD44 and VIM were relatively stable across the pseudo-time, while an increased expression of 
ENG (CD105) was observed at the later stages (Supplemental Figure 6a). Surprisingly, THY1 (CD90), 
POSTN, and ACTA2 fluctuated in their expression across the cell trajectory (Supplemental Figure 6b). 
For MSC transcription factors, PRRX1 and SOX11 decreased at the later stages, while SOX9 seems to 
increase, indicating the cells transitioning to an osteochondro-progenitor fate (Supplemental Figure 6c).  
 
Transcriptomic comparison between early developmental cell types and MSCs 
We next performed bulk RNA sequencing (RNAseq) to investigate the impact of developmental lineage 
on iMSC properties and compare our iMSCs to the primary MSCs (pMSCs) isolated from different tissue 
sources (Supplemental Table 1). Different pMSCs, including bone marrow-derived pMSCs (BM-
pMSCs), adipose tissue-derived pMSCs (AD-pMSCs), dental pulp-derived pMSCs (DP-pMSCs), 
umbilical cord-derived pMSCs (UC-pMSCs), chorionic villi-derived pMSCs (CV-pMSCs) and chorionic 
plate-derived pMSCs (CP-pMSCs), were cultured under the same condition as iMSCs using serum-free 
media (Supplemental Figure 7) and used for RNA extraction at passage #3. The iMSCs (NC-iMSCs and 
CT-iMSCs) were sorted based on CD73 at MP7 for RNA extraction. In addition, we also include hiPSCs, 
neural crest cells and cytotrophoblast cells as early developmental cell types for RNAseq analysis (total 
22 samples). 
 
After trimming down low-quality reads, ~ 24,000 genes were used for the downstream analysis. Principal 
component analysis (PCA) showed clear separation between hiPSCs, neural crest cells, cytotrophoblast 
cells, and all the MSCs (Supplemental Figure 8A). Pearson’s correlation matrix showed close correlation 
among early developmental cell types (hiPSCs, neural crest cells and cytotrophoblast cells) with CT-
iMSCs, while NC-iMSCs were more closely correlated with AD-pMSCs, BM-pMSCs, and UC-pMSCs 
(Supplemental Figure 8B). Next, we selected top 1000 genes with the highest variance from all 22 
samples and re-performed the PCA analysis, which showed a clear separation between two distinct MSC 
populations: one cluster of NC-iMSCs, BM-pMSCs, AD-pMSCs and DP-pMSCs, and the other cluster of 
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CT-iMSCs, CV-pMSCs, and CP-pMSCs (Figure 4A). This indicated a close relationship between CT-
iMSCs differentiated with extraembryonic specificity and pMSCs derived from placental tissues.  
 
To elucidate the gene expression pattern and sample correlation, we showed the top 1000 genes in a 
heatmap with hierarchical cluster analysis (Figure 4B). The segregation of these genes can be identified 
as three regions: region 1 of highly expressed genes for early developmental cell types, region 2 of highly 
expressed genes for all MSCs, and region 3 of highly expressed genes for placental pMSCs. Next, we 
performed a global analysis of biological processes (Gene Ontology) and signaling pathways 
(WikiPathway and Reactome Pathway) (Figure 4C). Enriched biological processes for region I 
highlighted early embryonic development and stem cell maintenance, while pathway analysis showed 
high enrichment in VEGF signaling and WNT signaling, which are associated with stem cell maintenance 
and germ layer differentiation. Region II and region III showed distinct GO terms associated with tissue 
development: region II for the development of skeletal tissues and connective tissues versus region III for 
the development of placenta and vasculature. However, pathway analysis showed similar enrichment 
between region II and III, highlighting extracellular matrix organization, focal adhesion, and PI3K-AKT 
signaling.  
 
With a particular focus on the lineage specificity of differentiated iMSCs, we selected the genes associated 
with early embryonic development (Figure 4D). As expected, hiPSCs highly expressed the genes 
associated with epiblasts (e.g., NANOG, POU5F1, SOX2, MYC) and cytotrophoblast cells highly 
expressed the genes associated with trophectoderm (e.g., GATA2, GATA3, TFAP2A, KRT7). Neural 
crest cells showed highly expressed genes from both ectoderm (SOX8, PAX2, NGRF) and mesoderm 
(MESP1, TBXT, MIXL1), indicating their developmental transition from neural tube to mesoderm. Both 
iMSCs and pMSCs showed relatively lower expression in these early developmental genes. Compared to 
postnatal pMSCs (BM-pMSCs, AD-pMSCs and DP-pMSCs), perinatal pMSCs (UC-pMSCs, CP-pMSCs 
and CV-pMSCs) showed more expression in this gene list due to their early developmental stages. CP-
pMSCs and CV-pMSCs showed some level of expression in GATA2, KRT19 and TFAP2C, indicating 
their original source of perinatal tissues. UC-pMSCs showed high expression of endoderm genes (GATA4, 
GATA5, and SOX17), indicating their developmental origin of hypoblast cells from primitive endoderm. 
For the iMSCs derived from different lineages, CT-iMSCs and NC-iMSCs were able to partially retain 
their developmental identity (e.g., GATA3 expression in CT-iMSCs, NES expression in NC-iMSCs), but 
more differentiated to a mesoderm lineage. 
 
Last, we combined all the MSCs and compared their gene expression to early developmental cell types 
using volcano plots thresholding at p-values < 0.01 and fold changes > 4. The genes upregulated in hiPSCs 
were the markers associated with pluripotency and reprogramming (NANOG, POU5F1, SPINT1, TERF1), 
while the genes upregulated in MSCs were found as typical MSC markers (VIM, NT5E, CD44) 
(Supplemental Figure 8C). By comparing neural crest cells and cytotrophoblast cells, we observed that 
high gene expression in cytotrophoblast cells were associated with epithelial development (EGFR, 
ANKS1A, ZFHX3) and immunomodulatory properties (VTCN1, ANXA1), while high gene expression 
in neural crest cells were associated with neural development (TUBB2A, ENO2, VGF) (Supplemental 
Figure 8D). Compared to neural crest or cytotrophoblast cells, MSCs showed significant upregulation in 
genes associated with cell-ECM interactions (ITGBL1, ECM1, MMP1, COL3A1 and COL8A1), 
osteogenic differentiation (RUNX1, PITX1, and LRRC15), and immunomodulation (ANXA1, DLC1, and 
INHBA) (Supplemental Figure 8E & 8F). Last, we compared all the MSCs (six pMSCs and two iMSCs) 
to all the non-MSCs (hiPSCs, neural crest and cytotrophoblast). Non-MSCs upregulated genes in early 
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embryonic and placental development (NANOG, POU5F1, TFAR2A, HAND1, PAPPA2, CDH1 and 
CDH3), while MSCs upregulated MSC-typical genes (CD44, NT5E, POSTN, ENG) and ECM-related 
genes (COL3A1, COL6A1, MMP3, MMP10, and MMP11) (Figure 4E). We performed a network 
analysis on 98 genes that were upregulated in all the MSC subtypes (Supplemental Figure 9), and 
identified PRRX1, as the key transcription factor related to many MSC-related functions, such as MSC 
identify (NT5E, CD44), ECM deposition and remodeling (collagens, MMPs), and growth factor signaling 
(NRP1, PDGFRA, IGFBP7, ISLR). 
 
Transcriptomic and functional comparison between iMSCs and pMSCs 
Focusing on the MSC populations, we first compared two lineage-specific iMSCs and six tissue-specific 
pMSCs (Figure 5A). Key genes associated with early embryonic and neural development (VANGL2, 
MDK, TUBB2B, SOX2, SPINT2, GABRP) were upregulated in the iMSCs, indicating their early 
developmental stages compared to the pMSCs. The genes upregulated in the pMSCs were more associated 
with cell-ECM interactions (ITGBL1, COL7A1, COL6A3, MMP3 and MMP10). Surprisingly, pMSCs 
showed higher expression of gene ENG (CD105) than iMSCs, which indicates CD105 might be a late 
marker for MSC differentiation. Next, we compared NC-iMSCs and CT-iMSCs (Figure 5B), and found 
that upregulation of genes in NC-iMSCs associated with musculoskeletal development (POSTN, CHD7, 
FBN3, ADAMTS1 and CLDN11) and upregulation of genes in CT-iMSCs associated with tumor 
suppressor (NF2, TFPI2, H2AC18), immunomodulation (CXCL12, IL2RB, and IL17RD) and ECM 
remodeling (MMP3 and MMP10).  
 
