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Abstract 

 

High school science and math courses play a vital role in STEM opportunities and long-term 

labor market outcomes. Research on STEM inequality often focuses on gender and racial 

disparities, with less attention paid to socioeconomic inequalities in course-taking. Analyzing 

nationally representative data from 1992, 2004, and 2013 graduates, we find similar patterns of 

socioeconomic inequality in both science and mathematics subjects. Disparities persist in high-

level courses, such as calculus, physics 2, chemistry 2, or biology 2, while gaps in mid-level 

courses, such as chemistry 1 and algebra 2, have lessened over time. Although both low- and 

high-SES students in the early 2010s take more advanced courses compared to their counterparts 

in the 1990s and early 2000s, high-SES students are more likely to do so. Moreover, even with 

efforts to increase and broaden access, disparities between socioeconomically advantaged and 

disadvantaged schools in advanced STEM course-taking have grown. Socioeconomic disparities 

in high school STEM courses continue to impact STEM opportunities for US students. 
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Reducing socioeconomic disparities in STEM opportunities? Trends in access 

to advanced science and math courses in American high schools, 1992-2013   

 
INTRODUCTION 

Educational attainment in STEM is one lever that can increase economic advantages and 

career opportunities for disadvantaged students (Arcidiacono, 2004). To be prepared for 

particular kinds of STEM majors in postsecondary education, it is critical for students to 

successfully reach a certain level of high school science and math courses, such as calculus or 

advanced physics (Adelman, 2006; Bottia et al., 2015; Bromberg & Theokas, 2016; Kaliski & 

Godfrey, 2014), although recent research challenges this, revealing that there is no consistent set 

of core-subject courses to STEM and that high grades across all subjects may hold more 

significance (Bowers et al., 2022).  

Over the past three decades, educational policies in the United States have attempted to 

improve student achievement and reduce inequality through standards-based education reform 

and test-driven accountability policy (Domina et al., 2016; Domina & Saldana, 2012; National 

Science Board., 2012; Zhang, 2009). Recently, there has been a shift towards employing 

alternative approaches. California, for instance, approved the 2023 Mathematics Framework for 

California Public Schools, aiming at equity and excellence in math learning. It allows schools to 

choose between traditional or integrated pathways. Traditional follows the sequence of courses 

typically offered by many high schools (algebra 1- geometry-algebra 2-advanced courses 

(precalculus, statistics and probability, calculus, and AP probability and statistics)), while 

integrated blends standards from multiple domains, like algebra, geometry, and intermediate 

algebra in integrated math I (California Department of Education., 2013).  

With the growing significance of science and math courses on educational attainment, 

numerous studies on STEM education have examined inequalities in high school math 
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achievement and patterns of course-taking (e.g., Crosnoe & Schneider, 2010; Domina & 

Saldana, 2012; Riegle-Crumb, 2006; Riegle-Crumb & Grodsky, 2010; Rodriguez, 2018) and 

science achievement and patterns of course-taking (e.g., Posselt et al., 2012; Riegle-Crumb & 

Moore, 2014; Tyson et al., 2007). While many studies have investigated gender and racial/ethnic 

inequalities in science and math course-taking patterns (Bottia et al., 2021; Riegle-Crumb & 

Grodsky, 2010; Riegle-Crumb & Moore, 2014; Rodriguez & McGuire, 2019), surprisingly few 

studies, to date, have examined socioeconomic inequalities in science course-taking patterns 

(Bottia et al., 2022). High SES students make up a disproportionate percentage of those 

obtaining STEM degrees and pursuing STEM careers (Chen, 2009; Chen & Soldner, 2014). 

Completing advanced science and math courses remains one of the strongest predictors of 

students’ pursuit of postsecondary STEM degrees (Adelman, 2006; Bottia et al., 2015; Tyson et 

al., 2007). Generally, low SES students are less likely to experience consistent upward moves in 

course-taking throughout their high school years (Eisenhart & Weis, 2022; Han et al., 2024; Han 

et al., 2023)(Han et al., 2023; Eisenhart & Weis, 2022). As a consequence, their chances of 

enrolling in advanced courses are diminished (Domina & Saldana, 2012; Tyson et al., 2007).  

Here we examine socioeconomic inequality in high school science and math course-

taking. Specifically, we extend the research on inequality in high school course-taking by 

examining whether, and the extent to which, SES-based inequalities in science course-taking 

have changed over time. In addition, we extend prior research on mathematics course-taking 

patterns by examining a recent nationally representative high school cohort dataset and 

comparing science course-taking with mathematics course-taking. Particularly, we focused on 

inequalities in top science and mathematics course-taking patterns (i.e., calculus, biology 2, 

chemistry 2, or physics 2). We use three nationally representative high school cohort datasets, 
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the National Educational Longitudinal Study of 1988 (NELS:88), the Educational Longitudinal 

Study of 2002 (ELS:2002), and the High School Longitudinal Study of 2009 (HSLS:09). While 

inequalities in course-taking patterns are stratified by race and gender as well as social class, here 

we focus specifically on changes in targeted SES-based inequalities in science and math course-

taking patterns. Prior research has shown that SES-based inequalities in education have widened 

over the past two decades and continue to do so (Bowen et al., 2009; Gamoran, 2015; Reardon, 

2011; Thomas & Bell, 2008). 

Our contribution is twofold. First, our study addresses the above noted void in the 

literature by examining trends in SES-based inequalities in science course-taking patterns. Many 

studies have investigated disparities in science course-taking patterns by gender, race/ethnicity 

and sexual minority status, using mainly one cohort dataset (Bottia et al., 2021; Gottfried et al., 

2015; Riegle-Crumb & Moore, 2014), but there is a dearth of research, to date, on changes in 

SES-based inequalities in science course-taking patterns over time specifically.  

Second, our study empirically tests whether or not there is heterogeneity in SES-based 

inequality patterns across science and mathematics. One may assume that mathematics and 

science are neighboring disciplines and have similar course-taking patterns; students follow 

hierarchal hierarchical sequences from less to more difficult courses in both instances. Unlike 

mathematics, however, high school science coursework consists of a number of sub-disciplines 

(e.g., biology, chemistry, and physics). In this sense, completion of any given science course 

does not necessarily indicate readiness for another. For example, completion of chemistry 1 

indicates that a student is ready for chemistry 2 in high school, but completion of chemistry 1 

does not necessarily indicate readiness for physics 1. In science, one sub-discipline is not 

necessarily more difficult than another sub-discipline (Montgomery et al., 2010), although 
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students’ perceived difficulty varies across science sub-disciplines (Williams et al., 2003). Nor is 

learning from one sub-discipline necessarily a prerequisite for learning in another sub-discipline. 

Thus, individual schools or school systems may organize their science pathways differently 

(Montgomery et al., 2010). For example, a student can take either chemistry 1‒physics 1 

sequence, or alternatively, physics 1‒chemistry 1 sequence.  

Interdependence between math and science also varies, with advanced physics and 

chemistry requiring math completion (e.g., in AP physics 1, completion of geometry or 

concurrent enrollment into algebra 2 or an equivalent course), unlike other sciences such as AP 

biology (The College Board, n.d.). This leads to differing levels of math involvement and 

prerequisites among science disciplines, leading to variation in inequality across science 

subdisciplines. In this study, we examine empirically if, and the extent to which, inequalities in 

course-taking patterns vary across science and mathematics, and if so, for whom they vary.  

 

1. LITERATURE REVIEW  

While the importance of postsecondary credentials has been increasingly foregrounded 

for employment outcomes in the context of today’s technology and knowledge-based economy 

(e.g., Hout, 2012), studies illuminate how families and students from advantaged backgrounds 

support their children’s transition from K-12 to higher education through various mechanisms, 

perpetuating educational inequality in the United States (Andrew, 2017; Roksa et al., 2007). We 

explored four significant bodies of literature that informed our examination of trends in 

socioeconomic inequality in course-taking patterns: (a) the connection between family 

socioeconomic status (SES) and course-taking; (b) the influence of school SES (mainly defined 

by average student SES or average parental educational attainment levels in each school) on 
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course-taking; (c) theories elucidating the persistent socioeconomic inequality in educational 

outcomes; and (d) the analysis of national trends in high school course-taking through utilization 

of large-scale national educational datasets.  

2.1. Socioeconomic inequality in science and math course-taking 

 In the United States, while a larger number of students now pursue higher education, 

admissions, particularly at the most selective colleges and universities, have grown fiercely 

competitive (Roksa et al., 2007). This intensifying competition has heightened anxiety and fear 

among privileged students and families, who strive to secure admission to prestigious institutions 

in pursuit of enhanced long-term economic and social opportunities (Hout, 2012). Scholars 

closely examine the influence of high schools and the strategies employed by parents and 

students to position themselves for future advantages through attendance at particularly located 

postsecondary institutions (e.g., Weis et al., 2014; Crosnoe & Muller, 2014). Such meticulous 

management of academic preparation in high schools is crucial for understanding the persistent 

inequalities evident in course-taking patterns in the United States. 

Research suggests that completion of advanced science and math courses can affect 

students’ future educational attainments, facilitating their access to and graduation from 

particular located postsecondary destinations (Adelman, 2006). Furthermore, exposure to a more 

advanced math courses in high school has long-term labor market implications, particularly 

regarding overall employment and employment in STEM fields (Black et al., 2021). To be 

prepared for specific STEM majors in postsecondary education, successfully completing 

advanced math and science courses in high school—for example, calculus and advanced science 

courses (chemistry 2, physics 2, various advanced science topics), and Advancedment Placement 

(AP) and International Baccalaureate (IB) courses— is often crucial (Adelman, 2006; Hinojosa 
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et al., 2016; Maltese & Tai, 2011; Tyson et al., 2007). However, recent research challenges this 

notion, indicating that there isn’t a consistent set of core-subject courses to STEM, and high 

grades across all subjects may hold greater significance (Bowers et al., 2022).  

A substantial body of important research has examined effects of student socioeconomic 

background and that of the school they attend as contextual variables in creating significant and 

persistent inequalities in educational outcomes (Crosnoe & Muller, 2014; Harris, 2010; Palardy, 

2013). Previous studies documented that socioeconomically disadvantaged students are more 

likely to start high school in lower-level math courses compared to their more privileged peers 

and less likely to reach high-level math courses at the end of high school, even after taking into 

account their prior math and science learning experiences (Crosnoe & Schneider, 2010; Kelly, 

2009; Riegle-Crumb, 2006). Prior research also indicates that inequalities in advanced science 

and mathematics course-taking affect students’ postsecondary enrollment patterns as well as 

STEM pathways‒from high school to college to career (Bottia et al., 2015; Posselt et al., 2012; 

Riegle-Crumb & King, 2010; Rodriguez, 2018; Sadler et al., 2014; Tyson et al., 2007).  

Family SES directly and indirectly influences students’ high school course-taking in 

science and mathematics. For example, socioeconomically privileged parents understand both 

what colleges are looking for and college admission processes. They activate their own cultural, 

social, and economic capitals to create distinction wherever and whenever possible in the 

postsecondary admissions process, with the distinct goal of attaining entrance to particularly 

located high status postsecondary destinations (e.g., Weis et al., 2014; Crosnoe & Muller, 2014). 

To maintain their competitive edge in an increasingly competitive college admissions process 

and beyond, students from socioeconomically advantaged groups increasingly seek distinction, 

and are encouraged to seek distinction by their parents and the schools they attend, by taking the 
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most challenging courses available (Nikischer, 2013; Weis et al., 2014). Additionally, 

socioeconomically advantaged students and parents often enroll in multiple math and science 

courses concurrently by recognizing the value placed on advanced math courses regardless of 

their eventual choice of STEM major or not. When completion in algebra 2 is near saturation, for 

instance, students from advantaged groups might complete the highest level of science courses as 

well as the highest level of math (i.e., calculus) (Domina & Saldana, 2012). Socioeconomically 

privileged parents also monitor grades of their children over their secondary school career, 

standing ready and willing to pay for private tutoring if students show any hint of failing, or 

simply falling behind in one or more courses (Weis et al., 2014).  

2.2. School-level socioeconomic composition and educational inequality 

Several studies have shown that various school-level factors contribute to stratification in 

students’ math and science course-taking patterns (e.g., Kelly, 2009; Riegle-Crumb & Grodsky, 

2010; Vaval et al., 2019). Attention has been given to the socioeconomic composition of schools 

as one of the mechanisms for perpetuating social reproduction and educational inequality (Chetty 

et al., 2022a, 2022b; Palardy, 2013; Rumberger & Palardy, 2005). With growing levels of 

income inequality in the United States, socioeconomic segregation in schools, patterns of 

friendship, and in neighborhoods, has increased (Mijs & Roe, 2021; Owens et al., 2016; Reardon 

& Owens, 2014). Prior studies foundfind that the average socioeconomic level of students’ 

schools, net of the effects of student background, influences their educational outcomes, 

including achievement in mathematics and science, high school graduation, and college 

enrollment (Konstantopoulos, 2006; Palardy, 2013; Rumberger & Palardy, 2005). Additionally, 

school socioeconomic composition in early educational trajectories has cumulative effects on 

students’ later educational outcomes (Langenkamp & Carbonaro, 2018). However, another study 
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foundfinds that school SES effects on student achievement scores nearly vanish after controlling 

for a student’s prior achievement (Armor et al., 2018).  

School socioeconomic composition effects can be explained by several factors, such as 

school resources, teacher quality, school practices that emphasize academics, and peer 

influences, among others (Harris, 2010; Palardy, 2013; Rumberger & Palardy, 2005). Using a 

longitudinal national data set, NELS:88, Rumberger and Palardy (2005) found the average 

socioeconomic level of students’ schools had as much impact on their achievement growth as 

their own socioeconomic status across various subjects, including mathematics, science, reading, 

and history, after accounting for other background factors. Moreover, they investigated three 

potential explanatory factors‒structural features of schools, school resources, and school 

processes (policies and practices)‒to understand why the impact of socioeconomic composition 

was consistent across both advantaged and disadvantaged students. They attributed this impact to 

four key school characteristics: the availability of rigorous courses, teacher expectations, the 

amount of homework assigned, and students’ perceptions of safety.  

Another possible explanatory factor linked to why school SES composition matters is in 

fact that students can gain valuable academic information from their friends, including the 

number of rigorous courses that students take (Crosnoe & Muller, 2014; Rumberger & Palardy, 

2005). Using a nationally representative sample of seventh through twelfth grade from Add 

Health data, for example, Crosnoe and Muller (2014) foundind that exposure to school-based 

socioeconomically advantaged groups differentiate students’ enrollment in advanced coursework 

at the start of high school and that this initial disparity was firmly maintained across high school 

years. Their accompanying ethnographic data from a single high school reveal that students with 

socioeconomically advantaged parents value the diverse portfolios in coursework and have more 
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information about the relative weights of grades, core courses, and electives in college going, 

whereas students with socioeconomically disadvantaged parents plan to drop out of math or 

science. When students receive academically relevant information from parents and peers with 

socioeconomically advantaged parents, students typically think that persisting in such advanced 

coursework is a necessity.  

Beyond high school course-taking behaviors, cross-class friendships influence upward 

mobility later in life (Chetty et al., 2022a, 2022b). Chetty et al. (2022b) found that the social 

disconnection across socioeconomic lines is explained by differences in exposure to people with 

high SES in groups such as schools with resultant differences in the likelihood that an individual 

will interact with a high SES individual, given the opportunity. Despite the importance of cross-

class friendship in schools, schools tend to become more socioeconomically segregated over the 

years (Chetty et al., 2022b; Konstantopoulos, 2006; Mijs & Roe, 2021; Owens et al., 2016), 

which serves to limit opportunities to build cross-class friendships in schools. This school 

segregation is attributable to rising income segregation between districts in the United States, 

particularly among affluent families (Mijs & Roe, 2021; Owens et al., 2016). This implies that 

inequalities between schools in completion of advanced math and science courses, net of student 

background characteristics, may be exacerbated over time.  

