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Abstract

The geochemical characterization of phytoplankton-derived organic compounds found in marine sediments has been widely used to
reconstruct atmospheric pCO, thoughout the Cenozoic. This is possible owing to a well-established relationship between the carbon
isotope ratios of phytoplankton biomass and CO, concentration in the ambient seawater. An ideal molecular target for such proxy
reconstructions would be degradation resistant on geologic timescales and unambiguously associated with known, experimentally
tractable, organisms, so that species-specific models can be developed, calibrated, and applied to appropriate material. However,
existing organic matter targets do not quite meet these criteria, primarily owing to ambiguity in the source species of recalcitrant
compounds in deep time. Here we explore the potential of a novel organic carbon target for isotopic analysis: acidic polysaccharides
extracted from the calcite plates (coccoliths) that are produced by all calcifying haptophytes. Carbohydrates are usually rapidly
remineralized in sediments, but coccolith-associated polysaccharides (CAPs) are mechanically protected from diagenesis within
the coccolith calcite lattice. Coccoliths can be taxonomically separated by size and identified, often to species level, prior to
CAP extraction, providing a species-specific record. Coccolith morphology and composition are important additional sources
of information, which are then unambiguously associated with the extracted CAPs. We find that carbon isotope ratios of CAPs
changed in response to the environmental changes associated with a glacial cycle, which we attribute to temperature-driven changes
in average growth rate. Once the underlying biosynthetic processes and the associated isotope effects are better understood, this
archive of pristine organic matter has the potential to provide insight into phytoplankton growth rates and atmospheric pCO; far
beyond the Cenozoic, to when the first coccolithophores inhabited the surface ocean over 200 million years ago.

Keywords: Carbon isotopes, CO, proxies, acidic polysaccharides, coccolithophores, alkenones

(Holtz et al., 2017; Wilkes and Pearson, 2019; Hurley et al.,
2021; Phelps et al., 2021). It is therefore essential to know the
source of any organic matter analyzed so that isotope data can
be interpreted with the appropriate model and experimental cal-
ibration. Stable isotope ratios are also subject to diagenetic al-
teration, which has the potential to bias or corrupt the original
signal (Freudenthal et al., 2001). An ongoing challenge to re-
liable quantitative paleoenvironmental reconstructions is there-
fore the search for an organic matter target that can be: 1. un-
ambiguously attributed to a particular organism; and 2. whose
integrity from deposition to analysis can be assured. In this
manuscript we explore a novel organic matter target that has
the potential to meet both of these criteria.
€p is given by:

1. Introduction

Stable isotope ratios (3C:'>C) of organic carbon from an-
cient marine sediments have long been used to investigate
Earth’s past environments (e.g. Arthur et al., 1985; Dean et al.,
1986; Hayes et al., 1987; Rau et al., 1991; Hayes, 1993; Hayes
et al., 1999; Falkowski, 1991; Pearson, 2010; Ward and Shih,
2019; Karhu and Holland, 1996; Hayes and Waldbauer, 2006;
Pagani et al., 1999, 2005; Zhang et al., 2013; Freeman and
Hayes, 1992). The basis of Cenozoic pCO, reconstructions
is the fractionation of stable carbon isotopes between phyto-
plankton biomass and ambient CO; (e,), which results from a
large isotope effect associated with photosynthetic carbon fix-
ation, modulated by a reservoir effect. Early models of these
bioisotopic systems were fairly generic, consisting of a sin-
gle compartment representing the cytosol (Sharkey and Berry,
1985; Rau et al., 1996; Keller and Morel, 1999; Cassar et al.,
2006; Popp et al., 1998), but it has recently been shown that in-
terspecific differences in metabolism and ultrastructure / com-
partmentation among cyanobacteria and various groups of al-
gae have a marked effect on €, and must be modeled explicitly

5CO: + 1000
Obio + 1000

where ¢ values are given in permil (%o). dco, corresponds to
the carbon isotopic composition of dissolved CO;, and dp;, to
that of phytoplankton biomass (see Eq.2 for definitions). Phy-
toplankton biomass is depleted in '*C relative to ambient CO»,
so as defined here €, is positive, consistent with previous work

& 1000[ 1] ~  6co, ~Obio, (1)
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(Farquhar et al., 1982; Jasper et al., 1994). Empirically €, in-
creases in magnitude with increasing CO, concentration and
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decreases with increasing growth rate and cell size (Laws et al.,
1995; Bidigare et al., 1997).