We grouped BM-pMSCs, AD-pMSCs, DP-pMSCs together with NC-iMSCs as postnatal tissue MSCs, 
and UC-pMSCs, CP-pMSCs, CV-pMSCs together with CT-iMSCs as perinatal tissue MSCs. For the 
postnatal tissue MSC group, 269 genes were shared by these four MSC subtypes (Supplemental Figure 
10A). Since neural crest cells give rise to craniofacial musculoskeletal tissues during development, NC-
iMSCs shared more genes with DP-pMSCs than AD-pMSCs and BM-pMSCs. For the perinatal tissue 
MSC group, 229 genes were shared by these four MSC subtypes (Supplemental Figure 10B). Comparing 
the gene upregulation in these two groups, we found that genes associated with placental development 
and maternal immune compatibility (PAPPA2, COCH, MEST, SPON2 and CD24) were upregulated in 
perinatal tissue MSCs, while genes associated with musculoskeletal development (POSTN, CLDN11, 
TMEM119, BGN, FN1, LRRC15) were upregulated in postnatal tissue MSCs (Figure 5C). By comparing 
NC-iMSCs to the other postnatal tissue pMSCs, genes associated with neural development (TUBB2B, 
SOX2, GATA3, KRT8) were upregulated due to their neural epithelium signatures (Supplemental Figure 
10C). By comparing CT-iMSCs to the other perinatal tissue pMSCs, genes associated with early 
embryonic development (VANGL2, DPPA4, ITM2C, CDH1) and placental cadherin (CDH3) were 
upregulated due to their early developmental stage (Supplemental Figure 10D).  
 
We also selected the genes-of-interest associated with MSC functions (stemness, tri-lineage differentiation, 
angiogenesis, paracrine signaling, immunomodulation, extracellular vesicle (EV) biogenesis and 
trafficking) and investigated the expression level for all the MSC subtypes. Overall, we found that all 
MSC subtypes had similar potential in tri-lineage differentiation, while CP-pMSCs and AD-pMSCs 
showed a slight favor to the adipogenic differentiation (Figure 5D). All MSCs, including two iMSC 
subtypes, showed a great potential for immunomodulatory functions and growth factor signaling based on 
our gene set (Figure 5E). Focusing on EV biogenesis and trafficking (ESCRT, Rab, and SNARE protein 
families), we found iMSCs (CT-iMSCs and NC-iMSCs) and perinatal pMSCs showed greater potential 
in EV production than AD-pMSCs and BM-pMSCs (Figure 5F).  
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To compare the tri-lineage differentiation of different MSC subtypes, we induced adipogenic, osteogenic, 
and chondrogenic differentiation on each MSC subtype (Supplemental Figure 11). All MSCs elevated 
lineage-specific gene expression under specific induction media: CEBPA and PPARG for adipogenesis, 
RUNX2 and SPP1 for osteogenesis, and SOX9 and ACAN for chondrogenesis. We found no significant 
difference across different MSC subtypes, indicating that all MSC subtypes shared similar abilities to be 
induced for lineage-specific differentiation. 
 
To compare the anti-inflammatory function of different MSC subtypes, we set up a transwell co-culture 
experiment between RAW264.7 cells and each MSC subtype (Supplemental Figure 12). Co-cultures 
were treated with Lipopolysaccharide (LPS), and several genes associated with inflammatory responses 
were measured from RAW264.7 cells via RT-qPCR. The gene expression level was normalized to the 
negative control group (single-cultured RAW264.7 cells without LPS treatment). We observed that 
positive control group (single-cultured RAW264.7 cells with LPS treatment) showed a dominantly high 
expression of cytokine genes (TNFa, IL1b, IL6, IL10), which can be attenuated by MSC co-culture. More 
importantly, the downregulation of pro-inflammatory genes (TNFa, IL1b, and IL6) was more prominent 
from the co-culture with iMSCs than the ones with UC/DP/CP-pMSCs. More importantly, RAW246.7 
cells co-cultured with iMSCs showed significantly higher expression of ARG1 gene than positive control 
and pMSC co-culture groups, indicating that iMSCs facilitated RAW246.7 cells to transition to an anti-
inflammatory phenotype. 
 
Extracellular Vesicle (EV) Production from Lineage-Specific iMSCs 
EVs produced by MSCs are highlighted for their multifaceted therapeutic potentials via several 
simultaneous actions: inhibit inflammation, modulate immune responses, reduce cell apoptosis, and 
enhance tissue repair and regeneration30-32. With a particular interest in EV biomanufacturing from iMSCs, 
we primed both NC-iMSCs and CT-iMSCs using either LPS or Cell Stimulation Cocktail (CSC). The 
CSC is a cocktail of phorbol 12-myristate 13-acetate (PMA) and ionomycin, which could activate many 
cell types to produce cytokines. We collected and purified the small EVs (sEVs) from cell culture media. 
Nanoparticle tracking analysis (NTA) showed the size distribution of sEVs within the range of 50 – 400 
nm with the majority of the particles smaller than 200 nm (Figure 6A). We also observed a higher sEV 
concentration from CT-iMSCs primed with CSC than the NC-iMSCs (Figure 6B). To confirm exosome-
identity, we performed western blot on our sEVs isolated from both CT-iMSCs and NC-iMSCs under 
different priming conditions (Figure 6C & Supplemental Figure 13). The sEVs from both CT-iMSCs 
and NC-iMSCs had robust comparable expression of CD63 and CD81, while sEV from CT-iMSCs had 
higher expression of CD9 than the ones from NC-iMSCs. More surprisingly, the sEVs from NC-iMSCs 
lacked the expression of HSP90α/β, which was highly expressed by the sEVs from CT-iMSCs. A recent 
study showed that HSP90 mediates multivesicular bodies (MVB)-to-plasma-membrane fusion, indicating 
that HSP90 proteins promote exosome release33. 
 
To quantitatively compare the sEVs production for different priming conditions, we performed a Luminex 
assay on exosome biomarkers (Figure 6D). Overall, the expression level of exosomal tetraspanin markers 
were comparable between CT-iMSCs and NC-iMSCs (CD63, CD81, syntenin-1). Similar to the western 
blot results, CD9 in the sEV from CSC-primed CT-iMSCs was higher than the ones from untreated NC-
iMSCs or LPS-primed NC-iMSCs. Syntenin-1 was recently identified as the highest consistently abundant 
protein in the exosomes from different cellular origins, with potential utility as a putative universal 
biomarker candidate for exosomes34. We found a higher syntenin-1 expression from CSC-primed iMSCs 
than LPS-primed iMSCs for both iMSC subtypes, suggesting the expression level of syntenin-1 might 
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depend on different priming conditions. Cytochrome c, which is related to apoptotic cell bodies, is 
generally used as a negative marker for exosomes35. We found minimal expression of cytochrome c from 
CT-iMSCs produced sEVs, while NC-iMSCs produced sEVs were significantly higher for all conditions, 
indicating that sEVs from NC-iMSCs might include a higher content of non-exosomal vesicles. 
 
With a particular interest on the anti-inflammatory properties of iMSC-sEV, we also performed a Luminex 
assay to measure the cytokine level within the sEV cargo (Figure 6E). First, we were not able to detect 
IFNγ, IL2, IL5 and TNFα, which are generally recognized as pro-inflammatory proteins. The production 
of other cytokines, including both pro-inflammatory proteins (IL1β, IL6, IL8) and anti-inflammatory 
proteins (GM-CSF, IL4, IL10) can be significantly enhanced by either LPS or CSC treatment. To compare 
different priming conditions, we observed a reduction of pro-inflammatory proteins (IL1β and IL8) in the 
sEV from CSC-primed iMSCs compared to LPS-primed iMSCs. To compare different iMSC subtypes, 
we observed that the sEV from CT-iMSCs, particularly under the CSC priming condition, contained 
higher concentration of anti-inflammatory proteins (IL4 and IL10) than the ones from NC-iMSCs. Overall, 
CT-iMSCs under CSC priming condition produced the sEV in higher quantity and with stronger anti-
inflammatory properties than NC-iMSCs, indicating that CT-iMSCs plus CSC priming condition might 
enable a potential cell source for therapeutic EV biomanufacturing applications.  
 
