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Abstract

High school science and math courses play a vital role in STEM opportunities and long-term
labor market outcomes. Research on STEM inequality often focuses on gender and racial
disparities, with less attention paid to socioeconomic inequalities in course-taking. Analyzing
nationally representative data from 1992, 2004, and 2013 graduates, we find similar patterns of
socioeconomic inequality in both science and mathematics subjects. Disparities persist in high-
level courses, such as calculus, physics 2, chemistry 2, or biology 2, while gaps in mid-level
courses, such as chemistry 1 and algebra 2, have lessened over time. Although both low- and
high-SES students in the early 2010s take more advanced courses compared to their counterparts
in the 1990s and early 2000s, high-SES students are more likely to do so. Moreover, even with
efforts to increase and broaden access, disparities between socioeconomically advantaged and
disadvantaged schools in advanced STEM course-taking have grown. Socioeconomic disparities
in high school STEM courses continue to impact STEM opportunities for US students.
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Reducing socioeconomic disparities in STEM opportunities? Trends in access
to advanced science and math courses in American high schools, 1992-2013

INTRODUCTION

Educational attainment in STEM is one lever that can increase economic advantages and
career opportunities for disadvantaged students (Arcidiacono, 2004). To be prepared for
particular kinds of STEM majors in postsecondary education, it is critical for students to
successfully reach a certain level of high school science and math courses, such as calculus or
advanced physics (Adelman, 2006; Bottia et al., 2015; Bromberg & Theokas, 2016; Kaliski &
Godfrey, 2014), although recent research challenges this, revealing that there is no consistent set
of core-subject courses to STEM and that high grades across all subjects may hold more
significance (Bowers et al., 2022).

Over the past three decades, educational policies in the United States have attempted to
improve student achievement and reduce inequality through standards-based education reform
and test-driven accountability policy (Domina et al., 2016; Domina & Saldana, 2012; National
Science Board., 2012; Zhang, 2009). Recently, there has been a shift towards employing
alternative approaches. California, for instance, approved the 2023 Mathematics Framework for
California Public Schools, aiming at equity and excellence in math learning. It allows schools to
choose between traditional or integrated pathways. Traditional follows the sequence of courses
typically offered by many high schools (algebra 1- geometry-algebra 2-advanced courses
(precalculus, statistics and probability, calculus, and AP probability and statistics)), while
integrated blends standards from multiple domains, like algebra, geometry, and intermediate
algebra in integrated math I (California Department of Education., 2013).

With the growing significance of science and math courses on educational attainment,

numerous studies on STEM education have examined inequalities in high school math
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achievement and patterns of course-taking (e.g., Crosnoe & Schneider, 2010; Domina &
Saldana, 2012; Riegle-Crumb, 2006; Riegle-Crumb & Grodsky, 2010; Rodriguez, 2018) and
science achievement and patterns of course-taking (e.g., Posselt et al., 2012; Riegle-Crumb &
Moore, 2014; Tyson et al., 2007). While many studies have investigated gender and racial/ethnic
inequalities in science and math course-taking patterns (Bottia et al., 2021; Riegle-Crumb &
Grodsky, 2010; Riegle-Crumb & Moore, 2014; Rodriguez & McGuire, 2019), surprisingly few
studies, to date, have examined socioeconomic inequalities in science course-taking patterns
(Bottia et al., 2022). High SES students make up a disproportionate percentage of those
obtaining STEM degrees and pursuing STEM careers (Chen, 2009; Chen & Soldner, 2014).
Completing advanced science and math courses remains one of the strongest predictors of
students’ pursuit of postsecondary STEM degrees (Adelman, 2006; Bottia et al., 2015; Tyson et
al., 2007). Generally, low SES students are less likely to experience consistent upward moves in
course-taking throughout their high school years (Eisenhart & Weis, 2022; Han et al., 2024; Han
et al., 2023 ))(Han-et-al 2023 Eisenhart- & Weis; 2022). As a consequence, their chances of
enrolling in advanced courses are diminished (Domina & Saldana, 2012; Tyson et al., 2007).
Here we examine socioeconomic inequality in high school science and math course-
taking. Specifically, we extend the research on inequality in high school course-taking by
examining whether, and the extent to which, SES-based inequalities in science course-taking
have changed over time. In addition, we extend prior research on mathematics course-taking
patterns by examining a recent nationally representative high school cohort dataset and
comparing science course-taking with mathematics course-taking. Particularly, we focused on
inequalities in top science and mathematics course-taking patterns (i.e., calculus, biology 2,

chemistry 2, or physics 2). We use three nationally representative high school cohort datasets,



the National Educational Longitudinal Study of 1988 (NELS:88), the Educational Longitudinal
Study of 2002 (ELS:2002), and the High School Longitudinal Study of 2009 (HSLS:09). While
inequalities in course-taking patterns are stratified by race and gender as well as social class, here
we focus specifically on changes in targeted SES-based inequalities in science and math course-
taking patterns. Prior research has shown that SES-based inequalities in education have widened
over the past two decades and continue to do so (Bowen et al., 2009; Gamoran, 2015; Reardon,
2011; Thomas & Bell, 2008).

Our contribution is twofold. First, our study addresses the above noted void in the
literature by examining trends in SES-based inequalities in science course-taking patterns. Many
studies have investigated disparities in science course-taking patterns by gender, race/ethnicity
and sexual minority status, using mainly one cohort dataset (Bottia et al., 2021; Gottfried et al.,
2015; Riegle-Crumb & Moore, 2014), but there is a dearth of research, to date, on changes in
SES-based inequalities in science course-taking patterns over time specifically.

Second, our study empirically tests whether or not there is heterogeneity in SES-based
inequality patterns across science and mathematics. One may assume that mathematics and
science are neighboring disciplines and have similar course-taking patterns; students follow
hierarehal-hierarchical sequences from less to more difficult courses in both instances. Unlike
mathematics, however, high school science coursework consists of a number of sub-disciplines
(e.g., biology, chemistry, and physics). In this sense, completion of any given science course
does not necessarily indicate readiness for another. For example, completion of chemistry 1
indicates that a student is ready for chemistry 2 in high school, but completion of chemistry 1
does not necessarily indicate readiness for physics 1. In science, one sub-discipline is not

necessarily more difficult than another sub-discipline (Montgomery et al., 2010), although



students’ perceived difficulty varies across science sub-disciplines (Williams et al., 2003). Nor is
learning from one sub-discipline necessarily a prerequisite for learning in another sub-discipline.
Thus, individual schools or school systems may organize their science pathways differently
(Montgomery et al., 2010). For example, a student can take either chemistry 1—physics 1
sequence, or alternatively, physics 1—chemistry 1 sequence.

Interdependence between math and science also varies, with advanced physics and
chemistry requiring math completion (e.g., in AP physics 1, completion of geometry or
concurrent enrollment into algebra 2 or an equivalent course), unlike other sciences such as AP
biology (The College Board, n.d.). This leads to differing levels of math involvement and
prerequisites among science disciplines, leading to variation in inequality across science
subdisciplines. In this study, we examine empirically if, and the extent to which, inequalities in

course-taking patterns vary across science and mathematics, and if so, for whom they vary.

1. LITERATURE REVIEW

While the importance of postsecondary credentials has been increasingly foregrounded
for employment outcomes in the context of today’s technology and knowledge-based economy
(e.g., Hout, 2012), studies illuminate how families and students from advantaged backgrounds
support their children’s transition from K-12 to higher education through various mechanisms,
perpetuating educational inequality in the United States (Andrew, 2017; Roksa et al., 2007). We
explored four significant bodies of literature that informed our examination of trends in
socioeconomic inequality in course-taking patterns: (a) the connection between family
socioeconomic status (SES) and course-taking; (b) the influence of school SES (mainly defined

by average student SES or average parental educational attainment levels in each school) on



course-taking; (c¢) theories elucidating the persistent socioeconomic inequality in educational
outcomes; and (d) the analysis of national trends in high school course-taking through utilization
of large-scale national educational datasets.

2.1. Socioeconomic inequality in science and math course-taking

In the United States, while a larger number of students now pursue higher education,
admissions, particularly at the most selective colleges and universities, have grown fiercely
competitive (Roksa et al., 2007). This intensifying competition has heightened anxiety and fear
among privileged students and families, who strive to secure admission to prestigious institutions
in pursuit of enhanced long-term economic and social opportunities (Hout, 2012). Scholars
closely examine the influence of high schools and the strategies employed by parents and
students to position themselves for future advantages through attendance at particularly located
postsecondary institutions (e.g., Weis et al., 2014; Crosnoe & Muller, 2014). Such meticulous
management of academic preparation in high schools is crucial for understanding the persistent
inequalities evident in course-taking patterns in the United States.

Research suggests that completion of advanced science and math courses can affect
students’ future educational attainments, facilitating their access to and graduation from
particular located postsecondary destinations (Adelman, 2006). Furthermore, exposure to a-more
advanced math courses in high school has long-term labor market implications, particularly
regarding overall employment and employment in STEM fields (Black et al., 2021). To be
prepared for specific STEM majors in postsecondary education, successfully completing
advanced math and science courses in high school—for example, calculus and advanced science
courses (chemistry 2, physics 2, various advanced science topics), and Advancedment Placement

(AP) and International Baccalaureate (IB) courses— is often crucial (Adelman, 2006; Hinojosa



et al., 2016; Maltese & Tai, 2011; Tyson et al., 2007). However, recent research challenges this
notion, indicating that there isn’t a consistent set of core-subject courses to STEM, and high
grades across all subjects may hold greater significance (Bowers et al., 2022).

A substantial body of important research has examined effects of student socioeconomic
background and that of the school they attend as contextual variables in creating significant and
persistent inequalities in educational outcomes (Crosnoe & Muller, 2014; Harris, 2010; Palardy,
2013). Previous studies documented that socioeconomically disadvantaged students are more
likely to start high school in lower-level math courses compared to their more privileged peers
and less likely to reach high-level math courses at the end of high school, even after taking into
account their prior math and science learning experiences (Crosnoe & Schneider, 2010; Kelly,
2009; Riegle-Crumb, 2006). Prior research also indicates that inequalities in advanced science
and mathematics course-taking affect students’ postsecondary enrollment patterns as well as
STEM pathways—from high school to college to career (Bottia et al., 2015; Posselt et al., 2012;
Riegle-Crumb & King, 2010; Rodriguez, 2018; Sadler et al., 2014; Tyson et al., 2007).

Family SES directly and indirectly influences students’ high school course-taking in
science and mathematics. For example, socioeconomically privileged parents understand both
what colleges are looking for and college admission processes. They activate their own cultural,
social, and economic capitals to create distinction wherever and whenever possible in the
postsecondary admissions process, with the distinct goal of attaining entrance to particularly
located high status postsecondary destinations (e.g., Weis et al., 2014; Crosnoe & Muller, 2014).
To maintain their competitive edge in an increasingly competitive college admissions process
and beyond, students from socioeconomically advantaged groups increasingly seek distinction,

and are encouraged to seek distinction by their parents and the schools they attend, by taking the



most challenging courses available (Nikischer, 2013; Weis et al., 2014). Additionally,
socioeconomically advantaged students and parents often enroll in multiple math and science
courses concurrently by recognizing the value placed on advanced math courses regardless of
their eventual choice of STEM major or not. When completion in algebra 2 is near saturation, for
instance, students from advantaged groups might complete the highest level of science courses as
well as the highest level of math (i.e., calculus) (Domina & Saldana, 2012). Socioeconomically
privileged parents also monitor grades of their children over their secondary school career,
standing ready and willing to pay for private tutoring if students show any hint of failing, or
simply falling behind in one or more courses (Weis et al., 2014).
2.2. School-level socioeconomic composition and educational inequality

Several studies have shown that various school-level factors contribute to stratification in
students’ math and science course-taking patterns (e.g., Kelly, 2009; Riegle-Crumb & Grodsky,
2010; Vaval et al., 2019). Attention has been given to the socioeconomic composition of schools
as one of the mechanisms for perpetuating social reproduction and educational inequality (Chetty
et al., 2022a, 2022b; Palardy, 2013; Rumberger & Palardy, 2005). With growing levels of
income inequality in the United States, socioeconomic segregation in schools, patterns of
friendship, and in neighborhoods, has increased (Mijs & Roe, 2021; Owens et al., 2016; Reardon
& Owens, 2014). Prior studies foundfind that the average socioeconomic level of students’
schools, net of the effects of student background, influences their educational outcomes,
including achievement in mathematics and science, high school graduation, and college
enrollment (Konstantopoulos, 2006; Palardy, 2013; Rumberger & Palardy, 2005). Additionally,
school socioeconomic composition in early educational trajectories has cumulative effects on

students’ later educational outcomes (Langenkamp & Carbonaro, 2018). However, another study



foundfinds that school SES effects on student achievement scores nearly vanish after controlling
for a student’s prior achievement (Armor et al., 2018).

School socioeconomic composition effects can be explained by several factors, such as
school resources, teacher quality, school practices that emphasize academics, and peer
influences, among others (Harris, 2010; Palardy, 2013; Rumberger & Palardy, 2005). Using a
longitudinal national data set, NELS:88, Rumberger and Palardy (2005) found the average
socioeconomic level of students’ schools had as much impact on their achievement growth as
their own socioeconomic status across various subjects, including mathematics, science, reading,
and history, after accounting for other background factors. Moreover, they investigated three
potential explanatory factors—structural features of schools, school resources, and school
processes (policies and practices)—to understand why the impact of socioeconomic composition
was consistent across both advantaged and disadvantaged students. They attributed this impact to
four key school characteristics: the availability of rigorous courses, teacher expectations, the
amount of homework assigned, and students’ perceptions of safety.

Another possible explanatory factor linked to why school SES composition matters is in
fact that students can gain valuable academic information from their friends, including the
number of rigorous courses that students take (Crosnoe & Muller, 2014; Rumberger & Palardy,
2005). Using a nationally representative sample of seventh through twelfth grade from Add
Health data, for example, Crosnoe and Muller (2014) foundiné that exposure to school-based
socioeconomically advantaged groups differentiate students’ enrollment in advanced coursework
at the start of high school and that this initial disparity was firmly maintained across high school
years. Their accompanying ethnographic data from a single high school reveal that students with

socioeconomically advantaged parents value the diverse portfolios in coursework and have more



information about the relative weights of grades, core courses, and electives in college going,
whereas students with socioeconomically disadvantaged parents plan to drop out of math or
science. When students receive academically relevant information from parents and peers with
socioeconomically advantaged parents, students typically think that persisting in such advanced
coursework is a necessity.