In paleoclimate reconstructions dyi, (Eq.1) was originally es-
timated by analyzing bulk sedimentary marine particulate or-
ganic matter (POC) (Hollander and McKenzie, 1991; Freeman
and Hayes, 1992). POC has been largely replaced by molecular
organic markers, specifically alkenone and, more recently, phy-
tane lipids and their degradation products (Jasper and Hayes,
1990; Pagani et al., 1999; Pagani, 2002; Laws et al., 2002; Pa-
gani et al., 2005, 2011; Seki et al., 2010; Badger et al., 2013;
Zhang et al., 2013, 2020; Witkowski et al., 2018, 2019, 2020).
Alkenones, a class of putative storage lipids (Conte et al., 1995),
are produced in the modern ocean by a single known order of
haptophyte algae, the Isochrysidales, which includes the cal-
cifying genus Gephyrocapsa (Marlowe et al., 1990) including
the cosmopolitan G. huxleyi (synonym Emiliania huxleyi, Rein-
hardt, 1972). They are highly degradation-resistant, and found
in marine sediments as old as 120Ma (Brassell et al., 2004) (but
are increasingly scarce prior to ~ 30 Ma).

Coccoliths, the calcite plates that are produced by calcify-
ing haptophytes (collectively known as coccolithophores), are
often preserved in sediment alongside alkenones. All modern
Isochrysidales appear to produce alkenones, and the appearance
of alkenones in the sedimentary record coincides with the first
appearance of coccoliths of this group (Liu et al., 2010), provid-
ing a basis for their assumed affiliation on geologic timescales.
The morphology of coccoliths can be used to identify the taxo-
nomic affinity of the source organism (Young et al., 2017) and
estimate cell size (Henderiks and Rickaby, 2007; Henderiks
and Pagani, 2008; Henderiks, 2008), and their trace metal ra-
tios can potentially even provide estimates of growth rate (Stoll
and Schrag, 2000; Rickaby et al., 2002; Langer et al., 2006).

However, the confidence with which alkenones in sediment
can be attributed to the organisms that produced contempo-
raneous coccoliths is limited by the fact that cells disinte-
grate after death, and these components of cellular material
are found separately to one another in marine sediments. Non-
calcifying species of Isochrysidales, which do not have a fos-
sil record, also contribute to sedimentary alkenones. Further-
more, when multiple species and sizes of Isochrisodales coccol-
iths are present, attributing their weighted contibution to sedi-
mentary alkenones depends on differences in coccolith preser-
vation (Andruleit et al., 2004) and variations in the number of
coccoliths and amount of alkenone lipids produced by differ-
ent species. These ambiguities, in addition to the observation
that alkenones may be transported and recycled differently to
other components of sediment (Hayes et al., 1987; Ohkouchi
et al., 2002; Mollenhauer et al., 2003) weakens the assumption
that the auxillary information derived from coccoliths pertains
to the producers of the alkenones in the same samples.