DISCUSSION 
Development of iMSC differentiation with lineage specificity 
In this study, we have successfully demonstrated differentiation of iMSCs from monolayer hiPSCs under 
serum-free condition. Early attempts to different iMSC from human pluripotent cells (hESCs and hiPSCs) 
primarily relied on the formation and growth of embryoid bodies (EBs) on different substrates17,36-40. In 
these approaches, the outgrowing cells from the EBs were harvested through mechanical scraping or 
trypsinization, and then replated back into MSC-defined growth media until the cells developed MSC 
characteristics. Though recent efforts have moved away from the need for EB formation, 3D bioreactor 
platforms are being developed to generate MSC spheroids from EBs in suspension without the need for 
repeated passaging41. Progression was made in deriving iMSCs from monolayer hiPSCs based on 
temporal inhibition of ALK signaling using SB431542, followed by continuous culture in MSC-defined 
media42-45. Although these studies have demonstrated successful iMSC induction, the intermediate stages 
of differentiation were less characterized and defined.  
 
In addition to advancements in differentiation strategies, significant effort has been dedicated to in-depth 
characterization of intermediate cell stages and cell-fate transitions that underlie the differentiation process. 
Several studies, including our own, have demonstrated successful differentiation of iMSCs through a 
neural crest cell lineage21-23. Meanwhile, inhibition of IKK/NF-κB signaling, or activation of Activin/BMP 
signaling has been shown to induce iMSC differentiation via mesoderm lineage20,46,47. iMSCs were also 
derived from trophoblast-like cells induced from hESCs using BMP4 and ALK inhibitor24. Despite 
differences in intermediate stages, these iMSCs exhibited MSC-like immunophenotype, plastic adherent 
ability, and multipotent differentiation capacity, meeting the minimal criteria defined by the International 
Society for Cellular Therapy. In our work, we successfully induced iMSC differentiation via two different 
intermediate cell stages, neural crest and cytotrophoblast, using a serum-free condition. Although both 
intermediate cell types require ALK inhibition, neural crest differentiation relies on WNT and FGF 
signaling, while cytotrophoblast differentiation relies on BMP signaling but FGF inhibition. Although 
iMSCs derived from different intermediate cells showed many similarities, differences were observed in 
yield, osteogenic potential, and marker expression. 
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Systematic comparison of MSCs from different origins 
After initial isolation from bone marrow, MSCs have been found in various tissues, with each subtype 
exhibiting source-specific cell characteristics due to their local tissue microenvironment. A paired 
comparison between BM-pMSCs and AD-pMSCs from the same healthy donors indicated that AD-
pMSCs exhibited stronger immunosuppression properties and lower immunogenicity than BM-pMSCs13. 
Similarly, a paired comparison between placenta-derived pMSCs and UC-pMSCs from the same donors 
showed differences in immunomodulatory properties: placental pMSCs were more effective in inhibition 
of dendritic cells, while UC-MSCs were more effective in inhibition of T cells48. In general, there has 
been strong consensus that perinatal tissue-derived pMSCs (amnion, chorion, placenta, umbilical cord, 
Wharton’s Jelly, cord blood) have strong immunomodulatory properties due to immune tolerance to 
prevent fetal rejection during pregnancy49-52. 
 
Early comparisons between iMSCs and pMSCs focused on functional similarities of iMSCs as an 
alternative MSC source for therapeutic solutions53,54. More recently, comprehensive comparisons between 
iMSCs and pMSCs aimed to elucidate the distinct profiles for different MSC subtypes. Several reports 
indicated a reduction in adipogenic potential in iMSCs compared to BM-pMSCs42,55,56. In a study based 
on both transcriptomic and proteomic analysis, the top enriched biological processes found in iMSCs over 
BM-pMSCs were related to embryo and neural development57. In our study, we compared the 
transcriptomic profiles of MSCs to early development cells (hiPSCs, neural crest and cytotrophoblast 
cells), and found that MSCs were enriched in the genes related to osteogenesis, immunomodulation, and 
cell-ECM interaction. Early developmental cells were enriched in VEGF and WNT signaling, while MSCs 
were enriched in FAK and AKT signaling. When comparing iMSCs and pMSCs, we observed that iMSCs 
retained early developmental characteristics, while pMSCs showed a stronger association with cell-ECM 
interactions. On the transcriptomic level, CT-iMSCs showed strong potential for immunomodulatory 
functions and EV biogenesis, which was confirmed by protein level analysis on the EVs produced from 
both iMSC subtypes. EVs produced from CT-iMSCs showed higher expression of exosomal proteins 
(CD9 and HSP90), as well as immunosuppressive cytokine cargos (IL4 and IL10), compared to the EVs 
produced from NC-iMSCs. 
 
MSC-specific transcription factors  
Although maintenance and self-renewal of MSCs have been well established, it remains to be determined 
which transcription factors are critical in regulation and maintenance of MSC identify. Most previous 
studies have focused on investigating key transcriptional factors in regulating MSC differentiation into 
specific lineages, such as master transcription factors for osteogenic differentiation (RUNX2 and OSX), 
chondrogenic differentiation (SOX9 and FOXO3A), and adipogenic differentiation (PPARγ and EBF1)58. 
Early work on BM-pMSCs identified nine transcription factors, including ETV1, ETV5, FOXP1, GATA6, 
HMGA2, SIM2 and SOX11, involved in self-renewal and stemness of MSCs59. More recently, MSX2 and 
TWST1 were found to play a critical role in initiating and accelerating the molecular program that led to 
iMSC differentiation via an intermediate cell stage of neural crest60.  
 
From our scRNAseq data, we found that high expression of key transcription factors of MSX1, TWIST1, 
GATA6 genes was present in the iMSCs, which is consistent with previous literature. Expression of 
SOX11 was lower than the other transcription factors and decreased as MSCs progressed to the later stages 
based on pseudo-time trajectory analysis, suggesting that SOX11 might initiate early transcriptional 
activity for MSC fate determination. Moreover, we identified a transcriptional factor PRRX1, which was 
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highly involved in MSC identify (NT5E, CD44), signaling (WNT, PDGF), and ECM interactions. PRRX1 
is known to regulate cancer metastasis by enhancing epithelia-mesenchymal transition of cancer cells 
through the TGFβ, WNT, and NOTCH signaling pathways61. It has also been recognized as an important 
factor for organogenesis of mesenchymal tissues and vascular structures during development62,63. 
Recently, PRRX1 was found to play a crucial role in tissue homeostasis for bone, white adipose, and 
dermal tissues in adult mice64. This study showed RPPX1+ cells exhibited surface markers of CD29+, 
CD130+, CD31−, CD45−, but low expression of CD105, indicating that activation of CD105 expression 
in iMSCs might rely on additional transcription factors or endogenous signaling. While our findings are 
limited to the transcriptomic level, future studies are encouraged to investigate PRRX1 as a critical 
transcription factor and its related signaling activities for iMSC fate decision during development and 
pMSC maintenance in adulthood.  
 
Differentiation of iMSCs via extraembryonic lineages 
A previous study showed that iMSCs can be differentiated from hPSCs through trophoblast-like cells 
using BMP4 and ALK inhibitor A8301 without PD17307424. Our work showed the importance of 
PD173074 in promoting cytotrophoblast differentiation, which was consistent with previous reports28,65-
67. However, our work is also limited to the use of primed hiPSCs for trophectoderm induction. To improve 
the differentiation of trophoblasts, it may be necessary to convert primed hiPSCs to the naïve stage, as 
previous studies have shown that TSCs derived from naïve hPSCs exhibit key features of pre-implantation 
trophectoderm29,68-70. Further optimization of the differentiation protocol using naïve hiPSCs can enhance 
our understanding of the molecular mechanisms regulating trophoblast differentiation and lead to the 
development of more efficient and effective iMSC differentiation strategies. 
 