Beyond high school course-taking behaviors, cross-class friendships influence upward
mobility later in life (Chetty et al., 2022a, 2022b). Chetty et al. (2022b) found that the social
disconnection across socioeconomic lines is explained by differences in exposure to people with
high SES in groups such as schools with resultant differences in the likelihood that an individual
will interact with a high SES individual, given the opportunity. Despite the importance of cross-
class friendship in schools, schools tend to become more socioeconomically segregated over the
years (Chetty et al., 2022b; Konstantopoulos, 2006; Mijs & Roe, 2021; Owens et al., 2016),
which serves to limit opportunities to build cross-class friendships in schools. This school
segregation is attributable to rising income segregation between districts in the United States,
particularly among affluent families (Mijs & Roe, 2021; Owens et al., 2016). This implies that
inequalities between schools in completion of advanced math and science courses, net of student
background characteristics, may be exacerbated over time.

Recent studies have also explored the interaction between family and school
socioeconomic composition, investigating whether the effect of school socioeconomic
composition varies across different student characteristics (Perry et al., 2022). Using Australian
cross-sectional nationally representative data, Perry et al. (2022) found that the effect of school
SES on the average student’s achievement is greater when the student’s SES is higher, a finding

consistent across reading, math and science. It should be noted that this study did not take into
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account students’ prior achievement due to limitations of cross-sectional data. Extending these
studies using longitudinal datasets can enhance our theoretical understanding of how school SES
influences student outcomes differently. Such research can contribute to debates on whether

reducing school segregation can be beneficial and for whom.

2.3. Effectively maintained inequality (EMI) in high school course-taking

In addressing persistent educational inequalities, educational policies in the United States
have sought to promote excellence and reduce educational disparities through standards-based
reform and test-driven accountability over the past several decades. These efforts have included
initiatives such as raising high school graduation requirements and introducing high school
graduation tests, all aimed at equalizing learning opportunities, particularly in advanced science
and math coursework (Domina et al., 2016; Domina & Saldana, 2012; National Science Board.,
2012; Zhang, 2009). However, there have been recent shifts towards employing different
approaches such as eliminating high school graduation test requirements and/or opening
additional pathways beyond traditional standards-based course-taking sequences in California
(Sublett & Rumberger, 2018).

In the last thirty years, course-credit graduation requirements in science and math
increased over the past three decades (National Science Board., 2012). Bromberg and Theokas
(2016) examined transcript data from the HSLS:09, which follows a nationally representative
group of ninth graders from 2009 through 2013. They found that three in 10 graduates completed
a minimum of three years of mathematics, including algebra 2, and three years of science,
including biology and either chemistry or physics, which is aligned with entry requirements at

many public four-year universities (Conforti, 2013; Rodriguez, 2018).
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Some advocates for curricular intensification believe that increases in science and math
requirements at high schools and accompanying push into advanced science and math courses
will make students become academically more capable and reduce inequality in educational
outcomes and attainments over time. But notions of effectively maintained inequality (EMI),
would drive a hypothesis that inequality in the highest level of math and science courses will be
maintained or exacerbated rather than diminished.

EMI (Lucas, 2001; S. Lucas & D. Byrne, 2017) theory observes that all educational
outcomes have two dimensions: a quantitative dimension (e.g., the number of years of education
obtained) and a qualitative dimension (e.g., the program of study pursued). EMI contends that if
quantitative differences are common, the socioeconomically advantaged will work to obtain
qualitative advantage. In other words, it is possible that even when quantitative outcomes are
equalized, or quantitative advantage is impossible, socioeconomically advantaged individuals
and/or families will strategically use their socioeconomic advantages so as to secure qualitatively
different outcomes. In other words, they will activate and deploy a range of capitals at their
disposal in a now intensified drive for qualitative distinction. Thus, the notion of EMI suggests
that equalizing quantity will be insufficient to undermine educational inequality. When the locus
of consequential inequality in education shifted from the quantitative to the qualitative
dimension, it is important to focus on inequality in qualitative dimensions of education.

Applying this EMI theory of inequality to math and science course-taking patterns in
education, the qualitative dimension can refer to more challenging curricular tracks and the level
of math and science courses completed. For example, even when students earned the same
credits in mathematics, the level of math completed varied from algebra 2, precalculus to

calculus (Dalton et al., 2015). EMI implies that expanding access to advanced math and science
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courses may reduce inequalities in the sense of access to a particular set of courses (for example,
algebra 2 or trigonometry) but will not, by itself, reduce consequential qualitative distinctions
and associated inequalities, as those with privilege will increasingly drive for distinction in any
given category given quantitative saturation at any given level (Lucas, 2009).

Drawing upon theories of maintained inequality and growing push for advanced science
and math courses in high schools, a number of prior studies have investigated the extent to which
inequalities in the most challenging high school coursework, such as highest-level math course
(i.e., calculus) and AP courses, changed over time (Conger et al., 2009; Domina et al., 2016;
Domina & Saldana, 2012; Klugman, 2013; Posselt et al., 2012). Using a dataset constructed from
three nationally representative surveys, High School & Beyond 1980 (HS&B), NELS:88, and
ELS:2002, for example, Domina and Saldana (2012) investigated the extent to which social
class-based inequalities in math course-taking changed between 1982 and 2004. They found
persistent social class-based inequalities in calculus completion but narrowed inequalities in
lower-level math courses. While racial gaps in calculus completion were inconsistent, SES-based
disparities remained significant, indicating the maintenance of inequalities over time. These
studies provide supporting evidence of EMI theory (Lucas, 2009), suggesting that
socioeconomically advantaged individuals strategically leverage their advantages to secure
qualitative distinctions in math course-taking, particularly as the majority of students complete
mid-level courses.

National reports have shown that the percentage of students who completed advanced
math courses increased between 2004 and 2019 (National Center for Education Statistics., 2016,
2022). For example, around 2004, approximately 72% of high school graduates completed

algebra 2 or a higher-level math course, with about 14% completing calculus (Domina &

13



Saldana, 2012). By 2019, about 85% of high school graduates successfully finished algebra 2,
and 16% completed calculus (National Center for Education Statistics., 2022). The recent trend
in advanced math course-taking suggests that about 9 out of ten students have enrolled in the
class of algebra 2. It therefore seems plausible to consider that the nationwide increases in
algebra 2 completion might influence SES-based inequalities in advanced math courses, such as
calculus, among the recent high school cohort due to the increased eligibility of students for
advanced math courses.

Recent studies have also examined changes in school-level inequalities in AP
coursework, more broadly, including English, history and social science, math and computer
science, and sciences, over time. Using a panel dataset of all California public high schools from
1997 and 2006, for example, Klugman (2013) examined inequalities in AP coursework along
class lines. Klugman’s research revealed that despite efforts to increase AP subject offerings and
enrollments in schools serving disadvantaged populations, this had minimal impact on reducing
inequalities in these outcomes. This was primarily because schools serving advantaged students
experienced even greater increases in AP course offerings and enrollments, largely driven by
proportionally higher demands from socioeconomically privileged families. As EMI theory
points out, Klugman identified persistent or increasing school-level socioeconomic disparities in
AP course offerings and enrollments over time.

Unlike high school math and AP course-taking more broadly (e.g., the number of
enrollments in all AP courses), there is a dearth of research on patterns of SES-based inequality
in science course-taking (Bottia et al., 2022). Drawing on nationally representative transcript
data between 1982 and 2004, descriptive analyses in science course-taking show that completion

in middle-level courses (chemistry 1 or physics 1, or chemistry 1 and physics 1) increased across
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all SES and racial/ethnic groups, except for Asians. Additionally, SES and racial/ethnic
inequalities in enrollment at the highest level (i.e., chemistry 2, physics 2, or advanced biology)
persisted or grew over the 22 years of study (Dalton et al., 2007). This descriptive approach
cannot adequately assess the independent association between social background and science
course-taking since students within each SES group vary in other aspects (Lucas & Byrne, 2017).
To accurately assess socioeconomic inequality patterns in American high schools, it is essential
to investigate patterns of social stratification in high school science course-taking after
controlling for prior achievement, demographics, and school characteristics as linked to changes
between cohorts. In other words, it’s important to determine whether socioeconomically
advantaged but academically equivalent students are more likely to complete advanced science

courscs.

2.4. Analyzing national trends in high school course-taking: Comparisons and insights from
large-scale surveys

Research on the evolution of SES disparities in educational outcomes, including course-
taking patterns, has expanded, utilizing longitudinal national and state-level data. Since 1982, the
National Center for Education Statistics (NCES) has conducted high school transcript studies as
part of the Longitudinal Studies Program and the National Assessment of Educational Progress
(NAEP) High School Transcript Studies (HSTS) program. These studies align with major NCES
data collection efforts. The first NCES-sponsored transcript study coincided with the HS&B
program’s initial follow-up survey in 1982. Subsequent studies in 1988, 2002, and 2009
collected post-high school transcripts. For instance, the NELS:88 1992 second follow-up

included transcript collection-in1+992. The ELS:2002 conducted a transcript study in 2004/05,

15



and the HSLS:09 had its own transcript study in 2013. Transcripts serve as official
documentation of students’ course enrollment, invaluable for analyzing course-taking trends,
predicting educational trajectories, and establishing findings’ national generalizability. Because
high school courses vary in content and level, even among those with similar titles, a common
course coding system, such as the Classification of Secondary School Courses (CSSC) —a
general inventory of courses taught nationwide from grades 9 through 12—was used in NCES’s
high school transcript studies.

Because the high school transcript studies conducted by NCES have both similarities and
dissimilarities of design and methodology that raise questions of comparability, it is important to
ensure that comparability is maximized for inter-cohort comparisons. According to NCES
guidelines about inter-cohort analysis, comparable analytic samples should be achieved across
the high school transcript studies by taking into account differences in target populations and
inclusion criteria across studies (Burns et al., 2011). NCES recommends that comparable
analytic samples across cohorts can be achieved by limiting samples to high school graduates
who received regular/standard or honors diplomas and imposing additional restrictions such as
earned credit minimums (Burns et al., 2011, pp. 399-400). Following these guidelines, previous
studies on course-taking across cohorts have primarily focused on on-time high school graduates
(Domina & Saldana, 2012), posing challenges in including both on-time graduates and dropouts
in inter-cohort comparisons.

Obtaining comparative measures across cohorts poses challenges, particularly in
examining inequality in course-taking. It is crucial to investigate students’ course-taking patterns
while considering the opportunities available to them, such as on-site course offering. While

HSLS:09 collected on-site course offering information through school counselor questionnaire
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and high school transcript school-level data, NELS:88 had substantial missing data on school-
level course offering information. Moreover, school-level course-offering information from
transcript data was only available for the High School Effectiveness Supplement (HSES) of
NELS:88, complicating cross-cohort comparisons (Lee et al., 1998). Additionally, obtaining
other comparative measures, such as standardized testing scores, across comprehensive subjects
presents challenges. While mathematics standardized test scores are accessible across multiple
high school cohorts, comprehensive assessment scores for other subjects, including reading,
science, and social studies, are not available (Burns et al., 2011). Furthermore, the timing of
standardized test scores varies across multiple high school cohorts; for example, mathematics
standardized test scores are available in grade 10 in both NELS:88 and ELS:2002, while they are
available in a different grade in HSLS:09.

In their examination of high school students’ course-taking patterns using the NELS:88
transcript data, Burkam and Lee (2003) developed science and math course-taking
classifications. Their aim was to extend beyond traditional metrics such as course credits or
number of completed courses that have typically been used in this area of research. They
introduced an 8-level index in mathematics, encompassing categories such as no mathematics,
non-academic, low academic (e.g., prealgebra), middle academic 1 (e.g., algebra 1 and
geometry), middle academic 2 (algebra 2), advanced 1 (trigonometry, probability, and statistics,
among others), advanced 2 (e.g., precalculus), and advanced 3 (all calculus courses, including
AP calculus). Additionally, they developed a 6-level index in science, including categories such
as none, primary physical science (e.g., earth science), secondary physical science (e.g.,
environmental science, and introductory chemistry), general biology 1, chemistry 1 OR physics

1, chemistry 1 AND physics 1, and chemistry 2 or physics 2. These classifications served as the
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foundations for assessing high school course-taking patterns and were measured in national
surveys and large-scale state-level analyses (Brown et al., 2018; Burkam & Lee, 2003; Dalton et
al., 2007; Han et al., 2023; Posselt et al., 2012; Tyson et al., 2007). For instance, numerous
studies have adopted a hierarchical sequence for mathematics courses, with a slight adjustment
such as combining non-academic and low academic into one level: starting from no mathematics,
progressing through below algebra 1 (or prealgebra), algebra 1, geometry, algebra 2, other
advanced mathematics (e.g., trigonometry), precalculus, and concluding with calculus (e.g.,
Brown et al., 2018; Domina & Saldana, 2012; Posselt et al., 2012; Tyson et al., 2007).

However, several challenges in analyzing national high school transcript data should be
noted. Firstly, it is challenging to incorporate new pathways such as integrated mathematics
pathways in California, although NCES high school transcript raw data included multi-year
integrated mathematics and offered a crosswalk framework enabling one-to-one matches in
terms of course rigor and sequence. For example, integrated mathematics 1, 2 and 3 in California
incorporates contents from algebra, geometry, statistics and probability, making it challenging to
categorize this course within a specific traditional sequence (California Department of
Education., 2013).

Secondly, mathematics follows a hierarchical structure where lower-level courses serve
as preparation for higher ones such as algebra 1 — geometry - algebra 2 — advanced mathematics
(e.g., precalculus and calculus) (see, for example, Brown et al., 2018). However, there is no
consensus on the hierarchy for high school science course-taking. Science education
encompasses diverse sub-disciplines such as biology, chemistry, and physics, with no necessarily
inherent difficulty among them, and no prerequisite for learning one subdiscipline before another

subdiscipline. Empirically, students often take biology followed by chemistry or physics (see, for

18



example, Brown et al., 2018). Unlike the extensive research on mathematics course sequence,
prior studies have primarily focused on completion of specific science courses like core lab
science courses (biology, chemistry or physics) or physics only (e.g., Adelman, 2006; Maltese &
Tai, 2011; Riegle-Crumb & Moore, 2014; Sadler & Tai, 2001). Only a few studies have explored
the sequence of science course-taking (e.g., Posselt et al., 2012; Tyson, 2007). These studies
typically construct the following sequence: no science, primary physical science, secondary
physical science, general biology, chemistry 1 or physics 1, chemistry 1 and physics 1, and
chemistry 2, physics 2 or advanced biology. Following empirical examination of course-taking
patterns across grades, adjustment was made to some categories; for instance, chemistry 1 or
physics 1 — chemistry 1 and physics 1 sequence was revised to chemistry 1 only — physics 1 only
(e.g., Tyson, 2007). These studies have examined whether students’ course-taking patterns or
specific completion of science courses influence their STEM pathways.

Recently, scholars have begun utilizing a descriptive framework to visualize students’
course-taking trajectories and analyze large-scale data, enabling the mapping of each student’s
complete course-taking patterns (see, for example, Bowers et al., 2022). These studies outline the
entire progression trajectories of individual students from high school through college, taking
into account all enrolled subjects, grades, and year simultaneously. They pose challenges to the
literature on core-subject gateway courses, which traditionally focused solely on specific courses
such as calculus or physics. Instead, they reveal that students generally perform well or are

challenged in similar ways across subjects and courses (Bowers et al., 2022).