Here we explore the potential of coccolith associated acidic
polysaccharides (CAPs) as a novel target for organic carbon iso-
topic analysis. CAPs are carbohydrates, molecules that are not
usually preserved on geologic timescales. In coccolithophores,
however, the precipitation of calcite occurs in an intracellular
golgi body-derived compartment called the coccolith vesicle
(Young, 2003), onto a precursor organic framework consist-

ing of CAPs (Marsh et al., 1992; Marsh, 1994; Marsh et al.,
2002). Consequently, CAPs are mechanically preserved inside
the crystal lattice of coccolith calcite (Lee et al., 2016). So
far, CAPs have been found to be present inside the coccoliths
produced by coccolithophores of all taxonomic affinities and
ages (at least as old as the Early Jurassic; 184 Ma Lee et al.,
2016). Thus CAPs constitute an archive of coccolithophore-
associated organic carbon which is unambiguously associated
with the source organism, and whose taxonomic diversity and
temporal range far exceeds that of alkenones.

The concept for our approach is as follows (Fig. 1): Sedi-
ments from sediment core fine fractions are taxonomically sep-
arated by size using established techniques (Minoletti et al.,
2009; Bolton et al., 2012). The carbon isotope ratios of cal-
cite and of the extracted and purified CAPs are determined for
each single size fraction. The carbon isotope values of the
CAPs (6cap) and the calcite (¢4) are controlled by different
processes, so the fractionation of carbon isotopes between these
phases (Aca.cap) is itself a function of these processes (Fig.
2). Aca.cap bypasses the need for a secondary reference (e.g.
foraminiferal calcite) for the isotopic composition of CO; in
seawater. This approach further resolves the ambiguity in the
association between the coccoliths (and their associated infor-
mation) and the organic matter target. Though this approach
in principle solves several shortcomings associated with other
methods, a number of questions have emerged. In the follow-
ing we outline the potential, and current limitations, of this ap-
proach.

2. Materials and Methods

2.1. Isotope notation

Carbon isotope values are reported as § values, relative to the
VPDB calcite standard. As we only discuss carbon isotopes we
use the following shorthand for brevity:

13C

6, = 1000 [
T2CVPDB

I3_C

Cx 1} : ©))
where the subscript, x, refers to the analyzed phase. Through-
out this manuscript we use A notation, which is defined as the

difference in ¢ values, and closely approximates € at realistic
carbon isotope ¢ values. The generic form is given as:

Aa—b 63 - 6b

0, + 1000
op + 1000

L, 3

~ €a-b

1000 [

where a and b refer to different phases. Note ordering of sub-
scripts throughout.

2.2. Size-separation

To investigate changes in coccolithophore carbon isotopes
over the penultimate glacial cycle (marine isotope stage; MIS
7-5), we selected twenty samples from ODP Site 1123 includ-
ing ten samples spaced at higher resolution across the termina-
tion (TII). Each sample initially consisted of approximately 5
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Figure 1: Schematic of the concept. A: Carbon fluxes and relevant pools within a coccolithophore cell with four relevant stages: 1. Dissolved inorganic carbon
(DIC) enters a coccolithophore cell from the ambient seawater (in the form of CO; and bicarbonate), and is redistributed among intracellular compartments; 2.
RuBisCO-catalysed CO; fixation into organic matter in the chloroplast is associated with a large kinetic isotope effect (7). The primary photosynthate is depleted
in 13C relative to source CO5; 3. Acidic polysaccarides are synthesised from simple sugars, and are enriched relative to bulk biomass by an amount (ecap-bio); 4-
Calcite precipitation occurs in the coccolith vesicle onto a precursor organic framework consisting of acidic polysaccharides (coccolith-associated polysaccharides
- CAPs). The CAPs are protected within the calcite crystal, and are stable as long as the calcite is intact. The coccolith is constructed intracellularly, and then
is ejected and incorporated in to the extracellular coccosphere. B: Coccolithophores grow in the surface ocean, producing organic matter and calcite that have
isotopic compositions that reflect cellular physiology and the ambient environment. Coccoliths sink out of the surface ocean (export) and accumulate on the sea
floor (burial). Cells do not remain in tact after death, so the calcite coccoliths are usually found in sediment as isolated plates, rather than as fully articulated
coccospheres. C: Coccoliths in sediment accumulated over time are extracted by drill core and a sediment sample representing a single time interval is separated
into near monospecific fractions by size. D: Each size fraction is then cleaned of all external organic matter, and the CAPs are extracted and purified. The carbon
isotope ratios of the CAPs are analysed together with the encasing calcite.