Perinatal tissues are rich sources of pMSCs, which can be isolated from amniotic fluid (AF), amniotic 
membrane (AM), cord blood (CB), umbilical cord (UC), and placenta. Importantly, many cell types from 
these extraembryonic lineages play an essential role in maternal-fetal immune tolerance during early 
embryo and fetal development. For instance, extravillous trophoblasts present HLA-C, HLA-E and HLA-
G to modulate maternal NK cells and T cells, thus balancing immune tolerance and antiviral immunity at 
the maternal–fetal interface71. Our initial results on iMSC-EVs indicated that EVs produced by CT-iMSCs 
had better immunosuppressive capacity than those produced by NC-iMSCs. Currently, protocols to 
generate different extraembryonic cells from hPSCs are still being optimized. Future study could focus on 
deriving iMSCs from these specific lineages to further elucidate the similarities and differences of 
extraembryonic iMSC subtypes, particularly in terms of their immunomodulatory and anti-inflammatory 
properties. 
 
Therapeutic potential of lineage-specific iMSCs 
Currently, iMSCs have been reported to reduce ischemia and inflammation in various animal disease 
models, such as myocardial infarction, lower limb ischemia, inflammatory bowel disease, and acute lung 
injury72-77. Compared with tissue-derived pMSC, iMSC closely resemble their primary counterparts in 
morphology, immunophenotype, and tri-lineage differentiation capacity, while showing stronger 
regeneration ability in animal models. In 2016, Cynata Therapeutics from Australia launched the world’s 
first trial of an allogeneic iMSCs for the treatment of steroid resistant acute graft-versus-host disease 
(GVHD), and now is advancing to Phase II trials for COVID-19 and GVHD, and Phase III trials for 
osteoarthritis78,79. Our transcriptomic profiling of lineage-specific iMSC subtypes suggests that iMSCs 
with different developmental signature can be designed for distinct therapeutic purposes. NC-iMSCs with 
enriched transcriptomics towards musculoskeletal tissue development might be more suitable for 
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osteoarthritis or bone defect repairing, while CT-iMSCs with enriched transcriptomics towards immune 
tolerance might be more suitable for anti-inflammatory applications. Our ongoing study also demonstrated 
the effectiveness of iMSC-EVs in attenuating the inflammation in a murine acute lung injury model. 
Therefore, iMSCs enable a scalable source for “off-the-shelf” cell products under Good Manufacturing 
Practice (GMP) procedures for future therapeutic applications to treat complex and multifactorial diseases.  
 
CONCLUSIONS 
Using a stepwise differentiation method, this study generated lineage-specific iMSCs from human induced 
pluripotent stem cells (iPSCs) via intermediate cell stages of neural crest and cytotrophoblast. We 
compared the transcriptomic profiles of early developmental cell types, two lineage-specific iMSCs, and 
six source-specific pMSCs, revealing that MSCs were enriched in genes related to osteogenesis, 
immunomodulation, and cell-ECM interaction. NC-iMSCs had a higher MSC purity and stronger 
osteogenic differentiation potential than CT-iMSCs. However, CT-iMSCs had better EV production and 
immunomodulatory function than NC-iMSCs, making CT-iMSCs a better candidate for therapeutic EV 
biomanufacturing. This study demonstrated that different iMSC subtypes and priming conditions affected 
EV production, exosomal protein expression, and cytokine cargo, highlighting the importance of 
generating lineage-specific MSCs to improve their therapeutic potential. 

 
METHODS 
iMSC Differentiation 
The WTC hiPSC line was obtained from the Conklin lab at the Gladstone Institute of Cardiovascular 
Disease, and Yale hiPSC line was obtained from Kontaridis lab at the Masonic Medical Research Institute. 
The hiPSCs were plated at a density of 2.5 × 104 cells/cm2 on Geltrex-coated 6-well plates in the Essential 
8 (E8) media (Life Technologies, Ca# A1517001) supplemented with 10 µM Y-27632 (Biovision, Ca# 
1784). Growth factor reduced Geltrex (Life Technologies, Ca# A1413302) diluted for surface coating was 
prepared by thawing 5 mL of original Geltrex gel into 495 mL cold DMEM/F12 (Life Technologies, Ca# 
11320033). The hiPSCs were maintained in the E8 media, and media was refreshed every day.  
 
For NC-iMSC differentiation, the hiPSCs were first treated for neural crest induction with 10 ng/mL bFGF 
(R&D Systems Ca# 233-FB), 4 µM SB431542 (Stemgent, Ca# 04-0010-10), and 4 µM CHIR99021 
(Stemgent, Ca# 04-2004) in Essential 6 (E6) media (Life Technologies, Ca# A1516401). The 
differentiation medium was changed daily for the next 5 days. On Day 6, the cells were plated as 
‘Multipotent Passage 0’ (MP0) on Geltrex-coated 6-well plates in serum-free MSC culture medium (CTS 
StemPro MSC SFM, Life Technologies, Ca# A1033201) at a density of 4 × 104 cells/cm2. Every 6 days, 
the cells were re-plated at a density of 2 × 104 cells/cm2 for MP1 – MP7. Starting from MP3, surface 
coating was switched from Geltrex to 1% Gelatin (Life technologies, Ca# S006100) to support iMSCs 
adhesion and growth. 
 
For CT-iMSC differentiation, the hiPSCs were first treated for cytotrophoblast induction with 10 ng/mL 
BMP4 (R&D Systems Ca# 314-BP), 4 µM SB431542 (Stemgent, Ca# 04-0010-10), and 0.1 µM 
PD173074 (Stemcell technologies, 72164) in Essential 6 (E6) media (Life Technologies, Ca# A1516401). 
The differentiation medium was changed daily for the next 5 days. On Day 6, the cells were plated as 
‘Multipotent Passage 0’ (MP0) on Geltrex-coated 6-well plates in serum-free MSC culture media (CTS 
StemPro MSC SFM, Life Technologies, Ca# A1033201) at a density of 4 × 104 cells/cm2. Every 6 days, 
the cells were re-plated at a density of 3 × 104 cells/cm2 for MP1 – MP7. Starting from MP3, surface 
coating was switched from Geltrex to 1% Gelatin (Life technologies, Ca# S006100) to support iMSCs 
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adhesion and growth. 
 
Primary MSC Culture 
Six different primary MSCs were purchased from commercially available vendors (Supplemental Table 
1), including bone marrow-derived primary MSCs (BM-pMSCs), adipose tissue-derived primary MSCs 
(AD-pMSCs), dental pulp-derived primary MSCs (DP-pMSCs), umbilical cord-derived primary MSCs 
(UC-pMSCs) chorionic villi-derived primary MSCs (CV-pMSCs), and chorionic plate-derived primary 
MSCs (CP-pMSCs). The primary MSCs were plated on 1% Gelatin-coated 6-well plates in serum-free 
MSC culture media (CTS StemPro MSC SFM, Life Technologies, Ca# A1033201) at a density of 1 × 104 
cells/cm2. Every 6 days, the cells were replated at a density of 1 × 104 cells/cm2 in serum-free MSC culture 
medium. 
 
Co-culture of MSCs and RAW 264.7 Cells 
RAW 264.7 cells were cultured in DMEM supplemented with 10% fetal bovine serum (Gibco) and 1% 
penicillin/streptomycin at 37°C with 5% CO2. In transwell co-culture experiment, RAW264.7 cells were 
plated in the lower chamber at 5×104 cells/well. Different subtypes of MSCs were seeded at the density 
of 5×104 cells/insert in the upper compartment of 24-transwell plates (Corning, USA) (3.0 μm pore 
polycarbonate membrane). After co-culture for 24 hours, the cells were treated with lipopolysaccharide 
(LPS) (1 µg/ml) for another 24 hours. Next, RAW 264.7 cells were harvested for subsequent RT-qPCR 
analysis of inflammation-related genes. Single-cultured RAW264.7 cells with and without LPS treatment 
were used as positive and negative controls, respectively. -∆∆Ct was calculated relative to the negative 
control. 
 
Immunostaining and Fluorescent Microscopy 
The cells were fixed with 4% (vol/vol) paraformaldehyde (PFA) for 15 minutes, permeabilized with 0.2% 
triton solution for 5 minutes, and blocked with 2% bovine serum albumin (BSA) for 30 minutes. The 
samples were washed three times with DPBS between each procedure. Next, fixed samples were incubated 
in primary antibodies (Supplemental Table 2) for 2 hours at room temperature, washed with DPBS three 
times, and then secondary antibodies (Supplemental Table 2) for 1.5 hours. Finally, after three DPBS 
washes, the cells were incubated with DAPI for nuclei staining for 10 minutes. The bright-field and 
epifluorescence microscopy was performed on a Nikon Eclipse Ti microscope with Zyla 4.2 PLUS 
sCMOS camera. 
 