Building on EMI theories that predict persistent SES-based inequalities in course-taking

patterns, we examine the following questions:
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First, to what degree are individual SES and school-level SES associated with course-
taking patterns in each cohort?

Second, have individual-level SES based inequalities in access to advanced math and
science courses, such as calculus, biology 2, physics 2, or chemistry 2, decreased, even after
controlling for student and school characteristics, including prior achievement and on-site course
offerings?

Third, have school-level SES based inequalities in access to advanced math and science

courses, calculus, biology 2, physics 2, or chemistry 2, changed over time?

2. METHODS
2.1.Data and sample
We utilized three nationally representative high school cohort datasets collected by the

National-Centerfor Edueation-Statisties{NCES): NELS:88, ELS:2002, and HSLS:09. These
datasets provide rich and elaborate information on student background, test scores, and high
school transcript data for three cohorts of U.S. high school students educated between the 1990s
and the early 2010s. The NELS:88 is based on a representative sample of 24,000 8th graders, but
the study surveyed a “freshened” nationally representative sample of 10th graders in 1990 and
followed them in 1992. The ELS:2002 includes a nationally representative sample of over
15,000 10th graders in 2002 and 12th graders in 2004. The most recent study, HSLS:09, is based
on more than 23,000 9th graders surveyed in 2009 across the United States, with follow-ups in
2012, and 2014. It should be noted that the same high schools are not repeatedly sampled across
the cohorts, suggesting the observations in each data-set are independent of the observations in

the others.
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As discussed above, it is critical to create comparable analytic samples and measures to
conduct inter-cohort analyses using NCES high school cohort data. Following NCES guidelines
(Burns et al., 2011, pp. 399-400), we limited our analytic sample to (a) 12th graders in 1992,
2004, and 2013, respectively, (b) high school graduates, and (c) those students who took any
English credit.! In addition, our analytic sample was restricted to students who had complete
transcript information from 9th grade through 12th grade to measure students’ mathematics and
science coursework pipelines. This allows us to eliminate the problem of differences in the
excluded student population across studies (Burns et al., 2011, p. 399). Notably, this means that
we were not able to meet the requirement of comparability across the three datasets if we
included high school dropouts in this particular study. In preliminary analyseis, we found that the
high school dropouts in each cohort dataset tend to exhibit significantly lower SES than the high
school graduates (see Appendix A). In addition, the percentage of students who ever dropped out
of high school varied across the three datasets; 18.9% in NELS:88, 11.8% in ELS:2002, and
11.0% in HSLS:09. As dropouts tend not to meet coursework and performance standards for
high school graduation established by the state or other approving authorities (Rosen et al.,
2015), they have a lower probability of completing advanced math and science courses.
Therefore, the exclusion of high school dropouts in our analytic sample can yield a smaller
estimate of the SES gap in each cohort, suggesting that our findings should be interpreted with

caution. Our analytic sample includes approximately ever-85% of total students in the datasets.

! One of major issues in comparability of target populations across studies is related to differences in inclusion and
exclusion with respect to students with disabilities and English language learners. Therefore, eliminating cases that
lack of English course credits largely eliminates the problem of differences in the excluded student population

across studies (Burnes et al., 2022, p. 400).
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The total analytic sample sizes across the three cohorts were 36,800. The analytic sample
sizes for NELS:88, ELS:2002, and HSLS:09 were 9,920, 10,730, and 16,150, respectively. The
NCES provides weighting variables to account for the probabilities of participation in the base-
year and follow-up surveys, as well as the nonresponse rates. The analyses used the appropriate
transcript sample weights for each dataset to ensure that the estimates can be generalized to the
12th grade high school graduates of 1992, 2004, and 2013: we used F3TRSCWT for NELS,
FITRSCWT for ELS, and W3HSTRANS for HSLS.

2.2.Measures of High school math and science course-taking

To identify the highest-level math and science courses, we created measures of high
school math and science course-taking pipelines. Math and science courses were classified based
on the secondary school course classification system of NCES; the Classification of Secondary
School Courses (CSSC) for NELS:88 and ELS:2002, and the School Codes for the Exchange of
Data (SCED) for HSLS:09. Using raw course-level high school transcript data from ninth grade
through twelfth grade in each dataset, we identified the highest math and science courses
students completed. To make these course-taking variables comparable across the cohorts, we
matched the course titles using the CSSC-SCED crosswalk provided by NCES. The coded math
and science courses are ordered according to the difficulty level. Following previous approaches
(Burkam & Lee, 2003; Domina & Saldana, 2012; McFarland, 2006; Schiller & Muller, 2003),
we categorized a hierarchical order of the mathematics pipeline from less to more difficult

courses; remedial, algebra 1, geometry, algebra 2, trigonometry, precalculus, and calculus.

Based on prior studies that investigated high school science course-taking patterns and
their effects on educational outcomes (Brown et al., 2018; Burkam & Lee, 2003; Dalton et al.,

2007; Posselt et al., 2012; Tyson et al., 2007), we categorized a hierarchical order of the science
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pipeline, as follows; low-level (i.e., students did not complete any science courses with a C or
above), primary physical science (e.g., physical science and earth science), secondary physical
science (e.g., general physics and introductory chemistry), secondary life science (e.g., biology),’
chemistry 1, chemistry 1 and physics 1 (i.e., completed both chemistry 1 and physics 1), and
chemistry 2, physics 2 or biology 2 (e.g., AP chemistry, AP physics, and AP biology). Because
of a relative lack of consensus on a hierarchical order as regards the science pipeline, we
empirically assessed the science pipeline by examining if students who completed higher-level
courses in the science pipeline completed lower-level courses using our analytic sample. About
88% of students who completed chemistry 1, for example, completed secondary life science
(e.g., biology). Despite the Physics First movement in science education, NCES high school
cohort transcript study and other state-level analyses identified that many students peak at the
“chemistry 1 only” level or students tend to take chemistry 1 first and then move to physics 1,
whereas very few students move from physics 1 to chemistry 1 (Brown et al., 2018; Riegle-
Crumb et al., 2006; Tyson et al., 2007). This suggests that students tend to take science courses
from chemistry 1 — physics 1 sequence® in the science pipeline. In addition, a few studies
confirmed the predictive validity of the science pipeline on educational attainment (Tyson et al.,

2007). Prior studies demonstrated that advanced science course-taking in this science pipeline

2 Primary physical science includes introductory physical science, earth science, and integrated science, among
others. Secondary physical science includes conceptual biology, conceptual chemistry, conceptual physics, and
astronomy, among others. Secondary life science includes biology-advanced studies (usually taken after a
comprehensive initial study of biology), Anatomy, and microbiology, among others. Note that Burkam and Lee
(2003) do not have a separate classification of “primary life science.” Rather, basic biology I is included at the
secondary physical science level.

3 Following Burkam and Lee (2003), many studies categorized a hierarchal order of the science pipeline, as follows;
low-level, primary physical science, secondary physical science, secondary life science, chemistry 1 or physics 1,
chemistry 1 and physics 1, and chemistry 2, physics 2 or biology 2 (see, for example, Dalton et al., 2007; Posselt et
al., 2012). Thus, we also tested the robustness of findings presented in the study using chemistry 1 or physics 1 —
chemistry 1 and physics 1 sequence. Our findings are very consistent regardless of different chemistry 1 and physics
1 sequences.
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has a positive effect on access to more selective 4-year institutions relative to noncompetitive 4-
year institutions (by Barron’s profile of American colleges) (Posselt et al., 2012) and students’
STEM degree attainment (Tyson et al., 2007). Sadler et al. (2014) find that both chemistry and
physics predict increased interest in STEM careers. The effect of chemistry on STEM career
interest varies: there is non-significant difference between zero and one year of chemistry in
predicting STEM career interest, while an increase from one year to two years boosts interest.
For physics, no physics to one year and one year to two years both have significant impacts on

STEM career interest.
2.3.Covariates

For cross-cohort comparisons, comparable measures across three studies were used in the
study to take into account differences in individual and school characteristics. It should be noted
that NCES high school cohort studies contained many comparable items across studies, but some
items were available only in one study, which influencesd in/exclusion of measures in the study.
Demographics, prior achievement, and high school characteristics were included in the models.
Demographic variables included sex, race, and secioeconemie-status{(SES). In order to capture
how students from different family socioeconomic backgrounds perform over time, a measure of
family SESsecioeconomiestatus was constructed using common student background items
across all three datasets: highest parental educational attainment (derived from fathers’s and
mothers’s educational attainments), highest parental occupational prestige (derived from
fathers’s and mothers’s occupational prestige scores) and family income (Burns et al., 2011). In
terms of family income, we recorded the original ordinal indicator in each dataset by taking the
midpoint of each income category. For the open-ended final category, we extrapolated from the

next-to-last category using a modified formula suggested by Hout (2004). Next, we converted
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the dollar values from NELS:88 and ELS:2002 into equivalent dollars for students in the
HSLS:2009 cohort using consumer price index (CPI) conversion factors to adjust for inflation.
Using this converted set of income variables and all other measures, we constructed an SES
composite variable across all three datasets. Because the value of SES may not have the same
meaning across three waves, we standardized each individual’s SES score in the national SES
distribution relative to others in each dataset (Bai et al., 2021; Chetty et al., 2022a; Hanushek et
al., 2022). Finally, following previous studies that examined SES-based inequalities in education
(Lucas, 2017; Lucas & Irwin, 2018), we classified students into low-SES, middle-SES, and high-
SES categories defined in terms of standard deviation units. Rather than using a gradational
approach of family SES that assumes educational inequality on a unidimensional form in which
families are arrayed on a continuum, this study used a categorical approach in SES that assumes
qualitative differences of home environments across social groups (Jonsson et al., 2009). For
each cohort, we defined low SES as at least one standard deviation below the SES mean, middle
SES as the family SES index between the —1 standard deviation and + 1 standard deviation, and
high SES as at least one standard deviation above the SES mean (Cowan et al., 2012; Crosnoe &

Schneider, 2010).

The prior achievement score variable included ninth/tenth grade standardized math test
scores as a proxy of students’ achievement level at the beginning of high school. As HSLS:09
utilized different content and scaling of mathematics tests, and the timing to test was not the
same as NELS:88 and ELS:2002, the achievement score from HSLS:09 is not comparable to the

other two cohort data (Duprey et al., 2018). The HSLS math assessment, for example, was
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administered at grade 9 and 11, whereas math assessment was administered at grade 10 in

NELS:88 and ELS:2002. Only standardized math test scores are available in all three datasets.*

We also included a school-level socioeconomic composition, athe school mean SES.
Prior studies indicate that certain students are afforded possibilities to take advanced math and
science courses, whereas others are not, due to disparities in on-site course offerings among high
schools (U.S. Department of Education and Office for Civil Rights 2018). Thus, it is crucial to
control for the availability of on-site math and science courses. However, comparable measures
of course offerings across the three datasets are lacking due to somewhat limited on-site course
offerings, a consequence of variation in data collection methods across cohorts. For example,
ELS:2002 and HSLS:09 obtained this information through high school transcripts, while
NELS:88 relied on a school questionnaire. Notably, school-level course offering data were only
accessible for the High School Effectiveness Supplement (HSES) of NELS:88, resulting in
challenges regarding missing information (Lee et al., 1998). Prior studies examining course
offerings and course-taking patterns using NELS:88 primarily relied on school questionnaire
data. Despite differences in data sources, we included measures of course-offerings to examine
students’ course-taking patterns when such opportunities were available in their schools.

Moreover, in our study, we controlled for the school mean ninth/tenth grade standardized math

test score, urbanicity (urban, suburban, and rural), and school type (public, Catholic, and other
private), that are also associated with on-site advanced course offerings (Iatarola et al., 2011;

Klugman, 2013; Rodriguez, 2018; Rodriguez & Hernandez-Hamed, 2020).

4 NELS:88 collected comprehensive standardized test scores compared to ELS:2002 and HLS:09. Using NELS:88
we estimated two models in preliminary analysis: (a) a model that included all comparable measures across three
studies; and (b) a model that included additional covariates of prior achievement, reading and science standardized
scores. We found that SES coefficients across these two models are very consistent.
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2.4.Analysis

Before we examined inequalities in top science and mathematics course-taking, we
conducted weighted descriptive statistics of course-taking patterns over time. We investigated
the extent to which there are changes in the completion of advanced math and science courses
between the 1992 and 2013 high school graduation cohorts and then conducted the Wilcoxon
rank-sum test, a test of equality tests-enfor unmatched data (that is, k-independent samples).

Next, to examine if SES-based inequalities in math and science course-taking have
changed over time, we ran multi-level logistic regression models where students are nested
within schools without and with covariate adjustment (see Appendix E). In-With an effort to
study social background effects on educational outcomes, Lucas and Byrne (2017) asserted that
it is important to compare two individuals who are the same or very similar on everything else
except socioeconomic background. Thus, we fitted multi-level multivariate models to describe
trends in SES-based inequalities, estimating models where the first two levels are models with
the multilevel models and the third level is models with fixed effects (McNeish & Wentzel,

2017):

Pijk
M = log\ 7= —
ij

Boj = Yoo T Yo1(School mean SES indicators) + yos(Other school characteristics) + i
Bx = Y10 + ¥11(School mean SES indicators)

.Bpj = Ypo forp=>1,
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where ;i 18 the outcome variable for the ith student in the jth school Level 2 unit in the kith
Level 3 unit (cohort). It is worth noting that, for trends analysis, we included cohort indicators at
Level 1 instead of employing three-level models, where students are nested within schools and
within the cohort dataset (McNeish & Wentzel, 2017). This decision was made due to the limited
size of Level 3 units (McNeish, 2023; McNeish & Kelley, 2019; McNeish & Wentzel, 2017).
This approach is also typically favored when researchers lack theoretically meaningful predictors
at the third level (McNeish & Kelley, 2019). It should be noted that we did not include two
interaction terms simultaneously—the interaction between SES and cohort indicators, and the
interaction between school mean SES and cohort indicators (see Appendix E for results).

