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Summary

� Rising atmospheric carbon dioxide concentrations (CO2) and atmospheric nitrogen (N)

deposition have contrasting effects on ectomycorrhizal (EM) and arbuscular mycorrhizal (AM)

symbioses, potentially mediating forest responses to environmental change.
� In this study, we evaluated the cumulative effects of historical environmental change on N

concentrations and d
15N values in AM plants, EM plants, EM fungi, and saprotrophic fungi

using herbarium specimens collected in Minnesota, USA from 1871 to 2016. To better under-

stand mycorrhizal mediation of foliar d15N, we also analyzed a subset of previously published

foliar d15N values from across the United States to parse the effects of N deposition and CO2

rise.
� Over the last century in Minnesota, N concentrations declined among all groups except

saprotrophic fungi. d15N also declined among all groups of plants and fungi; however, foliar

d
15N declined less in EM plants than in AM plants. In the analysis of previously published foliar

d
15N values, this slope difference between EM and AM plants was better explained by nitro-

gen deposition than by CO2 rise.
� Mycorrhizal type did not explain trajectories of plant N concentrations. Instead, plants and

EM fungi exhibited similar declines in N concentrations, consistent with declining forest N sta-

tus despite moderate levels of N deposition.

Introduction

Mycorrhizal type is increasingly invoked to predict forest
responses to environmental change (Terrer et al., 2016; Averill
et al., 2018; Baldrian et al., 2023). Most trees associate with
either ectomycorrhizal (EM) or arbuscular mycorrhizal (AM)
fungi (Steidinger et al., 2019), which differ in their nutrient
acquisition strategies (Smith & Read, 2010). Because EM fungi
can obtain nutrients directly from organic matter (Lindahl &
Tunlid, 2015; Shah et al., 2016; Frey, 2019), EM plants are bet-
ter adapted to conditions of low inorganic nutrient availability,
while AM plants and fungi are better adapted to inorganic nutri-
ent acquisition (Phillips et al., 2013). As such, mycorrhizal type
may mediate forest responses to environmental changes that alter
soil nutrient availability or demand, such as atmospheric nitrogen
(N) deposition or rising carbon dioxide (CO2) concentrations
(Mohan et al., 2014).

Atmospheric N deposition increases inputs of bioavailable
inorganic N to soils (Galloway et al., 2004). Consistent with the

idea that AM symbionts are better adapted to soils with high
inorganic nutrient availability, Averill et al. (2018) found that
AM tree recruitment increased and EM tree recruitment
decreased with greater amounts of N deposition across the Uni-
ted States. Concurrently, some EM fungi appear sensitive to N
deposition, evidenced by marked declines in sporocarp produc-
tion followed by a shift in belowground community structure
toward ‘nitrotolerant’ species (Arnolds, 1991; Lilleskov et al.,
2011). Indicators of decreased belowground EM fungal abun-
dance have been documented with N addition (H€ogberg
et al., 2011), although this potential consequence is often overge-
neralized (Lilleskov et al., 2019; Karst et al., 2021).

Rising atmospheric CO2, however, may favor EM plants and
fungi if increasing CO2 concentrations stimulate plant N
demand, requiring increased N acquisition from organic pools
(Pellitier et al., 2021). Historical declines in plant tissue d

15N
and [N] have been interpreted as evidence that rising CO2 stimu-
lates plant N demand, decreasing ecosystem N-loss pathways that
discriminate against 15N (McLauchlan et al., 2010; Craine
et al., 2018). Furthermore, in a meta-analysis of free air CO2

enrichment studies, elevated CO2 enhanced the growth of EM
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plants but not AM plants at low N availability sites (Terrer
et al., 2016). Alternatively, in highly N-limited environments,
such as boreal forests (N€asholm et al., 2013), EM fungi may
instead limit N availability to plants under rising CO2 by out-
competing plants for N (Alberton et al., 2007; Dong
et al., 2018).