Recent studies have also explored the interaction between family and school 

socioeconomic composition, investigating whether the effect of school socioeconomic 

composition varies across different student characteristics (Perry et al., 2022). Using Australian 

cross-sectional nationally representative data, Perry et al. (2022) found that the effect of school 

SES on the average student’s achievement is greater when the student’s SES is higher, a finding 

consistent across reading, math and science. It should be noted that this study did not take into 
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account students’ prior achievement due to limitations of cross-sectional data. Extending these 

studies using longitudinal datasets can enhance our theoretical understanding of how school SES 

influences student outcomes differently. Such research can contribute to debates on whether 

reducing school segregation can be beneficial and for whom.  

 

2.3. Effectively maintained inequality (EMI) in high school course-taking 

In addressing persistent educational inequalities, educational policies in the United States 

have sought to promote excellence and reduce educational disparities through standards-based 

reform and test-driven accountability over the past several decades. These efforts have included 

initiatives such as raising high school graduation requirements and introducing high school 

graduation tests, all aimed at equalizing learning opportunities, particularly in advanced science 

and math coursework (Domina et al., 2016; Domina & Saldana, 2012; National Science Board., 

2012; Zhang, 2009). However, there have been recent shifts towards employing different 

approaches such as eliminating high school graduation test requirements and/or opening 

additional pathways beyond traditional standards-based course-taking sequences in California 

(Sublett & Rumberger, 2018).  

In the last thirty years, course-credit graduation requirements in science and math 

increased over the past three decades (National Science Board., 2012). Bromberg and Theokas 

(2016) examined transcript data from the HSLS:09, which follows a nationally representative 

group of ninth graders from 2009 through 2013. They found that three in 10 graduates completed 

a minimum of three years of mathematics, including algebra 2, and three years of science, 

including biology and either chemistry or physics, which is aligned with entry requirements at 

many public four-year universities (Conforti, 2013; Rodriguez, 2018).  
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Some advocates for curricular intensification believe that increases in science and math 

requirements at high schools and accompanying push into advanced science and math courses 

will make students become academically more capable and reduce inequality in educational 

outcomes and attainments over time. But notions of effectively maintained inequality (EMI), 

would drive a hypothesis that inequality in the highest level of math and science courses will be 

maintained or exacerbated rather than diminished.  

EMI (Lucas, 2001; S. Lucas & D. Byrne, 2017) theory observes that all educational 

outcomes have two dimensions: a quantitative dimension (e.g., the number of years of education 

obtained)  and a qualitative dimension (e.g., the program of study pursued). EMI contends that if 

quantitative differences are common, the socioeconomically advantaged will work to obtain 

qualitative advantage. In other words, it is possible that even when quantitative outcomes are 

equalized, or quantitative advantage is impossible, socioeconomically advantaged individuals 

and/or families will strategically use their socioeconomic advantages so as to secure qualitatively 

different outcomes. In other words, they will activate and deploy a range of capitals at their 

disposal in a now intensified drive for qualitative distinction. Thus, the notion of EMI suggests 

that equalizing quantity will be insufficient to undermine educational inequality. When the locus 

of consequential inequality in education shifted from the quantitative to the qualitative 

dimension, it is important to focus on inequality in qualitative dimensions of education. 

Applying this EMI theory of inequality to math and science course-taking patterns in 

education, the qualitative dimension can refer to more challenging curricular tracks and the level 

of math and science courses completed. For example, even when students earned the same 

credits in mathematics, the level of math completed varied from algebra 2, precalculus to 

calculus (Dalton et al., 2015). EMI implies that expanding access to advanced math and science 
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courses may reduce inequalities in the sense of access to a particular set of courses (for example, 

algebra 2 or trigonometry) but will not, by itself, reduce consequential qualitative distinctions 

and associated inequalities, as those with privilege will increasingly drive for distinction in any 

given category given quantitative saturation at any given level (Lucas, 2009).    

Drawing upon theories of maintained inequality and growing push for advanced science 

and math courses in high schools, a number of prior studies have investigated the extent to which 

inequalities in the most challenging high school coursework, such as highest-level math course 

(i.e., calculus) and AP courses, changed over time (Conger et al., 2009; Domina et al., 2016; 

Domina & Saldana, 2012; Klugman, 2013; Posselt et al., 2012). Using a dataset constructed from 

three nationally representative surveys, High School & Beyond 1980 (HS&B), NELS:88, and 

ELS:2002, for example, Domina and Saldana (2012) investigated the extent to which social 

class-based inequalities in math course-taking changed between 1982 and 2004. They found 

persistent social class-based inequalities in calculus completion but narrowed inequalities in 

lower-level math courses. While racial gaps in calculus completion were inconsistent, SES-based 

disparities remained significant, indicating the maintenance of inequalities over time. These 

studies provide supporting evidence of EMI theory (Lucas, 2009), suggesting that 

socioeconomically advantaged individuals strategically leverage their advantages to secure 

qualitative distinctions in math course-taking, particularly as the majority of students complete 

mid-level courses. 

National reports have shown that the percentage of students who completed advanced 

math courses increased between 2004 and 2019 (National Center for Education Statistics., 2016, 

2022). For example, around 2004, approximately 72% of high school graduates completed 

algebra 2 or a higher-level math course, with about 14% completing calculus (Domina & 
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Saldana, 2012). By 2019, about 85% of high school graduates successfully finished algebra 2, 

and 16% completed calculus (National Center for Education Statistics., 2022). The recent trend 

in advanced math course-taking suggests that about 9 out of ten students have enrolled in the 

class of algebra 2. It therefore seems plausible to consider that the nationwide increases in 

algebra 2 completion might influence SES-based inequalities in advanced math courses, such as 

calculus, among the recent high school cohort due to the increased eligibility of students for 

advanced math courses.  

Recent studies have also examined changes in school-level inequalities in AP 

coursework, more broadly, including English, history and social science, math and computer 

science, and sciences, over time. Using a panel dataset of all California public high schools from 

1997 and 2006, for example, Klugman (2013) examined inequalities in AP coursework along 

class lines. Klugman’s research revealed that despite efforts to increase AP subject offerings and 

enrollments in schools serving disadvantaged populations, this had minimal impact on reducing 

inequalities in these outcomes. This was primarily because schools serving advantaged students 

experienced even greater increases in AP course offerings and enrollments, largely driven by 

proportionally higher demands from socioeconomically privileged families. As EMI theory 

points out, Klugman identified persistent or increasing school-level socioeconomic disparities in 

AP course offerings and enrollments over time.  

Unlike high school math and AP course-taking more broadly (e.g., the number of 

enrollments in all AP courses), there is a dearth of research on patterns of SES-based inequality 

in science course-taking (Bottia et al., 2022). Drawing on nationally representative transcript 

data between 1982 and 2004, descriptive analyses in science course-taking show that completion 

in middle-level courses (chemistry 1 or physics 1, or chemistry 1 and physics 1) increased across 
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all SES and racial/ethnic groups, except for Asians. Additionally, SES and racial/ethnic 

inequalities in enrollment at the highest level (i.e., chemistry 2, physics 2, or advanced biology) 

persisted or grew over the 22 years of study (Dalton et al., 2007). This descriptive approach 

cannot adequately assess the independent association between social background and science 

course-taking since students within each SES group vary in other aspects (Lucas & Byrne, 2017). 

To accurately assess socioeconomic inequality patterns in American high schools, it is essential 

to investigate patterns of social stratification in high school science course-taking after 

controlling for prior achievement, demographics, and school characteristics as linked to changes 

between cohorts. In other words, it’s important to determine whether socioeconomically 

advantaged but academically equivalent students are more likely to complete advanced science 

courses.  

 

2.4. Analyzing national trends in high school course-taking: Comparisons and insights from 

large-scale surveys 

 Research on the evolution of SES disparities in educational outcomes, including course-

taking patterns, has expanded, utilizing longitudinal national and state-level data. Since 1982, the 

National Center for Education Statistics (NCES) has conducted high school transcript studies as 

part of the Longitudinal Studies Program and the National Assessment of Educational Progress 

(NAEP) High School Transcript Studies (HSTS) program. These studies align with major NCES 

data collection efforts. The first NCES-sponsored transcript study coincided with the HS&B 

program’s initial follow-up survey in 1982. Subsequent studies in 1988, 2002, and 2009 

collected post-high school transcripts. For instance, the NELS:88 1992 second follow-up 

included transcript collection in 1992. The ELS:2002 conducted a transcript study in 2004/05, 
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and the HSLS:09 had its own transcript study in 2013. Transcripts serve as official 

documentation of students’ course enrollment, invaluable for analyzing course-taking trends, 

predicting educational trajectories, and establishing findings’ national generalizability. Because 

high school courses vary in content and level, even among those with similar titles, a common 

course coding system, such as the Classification of Secondary School Courses (CSSC) – a 

general inventory of courses taught nationwide from grades 9 through 12–was used in NCES’s 

high school transcript studies.  

Because the high school transcript studies conducted by NCES have both similarities and 

dissimilarities of design and methodology that raise questions of comparability, it is important to 

ensure that comparability is maximized for inter-cohort comparisons. According to NCES 

guidelines about inter-cohort analysis, comparable analytic samples should be achieved across 

the high school transcript studies by taking into account differences in target populations and 

inclusion criteria across studies (Burns et al., 2011). NCES recommends that comparable 

analytic samples across cohorts can be achieved by limiting samples to high school graduates 

who received regular/standard or honors diplomas and imposing additional restrictions such as 

earned credit minimums (Burns et al., 2011, pp. 399-400). Following these guidelines, previous 

studies on course-taking across cohorts have primarily focused on on-time high school graduates 

(Domina & Saldana, 2012), posing challenges in including both on-time graduates and dropouts 

in inter-cohort comparisons.  

Obtaining comparative measures across cohorts poses challenges, particularly in 

examining inequality in course-taking. It is crucial to investigate students’ course-taking patterns 

while considering the opportunities available to them, such as on-site course offering. While 

HSLS:09 collected on-site course offering information through school counselor questionnaire 



17 
 

and high school transcript school-level data, NELS:88 had substantial missing data on school-

level course offering information. Moreover, school-level course-offering information from 

transcript data was only available for the High School Effectiveness Supplement (HSES) of 

NELS:88, complicating cross-cohort comparisons (Lee et al., 1998). Additionally, obtaining 

other comparative measures, such as standardized testing scores, across comprehensive subjects 

presents challenges. While mathematics standardized test scores are accessible across multiple 

high school cohorts, comprehensive assessment scores for other subjects, including reading, 

science, and social studies, are not available (Burns et al., 2011). Furthermore, the timing of 

standardized test scores varies across multiple high school cohorts; for example, mathematics 

standardized test scores are available in grade 10 in both NELS:88 and ELS:2002, while they are 

available in a different grade in HSLS:09. 

In their examination of high school students’ course-taking patterns using the NELS:88 

transcript data, Burkam and Lee (2003) developed science and math course-taking 

classifications. Their aim was to extend beyond traditional metrics such as course credits or 

number of completed courses that have typically been used in this area of research. They 

introduced an 8-level index in mathematics, encompassing categories such as no mathematics, 

non-academic, low academic (e.g., prealgebra), middle academic 1 (e.g., algebra 1 and 

geometry), middle academic 2 (algebra 2), advanced 1 (trigonometry, probability, and statistics, 

among others), advanced 2 (e.g., precalculus), and advanced 3 (all calculus courses, including 

AP calculus). Additionally, they developed a 6-level index in science, including categories such 

as none, primary physical science (e.g., earth science), secondary physical science (e.g., 

environmental science, and introductory chemistry), general biology 1, chemistry 1 OR physics 

1, chemistry 1 AND physics 1, and chemistry 2 or physics 2. These classifications served as the 
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foundations for assessing high school course-taking patterns and were measured in national 

surveys and large-scale state-level analyses (Brown et al., 2018; Burkam & Lee, 2003; Dalton et 

al., 2007; Han et al., 2023; Posselt et al., 2012; Tyson et al., 2007). For instance, numerous 

studies have adopted a hierarchical sequence for mathematics courses, with a slight adjustment 

such as combining non-academic and low academic into one level: starting from no mathematics, 

progressing through below algebra 1 (or prealgebra), algebra 1, geometry, algebra 2, other 

advanced mathematics (e.g., trigonometry), precalculus, and concluding with calculus (e.g., 

Brown et al., 2018; Domina & Saldana, 2012; Posselt et al., 2012; Tyson et al., 2007).  

However, several challenges in analyzing national high school transcript data should be 

noted. Firstly, it is challenging to incorporate new pathways such as integrated mathematics 

pathways in California, although NCES high school transcript raw data included multi-year 

integrated mathematics and offered a crosswalk framework enabling one-to-one matches in 

terms of course rigor and sequence. For example, integrated mathematics 1, 2 and 3 in California 

incorporates contents from algebra, geometry, statistics and probability, making it challenging to 

categorize this course within a specific traditional sequence (California Department of 

Education., 2013).  

Secondly, mathematics follows a hierarchical structure where lower-level courses serve 

as preparation for higher ones such as algebra 1 – geometry - algebra 2 – advanced mathematics 

(e.g., precalculus and calculus) (see, for example, Brown et al., 2018). However, there is no 

consensus on the hierarchy for high school science course-taking. Science education 

encompasses diverse sub-disciplines such as biology, chemistry, and physics, with no necessarily 

inherent difficulty among them, and no prerequisite for learning one subdiscipline before another 

subdiscipline. Empirically, students often take biology followed by chemistry or physics (see, for 
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example, Brown et al., 2018).  Unlike the extensive research on mathematics course sequence, 

prior studies have primarily focused on completion of specific science courses like core lab 

science courses (biology, chemistry or physics) or physics only (e.g., Adelman, 2006; Maltese & 

Tai, 2011; Riegle-Crumb & Moore, 2014; Sadler & Tai, 2001). Only a few studies have explored 

the sequence of science course-taking (e.g., Posselt et al., 2012; Tyson, 2007). These studies 

typically construct the following sequence: no science, primary physical science, secondary 

physical science, general biology, chemistry 1 or physics 1, chemistry 1 and physics 1, and 

chemistry 2, physics 2 or advanced biology. Following empirical examination of course-taking 

patterns across grades, adjustment was made to some categories; for instance, chemistry 1 or 

physics 1 – chemistry 1 and physics 1 sequence was revised to chemistry 1 only – physics 1 only 

(e.g., Tyson, 2007). These studies have examined whether students’ course-taking patterns or 

specific completion of science courses influence their STEM pathways.  

Recently, scholars have begun utilizing a descriptive framework to visualize students’ 

course-taking trajectories and analyze large-scale data, enabling the mapping of each student’s 

complete course-taking patterns (see, for example, Bowers et al., 2022). These studies outline the 

entire progression trajectories of individual students from high school through college, taking 

into account all enrolled subjects, grades, and year simultaneously. They pose challenges to the 

literature on core-subject gateway courses, which traditionally focused solely on specific courses 

such as calculus or physics. Instead, they reveal that students generally perform well or are 

challenged in similar ways across subjects and courses (Bowers et al., 2022). 

 

Building on EMI theories that predict persistent SES-based inequalities in course-taking 

patterns, we examine the following questions:  
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First, to what degree are individual SES and school-level SES associated with course-

taking patterns in each cohort?  

Second, have individual-level SES based inequalities in access to advanced math and 

science courses, such as calculus, biology 2, physics 2, or chemistry 2, decreased, even after 

controlling for student and school characteristics, including prior achievement and on-site course 

offerings?   