g of sediment fine fraction (dry weight following wet-sieving  for at least 30 minutes. In the instrument they were reacted with
at <63 um). Following qualitative light-microscope taxonomic purified phosphoric acid at 90°C. Calibration to PDB standard
and morphometric assessment of sample smear slides, we tar- was via the international standard NBS-19 using the Oxford
geted the size fraction within the range 2-3 um, which consisted  in-house (NOCZ) Carrara marble standard. Reproducibility of
of small Geophrocapsa spp.. This size fraction was obtained  replicated standards was around 0.1%o for 6'*C (1) expressed

following a combination of differential settling and the micro- relative to the VPDB standard.
filtration protocol of (Minoletti et al., 2009). Non-coccolith car-
bonate debris was rare in the final samples, with intact coccol- 2.4. CAP extraction

iths estimated by visual inspection to comprise >95% of the
mass of the sample (with the exception of one contaminated
sample, which is excluded from further analysis). The final 2-3
um size fraction was typically 2 g dry weight (~ 40% of total
fine fraction). We also generated a 8-12um fraction, containing
pure Coccolithus pelagicus. However, due to the relatively low
amount of calcite in this pure fraction, the yield of extracted
CAP was very low, which resulted in large uncertainties in iso-

From the size separated samples, 1.000 g (dry weight) of
the 2-3 um fraction was taken for CAP extraction. The 8-12
um fractions were much smaller but were not weighed prior to
CAP extraction. The polysaccharide extraction protocol used
here was adapted in Lee et al. (2016) from established proto-
cols (De Jong et al., 1976; Ramus, 1977; Marsh et al., 1992)
and comprises the following steps:

topic values (Fig. 3; CAP:L). The requirement for very large 1. Removal of residual external organic matter: Samples
calcite samples presents a significant logistical challenge, due were suspended in 10 ml 1% (v/v) TritonX-100 and 4.5%
to the difficulty of securing large sediment samples, and the sub- (v/v) NaOCl in 0.05 M NaHCO3, and gently shaken for 30
stantial time required for size separation. minutes. Samples were rinsed thoroughly in de-ionized
water (de-ionized to 18.2 MQ.cm with MilliQ system).
2.3. Calcite carbon isotopes Following suspension in 0.05 M NH4HCO3, the sample
Carbon isotopic compositions of the size-separated calcite was centrifuged through a gradient of 100 ml Ludox®
were measured using a VG Isogas Prism II mass spectrome- TM-50 colloidal silica layered with 20% (w/v) sucrose
ter with an on-line VG Isocarb common acid bath preparation at 23,000 g for 20 min at 4°C. The pellet (containing
system in the Department of Earth Sciences, University of Ox- the clean coccoliths) was rinsed five times with 0.05 M
ford, UK. Samples were dosed with acetone and dried at 60°C NH4HCOs.
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Figure 2: Outline of approximate ¢ values of relevant phases. Fractiona-
tions represented by solid black arrows are approximately constant across typ-
ical conditions. Fractionations represented by red densely dashed arrows are
variable. See text for discussion of “vital effects”, which can be positive or
negative, and the factors controlling €, and €cap-bio- €cal-cap, represented by
the blue loosely dashed arrow, represents the net result from several variable
fractionations.

2. Decalcification of cleaned coccoliths and liberation of the
CAPs: The cleaned coccoliths were decalcified with 0.5 M
EDTA (pH 8.0) at 4°C for 12 hours, followed by ultrasoni-
cation. Following centrifugation at 31,000 g, the insoluble
residue, consisting mostly of clays, was discarded.