The analysis of herbarium collections offers a novel opportu-
nity to evaluate the effects of rising atmospheric CO2 and N
deposition on plant N status over historical increases in both glo-
bal change drivers. For instance, historical declines in foliar N
concentrations and d

15N reported across terrestrial ecosystems
(Craine et al., 2018) may not occur in an area with historical N
deposition, particularly among AM plants better adapted to
acquire inorganic N. By contrast, increased plant N demand
under rising CO2 may swamp N inputs from N deposition,
resulting in declining foliar N concentrations and d

15N. How-
ever, these declines may be smaller or nonexistent among EM
plants if their N supply can be supplemented by organic N. Alter-
natively, if N deposition mitigates organic N access among EM
fungi and by extension, their ability to supplement plant N, while
failing to directly satisfy increasing plant N demand, EM and
AM plants may show similar declines in N concentrations under
rising CO2.

Since fungi are both subject to and mediators of soil N avail-
ability, sampling fungal herbarium collections in addition to
plants allows for assessment of whether fungi have experienced
concomitant declines in indices of fungal N status (Hobbie
et al., 2019; Kranabetter et al., 2019) that have been observed in
plant tissues (Craine et al., 2018). The long-term trajectories of
fungal N status may, however, differ by ecological guild (sapro-
trophic vs EM). For example, EM fungi with ready access to
photosynthate may outcompete saprotrophic fungi for soil N
(Fernandez et al., 2019), potentially stabilizing N acquisition
over environmental changes.

To evaluate the cumulative effects of historical environmental
change on plant and fungal N status, we analyzed N concentra-
tions and d

15N among 493 plant and fungal collections made
in Minnesota from 1871 to 2016. Over this period,
atmospheric N deposition varied six-fold in Minnesota, peaking
at 18 kg ha�1 yr�1 in the 1990s (Clark et al., 2018) and

atmospheric CO2 increased by 40% (Belmecheri & Lavergne,
2020). This region was therefore well-suited for evaluating the
cumulative effects of historical N deposition and CO2 increase.
Specifically, we tested whether (1) plant and fungal N concentra-
tions and d

15N declined in an area experiencing CO2 rise
and increasing N deposition and (2) trajectories of plant d15N
and N concentrations diverged by mycorrhizal type. We also ana-
lyzed a subset of previously published foliar d15N values (Craine
et al., 2019) to parse the effects of CO2 rise, N deposition, and
mycorrhizal controls of d15N. In this second dataset, we tested
the extent to which (1) CO2 rise or N deposition explains
declines in foliar d

15N and (2) d
15N trajectories diverged by

mycorrhizal type with CO2 rise or N deposition.

Materials and Methods

Herbarium study: sample selection

Three hundred twenty-four plant and 232 fungal specimens were
selected from the collections at the Bell Herbarium at the Univer-
sity of Minnesota from within a 130 km radius surrounding the
University of Minnesota Saint Paul Campus, USA (44.9849°N,
93.1853°W) (Figs 1, 2a). This area is composed of temperate
hardwood forests, with a mean annual temperature of 7.2°C and
annual precipitation of c. 838 mm. Samples were selected from
genera whose records spanned at least eight decades between
1880 and 2010. The 16 genera sampled belong to four ecological
groups: EM plants, AM plants, EM fungi, and saprotrophic fungi
(AM fungi do not typically produce macroscopic sporocarps, so
could not be included). To eliminate the effects of plant life
form, we selected only broadleaf deciduous genera. Plant mycor-
rhizal type was assigned using the FUNGALROOT database (Soudzi-
lovskaia et al., 2019). Because herbarium collections were made
from mature Populus individuals, we considered Populus EM-
associated (Teste et al., 2020).

Fungal taxonomy was manually updated to reflect current
knowledge; some collections, however, lacked species-level identi-
fication (n = 16). Out of 55 species represented in the collections,
the median number of samples per species was two. Because we were
interested in accounting for species-level variation, we excluded

Fig. 1 Summary of foliar and sporocarp
samples from herbarium collections made in
Minnesota, USA, from 1871 to 2016. (a)
Spatial distribution of ectomycorrhizal (EM)
and non-EM collections with exact
coordinate information. (b) Genus-level
collections of arbuscular mycorrhizal (AM)
and EM plants and EM and saprotrophic
fungi across time. Black circles, dotted
line = non-EM; green triangles, solid
line = EM.
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samples without species identity and from species with fewer
than three representatives (nremoved = 63, nfungi retained = 169,
nall retained = 493). The EM fungal genus Tricholoma was excluded
after this step because of sparse species-level collections.
Summary information about the final dataset is in Supporting
Information Table S1 and Fig. 1.