When outcome variables are ordinal, such as a hierarchical course-taking sequence, the
ordered logistic regression model is a popular analytical method, which is parsimonious.® The
ordered logit model can provide a good summary of inequality in course-taking across all
category ranges of sequences (see Kelly (2009) for Bblack-wWhite gaps in math course-taking
sequence). However, this approach assumes the relationship between independent variables and
student course taking is consistent across the course distribution, although the adjacent logit
model allows the formulation of a model with selective constraints on coefficients (Allison,

1999). This assumption is not consistent with theories that explain SES-based inequality in

> A common example of ordinal dependent variable is educational attainment, in which only individuals who have
completed high school are considered to be “at risk” of or eligible for completion of one or more years of college.
Similarly, high school math and science course sequence variables are ordinal. Because students who completed a
low level in the sequence (e.g., algebra 2) can move to precalculus with skipping trigonometry or other advanced
math courses, the ordinal logit model (including the adjacent ordered logit model) can be criticized as inaccurate.
Usually, the use of multinomial logistic model can be an alternative model, but there are no theoretical bases about
courses that can be used as a reference when socioeconomicallysecielogically advantaged students seek marks of
distinction by taking the most challenging courses in science and math. While technically possible, the use of
multinomial logit model remains impractical because it would require the comparison of seven outcomes for each
subject and then the estimation of models using different reference groups for robustness of findings. Although the
use of logistic regression model can be criticized as inaccurate, in the end, it was decided to use logit models that
estimated predicted probabilities of completing the most challenging math and science courses in comparison to all
others.
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course taking, which suggest that the association between family SES and course-taking varies
across the course distribution because students from socioeconomically advantaged groups
increasingly seek distinction by taking the most challenging highest-level math and science
courses whenever and wherever possible, given that a majority of students completed a particular
set of mid-level courses (e.g., algebra 2). Furthermore, using logistic regression models prior
studies have shown that SES-based inequalities persist at the highest level of math (i.e., calculus)
between 1982 and 2004, while SES-based inequalities have narrowed in the lower level of
mathematics courses (Domina & Saldana, 2012), suggesting that the relationship between SES
and math courses is not the same across the hierarchical math course sequence. Thus, building on
literature that examined inequalities in highest-level math courses (Domina & Saldana, 2012),
we also estimated logistic regression models separately for the mid- and highest levels of courses
and investigated whether SES-based inequalities vary across the level of difficulty in
mathematics and science courses. For top math and science courses, we examined two outcomes:
(a) calculus (all calculus courses such as AP calculus) and (b) chemistry 2, physics 2, or biology
2 (including AP/IB chemistry, AP/IB physics, or AP/IB biology). To compare inequalities in top
math and science courses with inequalities in mid-level mathematics and science courses, we
also examined two outcomes: (a) algebra 2 or above and (b) chemistry 1 or above. To check
variation across highest-level science courses, we also estimated logistic regression models
separately for biology 2, a less mathematized science course compared to chemistry 2 and
physics 2 (see Appendix D).

In the multilevel logistic regression, we first fitted models by cohort and then compared
SES and school mean SES coefficients across three time points. Next, we pooled three datasets

(NELS:88, ELS:2002, and HSLS:09) and estimated two interaction models. Model 1 includes
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interaction terms between cohort indicators and individual-level SES and Model 2 includes
interaction terms between cohort indicators and school-level SES. These two models answer the
second and third research questions, respectively. Additionally, we estimated two sets of models:
(a) one using ELS:2002 as a reference cohort (see Tables 3 and 4) and (b) one using NELS:88 as
a reference cohort (see Appendix B). Consistent with the previous study (Domina & Saldana,
2012), we confirmed that there were no systematic differences in the distribution of the
covariates —gender, race, ninth/tenth grade mathematics score, school location and type—

between the three cohorts.

Finally, to address our research questions about trends in SES-based inequalities in
course--taking, we used a postestimation strategy of computing adjusted marginal effect
estimates from our statistical interactional model (Mood, 2010). Since the logistic regression
model does not assume a linear relationship between dependent and independent variables, the
difference in probability of completing math and science coursework by cohort and SES varies
depending on what values the covariates have. In addition, the coefficient values of the
interaction terms reflect the average of the effect sizes varied by the covariates (Ai & Norton,
2003). Therefore, for a more intuitive interpretation of the results than logged odds or odds
ratios, we estimated marginal effects to show the cohort and SES subgroup changes in the
probability of completing mathematics and science coursework after fixing the covariates to their
mean values (Williams, 2012). This estimation strategy is a very useful tool in understanding and
interpreting multiple interactions in logistic regression, allowing us to investigate whether SES

inequalities have narrowed (or been maintained) in the odds of completing mid-level, and high-
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level science and math courses. If necessary, the Z-score formula® proposed by Paternoster et al.
(1998) is used to verify that the effect sizes between the adjusted marginal effects differ

significantly.

Since there were many cases with missing data for student background variables, such as
ninth/tenth grade math achievement scores and SES, the multiple imputation by chained
equations technique was used to replace missing values, to retain as many cases as possible
(Royston, 2004). The missing distribution of each variable ranges from approximately less than
1% and 33%. The on-site course-offering variables in NELS:88 exhibited the highest missing
percentage of missing data, an issue that has also been noted and discussed by other researchers
(e.g., Lee et al., 1998). The missing distribution of SES ranges from approximately 5% to 15%
across the three waves due to high levels of missing data in certain variables, such as income. To
check out the robustness of our findings, we also conducted all analyses using composite
measures of SES derived from the NCES data for each wave. Our results indicate that all
findings remain robust across these alternative measures. The imputation model includes all the
variables used in the analysis. In the imputation model, binary variables were modeled using
logistic regression, ordinal variables modeled using ordered logistic regression, and continuous
variables modeled using linear regression. We estimated the coefficients and standard errors
from 20 imputed datasets to enhance our analysis’s power (Graham et al., 2007). Imputed values
compared reasonably to observed values, and results using listwise deletion were similar to those

we present using multiple imputation (see Appendix E) (Manly & Wells, 2015). Specific details

6 The numerator of this test is the estimated difference between the two coefficients in the subgroups (bi — bj), and
the denominator is the square root of the sum of each standard error squared.

31



regarding the percentage of missing data and descriptive statistics for non-imputed and imputed

variables can be found in Appendix C.

3. RESULTS
3.1.Descriptive trends in mathematics and science course-taking sequences

Table 1 provides descriptive trends in math and science course completion across three
high school cohort datasets; NELS:88 (1992 cohort), ELS:2002 (2004 cohort), and HSLS:09
(2013 cohort). Note that our analytic sample includes only high school graduates to meet the
NCES inter-cohort data analysis guideline. We calculated raw differences in the percentage of
high school graduates who completed math and science courses between 1992 cohort and 2013
cohort and then tested if, overall, these changes in course completion rates across cohorts are
statistically significant.

The high school cohort in the early 2010s completed more credits in advanced math and
science courses when compared with the high school cohorts in the early 1990s. This trend
occurs throughout advanced math and science course distribution. Specifically, the percentage of
high school graduates who completed at least algebra 2 or above increased from about 69% to
86% over the study period. In the science course-taking pipeline, the percentage of high school
graduates who completed chemistry 1 or above increased from about 60% to 74% over the study
period.

The percentage of high school graduates who completed the highest-level math and
science courses also increased over the study period. The percentage of high school graduates

who completed calculus, for example, increased from about 11% to 16% over the study period.
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Likewise, the percentage of students who completed chemistry 2, physics 2 or biology 2
increased from about 7% to 14% over the study period.

Across the study period, notable increases in students’ enrollment in advanced math and
science courses were observed, indicating that students in the early 2010s are more likely to

complete higher-level science and math courses compared to their counterparts in the 1990s.

3.2. Association between individual SES, school mean SES, and course-taking patterns

Before examining if SES-based inequalities in course-taking patterns have changed, we
explored the degree to which individual SES and school-level SES are associated with course-
taking patterns in each cohort. To address this question, we initially constructed models by
cohort and then conducted analyses by comparing SES coefficients and school mean SES
coefficients across three distinctive time points, after including all individual- and school-level
control variables. We fitted two models: (a) a model that includes both individual-level SES and
school mean SES alongside all other control variables, including prior achievement scores; and
(b) a model that includes the interaction between individual SES and school mean SES in
addition to Model 1. High and middle SES backgrounds at individual and school levels are
defined by being one standard deviation above, and between -1 and +1 standard deviation from
the mean, respectively. Low SES backgrounds are defined as one standard deviation below the
mean.

Not surprisingly, as shown in Model 1 of Table 2, students from families with higher SES
are more likely to complete mathematics and science courses—algebra 2 or above, calculus,
chemistry 1 or above, and physics 2, chemistry 2, or biology 2. Similarly, the socioeconomic
composition of a school is also linked to students’ course-taking patterns in these subjects,

although this varies somewhat across cohort and subjects. For example, students at high SES
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schools are more likely to complete highest-level mathematics and science courses—calculus,
physics 2, chemistry 2 or biology 2—compared to those at low SES schools. However, this
positive link was mainly seen in the 2013 cohort, even after considering other individual and
school background characteristics like prior achievement. Under equal conditions, no significant
discrepancy is observed between students in middle SES schools and those in low SES schools.
This suggests that the association between school mean SES and course-taking patterns is
nonlinear.

Next, we examined whether the SES of a school affects students’ course-taking in math
and science differently for students from high SES families compared to those from low SES
families. We did this by analyzing the interaction between individual SES and school SES (see
Model 2 in Table 2). The coefficient of high school mean SES indicates the difference in the
likelihood of completing mathematics and science courses between low school mean SES and
high school mean SES for students from low SES families. Except for algebra 1 or above in the
1992 cohort, all of these coefficients are not statistically significant, implying there is no
additional benefit for students from low SES families at high SES schools in the likelihood of
completing these courses. In mathematics courses, however, the interaction terms between
individual SES and school SES were positive and significant in the 1992 and 2004 cohorts. For
example, in the 2004 cohort, students from middle SES families at high SES schools and
students from high SES families at either middle or high SES schools were more likely to
complete calculus. In the 2013 cohort, no significant interaction effects were observed. This
means that in the earlier years, students from middle or high SES families at higher SES schools
had higher chances of completing these courses compared to students from low SES families at

low SES schools. The absence of these positive interactions in the 2013 cohort indicates a
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change in the pattern. Science course-taking patterns also exhibited a very similar change over
time.

In sum, our analyses reveal that school SES matters more for students from middle or
higher SES families than for students from low SES families in the earlier cohorts, but this was

not held in the 2013 cohort.

4.3. Changes of SES inequality in taking mathematics and science coursework

Next, to examine if SES-based inequalities in math and science course-taking have
changed over time, we estimated the pooled multilevel logit models (see Appendix E). To
provide a more intuitive interpretation of changes in SES inequalities over the study period,

Table 3 presents the results of the adjusted marginal effects that were obtained from the full

multilevel logit models (i.e., include all other individual- and school-level characteristics and the
interaction between cohort and SES in the estimation) for each outcome. Table 3 shows the
changes in the probability of completing the mid- and highest-levels of math and science courses
by SES subgroups over the 1992 and 2013 cohorts compared to the 2004 cohort (reference). The
values of all covariates are fixed at their means. These marginal effect results show the degree to
which SES-based inequalities in mid-level, and highest-level math and science courses have
changed over the study period. In Figures 1 and 2, we also visualized the predicted probability of
completing the mid-, and highest-level mathematics and science coursework by SES subgroup
and cohorts, with all covariates being held to their mean values.

First, we assessed which SES group exhibits increases in the probability of completing
courses over the study period. In mid-level mathematics, algebra 2 or above, as shown in Table 3

and Figure 1, when all other conditions are equal, the low SES students’ predicted probability of
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completing algebra 2 or above increased by about 6 percentage points between the 1992 and
2004 cohorts and 19 percentage points between the 2004 and 2013 cohorts. However, for the
high-SES students, there was no significant change between the 1992 and 2004 cohort and then
about 12 percentage points increases in the predicted probability of completing algebra 2 or
above between the 2004 and 2013 cohorts. Both low- and high-SES students in the early 2010s
are more likely to complete a mid-level math course compared to their counterparts in the early
2000s, but low-SES students are more likely to do so. As shown in Figure 1, this suggests that
disparities between high- and low-SES students’ probability of completing mid-level
mathematics coursework decreased over the three cohorts.

Not surprisingly, SES-based inequalities in the probability of completing mid-level
science coursework, chemistry 1 or above, decreased over the three cohorts (see Table 3 and
Figure 1). For low-SES students, the probability of completing chemistry 1 or above increased
dramatically between the 1992 and 2004 high school graduation cohorts, compared to high-SES
group. Meanwhile, all SES groups showed substantial increases in the probability of completing
mid-level science coursework between the 2004 and 2013 cohorts.

Unlike mid-level mathematics and science courses, SES inequalities in the probability of
completing the most rigorous math and science courses tend to persist or be slightly widened.
Specifically, while holding all other factors constant, the predicted probability of all students
completing calculus increased by approximately two, three, or four percentage points across all
groups between the 1992 and 2004 cohorts. However, variations in changes across groups were
observed in the recent cohort. For high and middle SES students, the predicted probability of
completing calculus increased by 4 and 3 percentage points, respectively, between the 2004 and

2013 cohorts, whereas the predicted probability for low SES students remained steady over the
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same period. This suggests that SES-based inequalities in the probability of completing the
highest-level mathematics coursework slightly widened in recent cohort.

Similarly, in highest-level science courses, all students in the early 2010s are more likely
to complete physics 2, chemistry 2 or biology 2 compared to their counterparts in the 1990s and
early 2000s, but SES-based inequalities persist over the study period. All students’ predicted
probabilities of completing highest-level science courses increased between the 1992 and 2004
cohorts, but there were no changes between the 2004 and 2013 cohorts for both low and high
SES students. For middle-SES students, the predicted probabilities of completing highest-level
science courses increased by 3 percentage points between the 2004 and 2013 cohorts.

Due to the variation in the level of mathematization and prerequisite of mathematics
across highest science courses, we also investigated whether SES-based inequalities in the
probability of completing biology 2 differed from those in other sub-science discipline courses
(see Appendix D). There were no statistically significant increases in the predicted probability of
completing biology 2 across all SES groups between the 1992 and 2004 cohorts, holding all
other conditions constant. However, among low SES students’ predicted probability of
completing biology 2 decreased by 4 percentage points between the 2004 and 2013 cohorts,
while the predicted probability for middle and high SES students remained unchanged between
the 2004 and 2013 cohorts. There is no evidence to suggest that SES-based inequalities in the
probability of completing biology 2 narrowed over the study period.

In sum, the findings from the adjusted marginal effect analysis, detailed in Table 3 and
visually represented in Figures 1 and 2, reveals significant shifts in completion probabilities of
mid- and highest-level math and science courses across socioeconomic subgroups over time.

Notably, while disparities in mid-level mathematics narrowed, persistent inequalities were
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observed in the completion rates of rigorous math and science courses, particularly evident
among low-SES students. Despite overall advancements, SES-based inequalities in the
probabilities of completing highest math and science courses have widened or maintained over

the study period, indicating ongoing challenges in equitable completion of advanced coursework.