Third, have school-level SES based inequalities in access to advanced math and science 

courses, calculus, biology 2, physics 2, or chemistry 2, changed over time?   

 

2. METHODS 

2.1.Data and sample 

We utilized three nationally representative high school cohort datasets collected by the 

National Center for Education Statistics (NCES): NELS:88, ELS:2002, and HSLS:09. These 

datasets provide rich and elaborate information on student background, test scores, and high 

school transcript data for three cohorts of U.S. high school students educated between the 1990s 

and the early 2010s. The NELS:88 is based on a representative sample of 24,000 8th graders, but 

the study surveyed a “freshened” nationally representative sample of 10th graders in 1990 and 

followed them in 1992. The ELS:2002 includes a nationally representative sample of over 

15,000 10th graders in 2002 and 12th graders in 2004. The most recent study, HSLS:09, is based 

on more than 23,000 9th graders surveyed in 2009 across the United States, with follow-ups in 

2012, and 2014. It should be noted that the same high schools are not repeatedly sampled across 

the cohorts, suggesting the observations in each data set are independent of the observations in 

the others.   
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As discussed above, it is critical to create comparable analytic samples and measures to 

conduct inter-cohort analyses using NCES high school cohort data. Following NCES guidelines 

(Burns et al., 2011, pp. 399-400), we limited our analytic sample to (a) 12th graders in 1992, 

2004, and 2013, respectively, (b) high school graduates, and (c) those students who took any 

English credit.1 In addition, our analytic sample was restricted to students who had complete 

transcript information from 9th grade through 12th grade to measure students’ mathematics and 

science coursework pipelines. This allows us to eliminate the problem of differences in the 

excluded student population across studies (Burns et al., 2011, p. 399). Notably, this means that 

we were not able to meet the requirement of comparability across the three datasets if we 

included high school dropouts in this particular study. In preliminary analyseis, we found that the 

high school dropouts in each cohort dataset tend to exhibit significantly lower SES than the high 

school graduates (see Appendix A). In addition, the percentage of students who ever dropped out 

of high school varied across the three datasets; 18.9% in NELS:88, 11.8% in ELS:2002, and 

11.0% in HSLS:09. As dropouts tend not to meet coursework and performance standards for 

high school graduation established by the state or other approving authorities (Rosen et al., 

2015), they have a lower probability of completing advanced math and science courses. 

Therefore, the exclusion of high school dropouts in our analytic sample can yield a smaller 

estimate of the SES gap in each cohort, suggesting that our findings should be interpreted with 

caution. Our analytic sample includes approximately over 85% of total students in the datasets.  

 
1 One of major issues in comparability of target populations across studies is related to differences in inclusion and 

exclusion with respect to students with disabilities and English language learners. Therefore, eliminating cases that 

lack of English course credits largely eliminates the problem of differences in the excluded student population 

across studies (Burnes et al., 2022, p. 400).  
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The total analytic sample sizes across the three cohorts were 36,800. The analytic sample 

sizes for NELS:88, ELS:2002, and HSLS:09 were 9,920, 10,730, and 16,150, respectively. The 

NCES provides weighting variables to account for the probabilities of participation in the base-

year and follow-up surveys, as well as the nonresponse rates. The analyses used the appropriate 

transcript sample weights for each dataset to ensure that the estimates can be generalized to the 

12th grade high school graduates of 1992, 2004, and 2013:  we used F3TRSCWT for NELS, 

F1TRSCWT for ELS, and W3HSTRANS for HSLS.  

2.2.Measures of High school math and science course-taking  

To identify the highest-level math and science courses, we created measures of high 

school math and science course-taking pipelines. Math and science courses were classified based 

on the secondary school course classification system of NCES; the Classification of Secondary 

School Courses (CSSC) for NELS:88 and ELS:2002, and the School Codes for the Exchange of 

Data (SCED) for HSLS:09. Using raw course-level high school transcript data from ninth grade 

through twelfth grade in each dataset, we identified the highest math and science courses 

students completed. To make these course-taking variables comparable across the cohorts, we 

matched the course titles using the CSSC-SCED crosswalk provided by NCES. The coded math 

and science courses are ordered according to the difficulty level. Following previous approaches 

(Burkam & Lee, 2003; Domina & Saldana, 2012; McFarland, 2006; Schiller & Muller, 2003), 

we categorized a hierarchical order of the mathematics pipeline from less to more difficult 

courses; remedial, algebra 1, geometry, algebra 2, trigonometry, precalculus, and calculus. 

Based on prior studies that investigated high school science course-taking patterns and 

their effects on educational outcomes (Brown et al., 2018; Burkam & Lee, 2003; Dalton et al., 

2007; Posselt et al., 2012; Tyson et al., 2007), we categorized a hierarchical order of the science 
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pipeline, as follows; low-level (i.e., students did not complete any science courses with a C or 

above), primary physical science (e.g., physical science and earth science), secondary physical 

science (e.g., general physics and introductory chemistry), secondary life science (e.g., biology),2 

chemistry 1, chemistry 1 and physics 1 (i.e.,  completed both chemistry 1 and physics 1), and 

chemistry 2, physics 2 or biology 2 (e.g., AP chemistry, AP physics, and AP biology). Because 

of a relative lack of consensus on a hierarchical order as regards the science pipeline, we 

empirically assessed the science pipeline by examining if students who completed higher-level 

courses in the science pipeline completed lower-level courses using our analytic sample. About 

88% of students who completed chemistry 1, for example, completed secondary life science 

(e.g., biology). Despite the Physics First movement in science education, NCES high school 

cohort transcript study and other state-level analyses identified that many students peak at the 

“chemistry 1 only” level or students tend to take chemistry 1 first and then move to physics 1, 

whereas very few students move from physics 1 to chemistry 1 (Brown et al., 2018; Riegle-

Crumb et al., 2006; Tyson et al., 2007). This suggests that students tend to take science courses 

from chemistry 1 – physics 1 sequence3 in the science pipeline. In addition, a few studies 

confirmed the predictive validity of the science pipeline on educational attainment (Tyson et al., 

2007). Prior studies demonstrated that advanced science course-taking in this science pipeline 

 
2 Primary physical science includes introductory physical science, earth science, and integrated science, among 

others. Secondary physical science includes conceptual biology, conceptual chemistry, conceptual physics, and 

astronomy, among others. Secondary life science includes biology-advanced studies (usually taken after a 

comprehensive initial study of biology), Anatomy, and microbiology, among others. Note that Burkam and Lee 

(2003) do not have a separate classification of “primary life science.” Rather, basic biology I is included at the 

secondary physical science level.  
3 Following Burkam and Lee (2003), many studies categorized a hierarchal order of the science pipeline, as follows; 

low-level, primary physical science, secondary physical science, secondary life science, chemistry 1 or physics 1, 

chemistry 1 and physics 1, and chemistry 2, physics 2 or biology 2 (see, for example, Dalton et al., 2007; Posselt et 

al., 2012). Thus, we also tested the robustness of findings presented in the study using chemistry 1 or physics 1 – 

chemistry 1 and physics 1 sequence. Our findings are very consistent regardless of different chemistry 1 and physics 

1 sequences.  
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has a positive effect on access to more selective 4-year institutions relative to noncompetitive 4-

year institutions (by Barron’s profile of American colleges) (Posselt et al., 2012) and students’  

STEM degree attainment (Tyson et al., 2007). Sadler et al. (2014) find that both chemistry and 

physics predict increased interest in STEM careers. The effect of chemistry on STEM career 

interest varies: there is non-significant difference between zero and one year of chemistry in 

predicting STEM career interest, while an increase from one year to two years boosts interest. 

For physics, no physics to one year and one year to two years both have significant impacts on 

STEM career interest.  

2.3.Covariates 

For cross-cohort comparisons, comparable measures across three studies were used in the 

study to take into account differences in individual and school characteristics. It should be noted 

that NCES high school cohort studies contained many comparable items across studies, but some 

items were available only in one study, which influencesd in/exclusion of measures in the study. 

Demographics, prior achievement, and high school characteristics were included in the models. 

Demographic variables included sex, race, and socioeconomic status (SES). In order to capture 

how students from different family socioeconomic backgrounds perform over time, a measure of 

family SESsocioeconomic status was constructed using common student background items 

across all three datasets: highest parental educational attainment (derived from fathers’s and 

mothers’s educational attainments), highest parental occupational prestige (derived from 

fathers’s and mothers’s occupational prestige scores) and family income (Burns et al., 2011). In 

terms of family income, we recorded the original ordinal indicator in each dataset by taking the 

midpoint of each income category. For the open-ended final category, we extrapolated from the 

next-to-last category using a modified formula suggested by Hout (2004). Next, we converted 
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the dollar values from NELS:88 and ELS:2002 into equivalent dollars for students in the 

HSLS:2009 cohort using consumer price index (CPI) conversion factors to adjust for inflation. 

Using this converted set of income variables and all other measures, we constructed an SES 

composite variable across all three datasets. Because the value of SES may not have the same 

meaning across three waves, we standardized each individual’s SES score in the national SES 

distribution relative to others in each dataset (Bai et al., 2021; Chetty et al., 2022a; Hanushek et 

al., 2022). Finally, following previous studies that examined SES-based inequalities in education 

(Lucas, 2017; Lucas & Irwin, 2018), we classified students into low-SES, middle-SES, and high-

SES categories defined in terms of standard deviation units. Rather than using a gradational 

approach of family SES that assumes educational inequality on a unidimensional form in which 

families are arrayed on a continuum, this study used a categorical approach in SES that assumes 

qualitative differences of home environments across social groups (Jonsson et al., 2009). For 

each cohort, we defined low SES as at least one standard deviation below the SES mean, middle 

SES as the family SES index between the ‒1 standard deviation and + 1 standard deviation, and 

high SES as at least one standard deviation above the SES mean (Cowan et al., 2012; Crosnoe & 

Schneider, 2010).  

The prior achievement score variable included ninth/tenth grade standardized math test 

scores as a proxy of students’ achievement level at the beginning of high school. As HSLS:09 

utilized different content and scaling of mathematics tests, and the timing to test was not the 

same as NELS:88 and ELS:2002, the achievement score from HSLS:09 is not comparable to the 

other two cohort data (Duprey et al., 2018). The HSLS math assessment, for example, was 
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administered at grade 9 and 11, whereas math assessment was administered at grade 10 in 

NELS:88 and ELS:2002. Only standardized math test scores are available in all three datasets.4  

We also included a school-level socioeconomic composition, athe school mean SES. 

Prior studies indicate that certain students are afforded possibilities to take advanced math and 

science courses, whereas others are not, due to disparities in on-site course offerings among high 

schools (U.S. Department of Education and Office for Civil Rights 2018). Thus, it is crucial to 

control for the availability of on-site math and science courses. However, comparable measures 

of course offerings across the three datasets are lacking due to somewhat limited on-site course 

offerings, a consequence of variation in data collection methods across cohorts. For example, 

ELS:2002 and HSLS:09 obtained this information through high school transcripts, while 

NELS:88 relied on a school questionnaire. Notably, school-level course offering data were only 

accessible for the High School Effectiveness Supplement (HSES) of NELS:88, resulting in 

challenges regarding missing information (Lee et al., 1998). Prior studies examining course 

offerings and course-taking patterns using NELS:88 primarily relied on school questionnaire 

data. Despite differences in data sources, we included measures of course-offerings to examine 

students’ course-taking patterns when such opportunities were available in their schools. 

Moreover, in our study, we controlled for the school mean ninth/tenth grade standardized math 

test score, urbanicity (urban, suburban, and rural), and school type (public, Catholic, and other 

private), that are also associated with on-site advanced course offerings (Iatarola et al., 2011; 

Klugman, 2013; Rodriguez, 2018; Rodriguez & Hernandez-Hamed, 2020).  

 
4 NELS:88 collected comprehensive standardized test scores compared to ELS:2002 and HLS:09. Using NELS:88 

we estimated two models in preliminary analysis: (a) a model that included all comparable measures across three 

studies; and (b) a model that included additional covariates of prior achievement, reading and science standardized 

scores. We found that SES coefficients across these two models are very consistent.  
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2.4.Analysis 

Before we examined inequalities in top science and mathematics course-taking, we 

conducted weighted descriptive statistics of course-taking patterns over time. We investigated 

the extent to which there are changes in the completion of advanced math and science courses 

between the 1992 and 2013 high school graduation cohorts and then conducted the Wilcoxon 

rank-sum test, a test of equality tests onfor unmatched data (that is, k-independent samples).  

Next, to examine if SES-based inequalities in math and science course-taking have 

changed over time, we ran multi-level logistic regression models where students are nested 

within schools without and with covariate adjustment (see Appendix E). In With an effort to 

study social background effects on educational outcomes, Lucas and Byrne (2017) asserted that 

it is important to compare two individuals who are the same or very similar on everything else 

except socioeconomic background. Thus, we fitted multi-level multivariate models to describe 

trends in SES-based inequalities, estimating models where the first two levels are models with 

the multilevel models and the third level is models with fixed effects (McNeish & Wentzel, 

2017):  

𝜂𝑖𝑗𝑘 = log (
𝜑𝑖𝑗𝑘

1 − 𝜑𝑖𝑗𝑘
)

= 𝛽0𝑗 + 𝛽𝐾(𝐶𝑜ℎ𝑜𝑟𝑡 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠)⬚ + 𝛽1𝑗(𝑆𝐸𝑆 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠)  

+ 𝛽2𝑗(𝑆𝐸𝑆

∗  𝐶𝑜ℎ𝑜𝑟𝑡 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠)⬚+𝛽𝑃𝑗(𝑂𝑡ℎ𝑒𝑟 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠)⬚ 

𝛽𝑜𝑗 = 𝛾00 + 𝛾01(𝑆𝑐ℎ𝑜𝑜𝑙 𝑚𝑒𝑎𝑛 𝑆𝐸𝑆 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠) + 𝛾0𝑆(𝑂𝑡ℎ𝑒𝑟 𝑠𝑐ℎ𝑜𝑜𝑙 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠) + 𝜇0𝑗 

𝛽𝐾 = 𝛾10 + 𝛾11(𝑆𝑐ℎ𝑜𝑜𝑙 𝑚𝑒𝑎𝑛 𝑆𝐸𝑆 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠) 

𝛽𝑝𝑗 = 𝛾𝑝𝑜 for p ≥ 1,  
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where 𝜂𝑖𝑗𝑘 is the outcome variable for the ith student in the jth school Level 2 unit in the kith 

Level 3 unit (cohort). It is worth noting that, for trends analysis, we included cohort indicators at 

Level 1 instead of employing three-level models, where students are nested within schools and 

within the cohort dataset (McNeish & Wentzel, 2017). This decision was made due to the limited 

size of Level 3 units (McNeish, 2023; McNeish & Kelley, 2019; McNeish & Wentzel, 2017). 

This approach is also typically favored when researchers lack theoretically meaningful predictors 

at the third level (McNeish & Kelley, 2019). It should be noted that we did not include two 

interaction terms simultaneously‒the interaction between SES and cohort indicators, and the 

interaction between school mean SES and cohort indicators (see Appendix E for results).  

When outcome variables are ordinal, such as a hierarchical course-taking sequence, the 

ordered logistic regression model is a popular analytical method, which is parsimonious.5 The 

ordered logit model can provide a good summary of inequality in course-taking across all 

category ranges of sequences (see Kelly (2009) for Bblack-wWhite gaps in math course-taking 

sequence). However, this approach assumes the relationship between independent variables and 

student course taking is consistent across the course distribution, although the adjacent logit 

model allows the formulation of a model with selective constraints on coefficients (Allison, 

1999). This assumption is not consistent with theories that explain SES-based inequality in 

 
5 A common example of ordinal dependent variable is educational attainment, in which only individuals who have 

completed high school are considered to be “at risk” of or eligible for completion of one or more years of college. 