Herbarium study: elemental and isotopic analysis

Foliar and sporocarp tissues were homogenized before
analysis via either an Elementar Vario Pyrocube (Hanau, Ger-
many) interfaced to an Isoprime 100 isotope ratio mass spectro-
meter (Cheadle, UK) at the University of Minnesota or an
Elementar Vario EL Cube interfaced to a PDZ Europa 20–20
isotope ratio mass spectrometer (Sercon Ltd, Cheshire, UK) at
the University of California-Davis Stable Isotope Facility. See
Methods S1 and Fig. S1 for quality control steps to ensure consis-
tent data between the two facilities.

Herbarium study: statistical analyses

All statistical analyses were performed in R, v.4.3.0 (R Core
Team, 2023). Models were fitted using the lmer function in the
LME4 package (Bates et al., 2015), P-values produced using
Satterthwaite’s approximations of degrees of freedom with the
LMERTEST package (Kuznetsova et al., 2017). Prediction intervals
were produced using the predictInterval function in the MER-

TOOLS package (Knowles & Frederick, 2016).
Initial models included random effects to account for potential

effects of species identity, genus, seasonality (month), and geo-
graphic location (county). To evaluate potential differences in
baseline [N] and d

15N and temporal trends between groups, the
fixed effects of year, group, and their interaction were included.
Year was a continuous variable (0–145 corresponding to years
1871–2016) and group was a categorical variable (EM plant, AM
plant, EM fungus, and saprotrophic fungus). Backward stepwise
selection using the function step in the LMERTEST package
(Kuznetsova et al., 2017) was performed on the random effects to
improve model parsimony and avoid overfitting. Final models
included only the preserved random effects and original fixed
effects.

Models of foliar and sporocarp [N] were run separately on
plants and fungi, given the differences between leaf and

mushroom stoichiometry. Natural log-transformed [N] values
were used to satisfy the assumption of heteroscedasticity.
Back-transformed statistics are reported in the text to aid
interpretation. In the model of foliar [N], preserved random
effects accounted for differences in seasonality (month), geogra-
phy (county), and species and genus identity (species nested
within genus). Backward stepwise selection on the model of spor-
ocarp [N] eliminated the effects of seasonality, preserving species
nested within genus and county.

Sporocarp and foliar d
15N were modeled globally, treating

d
15N as a tracer comparable across leaves and mushrooms. Com-

paring trajectories of foliar d15N between EM and AM plants
allows us to test potential mycorrhizal controls of d15N. Specifi-
cally, the leaves of EM plants are typically 15N-depleted relative
to AM leaves, reflecting the preferential transfer of 15N-depleted
N compounds from EM fungi to their plant partners (Craine
et al., 2009). 15N depletion of transfer compounds is driven by
both the fractionation that occurs during compound synthesis,
and preferential retention of 15N in EM fungal biomass (Hobbie
& H€ogberg, 2012). EM foliar N may thus become less 15N-
depleted relative to AM foliar N when (1) EM plants source less
N from EM fungi overall or (2) less 15N is retained in EM fungal
biomass (Hobbie & Colpaert, 2003). As in the [N] models, the
full set of possible random effects was reduced using backward
stepwise selection. The final set of random effects included spe-
cies identity nested within genus. Fixed effects, as in the [N]
model, included group, year, and their interaction to test for dif-
ferent temporal trends across groups.

Spatial foliar d15N analysis: data compilation

We extracted foliar d15N and [N] data from Craine et al. (2018)
(Craine et al., 2019), in which each d

15N and [N] value repre-
sents an average for a given species at a given site (defined by 0.1°
latitude/longitude or c. 11 km) in 1 yr. We subsampled this data
to only include EM and AM plants in the United States
(n = 2138: nEM = 845, nAM = 1293, nspecies = 299). While we
were initially only interested in trees, data from AM trees were
far less abundant than EM trees, resulting in an imbalanced data-
set. We therefore included herbaceous plants as well, adding in
random effects based on taxonomy in our model structure to
account for the effects of life form, and excluded plants from
AM-only ecosystems (explained later). These data cover the

Fig. 2 Summary of foliar data compiled by
Craine et al. (2018) from arbuscular
mycorrhizal (AM) and ectomycorrhizal (EM)
plants analyzed (a) across the United States
(red circle indicates the location of samples
fromMinnesota) and (b) with reference to
contemporaneous atmospheric carbon
dioxide (CO2) concentrations and annual
nitrogen (N) deposition rates. Black
circles =AM plants; green triangles = EM
plants.
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period from 1980 to 2016. The original publication contains full
details about data collection, mycorrhizal type assignment, and
quality control procedures (Craine et al., 2018).