4.4. School-level socioeconomic composition and inequality in taking mathematics and science
coursework

Table 4 presents the results of the adjusted marginal effects that obtained from the full
multilevel logit models for each outcome. Table 4 shows the changes in the probability of
completing math and science courses by school-level socioeconomic composition over the 1992
and 2013 cohorts compared to the 2004 cohort (reference). The values of all covariates are fixed
at their means. These marginal effect results show the degree to which school SES composition-
based inequalities in course-taking have changed over the study period. In Figures 3 and 4, we
also visualized the predicted probability of completing the mid-, and highest-level mathematics
and science coursework by high, middle and low socioeconomic composition schools and
cohorts, with all covariates being held to their mean values.

Consistent with prior research (Crosnoe & Muller, 2014), school-level socioeconomic
composition is positively associated with course-taking patterns (see Appendix E). All else being
equal, students in high SES schools—defined as one standard deviation above the mean of the
school’s SES— are more likely to complete science and mathematics courses compared to their
counterparts in low-SES schools—defined as one standard deviation below the mean of the

school’s SES.
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More importantly, as shown in Table 4 and Figures 3 and 4, our analyses reveal that
trends in disparities between high and low socioeconomic composition schools in course-taking
vary across mathematics and science, and difficulty levels in each subject. In mid-level math
course, specifically algebra 2 or above, as depicted in Table 4 and Figure 2, the predicted
probability of completion remained steady for students in low SES schools between 1992 and
2004, but increased by 18 percentage points between 2004 and 2013. For students in high SES
schools, there was no statistically significant change between 1992 and 2004; however, this was
followed by 12 percentage points increase between 2004 and 2013. This trend indicates a
decrease in disparities between high and low SES schools in the predicted probability of
completing mid-level mathematics coursework over the three cohorts.

For mid-level science course, specifically chemistry 1 or above, the analyses revealed
that gaps between high and low-SES schools in the predicted probability of completing
chemistry 1 have narrowed. All else being equal, students attending high SES schools did not
show statistically significant increases in the predicted probability of completing chemistry 1 or
above between the 1992 and 2004 cohorts. However, between the 2004 and 2013 cohorts,
students from high SES schools exhibited statistically significant increases in the predicted
probability of completing chemistry 1 or above, with increases of 10 percentage points. On the
other hand, students at low SES schools showed statistically significant increases in the predicted
probability of completing chemistry 1 or above across all three cohorts with increases 7
percentage points between the 1992 and 2004 cohorts and 10 percentage points between the 2004
and 2013 cohorts.

The differences between high- and low-SES schools in the predicted probability of

completing highest-level mathematics and science courses have either widened or persisted over
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the study period time. All else being equal, students attending low SES schools did not show
statistically significant increases in the predicted probability of completing calculus over the
study period. In contrast, students from middle and high SES schools demonstrated consistent
and significant increases in the predicted probability of completing calculus across three cohorts.
For middle SES schools, the increase was a 2 percentage point between both the 1992 and 2004
cohorts, and the 2004 and 2013 cohorts. High SES schools showed a 2 percentage point increase
between the 1992 cohorts and 2004 cohorts and a 7 percentage point increase between the 2004
and 2013 cohorts. This suggests that disparities between low and high SES schools in the
predicted probability of completing calculus widened over the study period.

Holding all other factors constant, students from low, middle, and high SES schools
showed statistically significant increases in the predicted probability of completing physics 2,
chemistry 2, or biology 2 by approximately four or six percentage points between the 1992 and
2004 cohorts. However, there was no significant change in the predicted probability of
completing these highest-level science courses for both low and high SES schools between the
2004 and 2013 cohorts. This indicates that disparities in the predicted probability of completing
the highest-level science courses between low and high SES schools have persisted over the
study period.

We also investigated whether school mean SES-based inequalities in the probability of
completing biology 2 differed from those in other sub-science sub-discipline courses (see
Appendix D). Interestingly, similar to the findings in Table 4 and Figure 4, there is no indication
that school mean SES-based inequalities in the probability of completing biology 2 have
narrowed over the study period. There were no statistically significant changes observed in the

likelihood of completing biology 2 across all schools over the study period, holding all other
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conditions constant. Despite variations in mathematization across science sub-disciplines, our
analyses demonstrate that inequalities between high- and low-SES schools in the likelihood of
completing highest-level science courses persist over the study period.

In sum, school-level socioeconomic composition is positively associated with course-
taking patterns, with students in high SES schools more likely to complete math and science
courses compared to those in low-SES schools. Disparities in mid-level math course completion
between high and low SES schools decreased over the study period, with a substantial increase in
completion rates observed in low SES schools. However, differences in completion rates of
highest-level math and science courses widened or maintained over time, with significant
increases observed in completion rates among students from high SES schools compared to those

from low SES schools.

4. DISCUSSION AND CONCLUSION

Advanced course-taking patterns in high school play a significant role in shaping
students’ educational and occupational attainments. Despite recent findings that there isn’t a
consistent set of core-subject courses to STEM pathways (Bowers et al., 2022), many studies
suggest that completion of advanced science and math courses can affect students’ future
educational attainments and long-term labor market outcomes (Adelman, 2006; Black et al.,
2021; Hinojosa et al., 2016; Maltese & Tai, 2011; Tyson et al., 2007), as well as health at midlife
(Carroll et al., 2017).

The share of high school students in advanced math has substantially increased over the
past few decades. However, our analysis reveals shifts in completion probabilities of mid- and

highest-level math and science courses across socioeconomic subgroups over time. While
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disparities in mid-level mathematics narrowed, persistent inequalities were observed in rigorous
course completion rates, particularly among low-SES students. Similarly, disparities in mid-level
math course completion between high and low SES schools decreased over the study period,
with a substantial increase in completion rates observed in low SES schools. However,
differences in completion rates of highest-level math and science courses widened or remained
consistent over time, which has significant implications for promoting educational equity and
fostering social mobility.

To enhance STEM opportunities, students who have relatively weak academic
performance in mathematics tend to focus on science courses over mathematics (Weis et al.,
2015; Eisenhart & Weis, 2022), while simultaneously attending and graduating from high
schools that prioritize particular sciences over others. Specifically, they tend to prioritize
relatively less mathematized science courses (e.g., biology) rather than highly mathematized
science courses (e.g., physics). Such targeted moves towards less mathematized sciences is
enabled and facilitated by teachers and counselors (Nikischer et al., 2016). Despite these efforts,
our analyses indicate that SES-based inequalities have persisted even in a less mathematized
science course, such as, in this case, biology 2. Our findings did not provide empirical evidence
at a national level that the different degree of mathematization and mathematics prerequisite in
science subdisciplines are related to SES-based inequalities in science course-taking patterns.
Because we examined only three time points from early 1990s to 2010s, however, future studies
should expand the study period and assess if the degree of mathematization in science disciplines
is related to inequalities in science course-taking patterns.

Despite increases in math and science course completion across all SES groups,

socioeconomically advantaged but academically equivalent students have a higher likelihood of
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completing advanced science and math courses, which are crucial for entry into more highly-
ranked postsecondary institutions and/or STEM majors (Adelman, 2006; Black et al., 2021;
Hinojosa et al., 2016; Maltese & Tai, 2011; Tyson et al., 2007). These findings provide
supporting evidence for effectively maintained inequality (EMI) in STEM opportunity in high
school, as proposed by Lucas (2001). As less highly capitalized students increasingly evidence
mid-level course completion in science and mathematics, more highly capitalized students
continue to distinguish themselves relative to others by seeking and completing increasingly
higher-level science and math courses. Several qualitative studies reveal that how students from
different family backgrounds perceive the value of advanced math and science courses can lead
to subsequent decisions about high school course selection as related to college admissions and,
ultimately, entrance to and graduation from prestigious STEM majors (Crosnoe & Muller, 2014;
Weis et al., 2014). Students with college-educated parents prioritize both good grades and a
targeted diverse portfolio and are more likely to take higher-level math and science courses, even
if it jeopardizes their grades. Socioeconomically privileged parents closely monitor their
children’s grades throughout their secondary school career, readily investing in private tutoring if
any academic struggles arise. In contrast, students with no college-educated parents tend to
downgrade their coursework level, fearing that challenging courses could harm their college
prospects by lowering their grades. Additionally, several studies show that students take
advanced math and science courses with the expressed aim of making themselves more
competitive in the college admissions process (Crosnoe & Muller, 2014; Grodsky & Riegle-
Crumb, 2010; Weis et al., 2014). In line with these prior studies, therefore, our findings suggest
that more highly capitalized students and families may work with intention to secure future

postsecondary educational advantages by faking both rigorous math and science courses, thereby
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positioning themselves disproportionately to access selective and highly selective postsecondary
institutions, attain four-year degrees, and, as relevant, enter prestigious STEM fields that have
considerably larger economic returns compared to college selectivity (Arcidiacono, 2004).
Evidence presented by qualitative researchers suggests that parents and students engage this
strategy irrespective as to whether said students look to enter STEM majors at the postsecondary
level and/or ultimately pursue a STEM career (Weis et al., 2014; Eisenhart & Weis, 2022).

Our findings underscore the need for policymakers and educational researchers to
develop educational interventions/reforms that directly address the robust socioeconomic
disparities in STEM educational opportunities and related outcomes. For instance, a report
drawing upon nationally representative transcript data shows that about 45 percent of students
did not earn credit in any science course in their senior year (Brown et al., 2018). Moreover, a
recent multi-site longitudinal qualitative study (Eisenhart & Weis, 2022) reveals that in urban
schools serving largely low-income and underrepresented minoritized students, school guidance
counselors were overwhelmed with tasks related to accountability mandates and with students in
crisis, with the consequent result that students who were on track to graduate were left entirely
on their own to select their classes for senior year, and, at times, even earlier (Nikischer et al.,
2016). As a result, high-achieving students who are interested in pursuing STEM fields beyond
high school tended to enroll in non-college prep science and math classes, hoping for an easy
year and a higher GPA in their senior year, or they did not take any science or math courses in
their senior year at all (Eisenhart & Weis, 2022). Additionally, descriptive quantitative analysis
using a nationally representative dataset indicates that high SES, white, and Asian students tend
to consistently pursue upward course-taking patterns throughout high school, while students with

relatively low family SES and minoritized students often experience nonlinear course-taking
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patterns, including downward moves, particularly from grade 11 to grade 12, limiting their
opportunities in reaching to the highest-level math and science courses (Han et al., 2023). To
narrow the gap in STEM learning opportunities and associated educational, social and
occupational outcomes between socioeconomically advantaged and disadvantaged students,
these students should be prepared for, scaffolded for, and guided to take rigorous STEM courses
in their senior year.

Equally importantly, our findings highlight the need for policymakers and educational
researchers to tackle disparities in STEM learning opportunities between schools in the United
States. For example, only approximately 12% of high schools provide a comprehensive range of
advanced coursework options, STEM-focused professional development for teachers, and utilize
various informal STEM practices to enhance student interest in STEM. In contrast, the majority
of high schools in the United States (about 54%) offer limited advanced STEM-related
coursework and generally exhibit lower tendencies in implementing strategies to foster student
interest in STEM, as well as in mandating STEM professional development for teachers (Vaval
et al., 2019). Even after taking into account on-site course offerings, our study found persistent
disparities in advanced math and science course-taking between high and low SES schools over
time. This underscores and highlights the importance of policymakers prioritizing efforts to
ensure equitable distribution of resources among schools, such as focusing on STEM-focused
professional development for teachers, and opportunities for informal STEM engagement, in
addition to providing authentic access to and scaffolding for advanced coursework options. This
comprehensive approach is essential for promoting equity in STEM education and fostering

opportunities for all students to succeed in these fields, with an eye towards equalizing future
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educational and occupational outcomes among students from advantaged and disadvantaged
backgrounds.

It should be noted that our findings and implications for policies and practices need to be
interpreted with caution due to several limitations in our study. First, our study was #-rature
descriptive in nature and described trends in SES-based inequalities in course-taking over three
decades. Our study did not focus on mechanisms or specific policy changes that explain trends in
SES-based inequalities. Therefore, our findings did not offer causal inferences about trends in
inequalities. Second, our study was limited due to weaknesses of secondary datasets. Despite the
importance of cross-social class friendships in educational and social mobilities (Chetty et al.,
2022a, 2022b) as noted in literature review, for example, our study cannot examine or take
account of cross-class friendships as one of the mechanisms for widening SES inequalities in
course-taking due to the lack of information about friends’ social class backgrounds in all three
nationally representative high school cohort datasets. The study of social background effects on
educational inequality and the test of EMI theory requires investigators to compare two people
who are the same on everything else except socioeconomic background by including a set of
covariates (Lucas & Byrne, 2017). In order to estimate SES-based inequalities among students
with similar academic achievement levels, for example, it is critical to include comprehensive
assessment scores for other subjects, such as reading, science, and social studies. In this study,
covariate adjustment in prior achievement was somewhat limited due to the lack of
comparability in standardized test scores across three studies. For cross-cohort comparison in our
study, we included only comparable measures across three studies and employed analytic sample
selection restriction, following the NCES guideline (Burns et al., 2011). Thus, our findings can

be generalized only to high school graduates, as noted in our method section. It should be noted
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that our findings cannot be generalized to all high school students in each cohort, including high
school dropouts, and our estimates of SES inequalities could be biased (possibly underestimated)
due to the analytic sample restriction. In addition, our estimation could be biased due to omitted
variables, particularly at school levels. In NCES high school cohort datasets, schools are not
repeatedly sampled. Using state-level administrative data, longitudinal trends in school-level
inequality in course-taking should be examined.

To tackle socioeconomic disparities in STEM opportunities in high school course-taking,
we also need more studies on SES disparities in science achievement from Pre-K programs and
elementary education through secondary education. While many studies have investigated
socioeconomic disparities in reading and math achievement (e.g., Reardon, 2011), there is a lack
of research on when SES disparities in science achievement and course-taking emerge and
become well-established, and, as a consequence, unmovable. This line of inquiry can shed light
on cumulative (dis)advantages (DiPrete & Eirich, 2006) in STEM opportunities; future study can
help address when differences between socioeconomically advantaged and disadvantaged
students became larger over time and at what point it becomes harder for those /eft behind to
make up any relative loss, leading to persistent inequalities in high school science course-taking
patterns and, in all likelihood, STEM educational and occupational outcomes of interest.

Future research is imperative to examine whether the influence of school SES
composition effect on course-taking patterns and other broader educational outcomes (e.g.,
college enrollment rates, STEM major selection, and career trajectories) varies across different
individual SES backgrounds and how such relationship evolves over time. Consistent with prior
research in Australia (Perry et al., 2022), our study revealed that the effect of school SES on

students’ course-taking patterns is greater when the student’s SES is higher. However, our study
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found changes in this effect in the recent cohort. This inquiry is particularly crucial given the
increasing socioeconomic segregation between schools and districts in the United States (Mijs &
Roe, 2021; Owens et al., 2016; Reardon & Owens, 2014). Therefore, exploring these dynamics
further through longitudinal and comparative analyses across regions and school districts could
provide valuable insights into the evolving relationship between individual and school-level SES
and its implications for educational equity and policy interventions, such as effects of reduction
in school SES segregation.