Similarly, high school math and science course sequence variables are ordinal. Because students who completed a 

low level in the sequence (e.g., algebra 2) can move to precalculus with skipping trigonometry or other advanced 

math courses, the ordinal logit model (including the adjacent ordered logit model) can be criticized as inaccurate. 

Usually, the use of multinomial logistic model can be an alternative model, but there are no theoretical bases about 

courses that can be used as a reference when socioeconomicallysociologically advantaged students seek marks of 

distinction by taking the most challenging courses in science and math. While technically possible, the use of 

multinomial logit model remains impractical because it would require the comparison of seven outcomes for each 

subject and then the estimation of models using different reference groups for robustness of findings. Although the 

use of logistic regression model can be criticized as inaccurate, in the end, it was decided to use logit models that 

estimated predicted probabilities of completing the most challenging math and science courses in comparison to all 

others.   
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course taking, which suggest that the association between family SES and course-taking varies 

across the course distribution because students from socioeconomically advantaged groups 

increasingly seek distinction by taking the most challenging highest-level math and science 

courses whenever and wherever possible, given that a majority of students completed a particular 

set of mid-level courses (e.g., algebra 2). Furthermore, using logistic regression models prior 

studies have shown that SES-based inequalities persist at the highest level of math (i.e., calculus) 

between 1982 and 2004, while SES-based inequalities have narrowed in the lower level of 

mathematics courses (Domina & Saldana, 2012), suggesting that the relationship between SES 

and math courses is not the same across the hierarchical math course sequence. Thus, building on 

literature that examined inequalities in highest-level math courses (Domina & Saldana, 2012), 

we also estimated logistic regression models separately for the mid- and highest levels of courses 

and investigated whether SES-based inequalities vary across the level of difficulty in 

mathematics and science courses. For top math and science courses, we examined two outcomes: 

(a) calculus (all calculus courses such as AP calculus) and (b) chemistry 2, physics 2, or biology 

2 (including AP/IB chemistry, AP/IB physics, or AP/IB biology). To compare inequalities in top 

math and science courses with inequalities in mid-level mathematics and science courses, we 

also examined two outcomes: (a) algebra 2 or above and (b) chemistry 1 or above. To check 

variation across highest-level science courses, we also estimated logistic regression models 

separately for biology 2, a less mathematized science course compared to chemistry 2 and 

physics 2 (see Appendix D).  

In the multilevel logistic regression, we first fitted models by cohort and then compared 

SES and school mean SES coefficients across three time points. Next, we pooled three datasets 

(NELS:88, ELS:2002, and HSLS:09) and estimated two interaction models. Model 1 includes 
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interaction terms between cohort indicators and individual-level SES and Model 2 includes 

interaction terms between cohort indicators and school-level SES. These two models answer the 

second and third research questions, respectively. Additionally, we estimated two sets of models: 

(a) one using ELS:2002 as a reference cohort (see Tables 3 and 4) and (b) one using NELS:88 as 

a reference cohort (see Appendix B). Consistent with the previous study (Domina & Saldana, 

2012), we confirmed that there were no systematic differences in the distribution of the 

covariates —gender, race, ninth/tenth grade mathematics score, school location and type— 

between the three cohorts.  

Finally, to address our research questions about trends in SES-based inequalities in 

course -taking, we used a postestimation strategy of computing adjusted marginal effect 

estimates from our statistical interactional model (Mood, 2010). Since the logistic regression 

model does not assume a linear relationship between dependent and independent variables, the 

difference in probability of completing math and science coursework by cohort and SES varies 

depending on what values the covariates have. In addition, the coefficient values of the 

interaction terms reflect the average of the effect sizes varied by the covariates (Ai & Norton, 

2003). Therefore, for a more intuitive interpretation of the results than logged odds or odds 

ratios, we estimated marginal effects to show the cohort and SES subgroup changes in the 

probability of completing mathematics and science coursework after fixing the covariates to their 

mean values (Williams, 2012). This estimation strategy is a very useful tool in understanding and 

interpreting multiple interactions in logistic regression, allowing us to investigate whether SES 

inequalities have narrowed (or been maintained) in the odds of completing mid-level, and high-
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level science and math courses. If necessary, the Z-score formula6 proposed by Paternoster et al. 

(1998) is used to verify that the effect sizes between the adjusted marginal effects differ 

significantly. 

Since there were many cases with missing data for student background variables, such as 

ninth/tenth grade math achievement scores and SES, the multiple imputation by chained 

equations technique was used to replace missing values, to retain as many cases as possible 

(Royston, 2004). The missing distribution of each variable ranges from approximately less than 

1% and 33%. The on-site course-offering variables in NELS:88 exhibited the highest missing 

percentage of missing data, an issue that has also been noted and discussed by other researchers 

(e.g., Lee et al., 1998). The missing distribution of SES ranges from approximately 5% to 15% 

across the three waves due to high levels of missing data in certain variables, such as income. To 

check out the robustness of our findings, we also conducted all analyses using composite 

measures of SES derived from the NCES data for each wave. Our results indicate that all 

findings remain robust across these alternative measures. The imputation model includes all the 

variables used in the analysis. In the imputation model, binary variables were modeled using 

logistic regression, ordinal variables modeled using ordered logistic regression, and continuous 

variables modeled using linear regression. We estimated the coefficients and standard errors 

from 20 imputed datasets to enhance our analysis’s power (Graham et al., 2007). Imputed values 

compared reasonably to observed values, and results using listwise deletion were similar to those 

we present using multiple imputation (see Appendix E) (Manly & Wells, 2015). Specific details 

 
6 The numerator of this test is the estimated difference between the two coefficients in the subgroups (bi – bj), and 

the denominator is the square root of the sum of each standard error squared. 
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regarding the percentage of missing data and descriptive statistics for non-imputed and imputed 

variables can be found in Appendix C.  

 

3. RESULTS 

3.1.Descriptive trends in mathematics and science course-taking sequences  

Table 1 provides descriptive trends in math and science course completion across three 

high school cohort datasets; NELS:88 (1992 cohort), ELS:2002 (2004 cohort), and HSLS:09 

(2013 cohort). Note that our analytic sample includes only high school graduates to meet the 

NCES inter-cohort data analysis guideline. We calculated raw differences in the percentage of 

high school graduates who completed math and science courses between 1992 cohort and 2013 

cohort and then tested if, overall, these changes in course completion rates across cohorts are 

statistically significant.  

The high school cohort in the early 2010s completed more credits in advanced math and 

science courses when compared with the high school cohorts in the early 1990s. This trend 

occurs throughout advanced math and science course distribution. Specifically, the percentage of 

high school graduates who completed at least algebra 2 or above increased from about 69% to 

86% over the study period. In the science course-taking pipeline, the percentage of high school 

graduates who completed chemistry 1 or above increased from about 60% to 74% over the study 

period. 

The percentage of high school graduates who completed the highest-level math and 

science courses also increased over the study period. The percentage of high school graduates 

who completed calculus, for example, increased from about 11% to 16% over the study period.  
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Likewise, the percentage of students who completed chemistry 2, physics 2 or biology 2 

increased from about 7% to 14% over the study period.  

Across the study period, notable increases in students’ enrollment in advanced math and 

science courses were observed, indicating that students in the early 2010s are more likely to 

complete higher-level science and math courses compared to their counterparts in the 1990s.  

 

3.2. Association between individual SES, school mean SES, and course-taking patterns 

Before examining if SES-based inequalities in course-taking patterns have changed, we 

explored the degree to which individual SES and school-level SES are associated with course-

taking patterns in each cohort. To address this question, we initially constructed models by 

cohort and then conducted analyses by comparing SES coefficients and school mean SES 

coefficients across three distinctive time points, after including all individual- and school-level 

control variables. We fitted two models: (a) a model that includes both individual-level SES and 

school mean SES alongside all other control variables, including prior achievement scores; and 

(b) a model that includes the interaction between individual SES and school mean SES in 

addition to Model 1. High and middle SES backgrounds at individual and school levels are 

defined by being one standard deviation above, and between -1 and +1 standard deviation from 

the mean, respectively. Low SES backgrounds are defined as one standard deviation below the 

mean. 

Not surprisingly, as shown in Model 1 of Table 2, students from families with higher SES 

are more likely to complete mathematics and science courses‒algebra 2 or above, calculus, 

chemistry 1 or above, and physics 2, chemistry 2, or biology 2. Similarly, the socioeconomic 

composition of a school is also linked to students’ course-taking patterns in these subjects, 

although this varies somewhat across cohort and subjects. For example, students at high SES 
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schools are more likely to complete highest-level mathematics and science courses‒calculus, 

physics 2, chemistry 2 or biology 2‒compared to those at low SES schools. However, this 

positive link was mainly seen in the 2013 cohort, even after considering other individual and 

school background characteristics like prior achievement. Under equal conditions, no significant 

discrepancy is observed between students in middle SES schools and those in low SES schools. 

This suggests that the association between school mean SES and course-taking patterns is 

nonlinear.  

  Next, we examined whether the SES of a school affects students’ course-taking in math 

and science differently for students from high SES families compared to those from low SES 

families. We did this by analyzing the interaction between individual SES and school SES (see 

Model 2 in Table 2). The coefficient of high school mean SES indicates the difference in the 

likelihood of completing mathematics and science courses between low school mean SES and 

high school mean SES for students from low SES families. Except for algebra 1 or above in the 

1992 cohort, all of these coefficients are not statistically significant, implying there is no 

additional benefit for students from low SES families at high SES schools in the likelihood of 

completing these courses. In mathematics courses, however, the interaction terms between 

individual SES and school SES were positive and significant in the 1992 and 2004 cohorts. For 

example, in the 2004 cohort, students from middle SES families at high SES schools and 

students from high SES families at either middle or high SES schools were more likely to 

complete calculus. In the 2013 cohort, no significant interaction effects were observed. This 

means that in the earlier years, students from middle or high SES families at higher SES schools 

had higher chances of completing these courses compared to students from low SES families at 

low SES schools. The absence of these positive interactions in the 2013 cohort indicates a 
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change in the pattern. Science course-taking patterns also exhibited a very similar change over 

time.  

 In sum, our analyses reveal that school SES matters more for students from middle or 

higher SES families than for students from low SES families in the earlier cohorts, but this was 

not held in the 2013 cohort.  

 

4.3. Changes of SES inequality in taking mathematics and science coursework 

Next, to examine if SES-based inequalities in math and science course-taking have 

changed over time, we estimated the pooled multilevel logit models (see Appendix E). To 

provide a more intuitive interpretation of changes in SES inequalities over the study period, 

Table 3 presents the results of the adjusted marginal effects that were obtained from the full 

multilevel logit models (i.e., include all other individual- and school-level characteristics and the 

interaction between cohort and SES in the estimation) for each outcome. Table 3 shows the 

changes in the probability of completing the mid- and highest-levels of math and science courses 

by SES subgroups over the 1992 and 2013 cohorts compared to the 2004 cohort (reference). The 

values of all covariates are fixed at their means. These marginal effect results show the degree to 

which SES-based inequalities in mid-level, and highest-level math and science courses have 

changed over the study period. In Figures 1 and 2, we also visualized the predicted probability of 

completing the mid-, and highest-level mathematics and science coursework by SES subgroup 

and cohorts, with all covariates being held to their mean values.  

First, we assessed which SES group exhibits increases in the probability of completing 

courses over the study period. In mid-level mathematics, algebra 2 or above, as shown in Table 3 

and Figure 1, when all other conditions are equal, the low SES students’ predicted probability of 
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completing algebra 2 or above increased by about 6 percentage points between the 1992 and 

2004 cohorts and 19 percentage points between the 2004 and 2013 cohorts. However, for the 

high-SES students, there was no significant change between the 1992 and 2004 cohort and then 

about 12 percentage points increases in the predicted probability of completing algebra 2 or 

above between the 2004 and 2013 cohorts. Both low- and high-SES students in the early 2010s 

are more likely to complete a mid-level math course compared to their counterparts in the early 

2000s, but low-SES students are more likely to do so. As shown in Figure 1, this suggests that 

disparities between high- and low-SES students’ probability of completing mid-level 

mathematics coursework decreased over the three cohorts. 

Not surprisingly, SES-based inequalities in the probability of completing mid-level 

science coursework, chemistry 1 or above, decreased over the three cohorts (see Table 3 and 

Figure 1). For low-SES students, the probability of completing chemistry 1 or above increased 

dramatically between the 1992 and 2004 high school graduation cohorts, compared to high-SES 

group. Meanwhile, all SES groups showed substantial increases in the probability of completing 

mid-level science coursework between the 2004 and 2013 cohorts.  

Unlike mid-level mathematics and science courses, SES inequalities in the probability of 

completing the most rigorous math and science courses tend to persist or be slightly widened. 

Specifically, while holding all other factors constant, the predicted probability of all students 

completing calculus increased by approximately two, three, or four percentage points across all 

groups between the 1992 and 2004 cohorts. However, variations in changes across groups were 

observed in the recent cohort. For high and middle SES students, the predicted probability of 

completing calculus increased by 4 and 3 percentage points, respectively, between the 2004 and 

2013 cohorts, whereas the predicted probability for low SES students remained steady over the 
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same period. This suggests that SES-based inequalities in the probability of completing the 

highest-level mathematics coursework slightly widened in recent cohort. 

Similarly, in highest-level science courses, all students in the early 2010s are more likely 

to complete physics 2, chemistry 2 or biology 2 compared to their counterparts in the 1990s and 

early 2000s, but SES-based inequalities persist over the study period. All students’ predicted 

probabilities of completing highest-level science courses increased between the 1992 and 2004 

cohorts, but there were no changes between the 2004 and 2013 cohorts for both low and high 

SES students. For middle-SES students, the predicted probabilities of completing highest-level 

science courses increased by 3 percentage points between the 2004 and 2013 cohorts.  

Due to the variation in the level of mathematization and prerequisite of mathematics 

across highest science courses, we also investigated whether SES-based inequalities in the 

probability of completing biology 2 differed from those in other sub-science discipline courses 

(see Appendix D). There were no statistically significant increases in the predicted probability of 

completing biology 2 across all SES groups between the 1992 and 2004 cohorts, holding all 

other conditions constant. However, among low SES students’ predicted probability of 

completing biology 2 decreased by 4 percentage points between the 2004 and 2013 cohorts, 

while the predicted probability for middle and high SES students remained unchanged between 

the 2004 and 2013 cohorts. There is no evidence to suggest that SES-based inequalities in the 

probability of completing biology 2 narrowed over the study period.   

In sum, the findings from the adjusted marginal effect analysis, detailed in Table 3 and 

visually represented in Figures 1 and 2, reveals significant shifts in completion probabilities of 

mid- and highest-level math and science courses across socioeconomic subgroups over time. 

Notably, while disparities in mid-level mathematics narrowed, persistent inequalities were 
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observed in the completion rates of rigorous math and science courses, particularly evident 

among low-SES students. Despite overall advancements, SES-based inequalities in the 

probabilities of completing highest math and science courses have widened or maintained over 

the study period, indicating ongoing challenges in equitable completion of advanced coursework.  

 

4.4. School-level socioeconomic composition and inequality in taking mathematics and science 

coursework   

Table 4 presents the results of the adjusted marginal effects that obtained from the full 

multilevel logit models for each outcome. Table 4 shows the changes in the probability of 

completing math and science courses by school-level socioeconomic composition over the 1992 

and 2013 cohorts compared to the 2004 cohort (reference). The values of all covariates are fixed 

at their means. These marginal effect results show the degree to which school SES composition-

based inequalities in course-taking have changed over the study period. In Figures 3 and 4, we 

also visualized the predicted probability of completing the mid-, and highest-level mathematics 

and science coursework by high, middle and low socioeconomic composition schools and 

cohorts, with all covariates being held to their mean values.  