We next compiled additional features at the same geographic
scale that might capture variation in foliar d15N, including cli-
matic variables (mean annual temperature, aridity index, mean
annual precipitation, and net primary productivity), edaphic fea-
tures (soil pH, organic C content, total N, cation exchange capa-
city, clay, silt, sand fractions, and bulk density topsoil), land
cover features (developed/cultivated land), and vegetation fea-
tures (woody/herbaceous cover, EM/AM rootstocks). We also
included the 182 level III ecoregions of North America (Bai-
ley, 2014) to capture potential emergent effects of ecoregion.
Annual atmospheric CO2 concentrations were compiled from
Belmecheri & Lavergne (2020). Gridded decadal estimates of
annual N deposition at 129 12 km resolution were extracted for
each site from Clark et al. (2018). Projected EM/AM rootstocks
(Mg C ha�1) were extracted from Barcel�o et al. (2023) as a proxy
for potential EM/AM fungal abundance. The proportion of the
colonized mycorrhizal rootstock belonging to EM plants was cal-
culated for statistical analyses to represent EM fungal ‘domi-
nance’. Due to our interest in modelling EM d

15N relative to
AM d

15N from comparable ecosystems, we excluded all sites with
estimated EM rootstocks at 0Mg C ha�1 (n = 782).

All data layers were aggregated to 10 km9 10 km to approxi-
mate the resolution of the averaged foliar d15N and [N] values
from Craine et al. (2018). After combining all data layers and
excluding missing values, the final dataset contained 1108 obser-
vations (nEM = 466, nAM = 639). Information about the fre-
quency of species/genera included in the final dataset and their
mycorrhizal type is presented in Table S2 and their distribution
over space and relative to atmospheric CO2 and estimated N
deposition is summarized in Fig. 2. To avoid multicollinearity,
all aforementioned predictors were included in a mixed model
explaining foliar d15N, with ecoregion and species nested within
genus as random effects, after which VIF values for each predictor
was computed using the vif function in the CAR package (Fox &
Weisberg, 2018). Predictors with VIF above 3 were sequentially
excluded to yield the following set of predictors: log-transformed
foliar [N], plant mycorrhizal type, soil N content, soil pH, soil
organic carbon, clay and silt fractions, decadal estimates of
annual N deposition rates, annual atmospheric CO2, herbaceous
plant cover, developed land cover (cultivated land cover + built
land cover), proportion of EM rootstocks, mean annual precipi-
tation, mean annual temperature, latitude, longitude, net primary
productivity, plant species, genus, and ecoregion. Source, initial
resolution, and units of all original spatial layers are presented in
Table S3.

Spatial foliar d15N analysis: statistical analyses

Species nested within genus and ecoregion were included as ran-
dom effects to account for nonindependence arising from geo-
graphic and taxonomic clustering. These effects also captured
differences in d

15N arising from differences in plant life form. To
test whether foliar d15N diverged by mycorrhizal type depending

on variation in CO2 concentrations or N deposition, we included
two-way interactions between plant mycorrhizal type and CO2

concentrations and plant mycorrhizal type and N deposition
rates. Models were fitted using the lmer function in the LME4
package (Bates et al., 2015), with P-values produced using Sat-
terthwaite’s approximations of degrees of freedom with the
LMERTEST package (Kuznetsova et al., 2017).

Results

Herbarium study: mixed models of historical trends in tissue
d
15N and [N] in Minnesota

Foliar N concentrations in EM and AM plants declined similarly
over time in Minnesota (slopeyear:AM: �0.0019� 0.0004% yr�1,
PAM < 0.001; slopeyear:EM: 0.0011� 0.0004% yr�1, PEM =

0.009). Sporocarp [N] also declined in EM fungi (slopeyear:EM:
0.0016� 0.0007% yr�1, PEM = 0.019), but remained stable
among saprotrophic fungi (PSap = 0.51), although there was no
significant difference between their slopes (P = 0.25) (Fig. 3).
EM plants had lower foliar [N] in 1871 compared to AM plants
(difference = 0.145� 0.073, P = 0.038) and saprotrophic and
EM fungi showed no significant differences in modeled [N] in
1871, although saprotrophic fungi trended higher (Pfungi =
0.683) (Fig. 3).