Tri-lineage Differentiation 
StemPro Adipogenesis Differentiation Kit (Life Technologies, Ca# A1007001) was used to induce 
adipogenic differentiation of iMSCs at MP6. iMSCs were plated in a 12-well plate at 1 × 104 cells/cm2 
for 4 days in serum-free MSC culture medium (CTS StemPro MSC SFM, Life Technologies, Ca# 
A1033201). The cells were then treated with the complete adipogenesis medium consisting of adipocyte 
differentiation basal medium, adipogenesis supplement and gentamicin. Medium was refreshed every four 
days for 20 days. On Day 21, cells were processed with Oil Red O to detect lipid droplets. 
 
StemPro Osteogenesis Differentiation Kit (Life technologies, Ca# A1007201) was used to induce 
osteogenic differentiation of iMSCs at MP6. iMSCs were plated in a 12-well plate at 5 × 103 cells/cm2 
for 3 days in serum-free MSC culture medium. The cells were then treated with the complete osteogenesis 
medium consisting of osteocyte/chondrocyte differentiation basal medium, osteogenesis supplement and 
gentamicin. Medium was replaced every four days for 20 days. On Day 21, cells were incubated with anti-
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osteocalcin primary antibody overnight at 4°C and then secondary antibody for 2 hours at room 
temperature.  
 
StemPro Chondrogenesis Differentiation Kit (Life Technologies, Ca# A1007101) was used to induce 
chondrogenic differentiation of iMSCs at MP6. The iMSC-contained solution of 1.6 × 107 cells/mL was 
produced in serum-free MSC culture medium. To create micro-mass culture, 5 uL cell solution was 
transferred onto a 12-well plate for 2 hours (4-5 micro-mass culture per well). The micro-mass culture 
was then treated with the complete chondrogenesis medium consisting of osteocyte/chondrocyte 
differentiation basal medium, chondrogenesis supplement and gentamicin. The medium was refreshed 
every three days for 20 days.  On Day 21, the micro-mass was stained with anti-aggrecan primary antibody 
overnight at 4°C and then secondary antibody for 2 hours at room temperature.  
 
Flow Cytometry Analysis 
Cells were singularized with 0.25% trypsin for 5 minutes and quenched with serum-free media. After 
washing with DPBS three times, cells were fixed with 4% (vol/vol) paraformaldehyde (PFA) for 15 
minutes, washed and incubated with fluorescent conjugated antibodies against cell surface markers: 
CD105, CD90, CD45 and CD73 (Supplemental Table 2) for 45 minutes. The labeled cells were analyzed 
by the BDAccuri C6TM flow cytometer at the Syracuse University Flow Core. 
 
Cell Sorting 
To create a relatively homogenous iMSC population for RNA sequencing analysis and anti-inflammatory 
function assessment, CD73+ cells were isolated based on fluorescence-activated cell sorting (FACS). 
Cells were dissociated and singularized using 0.25% trypsin and centrifuged at 250 g for 10 minutes to 
pellet. Next, cells were washed two times by resuspending in FACS buffer (PBS with 10% fetal bovine 
serum (FBS)) and centrifuging into pellets. Next, cells were resuspended in the FACS buffer with CD73-
conjugated antibody (BD Bioscience, Ca# 560847) and incubated for one hour on ice. After incubation, 
cells were washed three times and resuspended in the FACS buffer for sorting. Cells were sorted on BD 
FACSAria II SORP (Syracuse University Flow Core) directly into TRIzol reagent (Life Technologies, 
Ca#15596018) for cell lysis and RNA extraction. 
 
RT-qPCR 
Total RNA was extracted and purified using RNeasy mini kit (Qiagen Inc, Ca#. 74104). The isolated 
RNA was quantified by measuring the absorbance at 260 nm and 280 nm using a NanoDrop Microvolume 
UV-Vis Spectrophotometer. cDNA was synthesized using thermocycler per manufacturer’s instructions 
using SuperScript IV Reverse Transcriptase (Life technologies, Ca# 18090010), Oligo(dT)20 primer (Life 
technologies, Ca# 18418020), dNTP Mix (Life Technologies, Ca# 18427013), and RNaseOUT 
Recombinant Ribonuclease Inhibitor (Life Technologies, Ca# 10777019). cDNA was diluted and 
aliquoted into a 96-well customized TaqMan Array (Life Technologies, Ca# 4391525) containing pre-
dispensed gene specific primer sets, together with Fast Advance TaqMan Master Mix (Life Technologies, 
Ca# 4444964). The customized TaqMan array plate contained one manufacturing control gene (18S), 
three candidate endogenous control genes (GAPDH, HPRT, GUSB), and genes-of-interest with four 
replicates (Supplemental Table 3). Real-Time quantitative PCR (qRT-PCR) was performed using a 
QuantStudio 3 Real-Time PCR System. -∆Ct value was calculated and averaged for Figure 1 and 2. -∆∆Ct 
was calculated relative to the negative control. 
 
Bulk RNA Sequencing and Bioinformatics Analysis 
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Total RNA was extracted from CD73+ sorted NC-iMSCs and CT-iMSCs, together with hiPSCs, 
intermediate cells (neural crest cells and cytotrophoblast cells), and primary MSCs (BM-pMSCs, AD-
pMSCs, UC-pMSCs, DP-pMSCs, CP-pMSCs and CV-pMSCs) for standard bulk RNAseq analysis.  The 
samples were incubated with TRIzol reagent at room temperature for 5 minutes with vortexing. The RNA 
was isolated using RNeasy mini kit (Qiagen Inc, Ca#. 74104), quantified using a NanoDrop Microvolume 
UV-Vis Spectrophotometer, and stored at -80˚C. The RNA quality was evaluated using Agilent 2100 
Bioanalyzer at Molecular Analysis Core, SUNY Upstate Medical University. The samples with RIN ≥ 8.0 
and concentration ≥ 50 ng/µL were sent to Azenta USA Inc. for standard RNA sequencing services. The 
Illumina Ribo-Zero rRNA removal kit was used for rRNA depletion of all the samples. The samples were 
sequenced using Illumina HiSeq with 2	× 150 bp configuration, single index, paired end reads per lane. 
 
The raw FASTQ files were analyzed using the Partek Flow software, courtesy of a shared license provided 
by SUNY Upstate Medical Genomics Core. The unaligned reads were trimmed for bases to obtain a Phred 
quality score > 20, and then aligned using the Spliced Transcripts Alignment to a Reference (STAR) to 
the human genome (hg38). The post-alignment assessment was conducted for quality assurance (QA) and 
quality control (QC), which showed the percentage of alignment for each sample was > 75%. The total 
number of reads for each sample was between 37 million to 52 million with a %GC ranging from 48.54% 
to 67.62%, which are within the recommended values for profiling human gene expression. The average 
base quality score per read was between 35.8 and 38.7, indicating good quality reads. Post-alignment 
quantification was applied to an annotation model and normalized based on recommended parameters of 
counts per million (CPM). The downstream analysis included principal component analysis (PCA), 
differential gene expression (DESeq), hierarchical clustering, gene ontology (GO) and pathway analysis. 
Gene network analysis was performed using Cytoscape 3.9.1 with GeneMANIA library.  
 
Single Cell RNA Sequencing and Bioinformatics Analysis 
The MP6 CT-iMSCs and NC-iMSCs were used for single cell RNA sequencing (scRNAseq) analysis. 
Upon confluence, iMSCs were harvest using 0.25% trypsin-EDTA and resuspended in DMEM-FBS 
solution. Single-cell suspensions were counted using an automated cell counter (Chemometec NC-200), 
and concentrations were adjusted to 5 × 105 cells per ml. Single-cell suspensions were processed in the 
Cornell BRC system by the Chromium Controller (10x Genomics) using the Chromium Next GEM Single 
Cell 3′ Reagent kit. Cells were diluted into the Chromium Single Cell A Chip to yield a recovery of 5,000 
single-cell transcriptomes. After preparation, libraries were sequenced using a NextSeq2000 P2-100 (90nt 
cDNA read), ~400M reads.  
 