 Consistent with prior research (Crosnoe & Muller, 2014), school-level socioeconomic 

composition is positively associated with course-taking patterns (see Appendix E). All else being 

equal, students in high SES schools—defined as one standard deviation above the mean of the 

school’s SES— are more likely to complete science and mathematics courses compared to their 

counterparts in low-SES schools—defined as one standard deviation below the mean of the 

school’s SES.  
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More importantly, as shown in Table 4 and Figures 3 and 4, our analyses reveal that 

trends in disparities between high and low socioeconomic composition schools in course-taking 

vary across mathematics and science, and difficulty levels in each subject. In mid-level math 

course, specifically algebra 2 or above, as depicted in Table 4 and Figure 2, the predicted 

probability of completion remained steady for students in low SES schools between 1992 and 

2004, but increased by 18 percentage points between 2004 and 2013. For students in high SES 

schools, there was no statistically significant change between 1992 and 2004; however, this was 

followed by 12 percentage points increase between 2004 and 2013. This trend indicates a 

decrease in disparities between high and low SES schools in the predicted probability of 

completing mid-level mathematics coursework over the three cohorts. 

For mid-level science course, specifically chemistry 1 or above, the analyses revealed 

that gaps between high and low-SES schools in the predicted probability of completing 

chemistry 1 have narrowed. All else being equal, students attending high SES schools did not 

show statistically significant increases in the predicted probability of completing chemistry 1 or 

above between the 1992 and 2004 cohorts. However, between the 2004 and 2013 cohorts, 

students from high SES schools exhibited statistically significant increases in the predicted 

probability of completing chemistry 1 or above, with increases of 10 percentage points. On the 

other hand, students at low SES schools showed statistically significant increases in the predicted 

probability of completing chemistry 1 or above across all three cohorts with increases 7 

percentage points between the 1992 and 2004 cohorts and 10 percentage points between the 2004 

and 2013 cohorts.  

The differences between high- and low-SES schools in the predicted probability of 

completing highest-level mathematics and science courses have either widened or persisted over 
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the study period time. All else being equal, students attending low SES schools did not show 

statistically significant increases in the predicted probability of completing calculus over the 

study period. In contrast, students from middle and high SES schools demonstrated consistent 

and significant increases in the predicted probability of completing calculus across three cohorts. 

For middle SES schools, the increase was a 2 percentage point between both the 1992 and 2004 

cohorts, and the 2004 and 2013 cohorts. High SES schools showed a 2 percentage point increase 

between the 1992 cohorts and 2004 cohorts and a 7 percentage point increase between the 2004 

and 2013 cohorts. This suggests that disparities between low and high SES schools in the 

predicted probability of completing calculus widened over the study period.  

Holding all other factors constant, students from low, middle, and high SES schools 

showed statistically significant increases in the predicted probability of completing physics 2, 

chemistry 2, or biology 2 by approximately four or six percentage points between the 1992 and 

2004 cohorts. However, there was no significant change in the predicted probability of 

completing these highest-level science courses for both low and high SES schools between the 

2004 and 2013 cohorts. This indicates that disparities in the predicted probability of completing 

the highest-level science courses between low and high SES schools have persisted over the 

study period.  

We also investigated whether school mean SES-based inequalities in the probability of 

completing biology 2 differed from those in other sub-science sub-discipline courses (see 

Appendix D). Interestingly, similar to the findings in Table 4 and Figure 4, there is no indication 

that school mean SES-based inequalities in the probability of completing biology 2 have 

narrowed over the study period. There were no statistically significant changes observed in the 

likelihood of completing biology 2 across all schools over the study period, holding all other 
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conditions constant. Despite variations in mathematization across science sub-disciplines, our 

analyses demonstrate that inequalities between high- and low-SES schools in the likelihood of 

completing highest-level science courses persist over the study period.   

In sum, school-level socioeconomic composition is positively associated with course-

taking patterns, with students in high SES schools more likely to complete math and science 

courses compared to those in low-SES schools. Disparities in mid-level math course completion 

between high and low SES schools decreased over the study period, with a substantial increase in 

completion rates observed in low SES schools. However, differences in completion rates of 

highest-level math and science courses widened or maintained over time, with significant 

increases observed in completion rates among students from high SES schools compared to those 

from low SES schools. 

 

4. DISCUSSION AND CONCLUSION 

Advanced course-taking patterns in high school play a significant role in shaping 

students’ educational and occupational attainments. Despite recent findings that there isn’t a 

consistent set of core-subject courses to STEM pathways (Bowers et al., 2022), many studies 

suggest that completion of advanced science and math courses can affect students’ future 

educational attainments and long-term labor market outcomes (Adelman, 2006; Black et al., 

2021; Hinojosa et al., 2016; Maltese & Tai, 2011; Tyson et al., 2007), as well as health at midlife 

(Carroll et al., 2017).  

The share of high school students in advanced math has substantially increased over the 

past few decades. However, our analysis reveals shifts in completion probabilities of mid- and 

highest-level math and science courses across socioeconomic subgroups over time. While 
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disparities in mid-level mathematics narrowed, persistent inequalities were observed in rigorous 

course completion rates, particularly among low-SES students. Similarly, disparities in mid-level 

math course completion between high and low SES schools decreased over the study period, 

with a substantial increase in completion rates observed in low SES schools. However, 

differences in completion rates of highest-level math and science courses widened or remained 

consistent over time, which has significant implications for promoting educational equity and 

fostering social mobility.   

To enhance STEM opportunities, students who have relatively weak academic 

performance in mathematics tend to focus on science courses over mathematics (Weis et al., 

2015; Eisenhart & Weis, 2022), while simultaneously attending and graduating from high 

schools that prioritize particular sciences over others. Specifically, they tend to prioritize 

relatively less mathematized science courses (e.g., biology) rather than highly mathematized 

science courses (e.g., physics). Such targeted moves towards less mathematized sciences is 

enabled and facilitated by teachers and counselors (Nikischer et al., 2016). Despite these efforts, 

our analyses indicate that SES-based inequalities have persisted even in a less mathematized 

science course, such as, in this case, biology 2. Our findings did not provide empirical evidence 

at a national level that the different degree of mathematization and mathematics prerequisite in 

science subdisciplines are related to SES-based inequalities in science course-taking patterns. 

Because we examined only three time points from early 1990s to 2010s, however, future studies 

should expand the study period and assess if the degree of mathematization in science disciplines 

is related to inequalities in science course-taking patterns. 

Despite increases in math and science course completion across all SES groups, 

socioeconomically advantaged but academically equivalent students have a higher likelihood of 
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completing advanced science and math courses, which are crucial for entry into more highly-

ranked postsecondary institutions and/or STEM majors (Adelman, 2006; Black et al., 2021; 

Hinojosa et al., 2016; Maltese & Tai, 2011; Tyson et al., 2007). These findings provide 

supporting evidence for effectively maintained inequality (EMI) in STEM opportunity in high 

school, as proposed by Lucas (2001). As less highly capitalized students increasingly evidence 

mid-level course completion in science and mathematics, more highly capitalized students 

continue to distinguish themselves relative to others by seeking and completing increasingly 

higher-level science and math courses. Several qualitative studies reveal that how students from 

different family backgrounds perceive the value of advanced math and science courses can lead 

to subsequent decisions about high school course selection as related to college admissions and, 

ultimately, entrance to and graduation from prestigious STEM majors (Crosnoe & Muller, 2014; 

Weis et al., 2014). Students with college-educated parents prioritize both good grades and a 

targeted diverse portfolio and are more likely to take higher-level math and science courses, even 

if it jeopardizes their grades. Socioeconomically privileged parents closely monitor their 

children’s grades throughout their secondary school career, readily investing in private tutoring if 

any academic struggles arise. In contrast, students with no college-educated parents tend to 

downgrade their coursework level, fearing that challenging courses could harm their college 

prospects by lowering their grades. Additionally, several studies show that students take 

advanced math and science courses with the expressed aim of making themselves more 

competitive in the college admissions process (Crosnoe & Muller, 2014; Grodsky & Riegle-

Crumb, 2010; Weis et al., 2014). In line with these prior studies, therefore, our findings suggest 

that more highly capitalized students and families may work with intention to secure future 

postsecondary educational advantages by taking both rigorous math and science courses, thereby 
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positioning themselves disproportionately to access selective and highly selective postsecondary 

institutions, attain four-year degrees, and, as relevant, enter prestigious STEM fields that have 

considerably larger economic returns compared to college selectivity (Arcidiacono, 2004). 

Evidence presented by qualitative researchers suggests that parents and students engage this 

strategy irrespective as to whether said students look to enter STEM majors at the postsecondary 

level and/or ultimately pursue a STEM career (Weis et al., 2014; Eisenhart & Weis, 2022). 

Our findings underscore the need for policymakers and educational researchers to 

develop educational interventions/reforms that directly address the robust socioeconomic 

disparities in STEM educational opportunities and related outcomes. For instance, a report 

drawing upon nationally representative transcript data shows that about 45 percent of students 

did not earn credit in any science course in their senior year (Brown et al., 2018). Moreover, a 

recent multi-site longitudinal qualitative study (Eisenhart & Weis, 2022) reveals that in urban 

schools serving largely low-income and underrepresented minoritized students, school guidance 

counselors were overwhelmed with tasks related to accountability mandates and with students in 

crisis, with the consequent result that students who were on track to graduate were left entirely 

on their own to select their classes for senior year, and, at times, even earlier (Nikischer et al., 

2016). As a result, high-achieving students who are interested in pursuing STEM fields beyond 

high school tended to enroll in non-college prep science and math classes, hoping for an easy 

year and a higher GPA in their senior year, or they did not take any science or math courses in 

their senior year at all (Eisenhart & Weis, 2022). Additionally, descriptive quantitative analysis 

using a nationally representative dataset indicates that high SES, white, and Asian students tend 

to consistently pursue upward course-taking patterns throughout high school, while students with 

relatively low family SES and minoritized students often experience nonlinear course-taking 
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patterns, including downward moves, particularly from grade 11 to grade 12, limiting their 

opportunities in reaching to the highest-level math and science courses (Han et al., 2023). To 

narrow the gap in STEM learning opportunities and associated educational, social and 

occupational outcomes between socioeconomically advantaged and disadvantaged students, 

these students should be prepared for, scaffolded for, and guided to take rigorous STEM courses 

in their senior year.  

Equally importantly, our findings highlight the need for policymakers and educational 

researchers to tackle disparities in STEM learning opportunities between schools in the United 

States. For example, only approximately 12% of high schools provide a comprehensive range of 

advanced coursework options, STEM-focused professional development for teachers, and utilize 

various informal STEM practices to enhance student interest in STEM. In contrast, the majority 

of high schools in the United States (about 54%) offer limited advanced STEM-related 

coursework and generally exhibit lower tendencies in implementing strategies to foster student 

interest in STEM, as well as in mandating STEM professional development for teachers (Vaval 

et al., 2019). Even after taking into account on-site course offerings, our study found persistent 

disparities in advanced math and science course-taking between high and low SES schools over 

time. This underscores and highlights the importance of policymakers prioritizing efforts to 

ensure equitable distribution of resources among schools, such as focusing on STEM-focused 

professional development for teachers, and opportunities for informal STEM engagement, in 

addition to providing authentic access to and scaffolding for advanced coursework options. This 

comprehensive approach is essential for promoting equity in STEM education and fostering 

opportunities for all students to succeed in these fields, with an eye towards equalizing future 
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educational and occupational outcomes among students from advantaged and disadvantaged 

backgrounds.  

It should be noted that our findings and implications for policies and practices need to be 

interpreted with caution due to several limitations in our study. First, our study was in nature 

descriptive in nature and described trends in SES-based inequalities in course-taking over three 

decades. Our study did not focus on mechanisms or specific policy changes that explain trends in 

SES-based inequalities. Therefore, our findings did not offer causal inferences about trends in 

inequalities. Second, our study was limited due to weaknesses of secondary datasets. Despite the 

importance of cross-social class friendships in educational and social mobilities (Chetty et al., 

2022a, 2022b) as noted in literature review, for example, our study cannot examine or take 

account of cross-class friendships as one of the mechanisms for widening SES inequalities in 

course-taking due to the lack of information about friends’ social class backgrounds in all three 

nationally representative high school cohort datasets. The study of social background effects on 

educational inequality and the test of EMI theory requires investigators to compare two people 

who are the same on everything else except socioeconomic background by including a set of 

covariates (Lucas & Byrne, 2017). In order to estimate SES-based inequalities among students 

with similar academic achievement levels, for example, it is critical to include comprehensive 

assessment scores for other subjects, such as reading, science, and social studies. In this study, 

covariate adjustment in prior achievement was somewhat limited due to the lack of 

comparability in standardized test scores across three studies. For cross-cohort comparison in our 

study, we included only comparable measures across three studies and employed analytic sample 

selection restriction, following the NCES guideline (Burns et al., 2011). Thus, our findings can 

be generalized only to high school graduates, as noted in our method section. It should be noted 
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that our findings cannot be generalized to all high school students in each cohort, including high 

school dropouts, and our estimates of SES inequalities could be biased (possibly underestimated) 

due to the analytic sample restriction. In addition, our estimation could be biased due to omitted 

variables, particularly at school levels. In NCES high school cohort datasets, schools are not 

repeatedly sampled. Using state-level administrative data, longitudinal trends in school-level 

inequality in course-taking should be examined.  

To tackle socioeconomic disparities in STEM opportunities in high school course-taking, 

we also need more studies on SES disparities in science achievement from Pre-K programs and 

elementary education through secondary education. While many studies have investigated 

socioeconomic disparities in reading and math achievement (e.g., Reardon, 2011), there is a lack 

of research on when SES disparities in science achievement and course-taking emerge and 

become well-established, and, as a consequence, unmovable. This line of inquiry can shed light 

on cumulative (dis)advantages (DiPrete & Eirich, 2006) in STEM opportunities; future study can 

help address when differences between socioeconomically advantaged and disadvantaged 

students became larger over time and at what point it becomes harder for those left behind to 

make up any relative loss, leading to persistent inequalities in high school science course-taking 

patterns and, in all likelihood, STEM educational and occupational outcomes of interest.  

Future research is imperative to examine whether the influence of school SES 

composition effect on course-taking patterns and other broader educational outcomes (e.g., 

college enrollment rates, STEM major selection, and career trajectories) varies across different 

individual SES backgrounds and how such relationship evolves over time. Consistent with prior 

research in Australia (Perry et al., 2022), our study revealed that the effect of school SES on 

students’ course-taking patterns is greater when the student’s SES is higher. However, our study 
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found changes in this effect in the recent cohort. This inquiry is particularly crucial given the 

increasing socioeconomic segregation between schools and districts in the United States (Mijs & 

Roe, 2021; Owens et al., 2016; Reardon & Owens, 2014). Therefore, exploring these dynamics 

further through longitudinal and comparative analyses across regions and school districts could 

provide valuable insights into the evolving relationship between individual and school-level SES 

and its implications for educational equity and policy interventions, such as effects of reduction 

in school SES segregation.  

Furthermore, future research endeavors should consider integrating school-level variation 

in STEM learning opportunities, as suggested by Vaval et al (2019), to delve deeper into the 

examination of inequality in course-taking patterns. While our study employed a single 

regression framework to explore the associations between school characteristics (namely, school 

mean SES) and course-taking patterns, adopting multiple typologies of high school STEM 

learning opportunities, as proposed by Vaval et al (2019), could provide valuable insights into 

the heterogeneity of such opportunities. This approach could shed light on the types of resource 

allocation within high schools that may foster equity in STEM learning opportunities. 