Tissue d15N declined significantly across all groups over time
(Fig. 3). The decline was greatest among AM plants
(�0.043� 0.005& yr�1, P < 0.001), followed by EM
fungi (�0.038� 0.007& yr�1, P < 0.001), saprotrophic fungi
(�0.039� 0.009& yr�1, P < 0.001), and EM plants
(�0.028� 0.005& yr�1, P < 0.001). The only difference in the
slopes emerged among plants: EM foliar d15N declined signifi-
cantly less than AM foliar d15N (P = 0.026) (Fig. 3).

Spatial foliar d15N analysis: potential controls of foliar d15N
and EM fungal N retention across the United States of
America

The final model explained 59% of the variation in foliar d15N
across the United States (marginal r2 = 0.10/conditional
r2 = 0.59). Foliar d

15N was strongly and positively related to
foliar N concentrations, and negatively related to atmospheric
CO2 concentrations (Table 1). The interaction between mycor-
rhizal type and N deposition was significant (P < 0.001), while
the interaction between mycorrhizal type and CO2 was not. Spe-
cifically, AM foliar d15N was significantly and negatively related
to N deposition, while EM foliar d15N had no significant rela-
tionship with N deposition. Foliar d

15N was also significantly
related to soil N content, clay fraction, and silt fraction. Further-
more, the proportion of EM rootstocks was also strongly nega-
tively related to foliar d15N.

Changes in EM foliar 15N depletion across both studies

We calculated differences in foliar d15N between EM and AM
plants (EM d

15N–AM d
15N; d

15NEM–AM) in both datasets.
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d
15NEM–AM increased from �3.39� 1.38& in 1871 (P = 0.014)

to �1.27� 1.32& in 2016 (P = 0.34; Fig. 4a). Across the Uni-
ted States, we compared EM and AM foliar d15N at the mini-
mum level of N deposition represented in the dataset
(1.8 kg N ha�1 yr�1) and the third quartile level of N deposition
(6 kg N ha�1 yr�1) to avoid making predictions at levels of N
deposition with low coverage for AM plants (Fig. 2b). Across the
United States, the d

15NEM–AM increased from �1.17� 0.44&
at 1.8 kg N ha�1 yr�1 (P = 0.009) to 0.06� 0.30& at
6 kg N ha�1 yr�1 (P = 0.83) (Fig. 4b).

Discussion

Both EM and AM plants in Minnesota exhibited comparable
declines in foliar [N] over historical increases in atmospheric
CO2 concentrations, despite concomitant N deposition (Fig. 3).
This does not support the hypothesis that AM plants are favored
by N deposition because their mode of N acquisition is better
adapted to inorganic N environments, which is enhanced under
N deposition (Averill et al., 2018). At the same time, our results
also do not support the hypothesis that EM plants are advantaged
over AM plants in a rising CO2 world because they have better
access to organic N pools (Terrer et al., 2016). Instead, we found
that both groups appear increasingly N-limited despite inputs
from N deposition. These findings likely reflect that rising CO2

and N deposition (alongside other environmental shifts that have
occurred in Minnesota such as rising temperatures) interact to
influence plant N status, complicating predictions from experi-
ments that typically isolate CO2 and N deposition (Mohan
et al., 2014).

We admit that foliar N and d
15N are not perfect proxies for

plant N status. For example, foliar N concentrations may belie
changes in N content (Jonard et al., 2015) or in N use efficiency

under changing environmental conditions (Smith, 2022). Simi-
larly, foliar d15N may simply reflect the isotopic composition of
deposited N (Hiltbrunner et al., 2019). The design of our study,
however, addresses these concerns in two ways: (1) supplement-
ing foliar N trajectories with those of fungal sporocarps and (2)
conducting an additional analysis of foliar d15N among EM and
AM plants across the United States to compare how spatial varia-
tion in N deposition and temporal variation in CO2 concentra-
tions have influenced foliar d15N. We show that (1) declining
plant [N] was matched by declining [N] in EM fungal sporo-
carps, consistent with declining N availability over time to plants
and the fungi that partially moderate N supply (Fig. 3). This
result represents the first record of declining [N] in EM fungi
over historical timescales. We also found that (2) declining foliar
d
15N was linked to both CO2 rise and local N deposition,

although the latter was true among AM plants alone (Table 1).
Together, these findings add a new line of evidence for wide-
spread terrestrial N oligotrophication (Mason et al., 2022).