The raw FASTQ files were analyzed using the Partek Flow software. The unaligned reads were trimmed, 
aligned using STAR 2.7.8a with homo sapiens (human) – hg38, processed with UMI deduplication, 
filtered and quantified the barcodes based on annotation model of Ensembl Transcripts release 100, which 
produced the single cell count matrices for downstream analysis. Further quality control and preprocessing 
were performed on each sample individually. Cells with fewer than 500 features detected or fewer than 
1,500 unique molecules detected were removed. Cells with more than 15% of unique molecules mapping 
to the mitochondrial genome were removed. Features detected in less than 5% of the cells were removed. 
After these preprocessing and quality control, we retained 2223 CT-iMSCs and 2865 NC-iMSCs with 
total 13,122 genes for subsequent analysis. 
 
After quality control, samples were then merged. Gene expression data was normalized, log-transformed, 
and scaled. Principal component analysis was first conducted, and resulted embedding was analyzed using 
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graph-based Louvain clustering algorithm with a resolution of 0.5 and number of nearest neighbors of 30. 
The resulting clusters were visualized using uniform manifold approximation and projection (UMAP), 
and then labeled and annotated according to a set of curated canonical gene markers. Next, top 1000 most 
variable genes were identified and used for hierarchical clustering, as well as gene set and pathway 
enrichment analysis. Trajectory pseudo-time analysis was performed using Monocle 3 algorithm with 
attribute value for root nodes of 1. 
 
Small Extracellular Vesicle (sEV) Purification 
iMSCs are plated at a density of 2.5 × 104 cells/cm2 in the serum-free MSC culture media (CTS StemPro 
MSC SFM, Life Technologies, Ca# A1033201) on 6-well plates coated with 1% Gelatin solution. After 3 
days, the iMSCs were primed by either 2 μL/mL of Lipopolysaccharide (LPS) solution (500X, Life 
technologies, Ca# 00-4976-03) or cell stimulation cocktail (CSC, containing phorbol 12-myristate 13-
acetate (PMA), ionomycin, brefeldin A and monensin) solution (500X, Life Technologies, Ca# 00-4970-
03) for three days. The media was collected and filtered by vacuum filtration to remove residual cells, 
debris and large particles for EV isolation and purification. 
 
Filtered primed cell supernatant media was concentrated to remove excess water using Amicon 100kDa 
ultracentrifugation filters at 4000× g for 20 minutes. The concentrated samples were moved to a clean 
sterile tube. The filtrate was centrifuged twice at 4000× g for 10 minutes to recover any additional 
particles that may have flowed through during initial centrifugation. The samples are collected and 
incubated with 0.5 volumes of Total Exosome Isolation Reagent (Life Technologies, Ca# 4478359) per 
manufacturer's instruction. The suspension was vortexed thoroughly to form a homogenous solution, and 
then incubated overnight in the refrigerator. Next day, samples were centrifuged at 2˚C, 10,000× g for an 
hour and discarded the supernatant. The pellet at the bottom of the tube was resuspended in sterile 1X 
DPBS, and further filtered by size exclusion chromatography using qEV columns (qEVoriginal/35 nm 
Gen 2 Column, IZON Inc.) with an optimum recovery range of 35 nm to 350 nm.  
 
Nanoparticle Tracking Analysis (NTA) 
NTA was performed to estimate the concentration and size distribution of sEVs collected from primed 
iMSCs. For each run, 300 µL of the prepared sEV samples were injected into the sample chamber of a 
NS300 instrument (NanoSight, Aumesbery, UK) with a 532 nm green laser. Seven measurements of each 
sample were performed for 30 seconds each. The default adjustment settings (Blur, Minimum expected 
particle size, and Minimal track lengths) provided by the software were used. The camera level (9–12) 
and detection threshold (2–6) were adjusted manually for each experiment as recommended by the 
manufacturer. For data capturing and analysis, the NTA analytical software (NanoSight NTA version 3.2) 
was used. Briefly, from the recorded video, the mean square displacement of each detected particle was 
determined. Then, using the Stokes-Einstein equation, the diffusion coefficient and sphere-equivalent 
hydrodynamic radius were determined by the software. 
 
Western blot  
Total protein concentrations from the EVs determined by the BCA micro assay kit (Cat. #: 23235, Thermo 
Scientific). 15 µg of protein were separated by SDS-PAGE gel, then transferred to PVDF membranes (Cat. 
#: IPVH00010, Millipore Co., Ltd). The membranes were incubated with 5% non-fat milk (Cat. #: 
NC9952266, Fisher Scientific) in Tris-buffered saline plus 0.5 % Tween-20 for 1 hour at room 
temperature, and then overnight at 4˚C with primary antibodies (Supplemental Table 2). The secondary 
antibody linked to horseradish peroxidase (HRP) purchased from Santa Cruz Biotechnology (Cat. #: 
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516102, 1:1000 dilution) was applied for 1 hour at room temperature. Antibody-antigen complexes were 
visualized using ECL (Cat. #: 34580, Thermo Scientific) according to the manufacturer’s instructions. 
 
Luminex Multiplexing Assay 
sEVs were characterized based on multiplexed Luminex assays using Exosome Characterization 6-Plex 
Human ProcartaPlex™ Panel [CD9, CD63, CD81, Cytochrome C, Syntenin-1, VLA-4] (Invitrogen™, 
Ca#: EPX060-15845-901) and Cytokine 10-Plex Human Panel [GM-CSF, IFNγ, IL1β, IL2, IL4, IL5, IL6, 
IL8, IL10, TNFα] (Invitrogen™, Ca#: LHC0001M) per manufacturer’s instructions. sEV suspension was 
centrifuged at 10,000× g for one hour into pellet, which was lysed with Exosome Resuspension Buffer 
(Life technologies, Ca#4478545) and stored at -20˚C until further analysis. Standards were prepared from 
supplied lyophilized standard mix, reconstituted, and diluted with the 1X wash buffer in a serial dilution. 
Capture bead mix was added to the plate and washed. The standards and samples were added to assigned 
wells, sealed at room temperature for 2 hours with shaking at 600 RPM. The wells were washed three 
times before adding the Biotinylated detection antibody. Next, the plate was sealed and shaken at 600 
RPM for 30 minutes. After washing three times, Streptavidin-PE-(SA-PE) was added to each well, and 
the plate was sealed and shaken at room temperature for 30 minutes. After washing three times, the reading 
buffer was added, and the plate was sealed and shaken for 5 minutes. The plates were run on a BioPLex 
200 xMAP instrument in the Genomics Core at SUNY Upstate Medical University. We set the detection 
limit as 100 pg/mL. The concentration lower than the detection limit was counted as Not Detected (ND), 
and value was used as “0” in the statistical analysis.  
 
Statistical Analysis 
All the statistical analysis was completed in Prism 9 software. Data was plotted as box plots or mean ± 
s.d. For single comparisons between two individual groups, a two-sided Student’s t-test was used, and p 
≤ 0.05 was considered significant. For comparisons between more than two groups, analysis of variance 
(ANOVA) was performed and p ≤ 0.05 was considered significant. ANOVA analysis was supplemented 
with post-hoc Tukey’s multiple comparison tests to determine significance between groups. 
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FIGURES  