Furthermore, future research endeavors should consider integrating school-level variation
in STEM learning opportunities, as suggested by Vaval et al (2019), to delve deeper into the
examination of inequality in course-taking patterns. While our study employed a single
regression framework to explore the associations between school characteristics (namely, school
mean SES) and course-taking patterns, adopting multiple typologies of high school STEM
learning opportunities, as proposed by Vaval et al (2019), could provide valuable insights into
the heterogeneity of such opportunities. This approach could shed light on the types of resource
allocation within high schools that may foster equity in STEM learning opportunities.

Future research is also needed to examine which STEM-related policies are effective in
improving STEM opportunities specifically for low-income and underrepresented minoritized
students. For example, prior studies examined effects of state policies on number of years
completed in science and math (Kim et al., 2019; Teitelbaum, 2003), effects of inclusive-STEM-
focused high schools on advanced STEM course-taking patterns (Weis et al., 2015; Means et al.,
2016), and effects of state-level AP exam fee-reduction on low-income students (Rodriguez et
al., 2022). To date, however, few studies have investigated effects of state policies as specifically

related to the most rigorous high school math and science courses, such as physics 2, chemistry
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2, biology 2 or AP/IB science-related courses, among low-income and underrepresented
minoritized students. Future research is needed to compare the effects of STEM-related reform
policies on these advanced high school math and science course-taking patterns and linked
educational and occupational outcomes across states and within states over time. Such research
should aim to assess which reforms are most effective in improving STEM opportunities and

related outcomes for low-income and underrepresented minoritized students in the United States.
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Table 1. Descriptive Trends in Completed Highest Mathematics and Science Coursework Across Three Cohorts

Completed Highest Coursework 1992 cohort 2004 cohort 2013 cohort A 2013-1992 Wilcoxon rank-
(%) (%) (%) cohort (%) sum test

Mathematics

Calculus 10.73 12.39 15.88 5.15

Precalculus 10.98 18.02 21.15 10.17

Trigonometry 20.05 16.55 24.50 4.45

Algebra 2 27.44 25.41 24.80 -2.64 z= -39 1 1***

Geometry 11.30 16.73 8.89 -2.41

Algebra 1 9.91 5.56 3.04 -6.87

Remedial 9.59 5.34 1.73 -7.86
Science

Chemistry 2, Physic 2, or Biology 2 6.89 11.97 14.47 7.58

Physics 1 and Chemistry 1 17.27 19.28 23.89 6.62

Chemistry 1 35.70 36.97 35.54 -0.16

Secondary Life 35.34 26.53 22.68 -12.66 z=-31.38***

Secondary Physical 0.69 1.20 1.74 1.05

Primary Physical 3.62 3.71 1.27 -2.35

Low-Level 0.49 0.33 0.41 -0.08

Note. Weighting is adjusted.
**% p<0.001
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Table 2. Hierarchical Generalized Linear Analyses Predicting Completion of Mathematics and Science Courses by Cohort and Subjects

Algebra 2 or above Calculus Chemistry 1 or above Physics 2, Chemistry 2, or Biology 2

1992 cohort 2004 cohort 2013 cohort 1992 cohort 2004 cohort 2013 cohort 1992 cohort 2004 cohort 2013 cohort 1992 cohort 2004 cohort 2013 cohort
Ml M2 Ml M2 Ml M2 Ml M2 Ml M2 Ml M2 Ml M2 Ml M2 Ml M2 Ml M2 Ml M2 Ml M2

Variables

Individual SES

Middle SES 0.71%%* (0.42% 0.32%** -0.09 0.30* 0.01 0.63** 0.26 0.13 -0.33 0.40* 0.08 0.84*** 0.38 0.32*%** -0.00 0.36*** 0.25 0.65** 030 0.15 -0.30 0.40* 0.09
(0.12) (0.22) (0.09) (0.17) (0.12) (0.25) (0.21) (0.46) (0.16) (0.32) (0.18) (0.45) (0.12) (0.21) (0.10) (0.15) (0.10) (0.18) (0.21) (0.46) (0.16) (0.32) (0.18) (0.45)

High SES 1.09*** -0.32 0.79*** 025 0.78%* -0.00 1.18%** -1.08 0.76*** -0.19 0.95%** (.90 1.53*%** 044 0.92*%** 090 1.29%** -020 1.23*** -0.96 0.77*** -0.16 0.96*** 0.90

(0.24) (0.74) (0.17) (0.61) (0.27) (0.79) (0.24) (0.80) (0.19) (0.49) (0.19) (1.00) (0.18) (0.63) (0.15) (0.58) (0.21) (0.76) (0.24) (0.77) (0.19) (0.48) (0.19) (1.00)
School mean SES (Ref.: Low school

mean SES)

Middle school mean SES -0.14 -041 024 -0.12 -021 -048 -033 -0.84 -003 -0.50 027 -0.08 -0.14 -0.55** 0.13 -0.13 -0.16 -0.28 -029 -0.78 -0.07 -0.52 029 -0.05
(0.16) (0.21) (0.18) (0.22) (0.20) (0.28) (0.23) (0.46) (0.21) (0.35) (0.20) (0.45) (0.14) (0.21) (0.18) (0.22) (0.20) (0.25) (0.24) (0.45) (0.20) (0.34) (0.20) (0.45)

High school mean SES 1.14%** 1.70*%* 0.98** 022 0.73* 0.12 -0.07 1.33 0.07 -1.48 057 0.77 040 043 048 -048 020 0.13 0.04 1.48 0.06 -145 0.56* 0.78

(0.30) (0.63) (0.30) (0.50) (0.35) (0.77) (0.31) (1.12) (0.28) (0.76) (0.28) (0.76) (0.24) (0:55) (0:29) (0.57) (0:31) (0.56) (0.31) (1.09) (0.27) (0.76) (0.28) (0.75)
Interaction terms

Middle SES x Middle school mean SES 0.43 0.56%* 0.39 0.60 0.60 0.43 0.66** 0.42% 0.16 0.57 0.57 0.42
(0.26) (0.20) (0.28) (0.54) (0.39) (0.49) (0.25) (0.19) (0.22) (0.53) (0.39) (0.49)
Middle SES x High school mean SES -0.78 L.11* 0.67 -1.49 1.79* -0.05 -0.06 1.24* 0.08 -1.52 1.75% -0.06
(0.62) (0.53) (0.74) (1.16) (0.78) (0.74) (0.57) (0.55) (0.49) (1.13) (0.78) (0.74)
High SES x Middle school mean SES 1.42 0.77 0.82 2.39%* 1.15% 0.29 1.12 0.14 1.57 2.33%* 1.13* 0.29
(0.79) (0.64) (0.83) (0.85) (0.54) (1.02) (0.66) (0.60) (0.80) (0.82) (0.53) (1.03)
High SES x High school mean SES 1.32 0.88 1.68 0.62 2.10% -0.53 1.22 0.72 1.57 0.53 2.06* -0.53
(1.01) (0.78) (1.16) (1.29) (0.87) (1.16) (0.83) (0.78) (0.93) (1.26) (0.87) (1.16)
Individual-level controls Yes Yes Yes Yes  Yes  Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes  Yes
School-level controls Yes Yes Yes Yes Yes  Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

*xk p<001, ** p<.01, * p<.05

Note. For each cohort, SES was categorized as follows: low SES was defined as at least one standard deviation below the SES mean, middle
SES as within one standard deviation of the SES mean, and high SES as at least one standard deviation above the SES mean; the school mean
SES groups were defined similarly, based on the school mean SES value. Additional covariates included in the analysis were sex,
race/ethnicity, ninth/tenth grade mathematics achievement score, school mean mathematics score, coursework offering, school location, and

type.
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Table 3. Adjusted Marginal Effects of the Individual SES from Multilevel Logit Models Estimating Completing Mathematics, and Science
Coursework

Mathematics Science
Mid-level or above Highest-level Mid-level or above Highest-level
Physics 2, Chemistry 2, or
Algebra 2 or above Calculus Chemistry 1 or above Biology 2
Groups® 1992 cohort 2013 cohort 1992 cohort 2013 cohort 1992 cohort 2013 cohort 1992 cohort 2013 cohort
Low SES -0.06* 0.19%** -0.03%* 0.01 -0.17%%* 0.07** -0.04%** 0.01
(0.02) (0.02) (0.01) (0.01) (0.03) (0.03) (0.01) (0.01)
Middle SES 0.00 0.16%** -0.02%* 0.03%#* -0.07%** 0.07%** -0.04%** 0.03**
(0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01)
High SES -0.01 0.12%** -0.04** 0.04%** -0.04 0.09%** -0.06%** 0.02
(0.03) (0.02) (0.01) (0.01) (0.03) (0.02) (0.01) (0.02)

Note. *The reference group is the 2004 cohort. For each cohort, low SES was defined as at least one standard deviation below the SES mean,
middle SES as the family SES index between —1 standard deviation and + 1 standard deviation, and high SES as at least one standard
deviation above the SES mean. All other covariates, including sex, race/ethnicity, ninth/tenth grade mathematics achievement score, school
mean SES, school mean mathematics score, coursework offering, school location, and type, were held at their mean values. Alongside the
control variables, the interaction term between cohort and SES was included in the multilevel logit model. N=36,800. Multilevel logistic
regression model results are presented in Appendix E (Table E1).

6% 50,001, ** p<0.01, * p<0.05
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Figure 1. Predicted Probability of Completing Mid-Level Mathematics, and Science Coursework by Individual SES Across Three Cohorts

Panel A. Algebra2, or above Panel B. Chemistry 1, or Physics 1, or above
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All other covariates, including individual SES, sex, race/ethnicity, ninth/tenth grade mathematics achievement score, school mean SES,
coursework offering, school mean mathematics score, school location, and type, were held at their mean values. Low SES was defined as at
least one standard deviation below the SES mean, middle SES as the family SES index between —1 standard deviation and + 1 standard
deviation, and high SES at least one standard deviation above the SES mean. Shaded area indicates 95% confidence interval. Multilevel
logistic regression model results are presented in Appendix E.
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Figure 2. Predicted Probability of Completing Highest-Level Mathematics, and Science Coursework by Individual SES Across Three Cohorts

Panel A. Calculus Panel B. Chemistry 2, Physics 2, or Biology 2
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All other covariates, including individual SES score, sex, race/ethnicity, ninth/tenth grade mathematics achievement score, school mean SES,
coursework offering, school mean mathematics score, school location, and type, were held at their mean values. Low SES was defined as at
least one standard deviation below the SES mean, middle SES as the family SES index between —1 standard deviation and + 1 standard
deviation, and high SES as at least one standard deviation above the SES mean. Shaded area indicates 95% confidence interval. Multilevel
logistic regression model results are presented in Appendix E (Table E1).
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Table 4. Adjusted Marginal Effects of the School Mean SES from Multilevel Logit Models Estimating Completing Mathematics, and Science
Coursework

Mathematics Science
Mid-level or above Highest-level Mid-level or above Highest-level
Physics 2, Chemistry 2, or

Algebra 2 or above Calculus Chemistry 1, or above Biology 2
Groups? 1992 cohort 2013 cohort 1992 cohort 2013 cohort 1992 cohort 2013 cohort 1992 cohort 2013 cohort
Low school 0.02 0.18%%% 0.0 0.00 20.07* 0.10%* 20.04%%% 0,00
mean SES (0.04) (0.03) (0.01) (0.01) (0.03) (0.04) (0.01) (0.02)
Middle school ~ -0.02* 0.16%%%  -0.02%%%  (.02%* L0.09%FF  0.06%* L0.04%F% 0.03%*
mean SES (0.02) (0.01) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01)
High school 0.05 0.12%%%  0.02% 0.07%%% 0,01 0.10%* 20.06* 0.02
mean SES (0.03) (0.02) (0.01) (0.01) (0.04) (0.03) (0.01) (0.02)

Note. *The reference group is the 2004 cohort. For each cohort, low school SES mean was defined as at least one standard deviation below the
school mean SES, middle SES as the school mean SES index between —1 standard deviation and + 1 standard deviation, and high SES as at
least one standard deviation above the mean value of the school mean SES. All other covariates, including sex, race/ethnicity, ninth/tenth
grade mathematics achievement score, school mean mathematics score, coursework offering, school location, and type, were held at their
mean values. Alongside the control variables, the interaction term between cohort and school mean SES was included in the multilevel
logistic model. N=36,800. Multilevel logistic regression model results are presented in Appendix E (Table E2).

6% 50,001, ** p<0.01, * p<0.05
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Figure 3. Predicted Probability of Completing Mid-Level Mathematics, and Science Coursework by School Mean SES Groups Across Three
Cohorts

Panel A. Algebra2, or above Panel B. Chemistry 1, or Physics 1, or above
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All other covariates, including individual SES score, sex, race/ethnicity, ninth/tenth grade mathematics achievement score, school mean SES,
coursework offering, school mean mathematics score, school location, and type, were held at their mean values. Low school SES mean was
defined as at least one standard deviation below the school mean SES, middle SES as the school mean SES index between —1 standard
deviation and + 1 standard deviation, and high SES as at least one standard deviation above the mean value of the school mean SES. Shaded
area indicates 95% confidence interval. Full multilevel logistic regression model results are presented in Appendix E (Table E2).
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Figure 4. Predicted Probability of Completing Highest-Level Mathematics, and Science Coursework by School Mean SES Groups Across
Three Cohorts

Panel A. Calculus Panel B. Chemistry 2, Physics 2, or Biology 2
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All other covariates, including individual SES score, sex, race/ethnicity, ninth/tenth grade mathematics achievement score, school mean SES,
coursework offering, school mean mathematics score, school location, and type, were held at their mean values. We defined low school SES
mean as at least one standard deviation below the school mean SES, middle SES as the school mean SES index between the —1 standard
deviation and + 1 standard deviation, and high SES as at least one standard deviation above the mean value of the school mean SES Shaded
area indicates 95% confidence interval. Logistic regression model results are presented in Appendix E (Table E2).
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Appendix A. Sensitivity Analysis of Dropout Students

Table A.1. Difference in SES Over Dropout Status for Each Cohort

Dropout® Non-dropout F P
Mean (Standard Error) Mean (Standard Error)
1992 cohort -48 (.05) .08 (.02) 578.56 .000
2004 cohort -44 (.02) .06 (.01) 585.64 .000
2013 cohort -.36 (.04) .02 (.01) 219.90 .000

Note. *Students those who have experienced dropout at least one time during high school. All values are adjusted by weighting.
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Appendix B. Replication of Tables 2 and 3, Using the 1992 Cohort as a Reference Group

Table B.1. Alternative Adjusted Marginal Effects of the Individual SES from Multilevel Logit Models Estimating Completing Mathematics,
and Science Coursework

Mathematics Science
Mid-level or above Highest-level Mid-level or above Highest-level
Physics 2, Chemistry 2, or
Algebra 2 or above Calculus Chemistry 1 or above Biology 2
Groups® 2004 cohort 2013 cohort 2004 cohort 2013 cohort 2004 cohort 2013 cohort 2004 cohort 2013 cohort
Low SES 0.06* 0.25%#* 0.03** 0.04** 0.17%#* 0.24%** 0.04*** 0.04***
(0.02) (0.02) (0.01) (0.01) (0.03) (0.03) (0.01) (0.01)
Middle SES -0.00 0.15%#* 0.02%* 0.04%#* 0.07%#* 0.14%** 0.04*** 0.07***
(0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01)
High SES 0.01 0.12%** 0.03** 0.07%** 0.04 0.13%** 0.06%** 0.08%**
(0.03) (0.03) (0.01) (0.01) (0.03) (0.03) (0.01) (0.01)

Note. *The reference group is the 1992 cohort. For each cohort, low SES was defined as at least one standard deviation below the SES mean,
middle SES as the family SES index between —1 standard deviation and + 1 standard deviation, and high SES as at least one standard
deviation above the SES mean. All other covariates, including sex, race/ethnicity, ninth/tenth grade mathematics achievement score, school
mean SES, school mean mathematics score, coursework offering, school location, and type, were held at their mean values. Alongside the
control variables, the interaction term between cohort and SES was included in the multilevel logistic model. N=36,800.