It is possible that long-term trajectories of EM fungal [N] and
d
15N may not closely track EM foliar [N] and d

15N. For exam-
ple, EM fungi have been shown in some cases to constrain N
availability to plants through N immobilization (N€asholm
et al., 2013; Hasselquist et al., 2016). Under rising CO2, inor-
ganic N pools may be insufficient to satisfy increased plant N
demand from longer growing seasons and/or increased photo-
synthesis (CO2 fertilization effect) (Elmore et al., 2016; Craine
et al., 2018), thereby increasing plant reliance on EM fungi for
organic N acquisition (Terrer et al., 2016; Pellitier et al., 2021).
If rising CO2 stimulates EM fungal growth, this should increase
EM fungal N immobilization and therefore increase plant N lim-
itation, thus decoupling EM plant and fungal N status when
using tissue [N] as an index (Dong et al., 2018). The comparable
declines in [N] among EM fungi and plants that we observed,

Fig. 3 Temporal trends in measured and
modeled [N] and d

15N among
ectomycorrhizal (EM) plants, arbuscular
mycorrhizal (AM) plants, EM fungi, and
saprotrophic (Sap) fungi with 80% prediction
intervals associated with fixed effects.
Asterisks indicate significant temporal trends
(*, P < 0.05; **, P < 0.01; ***, P < 0.001),
while letters denote differences in slope
between groups. Green triangles, solid
line = EM; black circles, dotted line = non-EM.
Marginal and conditional r2 values are given
for each of the three models (plant [N],
fungal [N], and d

15N) in the bottom right of
the corresponding panels.
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however, is not consistent with this scenario (Fig. 3). Specifically,
both EM fungi and plants exhibit declining [N] over a 40%
increase in atmospheric CO2 concentrations. We stress that our
study is situated in temperate forests, which differ from the Fen-
noscandian boreal forests from which evidence that EM fungi
maintain plant N limitation largely derives (H€ogberg
et al., 2017).

Tissue d
15N declined in both leaves and sporocarps (Fig. 3).

This finding represents the first record of declining d
15N in

fungal tissues, supplementing similar records from lake sedi-
ments, tree rings, and leaves (Mason et al., 2022). Foliar d15N
decline, however, was steeper in AM plants than in EM plants in
Minnesota. The significant interaction between mycorrhizal type
and N deposition rates in the model of foliar d15N across the
United States may explain this slope difference (Table 1). Specifi-
cally, N deposition was negatively related to AM but not EM
d
15N (Table 1). This interaction may arise from differences in N

source: if deposited N is low in d
15N, this signal may show up

faster in AM plants relying on ‘newer’ inorganic N compared
with EM plants acquiring significant portions of their N from
older, organic sources. This explanation is complicated by
evidence that plant tissue d15N does not reflect the isotopic signa-
ture of deposited N, but instead may reflect N deposition-
mediated changes in soil biogeochemical processes (Savard
et al., 2023). Indeed, this interaction, which resulted in a reduc-
tion of the 15N depletion characteristic of EM leaves relative to
AM leaves (Fig. 4b), may reflect a change in EM N transfer
dynamics that reduces the 15N depletion in foliar N. If plants
obtain a smaller proportion of N from EM fungi or EM fungal
N retention in mycelia decreases, foliar 15N depletion in EM
plants should decrease (Hobbie & H€ogberg, 2012). Both of these
explanations would be plausible under N deposition, which may
reduce EM plant reliance on organic N acquired by EM fungi, or
reduce EM fungal growth, lessening N sequestrations in nonmo-
bile pools that drive 15N depletion in foliar N (Lilleskov
et al., 2002, 2019; Hobbie & H€ogberg, 2012).