 
Figure 1. NC-iMSC Differentiation. (A) The differentiation protocol to derive iMSCs via an 
intermediate cell stage of neural crest. (B) The phase-contrast images showed the morphological changes 
from aggregated hiPSC colony to cuboidal-shaped neural crest cells, and then spindle-shaped iMSCs. (C) 
The immunostaining results showed robust neural crest differentiation based on positive expression of 
SOX10, ETS1, NGFR, KRT19 and SNAI2. (D) The immunostaining results showed successful NC-iMSC 
differentiation based on positive expression of CD90, CD105, CD73, CD166, CD44, and CD146. (E) NC-
iMSCs showed differentiation potentials into adipogenic, osteogenic and chondrogenic lineages. (F) RT-
qPCR results showed cell fate transition during iMSC differentiation through the intermediate cell stages 
of neural crest cells. 
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Figure 2. CT-iMSC Differentiation. (A) The differentiation protocol to derive iMSCs via an 
intermediate cell stage of cytotrophoblast cells. (B) The phase-contrast images showed the morphological 
changes from aggregated hiPSC colony to polygonal-shaped cytotrophoblast cells, and then spindle-
shaped iMSCs. (C) The immunostaining results showed robust cytotrophoblast differentiation based on 
positive expression of CDX2, KRT7, EPCAM, TEAD4 and GATA3. (D) The immunostaining results 
showed successful CT-iMSC differentiation based on positive expression of CD90, CD105, CD73, CD166, 
CD44, and CD146. (E) CT-iMSCs showed differentiation potentials into adipogenic, osteogenic and 
chondrogenic lineages. (F) RT-qPCR results showed cell fate transition during iMSC differentiation 
through the intermediate cell stages of cytotrophoblast cells. 
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Figure 3. iMSC heterogeneity in development. (A) UMAP projection of single cell RNA sequencing 
data from NC-iMSCs and CT-iMSCs, (B) which was then re-grouped into 5 cell clusters. (C) Trajectory 
pseudo-time analysis on iMSC heterogeneity showed (D) a development branching between cluster 3 and 
cluster 4&5. (E) Quantification of iMSCs vs non-iMSCs and (F) cell composition from 5 clusters showed 
comparable results between NC-iMSCs and CT-iMSCs. (G) Dot plot showed differentially expressed 
genes associated with each cluster. (H) Gene expression pattern of top 1000 most variable genes from 
annotated cell clusters: cycling pre-MSCs, MSCs, osteochondro-progenitors, stimulated MSCs and non-
MSCs. (I) Gene ontology and pathway enrichment for all 5 cell clusters. 
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Figure 4. Transcriptomic profile of iMSC differentiation. (A) Principal component analysis (PCA) 
plot showed separation between hiPSCs, intermediate cell types (neural crest and cytotrophoblast), 
lineage-specific iMSCs and source-specific pMSCs. (B) Top 1000 high-variance genes showed distinct 
gene expression pattern allocated into three regions. (C) Gene ontology, WikiPathway and Reactome 
analysis showed distinct biological process and signaling pathway associated with the specific region. (D) 
All 11 different cell types (hiPSCs, 2 intermediate cells, 2 iMSCs and 6 pMSCs) showed distinct gene 
expression associated with early embryonic development. (E) Volcano plot showed differential gene 
expression between all MSCs (2 iMSCs and 6 pMSCs) and non-MSC cells (hiPSCs, neural crest cells and 
cytotrophoblast cells). 
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Figure 5. Transcriptomic comparison between lineage-specific iMSCs and source-specific pMSCs. 
Volcano plots showed differential gene expression for (A) 6 pMSCs vs. 2 iMSCs, (B) CT-iMSCs vs. NC-
iMSCs, and (C) postnatal MSCs (AD-pMSCs, BM-pMSCs, DP-pMSCs, NC-iMSCs) vs. perinatal MSCs 
(CV-pMSCs, CP-pMSCs, UC-pMSCs, CT-iMSCs). All 8 different MSC types (2 iMSCs and 6 pMSCs) 
showed distinct gene expression associated with (D) stemness and tri-lineage differentiation potential, (E) 
paracrine signaling and immunomodulatory potential, and (F) EV production.  
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Figure 6. Production of extracellular vesicles (EVs) from iMSCs. (A) Nanoparticle tracking analysis 
showed comparable particle size distribution for purified iMSC-produced EVs under different priming 
conditions, but (B) higher EV concentration from CSC-primed CT-iMSCs than the NC-iMSCs. (C) 
Western blot experiments showed different expression of exosomal proteins between CT-iMSCs and NC-
iMSCs. (D) Luminex assay of exosome biomarkers showed slightly enhanced expression of exosomal 
tetraspanin proteins (CD9) and significantly reduced expression of apoptotic cell bodies protein 
(cytochrome c) from CSC-primed CT-iMSCs. (E) Luminex assay of human cytokines showed both 
priming conditions could significantly enhance the cytokine concentration in iMSC-EVs, while EVs 
produced from CSC-primed CT-iMSCs had higher anti-inflammatory cytokine expression (IL4 and IL10) 
than EVs from NC-iMSCs. Statistics: two-way ANOVA with post-hoc Tukey test corrected for multiple 
comparison and p<0.05 is considered as significant difference (n ≥ 6).   
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Supplemental Table 1. Primary MSCs used in this study. 
 
Primary MSCs Vendor Donor # Lot # 
BM-pMSC POIETICS (Lonza) 36670 18Tl282222 
DP-pMSCs POIETICS (Lonza) 37665/37664 19TL080921/19TL080920 
AD-pMSCs POIETICS (Lonza) 36295 18TL212639 
CV-pMSCs JangoCell Human female 1911-00018-61 
CP-pMSCs JangoCell Human female 1911-00015-31 
UC-pMSCs JangoCell Human female 1911-00016-32 
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Supplemental Table 2. Antibodies used for immunostaining, flow cytometry, and western blot. 
 
Primary Antibodies Vendors Catalog # Dilution 
CD44 (mouse) Bio-Rad Laboratories MCA2726 1:100 
CD73 (rabbit) Abcam ab133582 1:100 
CD90 (mouse) Abcam ab181469 1:100 
CD105 (mouse) Life Technologies MA5-17041 1:200 
CD166 (mouse) Bio-Rad Laboratories MCA1926 1:100 
NGFR (mouse) Life Technologies MA513314 1:200 
SOX10 (mouse) R&D Systems MAB2864-SP 10μg/mL 
FOXD3 R&D Systems AF5090-SP 10μg/mL 
ETS-1 (rabbit) Life Technologies PA581170 1:200 
SNAI2 (rabbit) Life Technologies PA573015 1:100 
KRT-19 (mouse) Life Technologies MA512663 2µg/mL 
CDX-2 (rabbit) Abcam ab76541 1:500 
TEAD-4 (rabbit) Life Technologies PA521977 1:300 
GATA-3 Life Technologies 14-9966-82 5μg/mL 
EPCAM (mouse) Life Technologies 14-9326-82 5μg/mL 
KRT-7 (mouse) Abcam AB9021 1:250 
NANOG (mouse) Life Technologies MA1-017 1:100 
SOX-2 (rabbit) Life Technologies PA1-094 1:200 
OCT-4 (mouse) STEMCELL 

Technologies 
60093 1:200 

Secondary antibodies Vendors Catalog # Dilution 
Alexa Fluor 488 goat anti-mouse IgG Life technologies A-11029 1:200 
Alexa Fluor 546 goat anti-mouse Life technologies A11003 1:200 
Alexa Fluor 488 goat anti-rabbit IgG Life technologies A11008 1:200 
Alexa Fluor 546 goat anti-rabbit Life technologies A11010 1:200 
Donkey Anti-Goat IgG Northern Lights 
NL557-conjugated 

R&D Systems NL001 1:200 

Donkey Anti-Mouse IgG Northern Lights 
NL557-conjugate 

R&D Systems NL007 1:200 

Conjugated antibodies for flow cytometry Vendors Catalog # Dilution 
CD73 BD Bioscience 560847 10 µg/ml 
CD90 BD Bioscience 559869 10 µg/ml 
CD105 BD Bioscience 561443 10 µg/ml 
CD45 BD Bioscience 555482 10 µg/ml 
Isotype FITC BD Bioscience 555748 10 µg/ml 
Isotype APC BD Bioscience 554681 10 µg/ml 
Primary antibodies for western blot Venders Catalog # Dilution 
CD9 Santa Cruz Biotech sc-166029 1:200 
CD63 Santa Cruz Biotech sc-5275 1:200 
CD81 Santa Cruz Biotech sc-7637 1:200 
HSP90α/β Santa Cruz Biotech sc-13119 1:200 
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Supplemental Table 3. TaqMan PCR primers for gene expression analysis  
 