Future research is also needed to examine which STEM-related policies are effective in 

improving STEM opportunities specifically for low-income and underrepresented minoritized 

students. For example, prior studies examined effects of state policies on number of years 

completed in science and math (Kim et al., 2019; Teitelbaum, 2003), effects of inclusive-STEM-

focused high schools on advanced STEM course-taking patterns (Weis et al., 2015; Means et al., 

2016), and effects of state-level AP exam fee-reduction on low-income students (Rodriguez et 

al., 2022). To date, however, few studies have investigated effects of state policies as specifically 

related to the most rigorous high school math and science courses, such as physics 2, chemistry 
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2, biology 2 or AP/IB science-related courses, among low-income and underrepresented 

minoritized students. Future research is needed to compare the effects of STEM-related reform 

policies on these advanced high school math and science course-taking patterns and linked 

educational and occupational outcomes across states and within states over time. Such research 

should aim to assess which reforms are most effective in improving STEM opportunities and 

related outcomes for low-income and underrepresented minoritized students in the United States.  
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Table 1. Descriptive Trends in Completed Highest Mathematics and Science Coursework Across Three Cohorts 

Completed Highest Coursework 1992 cohort 2004 cohort 2013 cohort ∆ 2013-1992 

cohort (%) 

Wilcoxon rank-

sum test (%) (%) (%) 

Mathematics 
     

  Calculus 10.73 12.39 15.88 5.15 

z= ‒39.11*** 

  Precalculus 10.98 18.02 21.15 10.17 

  Trigonometry 20.05 16.55 24.50 4.45 

  Algebra 2 27.44 25.41 24.80 -2.64 

  Geometry 11.30 16.73 8.89 -2.41 

  Algebra 1 9.91 5.56 3.04 -6.87 

  Remedial 9.59 5.34 1.73 -7.86 

Science 
    

 

  Chemistry 2, Physic 2, or Biology 2 6.89 11.97 14.47 7.58 

z= -31.38*** 

  Physics 1 and Chemistry 1 17.27 19.28 23.89 6.62 

  Chemistry 1 35.70 36.97 35.54 -0.16 

  Secondary Life 35.34 26.53 22.68 -12.66 

  Secondary Physical 0.69 1.20 1.74 1.05 

  Primary Physical 3.62 3.71 1.27 -2.35 

  Low-Level 0.49 0.33 0.41 -0.08 

Note. Weighting is adjusted. 

*** p<0.001 
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Table 2. Hierarchical Generalized Linear Analyses Predicting Completion of Mathematics and Science Courses by Cohort and Subjects 

 Algebra 2 or above Calculus Chemistry 1 or above Physics 2, Chemistry 2, or Biology 2 

 1992 cohort 2004 cohort 2013 cohort 1992 cohort 2004 cohort 2013 cohort 1992 cohort 2004 cohort 2013 cohort 1992 cohort 2004 cohort 2013 cohort 

Variables M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 

Individual SES 
                        

Middle SES 0.71*** 0.42* 0.32*** -0.09 0.30* 0.01 0.63** 0.26 0.13 -0.33 0.40* 0.08 0.84*** 0.38 0.32*** -0.00 0.36*** 0.25 0.65** 0.30 0.15 -0.30 0.40* 0.09 
 (0.12) (0.22) (0.09) (0.17) (0.12) (0.25) (0.21) (0.46) (0.16) (0.32) (0.18) (0.45) (0.12) (0.21) (0.10) (0.15) (0.10) (0.18) (0.21) (0.46) (0.16) (0.32) (0.18) (0.45) 

High SES 1.09*** -0.32 0.79*** 0.25 0.78** -0.00 1.18*** -1.08 0.76*** -0.19 0.95*** 0.90 1.53*** 0.44 0.92*** 0.90 1.29*** -0.20 1.23*** -0.96 0.77*** -0.16 0.96*** 0.90 
 (0.24) (0.74) (0.17) (0.61) (0.27) (0.79) (0.24) (0.80) (0.19) (0.49) (0.19) (1.00) (0.18) (0.63) (0.15) (0.58) (0.21) (0.76) (0.24) (0.77) (0.19) (0.48) (0.19) (1.00) 

School mean SES (Ref.: Low school 

mean SES) 

                        

Middle school mean SES -0.14 -0.41 0.24 -0.12 -0.21 -0.48 -0.33 -0.84 -0.03 -0.50 0.27 -0.08 -0.14 -0.55** 0.13 -0.13 -0.16 -0.28 -0.29 -0.78 -0.07 -0.52 0.29 -0.05 
 (0.16) (0.21) (0.18) (0.22) (0.20) (0.28) (0.23) (0.46) (0.21) (0.35) (0.20) (0.45) (0.14) (0.21) (0.18) (0.22) (0.20) (0.25) (0.24) (0.45) (0.20) (0.34) (0.20) (0.45) 

High school mean SES 1.14*** 1.70** 0.98** 0.22 0.73* 0.12 -0.07 1.33 0.07 -1.48 0.57* 0.77 0.40 0.43 0.48 -0.48 0.20 0.13 0.04 1.48 0.06 -1.45 0.56* 0.78 
 (0.30) (0.63) (0.30) (0.50) (0.35) (0.77) (0.31) (1.12) (0.28) (0.76) (0.28) (0.76) (0.24) (0.55) (0.29) (0.57) (0.31) (0.56) (0.31) (1.09) (0.27) (0.76) (0.28) (0.75) 

Interaction terms 
                        

Middle SES x Middle school mean SES 
 

0.43 
 

0.56** 
 

0.39 
 

0.60 
 

0.60 
 

0.43 
 

0.66** 
 

0.42* 
 

0.16 
 

0.57 
 

0.57 
 

0.42 
 

 
(0.26) 

 
(0.20) 

 
(0.28) 

 
(0.54) 

 
(0.39) 

 
(0.49) 

 
(0.25) 

 
(0.19) 

 
(0.22) 

 
(0.53) 

 
(0.39) 

 
(0.49) 

Middle SES x High school mean SES 
 

-0.78 
 

1.11* 
 

0.67 
 

-1.49 
 

1.79* 
 

-0.05 
 

-0.06 
 

1.24* 
 

0.08 
 

-1.52 
 

1.75* 
 

-0.06 
 

 
(0.62) 

 
(0.53) 

 
(0.74) 

 
(1.16) 

 
(0.78) 

 
(0.74) 

 
(0.57) 

 
(0.55) 

 
(0.49) 

 
(1.13) 

 
(0.78) 

 
(0.74) 

High SES x Middle school mean SES 
 

1.42 
 

0.77 
 

0.82 
 

2.39** 
 

1.15* 
 

0.29 
 

1.12 
 

0.14 
 

1.57 
 

2.33** 
 

1.13* 
 

0.29 
 

 
(0.79) 

 
(0.64) 

 
(0.83) 

 
(0.85) 

 
(0.54) 

 
(1.02) 

 
(0.66) 

 
(0.60) 

 
(0.80) 

 
(0.82) 

 
(0.53) 

 
(1.03) 

High SES x High school mean SES 
 

1.32 
 

0.88 
 

1.68 
 

0.62 
 

2.10* 
 

-0.53 
 

1.22 
 

0.72 
 

1.57 
 

0.53 
 

2.06* 
 

-0.53 
 

 
(1.01) 

 
(0.78) 

 
(1.16) 

 
(1.29) 

 
(0.87) 

 
(1.16) 

 
(0.83) 

 
(0.78) 

 
(0.93) 

 
(1.26) 

 
(0.87) 

 
(1.16) 

Individual-level controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

School-level controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

*** p<.001, ** p<.01, * p<.05 

Note. For each cohort, SES was categorized as follows: low SES was defined as at least one standard deviation below the SES mean, middle 

SES as within one standard deviation of the SES mean, and high SES as at least one standard deviation above the SES mean; the school mean 

SES groups were defined similarly, based on the school mean SES value. Additional covariates included in the analysis were sex, 

race/ethnicity, ninth/tenth grade mathematics achievement score, school mean mathematics score, coursework offering, school location, and 

type.   
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Table 3. Adjusted Marginal Effects of the Individual SES from Multilevel Logit Models Estimating Completing Mathematics, and Science 

Coursework  

  

Groupsa 

Mathematics Science 

Mid-level or above Highest-level Mid-level or above Highest-level 

Algebra 2 or above Calculus Chemistry 1 or above 

Physics 2, Chemistry 2, or 

Biology 2 

1992 cohort 2013 cohort 1992 cohort 2013 cohort 1992 cohort 2013 cohort 1992 cohort 2013 cohort 

Low SES -0.06* 0.19*** -0.03** 0.01 -0.17*** 0.07** -0.04*** 0.01 

 
(0.02) (0.02) (0.01) (0.01) (0.03) (0.03) (0.01) (0.01) 

Middle SES 0.00 0.16*** -0.02* 0.03*** -0.07*** 0.07*** -0.04*** 0.03** 

 
(0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01) 

High SES -0.01 0.12*** -0.04** 0.04** -0.04 0.09*** -0.06*** 0.02 

 
(0.03) (0.02) (0.01) (0.01) (0.03) (0.02) (0.01) (0.02) 

Note. aThe reference group is the 2004 cohort. For each cohort, low SES was defined as at least one standard deviation below the SES mean, 

middle SES as the family SES index between ‒1 standard deviation and + 1 standard deviation, and high SES as at least one standard 

deviation above the SES mean. All other covariates, including sex, race/ethnicity, ninth/tenth grade mathematics achievement score, school 

mean SES, school mean mathematics score, coursework offering, school location, and type, were held at their mean values. Alongside the 

control variables, the interaction term between cohort and SES was included in the multilevel logit model. N= 36,800. Multilevel logistic 

regression model results are presented in Appendix E (Table E1).  

*** p<0.001, ** p<0.01, * p<0.05 
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Figure 1. Predicted Probability of Completing Mid-Level Mathematics, and Science Coursework by Individual SES Across Three Cohorts 

 

All other covariates, including individual SES, sex, race/ethnicity, ninth/tenth grade mathematics achievement score, school mean SES, 

coursework offering, school mean mathematics score, school location, and type, were held at their mean values. Low SES was defined as at 

least one standard deviation below the SES mean, middle SES as the family SES index between ‒1 standard deviation and + 1 standard 

deviation, and high SES at least one standard deviation above the SES mean. Shaded area indicates 95% confidence interval. Multilevel 

logistic regression model results are presented in Appendix E. 
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Figure 2. Predicted Probability of Completing Highest-Level Mathematics, and Science Coursework by Individual SES Across Three Cohorts 

 

 

All other covariates, including individual SES score, sex, race/ethnicity, ninth/tenth grade mathematics achievement score, school mean SES, 

coursework offering, school mean mathematics score, school location, and type, were held at their mean values. Low SES was defined as at 

least one standard deviation below the SES mean, middle SES as the family SES index between ‒1 standard deviation and + 1 standard 

deviation, and high SES as at least one standard deviation above the SES mean. Shaded area indicates 95% confidence interval. Multilevel 

logistic regression model results are presented in Appendix E (Table E1). 
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Table 4. Adjusted Marginal Effects of the School Mean SES from Multilevel Logit Models Estimating Completing Mathematics, and Science 

Coursework 

  

Groupsa 

Mathematics Science 

Mid-level or above  Highest-level Mid-level or above Highest-level 

Algebra 2 or above Calculus Chemistry 1, or above 

Physics 2, Chemistry 2, or 

Biology 2 

1992 cohort 2013 cohort 1992 cohort 2013 cohort 1992 cohort 2013 cohort 1992 cohort 2013 cohort 

Low school 

mean SES 

0.02 0.18*** 0.00 0.00 -0.07* 0.10** -0.04*** -0.00 

(0.04) (0.03) (0.01) (0.01) (0.03) (0.04) (0.01) (0.02) 

Middle school 

mean SES 

-0.02* 0.16*** -0.02*** 0.02** -0.09*** 0.06** -0.04*** 0.03** 

(0.02) (0.01) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01) 

High school 

mean SES 

0.05 0.12*** -0.02* 0.07*** -0.01 0.10** -0.06* 0.02 

(0.03) (0.02) (0.01) (0.01) (0.04) (0.03) (0.01) (0.02) 

Note. aThe reference group is the 2004 cohort. For each cohort, low school SES mean was defined as at least one standard deviation below the 

school mean SES, middle SES as the school mean SES index between ‒1 standard deviation and + 1 standard deviation, and high SES as at 

least one standard deviation above the mean value of the school mean SES. All other covariates, including sex, race/ethnicity, ninth/tenth 

grade mathematics achievement score, school mean mathematics score, coursework offering, school location, and type, were held at their 

mean values. Alongside the control variables, the interaction term between cohort and school mean SES was included in the multilevel 

logistic model. N= 36,800. Multilevel logistic regression model results are presented in Appendix E (Table E2). 

*** p<0.001, ** p<0.01, * p<0.05 
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Figure 3. Predicted Probability of Completing Mid-Level Mathematics, and Science Coursework by School Mean SES Groups Across Three 

Cohorts 

 

 

All other covariates, including individual SES score, sex, race/ethnicity, ninth/tenth grade mathematics achievement score, school mean SES, 

coursework offering, school mean mathematics score, school location, and type, were held at their mean values. Low school SES mean was 

defined as at least one standard deviation below the school mean SES, middle SES as the school mean SES index between ‒1 standard 

deviation and + 1 standard deviation, and high SES as at least one standard deviation above the mean value of the school mean SES. Shaded 

area indicates 95% confidence interval. Full multilevel logistic regression model results are presented in Appendix E (Table E2). 
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Figure 4. Predicted Probability of Completing Highest-Level Mathematics, and Science Coursework by School Mean SES Groups Across 

Three Cohorts 

 

 

All other covariates, including individual SES score, sex, race/ethnicity, ninth/tenth grade mathematics achievement score, school mean SES, 

coursework offering, school mean mathematics score, school location, and type, were held at their mean values. We defined low school SES 

mean as at least one standard deviation below the school mean SES, middle SES as the school mean SES index between the ‒1 standard 

deviation and + 1 standard deviation, and high SES as at least one standard deviation above the mean value of the school mean SES Shaded 

area indicates 95% confidence interval. Logistic regression model results are presented in Appendix E (Table E2). 
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Appendix A. Sensitivity Analysis of Dropout Students 

 

Table A.1. Difference in SES Over Dropout Status for Each Cohort 

  
Dropouta 

Mean (Standard Error) 

Non-dropout 

Mean (Standard Error) 

F P 

1992 cohort -.48 (.05) .08 (.02) 578.56 .000 

2004 cohort -.44 (.02) .06 (.01) 585.64 .000 

2013 cohort -.36 (.04) .02 (.01) 219.90 .000 

Note. aStudents those who have experienced dropout at least one time during high school. All values are adjusted by weighting. 
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Appendix B. Replication of Tables 2 and 3, Using the 1992 Cohort as a Reference Group 

Table B.1. Alternative Adjusted Marginal Effects of the Individual SES from Multilevel Logit Models Estimating Completing Mathematics, 

and Science Coursework  

  

Groupsa 

Mathematics Science 

Mid-level or above Highest-level Mid-level or above Highest-level 

Algebra 2 or above Calculus Chemistry 1 or above 

Physics 2, Chemistry 2, or 

Biology 2 

2004 cohort 2013 cohort 2004 cohort 2013 cohort 2004 cohort 2013 cohort 2004 cohort 2013 cohort 

Low SES 0.06* 0.25*** 0.03** 0.04** 0.17*** 0.24*** 0.04*** 0.04*** 

 
(0.02) (0.02) (0.01) (0.01) (0.03) (0.03) (0.01) (0.01) 

Middle SES -0.00 0.15*** 0.02** 0.04*** 0.07*** 0.14*** 0.04*** 0.07*** 

 
(0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) 

High SES 0.01 0.12*** 0.03** 0.07*** 0.04 0.13*** 0.06*** 0.08*** 

 
(0.03) (0.03) (0.01) (0.01) (0.03) (0.03) (0.01) (0.01) 

Note. aThe reference group is the 1992 cohort. For each cohort, low SES was defined as at least one standard deviation below the SES mean, 

middle SES as the family SES index between ‒1 standard deviation and + 1 standard deviation, and high SES as at least one standard 

deviation above the SES mean. All other covariates, including sex, race/ethnicity, ninth/tenth grade mathematics achievement score, school 

mean SES, school mean mathematics score, coursework offering, school location, and type, were held at their mean values. Alongside the 

control variables, the interaction term between cohort and SES was included in the multilevel logistic model. N= 36,800. 