The stability of the [N] of saprotrophic fungal sporocarps over
14 decades is intriguing. Historical declines in plant tissue d15N
are often attributed to decreased soil N availability limiting the
microbial activities that drive soil 15N enrichment (Craine
et al., 2015). Organisms relying on soil N like saprotrophic fungi
may then exhibit declining N status over time. In our data, how-
ever, this was not the case. It is important to note that of the 71
saprotrophic fungal specimens analyzed in this study, the two
best represented species (Lycoperdon pyriforme and Psathyrella
candolleana, n = 31) are wood rotters. Because these fungi were
likely reliant on wood for N supply, their N trajectories may not
track soil N availability. Terrestrial saprotrophs may be more sen-
sitive to changes in soil N availability; however, investigating this
further was not possible in this study given limited species-level
collections. Future study of saprotrophic fungal N trajectories

Fig. 4 Changes in 15N depletion in
ectomycorrhizal (EM) vs arbuscular
mycorrhizal (AM) leaves across (a) 145 yr
environmental change in Minnesota, USA (b)
atmospheric nitrogen deposition rates across
the United States. Error bars represent
standard errors, estimated using the function
ggeffect in the GGEFFECTS package
(L€udecke, 2018).

Table 1 Summary of fixed effects in mixed model of ectomycorrhizal
(EM) and arbuscular mycorrhizal (AM) foliar d15N across the United
States (using data from Craine et al., 2018), grouped by climate
features (MAP, mean annual precipitation; MAT, mean annual
temperature; NPP, net primary productivity), land cover features
(Herbaceous, herbaceous land cover; Developed, built and agricultural
land cover; EM Rootstock Proportion, proportion of EM rootstocks),
location, edaphic features, plant features (log(Leaf N), log-transformed
leaf nitrogen concentrations; MT : AM, arbuscular mycorrhizal, MT :
EM, ectomycorrhizal), global change drivers, and interactions between
global change drivers (N deposition, nitrogen deposition; CO2, atmo-
spheric carbon dioxide) and mycorrhizal type.

Predictor Estimate SE P-value

MAP 5.73E-04 5.29E-04 0.280
MAT 9.55E-02 5.84E-02 0.103
NPP 1.50E-04 1.67E-04 0.369
Herbaceous cover 7.51E-03 1.15E-02 0.514
Developed land cover 5.09E-03 9.43E-03 0.590
EM rootstock proportion �1.26E+00 4.32E-01 0.004

Latitude 1.91E-02 8.54E-02 0.823
Longitude �2.31E-03 2.39E-02 0.924
Soil N content �3.12E-03 1.15E-03 0.007

Soil organic carbon stock 1.28E-03 7.10E-04 0.072
Soil pH 4.89E-02 2.75E-02 0.076
Soil Clay Fraction �7.93E-03 2.34E-03 0.001

Soil Silt Fraction 4.92E-03 1.89E-03 0.010

log(Leaf Nitrogen Concentration) 3.89E+00 4.98E-01 < 0.001

MT : AM 7.53E+00 6.36E+00 0.237
MT : EM 1.85E-01 5.62E+00 0.974
N Deposition3MT : AMa

�3.09E-01 1.02E-01 0.002

N Deposition9MT : EMb
�1.43E-03 8.74E-02 0.987

CO23MT : AMa
�4.49E-02 1.16E-02 < 0.001

CO23MT : EMa
�3.02E-02 7.69E-03 < 0.001

Significant factors are bolded, significant interactions are indicated by
superscript letters.
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over time at the species level should help to better understand
how decomposers that both moderate and are subject to changing
soil N availability have responded to historical environmental
change.

Conclusions

Herbarium specimens contain rich information about ecosystem
responses to historical environmental change. By analyzing collec-
tions from a region that has experienced concomitant atmospheric
N deposition and CO2 rise, we found that foliar N trajectories did
not diverge by mycorrhizal type as expected from results based on
short-term experimentation. Instead, EM fungi as well as EM and
AM plants exhibited declining tissue N concentrations despite
regional N deposition, adding a new line of evidence in support of
widespread terrestrial N oligotrophication (Mason et al., 2022).
Smaller declines in EM foliar d15N than in AM foliar d15N in
Minnesota may be explained by divergent responses to N deposi-
tion, evidenced by the significant interaction between N
deposition and mycorrhizal type in the reanalysis of previously
published foliar d15N data from across the United States. These
differential responses likely reflect differences in N acquisition
between mycorrhizal types and warrant further investigation.
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