*Ex p<.001, ** p<.01, * p<.05
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Table B.2. Alternative Adjusted Marginal Effects of the School Mean SES from Multilevel Logit Models Estimating Completing
Mathematics, and Science Coursework

Mathematics Science
Mid-level or above Highest-level Mid-level or above Highest-level
Physics 2, Chemistry 2, or

Algebra 2 or above Calculus Chemistry 1 or above Biology 2
Groups® 2004 cohort 2013 cohort 2004 cohort 2013 cohort 2004 cohort 2013 cohort 2004 cohort 2013 cohort
Low school 20.02 0.19%%% (.00 0.00 0.07% 0.17%%%  0.06™**  0.05%**
mean SES (0.03) (0.03) (0.01) (0.01) (0.03) (0.03) (0.02) (0.01)
Middle school ~ 0.02 0.18%%%  0.02%FF  Q04%FE  (00%FE  ([SERE QQ4FFF (0 08%F*
mean SES (0.02) (0.01) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01)
High school 20.05 0.06%+* 0.02% 0.09%%% 0,01 0.12%* 0.04%* 0.06%#*
mean SES (0.03) (0.02) (0.01) (0.01) (0.04) (0.04) (0.01) (0.01)

Note. *The reference group is the 1992 cohort. For each cohort, low school SES mean was defined as at least one standard deviation below the
school mean SES, middle SES as the school mean SES index between —1 standard deviation and + 1 standard deviation, and high SES as at
least one standard deviation above the mean value of the school mean SES. All other covariates, including sex, race/ethnicity, ninth/tenth
grade mathematics achievement score, coursework offering, school mean mathematics score, school location, and type, were held at their
mean values. Alongside the control variables, the interaction term between cohort and school mean SES was included in the multilevel
logistic model. N=36,800.

*ak p<.001, ** p<.01, * p<.05
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Appendix C. Missing Data Analyses

Table C.1. Missing Distribution of Variables Used in the Study

1992 2004 2013
cohort cohort cohort Total
Variables (%) (%) (%) (%)
SES 14.97 5.69 4.66 7.74
Sex 4.27 4.35 02 243
Race/ethnicity 491 0 44  3.26
Math achievement at 9"/10™ grade 427 14 822 517
Algebra 2 or above 0 0 .04 .02
Calculus 0 0 .04 .02
Chemistry 1, or above 0 0 0 0
Physics 2, Chemistry 2, or Biology2 0 0 0 0
School mean SES 0 0 0 0
School mean achievement score 0 0 0 0
School location 1.50 0 0 40
School type 1.51 0 0 41
Algebra 2 coursework offer 3.62 4.59 13.98 15.73
Calculus coursework offer 33.26 4.59 13.98 16.44
Chemistry 1 coursework offer 29.44 4.73 13.98 1545
Chemistry 2, Physics 2, or Biology 2 coursework
offer 29.63 4.73 13.98 15.50
36,80
N 9,920 10,730 16,150 0
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Table C.2. Descriptive Statistics of Variables used in the Study

Unweighted Weighted Weighted & Imputed
Mean S.D. Mean S.D. Mean S.D.
Cohort (Ref =NELS:88)
ELS:02 292 454 322 467 322 467
HSLS:09 439 496 382 486 382 486
Highest Coursework
Algebra 2 or above .801 400 767 423 767 423
Calculus .164 370 132 339 132 339
Chemistry or above 710 A54 .679 467 .679 467
Chemistry 2, Physics 2, or Biology 2 .140 347 114 318 114 318
SES (Ref=Low)
Middle SES level 710 454 713 453 711 453
High SES level 136 343 123 328 124 329
Female (Ref =male) S11 .500 514 .500 513 .500
Race/ethnicity (Ref =White)
Black .098 297 120 325 119 324
Hispanic 138 345 156 363 157 364
Asian .092 .290 .041 197 .043 202
Native .059 235 .051 219 .050 219
Prior math achievement score (Ref=The lowest 25%)
25 to <50% 251 434 255 436 252 434
50 to <75% .250 433 .238 426 238 426
75 to 100 (The highest 25%) 252 434 .235 424 233 423
School mean SES (Ref =low school mean SES)
Middle school mean SES 709 A54 743 437 743 437
High school mean SES .155 362 112 315 112 315
School Type (Ref =public)
Catholic 118 323 .051 220 .051 219
Other private .078 267 .038 192 .038 192
School location (Ref=urban)
Suburban 412 492 418 493 418 493
Rural 240 427 246 430 246 431
Course offering
Algebra 2 .994 .074 .994 .078 .995 .076
Calculus 915 .280 915 279 911 278
Chemistry 1 .994 .080 993 .082 .994 .074
.848 359 .857 351 .882 323

Chemistry 2, Physics 2, or Biology 2

Note. S.D. = standard deviation
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Appendix D. Changes in biology 2 course-taking patterns across three cohorts

Table D1. Adjusted Marginal Effects of Individual- and School-Level SSES from the Multilevel Logit Models Estimating Completing
Biology 2 Coursework

Panel A: Individual SES

Low SES Middle SES High SES
1992 cohort® -.01 (.01) .01 (.01) .02 (.02)
2013 cohort® -.04%* (.02) -01 (.01) -.02 (.01)
Panel B: School Mean SES
Low school mean SES? Middle school mean SES* High school mean SES?
1992 cohort® 0.03 (0.03) 0.00 (0.01) 0.02 (0.02)
2013 cohort® -0.02 (0.02) -0.02 (0.01) -0.02 (0.02)

Note. *The reference group is the 2004 cohort. For each cohort, low SES, and low school SES were refined as at least one standard
deviation below the mean value, middle as the of their values between —1 standard deviation and + 1 standard deviation, and high as at
least one standard deviation above the mean value. All other covariates, including sex, race/ethnicity, ninth/tenth grade mathematics
achievement score, school mean mathematics score, school location, and type, were held at their mean values. Alongside the control
variables, the interaction term between cohort and SES was included in the estimation of Panel A model, and the interaction between
cohort and school mean SES was included in the estimation of Panel B in the multilevel logistic models. N=36,800.

w6k p< 001, ¥* p<.01, * p<.05
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Figure D.1. Predicted probability of completing Biology 2 by SES group across three cohort
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Note. All other covariates, including individual SES, sex, race/ethnicity, ninth/tenth grade mathematics achievement score, school
mean SES, school mean mathematics score, coursework offering, school location, and type, were held at their mean values. Low SES
was defined as at least one standard deviation below the SES mean, middle SES as the family SES index between —1 standard
deviation and + 1 standard deviation, and high SES as at least one standard deviation above the SES mean. Shaded area indicates 95%
confidence interval.
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Appendix E. Comparison of multilevel logit models by application of weights and use of imputed datasets

Table E.1. Full results of interaction effect between individual SES and cohort on the likelihood of completing advanced mathematics

and science coursework

Algebra2 or above Calculus Chemistry 1, or above Physics 2, Chemistry 2, or Biology 2
Variables @ @ 3 (€] @ @ 3 [C)] @ @ 3) (€] @ [©)] 3) ()]
Individual Socio-
economic Status
(SES)
(Ref.: Low SES)
Middle SES 1.06%*+* 1.14%%* 0.97%** 0.35%** 1.02%** 1.26%+* 0.43+ 0.16 1.07%*** 1.20%** 0.84%** 0.32%%* 1.11%* 0.98%** 0.46* 0.23
(0.07) (0.10) (0.12) (0.09) (0.13) (0.17) (0.22) (0.16) (0.07) (0.10) (0.11) (0.09) (0.17) (0.19) (0.20) (0.15)
High SES 2.25%%* 2.02%** 1.53%#% 0.83%** 2.03%** 2.209%%* 0.90%** 0.77%%% 2224 227k 1.55%#% 0.90%** 2.17%%* 2.06%** 1.14%%% 0.86%**
(0.12) (0.20) (0.20) (0.16) (0.15) (0.19) (0.24) (0.18) (0.11) (0.16) (0.19) (0.15) (0.18) (0.21) (0.22) (0.17)
Cohort
(Ref.: 1992 Cohort)
2004 Cohort 0.46%** 0.44%% 0.49%* -0.36% 0.47%* 0.72%** 0.56* -0.70%* 0.78%%* 0.87%** 0.89%** -0.91 %+ I R 0.97%%* 1.09%** AL
(0.10) (0.12) (0.15) (0.14) 0.17) (0.21) (0.28) (0.24) (0.10) (0.13) (0.15) (0.15) (0.20) (0.23) (0.25) (0.26)
2013 Cohort 1.72%% 1.80%** 2.09%* 1.55%* 0.74%** 1.05% % 0.84* 0.17 1.32%#% 1.37%% 1.38%** 0.43%* 1.21%%% 1.12%%* 1.08%** 0.01
(0.10) (0.14) (0.19) (0.16) (0.16) (0.22) (0.33) (0.24) (0.10) (0.14) (0.16) (0.15) (0.19) (0.24) (0.28) (0.23)
Gender (Ref.: Male) 0.49%* 0.44%% -0.02 -0.02 0.36%** 0.35%%* 0.18%* 0.17%*
(0.06) (0.05) (0.05) (0.05) (0.05) (0.04) (0.06) (0.06)
Race/ethnicity
(Ref.: White)
Black 0.28* 0.16F -0.38%* -0.30* 0.12 0.08 0.01 -0.06
(0.11) (0.09) (0.14) (0.12) (0.08) (0.07) (0.17) (0.16)
Latinx -0.12 -0.12 -0.09 -0.13 -0.05 -0.05 -0.19 -0.227F
(0.12) (0.09) (0.11) (0.10) (0.08) (0.08) (0.13) (0.13)
Asian 0.85%* 0.85%** 1.28%** 1.35%%% 0.80%** 0.85%*+* 1.20%** 1.21%%*
(0.13) (0.12) (0.11) (0.10) (0.12) (0.11) (0.10) (0.10)
Native 0.03 0.01 -0.04 -0.06 -0.06 -0.07 0.00 0.01
(0.11) (0.10) (0.13) (0.12) (0.10) (0.10) (0.13) (0.12)
Prior math
achievement score®
(Ref.: The lowest
25%)
25 to <50% 1.27%%* 1.23%%* 1.19%%* 117%%% 1.01%** 0.98*** 0.67%*** 0.96%**
(0.08) (0.07) (0.16) (0.16) (0.06) (0.06) (0.15) (0.14)
50 to <75% 2.4 %% 2.34%k% 2.5] %% 2.38%k* 2.01%** 1.97%#% 1.79%*% 1.92%#%
(0.08) (0.08) (0.16) (0.15) (0.06) (0.06) (0.16) (0.12)
75 to 100 (The 3.59%**
highest 25%) 337wk 4.26%+* 4.08%** 3.05%** 2.97%#% 2.97%** 3.2k
(0.11) (0.11) (0.16) (0.15) (0.09) (0.08) (0.17) (0.12)
School location
(Ref.: Urban)
Suburban -0.11 0.09 0.12 0.13 -0.08 -0.07 -0.23* -0.25%
(0.10) (0.10) (0.09) (0.09) (0.10) (0.10) (0.11) (0.11)
Rural 0.03 0.09 0.03 -0.00 -0.19 -0.21 -0.52% % -0.53 %k
(0.13) (0.12) (0.11) (0.11) (0.13) (0.13) (0.12) (0.12)
School mean SES
(Ref.: Low school
mean SES)
Middle school
mean SES -0.12 -0.05 0.15 0.09 -0.06 -0.04 0.03 0.07
(0.12) (0.10) (0.15) (0.12) (0.10) (0.10) (0.13) (0.12)
High school mean
SES 0.90%** 1.01%** 0.36% 0.36* 0.49%* 0.50%* 0.15 0.24
(0.19) (0.18) (0.18) (0.16) (0.17) (0.16) (0.19) (0.18)
School mean math
achievement score -0.03##* -0.03#*#* -0.02* -0.027%* -0.03%** -0.03 %% -0.01 -0.01
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

School Type
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(Ref.: Public)

Catholic 1.47%+* 1.48%* 0.43%%x 0.38%* 0.84%** 0.90%** 0.01 -0.01
(0.22) (0.23) (0.12) (0.12) (0.14) (0.14) (0.17) (0.17)
Other private 0.52% 0.60%* 0.49%%* 0.42% 0.78%#% 0.727%#% -0.33 -0.37
(0.21) (0.18) (0.18) (0.16) (0.19) (0.18) (0.31) (0.29)
Coursework offering® 0.89 0.65 1,22k 0.95%%* -0.36 -0.11 1,134 1.14%8%
(0.67) (0.72) (0.19) (0.21) (0.78) (0.71) (0.26) (0.26)
Interaction terms®
Individual SES x
Cohort
(Ref.: Low SES, 1992
Cohort)
Middle SES x 2004
Cohort -0.36%** -0.42%*%* -0.60%** 0.37%* -0.34% -0.51* -0.26 0.36 -0.38%** -0.54%** -0.54% % 0.52%** -0.50% -0.28 -0.22 0.19
(0.09) (0.13) (0.15) (0.14) (0.17) (0.22) (0.28) (0.25) (0.09) (0.13) (0.14) (0.14) (0.20) (0.23) (0.24) (0.26)
Middle SES x 2013
Cohort -0.39%#* -0.58%#%* -0.79%#* -0.10 -0.14 -0.44% -0.16 0.24 -0.427% %% -0.63%#* -0.56%#* 0.03 -0.22 -0.07 0.23 0.40F
(0.10) (0.15) (0.19) (0.15) (0.16) (0.22) (0.33) (0.24) (0.09) (0.14) (0.16) (0.13) (0.19) (0.24) (0.28) (0.22)
High SES x 2004
Cohort -0.58%** -0.27 -0.65* 0.30 -0.327 -0.40 -0.08 0.26 -0.60%** -0.57%%* -0.65%* 0.66%* -0.64%* -0.32 -0.27 0.29
(0.16) (0.25) (0.26) (0.28) (0.19) (0.24) (0.31) (0.28) (0.15) (0.21) (0.23) (0.23) (0.22) (0.26) (0.27) (0.29)
High SES x 2013
Cohort -0.51% -0.27 -0.44 -0.13 -0.13 -0.39 0.08 0.22 -0.26 -0.27 -0.10 0.40 -0.49% -0.28 0.04 0.18
(0.22) (0.31) (0.35) (0.32) (0.18) (0.25) (0.35) (0.27) (0.18) (0.26) (0.27) (0.24) (0.22) (0.27) (0.31) (0.25)
Intercept 0.18** 0.11 -0.56 1.61%** -3.35% % -3.84kx 634k 1.2]%%* -0.40%** -0.52%** 0.30 1.66%** -4.08%** -4.20%%* <61 1% 1.61%**
(0.07) (0.09) (0.79) (0.11) (0.13) (0.16) (0.50) (0.10) (0.07) (0.09) (0.85) (0.09) (0.17) (0.19) (0.50) (0.12)
School-level intercept
variance 1.10%** 1.34%%% 1.62% % 0.08 0.86%** 0.99%** 1.10%** -5.37%k* 1.22%*%* 1.39%#% 1.74%%% 0.80 1.32%%% 1.41%%% 1.64%** -5.09%**
(0.06) (0.09) (0.12) (0.79) (0.05) (0.08) (0.10) (0.38) (0.06) (0.08) (0.10) (0.78) (0.08) (0.10) (0.12) (0.43)

Note.