*** p<.001, ** p<.01, * p<.05 
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Table B.2. Alternative Adjusted Marginal Effects of the School Mean SES from Multilevel Logit Models Estimating Completing 

Mathematics, and Science Coursework 

  

Groupsa 

Mathematics Science 

Mid-level or above Highest-level Mid-level or above Highest-level 

Algebra 2 or above Calculus Chemistry 1 or above 

Physics 2, Chemistry 2, or 

Biology 2 

2004 cohort 2013 cohort 2004 cohort 2013 cohort 2004 cohort 2013 cohort 2004 cohort 2013 cohort 

Low school 

mean SES 

-0.02 0.19*** 0.00 0.00 0.07* 0.17*** 0.06*** 0.05*** 

(0.03) (0.03) (0.01) (0.01) (0.03) (0.03) (0.02) (0.01) 

Middle school 

mean SES 

0.02 0.18*** 0.02*** 0.04*** 0.09*** 0.15*** 0.04*** 0.08*** 

(0.02) (0.01) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01) 

High school 

mean SES 

-0.05 0.06** 0.02* 0.09*** 0.01 0.12** 0.04** 0.06*** 

(0.03) (0.02) (0.01) (0.01) (0.04) (0.04) (0.01) (0.01) 

Note. aThe reference group is the 1992 cohort. For each cohort, low school SES mean was defined as at least one standard deviation below the 

school mean SES, middle SES as the school mean SES index between ‒1 standard deviation and + 1 standard deviation, and high SES as at 

least one standard deviation above the mean value of the school mean SES. All other covariates, including sex, race/ethnicity, ninth/tenth 

grade mathematics achievement score, coursework offering, school mean mathematics score, school location, and type, were held at their 

mean values. Alongside the control variables, the interaction term between cohort and school mean SES was included in the multilevel 

logistic model. N= 36,800. 

*** p<.001, ** p<.01, * p<.05 
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Appendix C. Missing Data Analyses 

Table C.1. Missing Distribution of Variables Used in the Study 

Variables 

1992 

cohort 

(%) 

2004 

cohort 

(%) 

2013 

cohort 

(%) 

Total 

(%) 

SES 14.97 5.69 4.66 7.74 

Sex 4.27 4.35 .02 2.43 

Race/ethnicity 4.91 0 4.4 3.26 

Math achievement at 9th/10th grade 4.27 1.4 8.22 5.17 

Algebra 2 or above 0 0 .04 .02 

Calculus 0 0 .04 .02 

Chemistry 1, or above 0 0 0 0 

Physics 2, Chemistry 2, or Biology2 0 0 0 0 

School mean SES 0 0 0 0 

School mean achievement score 0 0 0 0 

School location 1.50 0 0 .40 

School type 1.51 0 0 .41 

Algebra 2 coursework offer 3.62 4.59 13.98 15.73 

Calculus coursework offer  33.26 4.59 13.98 16.44 

Chemistry 1 coursework offer 29.44 4.73 13.98 15.45 

Chemistry 2, Physics 2, or Biology 2 coursework 

offer 29.63 4.73 13.98 15.50 

N 9,920 10,730 16,150 

36,80

0 
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Table C.2. Descriptive Statistics of Variables used in the Study 

  
Unweighted Weighted Weighted & Imputed 

Mean S.D. Mean S.D. Mean S.D. 

Cohort (Ref =NELS:88)       

 ELS:02 .292 .454 .322 .467 .322 .467 

 HSLS:09 .439 .496 .382 .486 .382 .486 

Highest Coursework 

    
  

 Algebra 2 or above .801 .400 .767 .423 .767 .423 

 Calculus  .164 .370 .132 .339 .132 .339 

 Chemistry or above .710 .454 .679 .467 .679 .467 

 Chemistry 2, Physics 2, or Biology 2 .140 .347 .114 .318 .114 .318 

SES (Ref =Low) 

    
  

 Middle SES level .710 .454 .713 .453 .711 .453 

 High SES level .136 .343 .123 .328 .124 .329 

Female (Ref =male) .511 .500 .514 .500 .513 .500 

Race/ethnicity (Ref =White) 

    
  

 Black .098 .297 .120 .325 .119 .324 

 Hispanic .138 .345 .156 .363 .157 .364 

 Asian .092 .290 .041 .197 .043 .202 

 Native .059 .235 .051 .219 .050 .219 

Prior math achievement score (Ref=The lowest 25%) 
  

  

 25 to <50% .251 .434 .255 .436 .252 .434 

 50 to <75% .250 .433 .238 .426 .238 .426 

 75 to 100 (The highest 25%) .252 .434 .235 .424 .233 .423 

School mean SES (Ref =low school mean SES) 

    
  

 Middle school mean SES .709 .454 .743 .437 .743 .437 

 High school mean SES .155 .362 .112 .315 .112 .315 

School Type (Ref =public) 

    
  

 Catholic .118 .323 .051 .220 .051 .219 

 Other private .078 .267 .038 .192 .038 .192 

School location (Ref=urban) 

    
  

 Suburban .412 .492 .418 .493 .418 .493 

 Rural .240 .427 .246 .430 .246 .431 

Course offering 

    
  

 Algebra 2 .994 .074 .994 .078 .995 .076 

 Calculus .915 .280 .915 .279 .911 .278 

 Chemistry 1 .994 .080 .993 .082 .994 .074 

 Chemistry 2, Physics 2, or Biology 2 .848 .359 .857 .351 .882 .323 

Note. S.D. = standard deviation
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Appendix D. Changes in biology 2 course-taking patterns across three cohorts 

Table D1. Adjusted Marginal Effects of Individual- and School-Level SSES from the Multilevel Logit Models Estimating Completing 

Biology 2 Coursework 

  

Panel A: Individual SES 

Low SES Middle SES High SES 

1992 cohorta -.01 (.01) .01 (.01) .02 (.02) 

2013 cohorta -.04** (.02) -.01 (.01) -.02 (.01) 

 Panel B: School Mean SES 

 Low school mean SESa Middle school mean SESa High school mean SESa 

1992 cohorta 0.03 (0.03) 0.00 (0.01) 0.02 (0.02) 

2013 cohorta -0.02 (0.02) -0.02 (0.01) -0.02 (0.02) 

 

Note. aThe reference group is the 2004 cohort. For each cohort, low SES, and low school SES were refined as at least one standard 

deviation below the mean value, middle as the of their values between ‒1 standard deviation and + 1 standard deviation, and high as at 

least one standard deviation above the mean value. All other covariates, including sex, race/ethnicity, ninth/tenth grade mathematics 

achievement score, school mean mathematics score, school location, and type, were held at their mean values. Alongside the control 

variables, the interaction term between cohort and SES was included in the estimation of Panel A model, and the interaction between 

cohort and school mean SES was included in the estimation of Panel B in the multilevel logistic models. N= 36,800. 

*** p<.001, ** p<.01, * p<.05 
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Figure D.1. Predicted probability of completing Biology 2 by SES group across three cohort 

 

Note. All other covariates, including individual SES, sex, race/ethnicity, ninth/tenth grade mathematics achievement score, school 

mean SES, school mean mathematics score, coursework offering, school location, and type, were held at their mean values. Low SES 

was defined as at least one standard deviation below the SES mean, middle SES as the family SES index between ‒1 standard 

deviation and + 1 standard deviation, and high SES as at least one standard deviation above the SES mean. Shaded area indicates 95% 

confidence interval. 
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Appendix E. Comparison of multilevel logit models by application of weights and use of imputed datasets 

Table E.1. Full results of interaction effect between individual SES and cohort on the likelihood of completing advanced mathematics 

and science coursework  
 

Algebra2 or above Calculus Chemistry 1, or above Physics 2, Chemistry 2, or Biology 2 

Variables (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) 

Individual Socio-

economic Status 

(SES) 

(Ref.: Low SES) 

                

Middle SES 1.06*** 1.14*** 0.97*** 0.35*** 1.02*** 1.26*** 0.43† 0.16 1.07*** 1.20*** 0.84*** 0.32*** 1.11*** 0.98*** 0.46* 0.23  
(0.07) (0.10) (0.12) (0.09) (0.13) (0.17) (0.22) (0.16) (0.07) (0.10) (0.11) (0.09) (0.17) (0.19) (0.20) (0.15) 

High SES 2.25*** 2.02*** 1.53*** 0.83*** 2.03*** 2.29*** 0.90*** 0.77*** 2.22*** 2.27*** 1.55*** 0.90*** 2.17*** 2.06*** 1.14*** 0.86***  
(0.12) (0.20) (0.20) (0.16) (0.15) (0.19) (0.24) (0.18) (0.11) (0.16) (0.19) (0.15) (0.18) (0.21) (0.22) (0.17) 

Cohort 

(Ref.: 1992 Cohort) 

 
  

             
2004 Cohort 0.46*** 0.44*** 0.49** -0.36* 0.47** 0.72*** 0.56* -0.70** 0.78*** 0.87*** 0.89*** -0.91*** 1.11*** 0.97*** 1.09*** -1.11***  

(0.10) (0.12) (0.15) (0.14) (0.17) (0.21) (0.28) (0.24) (0.10) (0.13) (0.15) (0.15) (0.20) (0.23) (0.25) (0.26) 

2013 Cohort 1.72*** 1.80*** 2.09*** 1.55*** 0.74*** 1.05*** 0.84* 0.17 1.32*** 1.37*** 1.38*** 0.43** 1.21*** 1.12*** 1.08*** 0.01  
(0.10) (0.14) (0.19) (0.16) (0.16) (0.22) (0.33) (0.24) (0.10) (0.14) (0.16) (0.15) (0.19) (0.24) (0.28) (0.23) 

Gender (Ref.: Male) 
  

0.49*** 0.44*** 
  

-0.02 -0.02   0.36*** 0.35***   0.18** 0.17**    
(0.06) (0.05) 

  
(0.05) (0.05)   (0.05) (0.04)   (0.06) (0.06) 

Race/ethnicity 

(Ref.: White) 

  
 

 

  

      

   

 
Black   0.28* 0.16†   -0.38** -0.30*   0.12 0.08   0.01 -0.06  

  (0.11) (0.09)   (0.14) (0.12)   (0.08) (0.07)   (0.17) (0.16) 

Latinx   -0.12 -0.12   -0.09 -0.13   -0.05 -0.05   -0.19 -0.22††  
  (0.12) (0.09)   (0.11) (0.10)   (0.08) (0.08)   (0.13) (0.13) 

Asian   0.85*** 0.85***   1.28*** 1.35***   0.80*** 0.85***   1.20*** 1.21***  
  (0.13) (0.12)   (0.11) (0.10)   (0.12) (0.11)   (0.10) (0.10) 

Native   0.03 0.01   -0.04 -0.06   -0.06 -0.07   0.00 0.01  
  (0.11) (0.10)   (0.13) (0.12)   (0.10) (0.10)   (0.13) (0.12) 

Prior math 

achievement scorea 

(Ref.: The lowest 

25%) 

 

 

 
 

 

  

  

  

  

 
 

25 to <50% 
  

1.27*** 1.23*** 
  

1.19*** 1.17*** 
  

1.01*** 0.98*** 
  

0.67*** 0.96***    
(0.08) (0.07) 

  
(0.16) (0.16) 

  
(0.06) (0.06) 

  
(0.15) (0.14) 

50 to <75% 
  

2.41*** 2.34*** 
  

2.51*** 2.38*** 
  

2.01*** 1.97*** 
  

1.79*** 1.92***    
(0.08) (0.08) 

  
(0.16) (0.15) 

  
(0.06) (0.06) 

  
(0.16) (0.12) 

75 to 100 (The 

highest 25%) 

  
3.59*** 

3.37*** 

  

4.26*** 4.08*** 

  

3.05*** 2.97*** 

  

2.97*** 3.12***    
(0.11) (0.11) 

  
(0.16) (0.15) 

  
(0.09) (0.08) 

  
(0.17) (0.12) 

School location 

(Ref.: Urban) 

 

 

  

 

  

  

   

 

   

 
Suburban 

  
-0.11 0.09 

  
0.12 0.13 

  
-0.08 -0.07 

  
-0.23* -0.25*    

(0.10) (0.10) 
  

(0.09) (0.09) 
  

(0.10) (0.10) 
  

(0.11) (0.11) 

Rural 
  

0.03 0.09 
  

0.03 -0.00 
  

-0.19 -0.21 
  

-0.52*** -0.53***    
(0.13) (0.12) 

  
(0.11) (0.11) 

  
(0.13) (0.13) 

  
(0.12) (0.12) 

School mean SES 

(Ref.: Low school 

mean SES) 

   

 

  

  

   

 

  

-  
Middle school 

mean SES 

   

-0.12 -0.05 

  

0.15 0.09 

  

-0.06 -0.04 

  

0.03 0.07  
  (0.12) (0.10)   (0.15) (0.12)   (0.10) (0.10)   (0.13) (0.12) 

High school mean 

SES 

   

0.90*** 1.01*** 

  

0.36* 0.36* 

  

0.49** 0.50** 

  

0.15 0.24  
  (0.19) (0.18)   (0.18) (0.16)   (0.17) (0.16)   (0.19) (0.18) 

School mean math 

achievement score 

  
 

-0.03*** -0.03*** 

  

-0.02* -0.02** 

  

-0.03*** -0.03*** 

  

-0.01 -0.01    
(0.01) (0.01) 

  
(0.01) (0.01) 

  
(0.01) (0.01) 

  
(0.01) (0.01) 

School Type  
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(Ref.: Public)  

Catholic 
  

1.47*** 1.48*** 
  

0.43*** 0.38** 
  

0.84*** 0.90*** 
  

0.01 -0.01    
(0.22) (0.23) 

  
(0.12) (0.12) 

  
(0.14) (0.14) 

  
(0.17) (0.17) 

Other private 
  

0.52* 0.60** 
  

0.49** 0.42* 
  

0.78*** 0.72*** 
  

-0.33 -0.37    
(0.21) (0.18) 

  
(0.18) (0.16) 

  
(0.19) (0.18) 

  
(0.31) (0.29) 

Coursework offeringb 
  

0.89 0.65 
  

1.22*** 0.95*** 
  

-0.36 -0.11 
  

1.13*** 1.14***    
(0.67) (0.72) 

  
(0.19) (0.21) 

  
(0.78) (0.71) 

  
(0.26) (0.26) 

Interaction termsc 
      

  
        

Individual SES x 

Cohort 

(Ref.: Low SES, 1992 

Cohort) 

 

 

      

 

 
    