Taqman Assay ID Gene Name Taqman Assay ID Gene Name 
Hs99999901_s1 18s rRNA        Hs00927557_m1 ETV5 
Hs99999905_m GAPDH Hs00846583_s1 SOX11 
Hs99999909_m1 HPRT Hs00212860_m1 FOXP1 
Hs99999908_m1 GUSB Hs04189704_m1 PTPRC 
Hs02387400_g1 NANOG          Hs02576480_m1 CD34 
Hs00999632_g1 POU5F1 Hs00169122_g1 CD14 
Hs01053049_s1 SOX2 Hs00559840_m1 KRT7 
Hs00366918_m1 SOX10 Hs00231476_m1 TFAP2C 
Hs00255287_s1 FOXD3 Hs01078080_m1 CDX2 
Hs00609976_m1 NGFR Hs00901885_m1 EPCAM 
Hs00159686_m1 NT5E Hs00231119_m1 GATA2 
Hs00174816_m1 THY1 Hs00231122_m1 GATA3 
Hs00923996_m1 ENG Hs01125032_m1 TEAD4 
Hs01075864_m1 CD44 Hs01029413_m1 TFAP2A 
Hs00977641_m1 ALCAM Hs01574644_m1 PODXL 
Hs01003372_m VCAM1 Hs00985275_g1 CGA 
Hs00174838_m MCAM Hs00365950_g1 HLA-G 
Hs00174265_m1 ANPEP Hs00161904_m1 SNAI2 
Mm99999915_g1 GAPDH Mm00439614_m1 IL10 
Mm00446190_m1 IL6 Mm00475988_m1 ARG-1 
Mm00443258_m1 TNFα Mm00434228_m1 IL1β 
Hs00231692_m1 RUNX2 Hs00959010_m1 SPP1 
Hs01115513_m1 PPARG Hs01115513_m1 PPARG 
Hs00153936_m1 ACAN Hs00165814_m1 SOX9 
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Supplemental Figure 1. Immunostaining of pluripotent markers (NANOG, OCT4 and SOX2). (A) 
hiPSCs showed robust high expression of pluripotent markers. (B) NC-iMSCs showed very few 
expression of OCT4 and SOX2, while (C) CT-iMSCs showed no expression of these pluripotent markers. 
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Supplemental Figure 2. Differentiation of iMSCs from another hiPSC line (Yale line). Both (A) NC-
iMSCs and (B) CT-iMSCs differentiated from Yale hiPSC line also showed positive staining of MSC 
markers (CD105, CD90, CD73, CD44 and CD166). 

NC-iMSCs

CD73
DAPI

NC-iMSCs

CD105
DAPI

CD90
DAPI

NC-iMSCs

CD166
DAPI

NC-iMSCsNC-iMSCs

CD44
DAPI

NC-iMSCs

CT-iMSCs

CD105
DAPI

CT-iMSCs

CD90
DAPI

CT-iMSCs

CT-iMSCs

CD73
DAPI

CD166
DAPI

CT-iMSCsCT-iMSCs

CD44
DAPI

A

B



 

 37 

 
Supplemental Figure 3. Optimization of intermediate cytotrophoblast differentiation. We varied the 
concentration of PD173074 and compared two ALK inhibitors (A8301 and SB431542) to obtain better 
cytotrophoblast differentiation from hiPSCs.  
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Supplemental Figure 4. Emerging iMSC population during stepwise differentiation. (A) The 
representative density plots from flow cytometry analysis showed the emerging population of 
CD105+/CD73+ and CD90+/CD45- cells during iMSC differentiation. Summarized flow cytometry 
results showed the emerging iMSC population (B) during neural crest-to-MSC differentiation and (C) 
during cytotrophoblast-to-MSC differentiation. (D) NC-iMSC differentiation resulted in significantly 
higher percentile of CD90+ and CD105+ cells than CT-iMSC differentiation, while comparable high 
percentile of CD73+ cells and low percentile of CD45+ cells between two differentiations. Statistics: 
Student’s t-test and p<0.05 is considered as significant difference (n = 4). 
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Supplemental Figure 5. Single cell gene expression on UMAP projection. Visualization of single-cell 
gene expression associated with MSC surface markers, transcription factors, growth factors, trilineage 
differentiation potentials, and most variable genes for each cluster. 

CD44 CD73 CD90 CD105

PRRX1 TWIST1 MSX1 SOX11

VEGFA FGF2 PDGFA EGF

PPARG FABP4 RUNX2 SOX9

M
SC
 C
D
 M
ar
ke
rs

Tr
an
sc
rip
tio
n 
Fa
ct
or
s

G
ro
w
th
 F
ac
to
rs

Tr
ili
ne
ag
e 
Po
te
nt
ia
ls

C
lu
st
er
 S
ig
na
tu
re
s

PGF

CD166

GATA6

ALPL TLR2CDK1

SDC1

ITGA10 SPI1



 

 40 

 
Supplemental Figure 6: Gene expression across pseudo-time trajectory. Quantification of single-cell 
gene expression associated with (A) MSC surface markers, (B) stromal fibroblast markers, (C) and 
transcription factors across the entire pseudo-time trajectory of iMSC development. 
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Supplemental Figure 7. Phase contrast images for primary MSCs (pMSCs). (A) Postnatal pMSCs 
(AD-pMSCs, BM-pMSCs, DP-pMSCs) and (B) perinatal pMSCs (UC-pMSCs, CV-pMSCs, CP-pMSCs) 
showed spindle-like cell morphology. 
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Supplemental Figure 8. Transcriptomic analysis on different cell types. (A) PCA analysis and (B) 
Pearson’s correlation matrix based on ~24,000 genes showed global relationship between hiPSCs, neural 
crest, cytotrophoblast, and different MSCs. Volcano plots showed differential gene expression (C) 
between all MSCs (6 pMSCs and 2 iMSCs) and hiPSCs, (D) between neural crest and cytotrophoblast, 
(E) between cytotrophoblast and all MSCs, and (F) between neural crest and all MSCs. 
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Supplemental Figure 9. Network analysis on MSC-specific genes. Network analysis on upregulated 
genes of all MSCs compared to non-MSCs identified a key transcription factor PRRX1 associated with 
MSC identity (All the genes of yellow nodes are the first-neighbor connections with PRRX1). 
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Supplemental Figure 10. Transcriptomic analysis on postnatal and perinatal MSCs. (A) Four-way 
Venn diagrams showed transcriptomic relationship for (A) postnatal MSCs (AD-pMSCs, BM-pMSCs, 
DP-pMSCs, NC-iMSCs) and (B) perinatal MSCs (UC-pMSCs, CV-pMSCs, CP-pMSCs, CT-iMSCs). 
Volcano plots showed differential gene expression (C) between postnatal pMSCs (AD-pMSCs, BM-
pMSCs, DP-pMSCs) and NC-iMSCs and (D) between perinatal pMSCs (UC-pMSCs, CV-pMSCs, CP-
pMSCs) and CT-iMSCs. 
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Supplemental Figure 11. Tri-lineage differentiation potentials of different MSC subtypes. Tri-
lineage differentiation of adipogenesis, osteogenesis, and chondrogenesis was evaluated for both NC-
iMSCs and CT-iMSCs together with six different pMSC subtypes. The expression of lineage-specific 
genes was found no significant difference across different MSC subtypes. Statistics: one-way ANOVA 
with post-hoc Tukey test corrected for multiple comparison and p<0.05 is considered as significant 
difference (n = 3).   
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Supplemental Figure 12. Anti-inflammatory function of different MSC subtypes. Co-culture with 
MSCs significantly attenuated cytokine gene expression (TNFa, IL1b, IL6, and IL10) but increased M2 
gene expression (ARG1) of RAW264.7 cells treated with LPS. Furthermore, gene expression of TNFa 
and IL6 was more reduced by iMSCs (NC-iMSCs and CT-iMSCs) compared to UC-pMSCs, DP-pMSCs 
and CP-pMSCs. Gene expression of IL1b was more reduced by iMSCs compared to BM-pMSCs. Gene 
expression of ARG1 was more enhanced by iMSCs compared to AD-pMSCs, DP-pMSCs and CP-pMSCs. 
Statistics: one-way ANOVA with post-hoc Tukey test corrected for multiple comparison and p<0.05 is 
considered as significant difference (n = 4).   
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Supplemental Figure 13. Raw images of western blot experiments. (A) Western blots for exosomal 
markers (CD9, CD63, CD81 and HSP90) for CT-iMSCs under different priming conditions. (B) Western 
blots for exosomal markers (CD9, CD63, CD81 and HSP90) for NC-iMSCs under different priming 
conditions. 
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