The clustered robust standard errors which account for the clustering at the school level are reported in parentheses. The models—(1) without
weight (NV=33,950), (2) with weight(N=33,950), (3) with weight and control variables(N=27,870), and (4) with weight, control variables, and
imputed data (N=36,800)—are methodically delineated to showcase the variance in results contingent upon these adjustments.

#4% p< 001, ** p<.01, * p<.05, /p<.10

It indicates prior achievement score variable (ninth (HSLS:2009) or tenth grade (NELS:88 and ELS:2002) standardized math test scores) as a
proxy of students’ achievement level at the beginning of high school. As HSLS:09 utilized different content and scaling of mathematics tests, and
the timing to test was not the same as NELS:88 and ELS:2002, the achievement score from HSLS:09 is not comparable to the other two cohort
data. In ELS:2002, test specifications were adapted from frameworks utilized in the NELS:88. Mathematics assessments encompassed items
spanning arithmetic, geometry, data/probability, and advanced topics. Compared to the NELS:88 assessments, the ELS:2002 math tests placed a
heightened emphasis on practical applications and problem-solving (Ingels et al., 2004). In the HSLS, a framework was developed to gauge
student achievement in algebra, track changes in this achievement over time, and explore its correlation with various individual, home, and school
factors. This framework aligns a set of items with algebraic reasoning (Duprey et al., 2018). To ensure consistency and control for relative cohort

positions within the model, we standardized starting mathematics achievement scores for each cohort to a mean of 0 and a standard deviation of 1. This approach allows for
meaningful comparisons across cohorts by focusing on relative changes rather than absolute score levels.

*It indicates whether courses such as ‘Algebra 2°, ‘Calculus’, "Chemistry 1°, or ‘Physics 2, Chemistry 2, or Biology 2’, respectively, were offered
in schools, based on each model’s estimation of coursework completion, with course offerings matched to each outcome in the estimation.
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°To provide a clearer interpretation of the interactions between individual SES and cohort, we used a post-estimation approach to compute adjusted
marginal effect estimates. This enabled us to demonstrate changes in the probability of completing mathematics and science coursework across
different cohorts and SES subgroups, with covariates fixed at their mean values. The results are shown in Table 3.
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Table E.2. Full results of interaction effect between school mean SES and cohort on the likelihood of completing advanced
mathematics and science coursework

Algebra2 or above Calculus Chemistry 1, or above Physics 2, Chemistry 2, or Biology 2
Variables Q)] (2) 3) “4) @ ) (3) “4) @ (2) 3) 4 Q)] ) 3) )]
School mean SES
(Ref.: Low school
mean SES)
Middle school
mean SES 0.56%** 0.61%%* -0.08 0.00 0.56%*%* 0.71%%% -0.43 -0.33 0.55%#% 0.59%#* -0.06 -0.02 0.68%*#* 0.80%#%* -0.10 -0.05
(0.11) (0.13) (0.20) (0.16) (0.15) (0.18) (0.27) (0.21) (0.12) (0.12) (0.15) (0.14) (0.20) (0.24) (0.29) (0.26)
High school mean
SES 2.65%** 2.69%** 1.43%% 1.45%*% 1.93%*% 1.87%** -0.31 -0.19 2.23%*% 2.14%%x 0.67*%* 0.70%* 1.83%*% 1.96%** 0.26 0.32
(0.18) (0.23) (0.33) (0.28) (0.18) (0.21) (0.31) (0.25) (0.16) (0.19) (0.24) (0.22) (0.22) (0.27) (0.35) (0.32)
Cohort
(Ref.: 1992 Cohort)
2004 Cohort 0.23 0.18 -0.03 0.10 0.19 0.25 -0.12 0.07 0.50%** 0.48** 0.35+ 0.40% 0.95%** 1.08%** 1.04%* 1.07%**
(0.14) (0.19) (0.27) (0.23) (0.19) (0.23) (0.32) (0.26) (0.15) (0.16) (0.20) (0.19) (0.23) (0.28) (0.32) (0.30)
2013 Cohort 1.64%** 1.75%%% 1.69%** 1.72%%% 0.30 0.457+ -0.12 0.08 1.24%%% 1.26%** 1.04%%* 1.06%** 0.92%** 10 0.95%* 0.95%*
(0.15) (0.19) (0.26) (0.23) (0.18) (0.24) (0.35) (0.28) (0.14) (0.17) (0.23) (0.21) (0.22) (0.27) (0.32) (0.29)
Female (Ref.: Male) 0.49%#* 0.44%*% -0.02 -0.01 0.36%** 0.35%%* 0.18%* 0.17%*
(0.06) (0.05) (0.05) (0.05) (0.05) (0.04) (0.06) (0.06)
Race/ethnicity
(Ref.: White)
Black 0.27* 0.1611 -0.38** -0.30% 0.12 0.08 0.02 -0.06
(0.11) (0.09) (0.14) (0.12) (0.08) (0.07) (0.17) (0.16)
Latinx -0.11 -0.12 -0.08 -0.13 -0.04 -0.04 -0.19 -0.221+
(0.12) (0.09) (0.11) (0.10) (0.08) (0.08) (0.13) (0.13)
Asian 0.86%** 0.86%** 1.28%* 1.36%*+* 0.8 %% 0.87%%* 1.20%** 1.21%%*
(0.14) (0.13) (0.11) (0.10) (0.13) (0.11) (0.10) (0.10)
Native 0.03 0.01 -0.04 -0.06 -0.06 -0.07 0.01 0.01
(0.11) (0.10) (0.13) (0.12) (0.10) (0.09) (0.13) (0.12)
Prior math
achievement score®
(Ref.: The lowest
25%)
25 to <50% 1.26%* 1.23 %% 1.19%#* 1.17%+% 1.01%*% 0.97#%* 0.67%** 0.96%**
(0.08) (0.07) (0.16) (0.16) (0.06) (0.06) (0.15) (0.14)
50 to <75% 2.40%** 2344k 2.5] %k 2.38%** 2,01 1.97#%* 1.79%%* 1.92% %%
(0.08) (0.08) (0.16) (0.15) (0.06) (0.06) (0.16) (0.11)
75 to 100 (The
highest 25%) 3.58%*k* 337k 4.26%** 4.08%* 3.05% 2,97 2.98* %k 3124k
(0.11) (0.11) (0.16) (0.15) (0.09) (0.08) (0.17) (0.12)
School location
(Ref.: Urban)
Suburban -0.11 0.09 0.12 0.13 -0.08 -0.07 -0.22% -0.25%
(0.10) (0.10) (0.09) (0.08) (0.10) (0.10) (0.11) (0.11)
Rural 0.01 0.08 0.01 -0.02 -0.20 -0.22%F -0.50%** -0.51 %%
(0.13) (0.12) (0.11) (0.11) (0.13) (0.13) (0.12) (0.12)
Individual SES
(Ref.: Low SES)
Middle SES 0.46%** 0.43 %% 0.27* 0.34%* 0.45%%% 0.47%%% 0.46%** 0.46%**
(0.07) (0.06) (0.13) (0.11) (0.06) (0.06) (0.11) (0.10)
High SES 1.06%** 0.89%** 0.89%** 0.92%** 1.20%%* 1.18%%* 1.06%** 1.03%%*
(0.12) (0.12) (0.14) (0.12) (0.11) (0.10) (0.12) (0.11)
School mean math
achievement score -0.03##* -0.03%*%* -0.02* -0.027%* -0.03%#* -0.03##* -0.01 -0.01
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
School type
(Ref.: Public)
Catholic 1.49%#% 1.50%*%* 0.38%* 0.347%%* 0.85%#* 0.907%#* 0.04 0.01
(0.22) (0.23) (0.12) (0.12) (0.14) (0.14) (0.18) (0.17)
Other private 0.53* 0.60%* 0.47%* 0.41* 0.79%** 0.72%** -0.33 -0.37
(0.21) (0.18) (0.17) (0.16) (0.19) (0.17) (0.31) (0.29)
Coursework offering® 0.88 0.64 1.22%%% 0.96%** -0.35 -0.12 1.15%%% 1.15%%%
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(0.65) (0.71) (0.19) (0.21) (0.79) (0.72) (0.25) (0.25)
Interaction terms®
(Ref.: Low school
mean SES, 1992
Cohort
Middle school
mean SES x 2004
Cohort 0.04 0.03 0.15 0.05 0.13 0.10 0.55++ 0.38 0.08 0.04 0.18 0.16 -0.22 -0.31 -0.15 -0.15
(0.16) (0.21) (0.29) (0.25) (0.21) (0.25) (0.33) (0.28) (0.16) (0.19) (0.23) (0.22) (0.25) (0.30) (0.35) (0.32)
Middle school
mean SES x 2013
Cohort -0.21 -0.43* -0.20 -0.16 0.38F+ 0.17 0.87* 0.71* -0.23 -0.45% -0.09 -0.12 0.14 -0.04 0.43 0.40
(0.16) (0.21) (0.28) (0.25) (0.20) (0.25) (0.36) (0.29) (0.16) (0.20) (0.25) (0.23) (0.24) (0.29) (0.34) (0.32)
High school mean
SES x 2004 Cohort -0.59% -0.67* -0.59 -0.67+1 -0.35 -0.13 0.45 0.33 -0.53* -0.51%F -0.26 -0.32 -0.64* -0.63t -0.35 -0.31
(0.25) (0.33) (0.43) (0.38) (0.24) (0.29) (0.37) (0.32) (0.23) (0.28) (0.32) (0.30) (0.29) (0.34) (0.40) (0.37)
High school mean
SES x 2013 Cohort -0.78** -0.81* -0.91* -0.63 0.18 0.30 1.31%* 1.16%+* -0.72%* -0.63* -0.15 -0.17 -0.42 -0.53 -0.03 0.02
(0.27) (0.34) (0.45) (0.40) (0.23) (0.29) (0.40) (0.33) (0.23) (0.30) (0.37) (0.35) (0.28) (0.35) (0.39) (0.37)
Intercept 0.37%** 0.34%* -0.22 -0.10 -3.01%* =334k -5.68%** 5,53k -0.15 -0.15 0.60 0.18 2371k -4.03% %% -6.04% %% -6.13% %%
(0.10) (0.12) (0.79) (0.80) (0.14) (0.17) (0.50) (0.40) (0.10) (0.10) (0.86) (0.79) (0.19) (0.23) (0.53) (0.51)
School-level intercept
variance 0.94%** 1.19%** 1.61%** -0.63 0.75%** 0.92%** 1.10%** 1.16%+* 1.04%** 1.26%+* 1.75% %% -0.17 1.24%%% 1.34%%% 1.63%** 0.02
(0.05) (0.07) (0.12) (0.40) (0.05) (0.07) (0.10) (0.33) (0.05) (0.07) (0.10) (0.35) (0.07) (0.09) (0.12) (0.37)

Note.

The clustered robust standard errors which account for the clustering at the school level are reported in parentheses. The models—(1) without
weight (V=33,950), (2) with weight(N=33,950), (3) with weight and control variables(N=27,870), and (4) with weight, control variables, and
imputed data (N=36,800)—are methodically delineated to showcase the variance in results contingent upon these adjustments.

#EE p< 001, ** p<.01, * p<.05, (p<.10

It indicates prior achievement score variable (ninth (HSLS:2009) or tenth grade (NELS:88 and ELS:2002) standardized math test scores) as a
proxy of students’ achievement level at the beginning of high school. As HSLS:09 utilized different content and scaling of mathematics tests, and
the timing to test was not the same as NELS:88 and ELS:2002, the achievement score from HSLS:09 is not comparable to the other two cohort
data. In ELS:2002, test specifications were adapted from frameworks utilized in the NELS:88. Mathematics assessments encompassed items
spanning arithmetic, geometry, data/probability, and advanced topics. Compared to the NELS:88 assessments, the ELS:2002 math tests placed a
heightened emphasis on practical applications and problem-solving (Ingels et al., 2004). In the HSLS, a framework was developed to gauge
student achievement in algebra, track changes in this achievement over time, and explore its correlation with various individual, home, and school
factors. This framework aligns a set of items with algebraic reasoning (Duprey et al., 2018). To ensure consistency and control for relative cohort
positions within the model, we standardized starting mathematics achievement scores for each cohort to a mean of 0 and a standard deviation of 1. This approach allows for
meaningful comparisons across cohorts by focusing on relative changes rather than absolute score levels.

°It indicates whether courses such as ‘Algebra 2’, ‘Calculus’, "Chemistry 1°, or ‘Physics 2, Chemistry 2, or Biology 2’, respectively, were offered
in schools, based on each model’s estimation of coursework completion, with course offerings matched to each outcome in the estimation.

¢ To provide a clearer interpretation of the interaction between school mean SES and cohort, we used a post-estimation approach to compute
adjusted marginal effect estimates. This enabled us to demonstrate changes in the probability of completing mathematics and science coursework
across different cohorts and school mean SES subgroups, with covariates fixed at their mean values. The results are shown in Tables 4.
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