Middle SES x 2004 

Cohort -0.36*** -0.42*** -0.60*** 0.37** -0.34* -0.51* -0.26 0.36 -0.38*** -0.54*** -0.54*** 0.52*** -0.50* -0.28 -0.22 0.19  
(0.09) (0.13) (0.15) (0.14) (0.17) (0.22) (0.28) (0.25) (0.09) (0.13) (0.14) (0.14) (0.20) (0.23) (0.24) (0.26) 

Middle SES x 2013 

Cohort -0.39*** -0.58*** -0.79*** -0.10 -0.14 -0.44* -0.16 0.24 -0.42*** -0.63*** -0.56*** 0.03 -0.22 -0.07 0.23 0.40†  
(0.10) (0.15) (0.19) (0.15) (0.16) (0.22) (0.33) (0.24) (0.09) (0.14) (0.16) (0.13) (0.19) (0.24) (0.28) (0.22) 

High SES x 2004 

Cohort -0.58*** -0.27 -0.65* 0.30 -0.32† -0.40 -0.08 0.26 -0.60*** -0.57** -0.65** 0.66** -0.64** -0.32 -0.27 0.29  
(0.16) (0.25) (0.26) (0.28) (0.19) (0.24) (0.31) (0.28) (0.15) (0.21) (0.23) (0.23) (0.22) (0.26) (0.27) (0.29) 

High SES x 2013 

Cohort -0.51* -0.27 -0.44 -0.13 -0.13 -0.39 0.08 0.22 -0.26 -0.27 -0.10 0.40 -0.49* -0.28 0.04 0.18  
(0.22) (0.31) (0.35) (0.32) (0.18) (0.25) (0.35) (0.27) (0.18) (0.26) (0.27) (0.24) (0.22) (0.27) (0.31) (0.25) 

Intercept 0.18** 0.11 -0.56 1.61*** -3.35*** -3.84*** -6.34*** 1.21*** -0.40*** -0.52*** 0.30 1.66*** -4.08*** -4.20*** -6.11*** 1.61*** 

 (0.07) (0.09) (0.79) (0.11) (0.13) (0.16) (0.50) (0.10) (0.07) (0.09) (0.85) (0.09) (0.17) (0.19) (0.50) (0.12) 

School-level intercept 

variance 1.10*** 1.34*** 1.62*** 0.08 0.86*** 0.99*** 1.10*** -5.37*** 1.22*** 1.39*** 1.74*** 0.80 1.32*** 1.41*** 1.64*** -5.09***  
(0.06) (0.09) (0.12) (0.79) (0.05) (0.08) (0.10) (0.38) (0.06) (0.08) (0.10) (0.78) (0.08) (0.10) (0.12) (0.43) 

                 

 

Note.  

The clustered robust standard errors which account for the clustering at the school level are reported in parentheses. The models—(1) without 

weight (N=33,950), (2) with weight(N=33,950), (3) with weight and control variables(N=27,870), and (4) with weight, control variables, and 

imputed data (N=36,800)—are methodically delineated to showcase the variance in results contingent upon these adjustments.  

*** p<.001, ** p<.01, * p<.05, †p<.10 
aIt indicates prior achievement score variable (ninth (HSLS:2009) or tenth grade (NELS:88 and ELS:2002) standardized math test scores) as a 

proxy of students’ achievement level at the beginning of high school. As HSLS:09 utilized different content and scaling of mathematics tests, and 

the timing to test was not the same as NELS:88 and ELS:2002, the achievement score from HSLS:09 is not comparable to the other two cohort 

data. In ELS:2002, test specifications were adapted from frameworks utilized in the NELS:88. Mathematics assessments encompassed items 

spanning arithmetic, geometry, data/probability, and advanced topics. Compared to the NELS:88 assessments, the ELS:2002 math tests placed a 

heightened emphasis on practical applications and problem-solving (Ingels et al., 2004). In the HSLS, a framework was developed to gauge 

student achievement in algebra, track changes in this achievement over time, and explore its correlation with various individual, home, and school 

factors. This framework aligns a set of items with algebraic reasoning (Duprey et al., 2018). To ensure consistency and control for relative cohort 

positions within the model, we standardized starting mathematics achievement scores for each cohort to a mean of 0 and a standard deviation of 1. This approach allows for 

meaningful comparisons across cohorts by focusing on relative changes rather than absolute score levels.  

bIt indicates whether courses such as ‘Algebra 2’, ‘Calculus’, "Chemistry 1’, or ‘Physics 2, Chemistry 2, or Biology 2’, respectively, were offered 

in schools, based on each model’s estimation of coursework completion, with course offerings matched to each outcome in the estimation. 



74 
 

cTo provide a clearer interpretation of the interactions between individual SES and cohort, we used a post-estimation approach to compute adjusted 

marginal effect estimates. This enabled us to demonstrate changes in the probability of completing mathematics and science coursework across 

different cohorts and SES subgroups, with covariates fixed at their mean values. The results are shown in Table 3.  
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Table E.2. Full results of interaction effect between school mean SES and cohort on the likelihood of completing advanced 

mathematics and science coursework 
 

Algebra2 or above Calculus Chemistry 1, or above Physics 2, Chemistry 2, or Biology 2 

Variables (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) 

School mean SES 

(Ref.: Low school 

mean SES) 

                

Middle school 

mean SES 0.56*** 0.61*** -0.08 0.00 0.56*** 0.71*** -0.43 -0.33 0.55*** 0.59*** -0.06 -0.02 0.68*** 0.80*** -0.10 -0.05  
(0.11) (0.13) (0.20) (0.16) (0.15) (0.18) (0.27) (0.21) (0.12) (0.12) (0.15) (0.14) (0.20) (0.24) (0.29) (0.26) 

High school mean 

SES 2.65*** 2.69*** 1.43*** 1.45*** 1.93*** 1.87*** -0.31 -0.19 2.23*** 2.14*** 0.67** 0.70** 1.83*** 1.96*** 0.26 0.32  
(0.18) (0.23) (0.33) (0.28) (0.18) (0.21) (0.31) (0.25) (0.16) (0.19) (0.24) (0.22) (0.22) (0.27) (0.35) (0.32) 

Cohort 

(Ref.: 1992 Cohort) 

                

2004 Cohort 0.23 0.18 -0.03 0.10 0.19 0.25 -0.12 0.07 0.50*** 0.48** 0.35† 0.40* 0.95*** 1.08*** 1.04** 1.07***  
(0.14) (0.19) (0.27) (0.23) (0.19) (0.23) (0.32) (0.26) (0.15) (0.16) (0.20) (0.19) (0.23) (0.28) (0.32) (0.30) 

2013 Cohort 1.64*** 1.75*** 1.69*** 1.72*** 0.30 0.45†† -0.12 0.08 1.24*** 1.26*** 1.04*** 1.06*** 0.92*** 1.11*** 0.95** 0.95**  
(0.15) (0.19) (0.26) (0.23) (0.18) (0.24) (0.35) (0.28) (0.14) (0.17) (0.23) (0.21) (0.22) (0.27) (0.32) (0.29) 

Female (Ref.: Male)   0.49*** 0.44***   -0.02 -0.01   0.36*** 0.35***   0.18** 0.17**  
  (0.06) (0.05)   (0.05) (0.05)   (0.05) (0.04)   (0.06) (0.06) 

Race/ethnicity 

(Ref.: White) 

                

Black   0.27* 0.16††   -0.38** -0.30*   0.12 0.08   0.02 -0.06  
  (0.11) (0.09)   (0.14) (0.12)   (0.08) (0.07)   (0.17) (0.16) 

Latinx   -0.11 -0.12   -0.08 -0.13   -0.04 -0.04   -0.19 -0.22††  
  (0.12) (0.09)   (0.11) (0.10)   (0.08) (0.08)   (0.13) (0.13) 

Asian   0.86*** 0.86***   1.28*** 1.36***   0.81*** 0.87***   1.20*** 1.21***  
  (0.14) (0.13)   (0.11) (0.10)   (0.13) (0.11)   (0.10) (0.10) 

Native   0.03 0.01   -0.04 -0.06   -0.06 -0.07   0.01 0.01  
  (0.11) (0.10)   (0.13) (0.12)   (0.10) (0.09)   (0.13) (0.12) 

Prior math 

achievement scorea 

(Ref.: The lowest 

25%) 

              

25 to <50%   1.26*** 1.23***   1.19*** 1.17***   1.01*** 0.97***   0.67*** 0.96***  
  (0.08) (0.07)   (0.16) (0.16)   (0.06) (0.06)   (0.15) (0.14) 

50 to <75%   2.40*** 2.34***   2.51*** 2.38***   2.01*** 1.97***   1.79*** 1.92***  
  (0.08) (0.08)   (0.16) (0.15)   (0.06) (0.06)   (0.16) (0.11) 

75 to 100 (The 

highest 25%)   3.58*** 3.37***   4.26*** 4.08***   3.05*** 2.97***   2.98*** 3.12***  
  (0.11) (0.11)   (0.16) (0.15)   (0.09) (0.08)   (0.17) (0.12) 

School location 

(Ref.: Urban)                 

Suburban   -0.11 0.09   0.12 0.13   -0.08 -0.07   -0.22* -0.25*  
  (0.10) (0.10)   (0.09) (0.08)   (0.10) (0.10)   (0.11) (0.11) 

Rural   0.01 0.08   0.01 -0.02   -0.20 -0.22††   -0.50*** -0.51***  
  (0.13) (0.12)   (0.11) (0.11)   (0.13) (0.13)   (0.12) (0.12) 

Individual SES 

(Ref.: Low SES) 

                

Middle SES   0.46*** 0.43***   0.27* 0.34**   0.45*** 0.47***   0.46*** 0.46***  
  (0.07) (0.06)   (0.13) (0.11)   (0.06) (0.06)   (0.11) (0.10) 

High SES   1.06*** 0.89***   0.89*** 0.92***   1.20*** 1.18***   1.06*** 1.03***  
  (0.12) (0.12)   (0.14) (0.12)   (0.11) (0.10)   (0.12) (0.11) 

School mean math 

achievement score   -0.03*** -0.03***   -0.02* -0.02**   -0.03*** -0.03***   -0.01 -0.01  
  (0.01) (0.01)   (0.01) (0.01)   (0.01) (0.01)   (0.01) (0.01) 

School type 

(Ref.: Public)                 

Catholic   1.49*** 1.50***   0.38** 0.34**   0.85*** 0.90***   0.04 0.01  
  (0.22) (0.23)   (0.12) (0.12)   (0.14) (0.14)   (0.18) (0.17) 

Other private   0.53* 0.60**   0.47** 0.41*   0.79*** 0.72***   -0.33 -0.37  
  (0.21) (0.18)   (0.17) (0.16)   (0.19) (0.17)   (0.31) (0.29) 

Coursework offeringb   0.88 0.64   1.22*** 0.96***   -0.35 -0.12   1.15*** 1.15*** 
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  (0.65) (0.71)   (0.19) (0.21)   (0.79) (0.72)   (0.25) (0.25) 

Interaction termsc 

(Ref.: Low school 

mean SES, 1992 

Cohort) 

                

                

Middle school 

mean SES x 2004 

Cohort 0.04 0.03 0.15 0.05 0.13 0.10 0.55†† 0.38 0.08 0.04 0.18 0.16 -0.22 -0.31 -0.15 -0.15  
(0.16) (0.21) (0.29) (0.25) (0.21) (0.25) (0.33) (0.28) (0.16) (0.19) (0.23) (0.22) (0.25) (0.30) (0.35) (0.32) 

Middle school 

mean SES x 2013 

Cohort -0.21 -0.43* -0.20 -0.16 0.38†† 0.17 0.87* 0.71* -0.23 -0.45* -0.09 -0.12 0.14 -0.04 0.43 0.40  
(0.16) (0.21) (0.28) (0.25) (0.20) (0.25) (0.36) (0.29) (0.16) (0.20) (0.25) (0.23) (0.24) (0.29) (0.34) (0.32) 

High school mean 

SES x 2004 Cohort -0.59* -0.67* -0.59 -0.67†† -0.35 -0.13 0.45 0.33 -0.53* -0.51†† -0.26 -0.32 -0.64* -0.63† -0.35 -0.31  
(0.25) (0.33) (0.43) (0.38) (0.24) (0.29) (0.37) (0.32) (0.23) (0.28) (0.32) (0.30) (0.29) (0.34) (0.40) (0.37) 

High school mean 

SES x 2013 Cohort -0.78** -0.81* -0.91* -0.63 0.18 0.30 1.31** 1.16*** -0.72** -0.63* -0.15 -0.17 -0.42 -0.53 -0.03 0.02  
(0.27) (0.34) (0.45) (0.40) (0.23) (0.29) (0.40) (0.33) (0.23) (0.30) (0.37) (0.35) (0.28) (0.35) (0.39) (0.37) 

Intercept 0.37*** 0.34** -0.22 -0.10 -3.01*** -3.34*** -5.68*** -5.53*** -0.15 -0.15 0.60 0.18 -3.71*** -4.03*** -6.04*** -6.13*** 

 (0.10) (0.12) (0.79) (0.80) (0.14) (0.17) (0.50) (0.40) (0.10) (0.10) (0.86) (0.79) (0.19) (0.23) (0.53) (0.51) 

School-level intercept 

variance 0.94*** 1.19*** 1.61*** -0.63 0.75*** 0.92*** 1.10*** 1.16*** 1.04*** 1.26*** 1.75*** -0.17 1.24*** 1.34*** 1.63*** 0.02  
(0.05) (0.07) (0.12) (0.40) (0.05) (0.07) (0.10) (0.33) (0.05) (0.07) (0.10) (0.35) (0.07) (0.09) (0.12) (0.37) 

                 

 

Note.  

The clustered robust standard errors which account for the clustering at the school level are reported in parentheses. The models—(1) without 

weight (N=33,950), (2) with weight(N=33,950), (3) with weight and control variables(N=27,870), and (4) with weight, control variables, and 

imputed data (N=36,800)—are methodically delineated to showcase the variance in results contingent upon these adjustments.  

*** p<.001, ** p<.01, * p<.05, †p<.10 
aIt indicates prior achievement score variable (ninth (HSLS:2009) or tenth grade (NELS:88 and ELS:2002) standardized math test scores) as a 

proxy of students’ achievement level at the beginning of high school. As HSLS:09 utilized different content and scaling of mathematics tests, and 

the timing to test was not the same as NELS:88 and ELS:2002, the achievement score from HSLS:09 is not comparable to the other two cohort 

data. In ELS:2002, test specifications were adapted from frameworks utilized in the NELS:88. Mathematics assessments encompassed items 

spanning arithmetic, geometry, data/probability, and advanced topics. Compared to the NELS:88 assessments, the ELS:2002 math tests placed a 

heightened emphasis on practical applications and problem-solving (Ingels et al., 2004). In the HSLS, a framework was developed to gauge 

student achievement in algebra, track changes in this achievement over time, and explore its correlation with various individual, home, and school 

factors. This framework aligns a set of items with algebraic reasoning (Duprey et al., 2018). To ensure consistency and control for relative cohort 

positions within the model, we standardized starting mathematics achievement scores for each cohort to a mean of 0 and a standard deviation of 1. This approach allows for 

meaningful comparisons across cohorts by focusing on relative changes rather than absolute score levels.  
bIt indicates whether courses such as ‘Algebra 2’, ‘Calculus’, "Chemistry 1’, or ‘Physics 2, Chemistry 2, or Biology 2’, respectively, were offered 

in schools, based on each model’s estimation of coursework completion, with course offerings matched to each outcome in the estimation. 
c To provide a clearer interpretation of the interaction between school mean SES and cohort, we used a post-estimation approach to compute 

adjusted marginal effect estimates. This enabled us to demonstrate changes in the probability of completing mathematics and science coursework 

across different cohorts and school mean SES subgroups, with covariates fixed at their mean values. The results are shown in Tables 4. 