3. Isolation and Purfication of CAPs: The supernatant was
buffer exchanged with 20 mM TrisHCI (pH 8.0) using a
10,000 MWCO Amicon Ultra-4 membrane (Millipore) to
extract larger organic molecules from the complex salt so-
lution into a stable buffer for subsequent steps. The solu-
tion was subjected to anion exchange liquid chromatogra-
phy (HiTrap DEAE FF, GE Healthcare) according to the
manufacturer’s protocol, which binds the charged, acidic
molecules to the column, and allows any uncharged com-
pounds to flow through. The CAPs were eluted from the
column using 0.5 M NaCl, buffer exchanged with MilliQ
(10,000 MWCO Amicon Ultra-4 membrane, Millipore)
and stored at -20°C.

The pristine condition of CAPs extracted from fossils using
this approach is supported by a comparison between CAPs ex-
tracted from growing cultures and fossil samples of various
ages using reverse-phase high-performance liquid chromatog-
raphy (RP-HPLC) (Lee et al., 2016).

2.5. CAP carbon isotopes

The purified CAP samples were measured on a Thermo Delta
Plus Advantage stable isotope mass spectrometer, with Spool-
ing Wire Microcombustion (SWiM) interface Sessions et al.
(2005), at Harvard University. The SWiM interface allows mea-
surement of ng scale samples, and works as follows. A nickel

wire is passed through a cleaning oven, which removes organic
carbon on the wire and forms the nickel oxide catalyst. A 0.8
uL droplet of sample is placed on the wire before the solvent
is evaporated and organic carbon is combusted in a ceramic re-
actor tube in the presence of a copper and platinum catalyst to
form CO,; water is removed through a Nafion dryer and CO,
passes through a continuous-flow open split capillary to the iso-
tope ratio mass spectrometer. A more detailed description of the
equipment and protocol is given in Sessions et al. (2005). Or-
ganic carbon measurements made in Harvard were calibrated
for consistency with measurements made in Oxford, using an
apple pectin standard in a dilution series.

In addition to blanks used during analysis, three types of pro-
cess blank were created to test whether contamination is ac-
crued at various points of the CAP extraction and purification
protocol. When processed through the protocol outlined in sec-
tion 2.4, each sample should theoretically yield no carbon:

e Samples of laboratory-grade calcium carbonate, roasted
at ~600°C to combust any organic matter present. This
blank tests whether organic matter contamination occurs
after decalcification with EDTA.

o Sediment fine fractions from the same core as our samples,
treated with acid to dissolve the calcium carbonate, and
then neutralised and washed. The purpose of this blank
is to check that any organic matter in the sample not en-
cased within coccolith calcite is effectively removed prior
to decalcification with EDTA.

e Picked, cleaned and crushed foraminifera. This blank
tests whether foraminiferal debris (and the organic matter
locked inside them) has the potential to contaminate the
CAP sample via the extraction and purification protocol
described above.

There was no significant difference between the amount and
isotopic composition of carbon detected across the analysis
blanks and the different process blanks, which suggests that the
extraction protocol introduces negligible contamination.

For the isotopic analysis of CAP samples, a mass-balance
correction was applied to account for the size and isotopic com-
position of the background. The size of the sample relative to
the size of the blank strongly influences the uncertainty in the
final reported ¢'3C values. If the sizes of sample and blank are
similar, the inferred isotope value is also affected. Across the
three blanks described above, the concentration of carbon in
each droplet introduced to the wire was on average 1.85 nmolC
uL™! (o = 0.15 nmolC uL~!). Following dilution to optimal
concentrations, the concentrations of CAP suspensions applied
to the wire were on average 7.21 nmolC uL~! (o = 1.81 nmolC
L") across the small size fraction samples. Across the large
size fraction samples the average was 3.75 nmolC uL~! (o =
0.91 nmolC ,uL‘1 ). Given their lower undiluted concentrations,
the large size fraction samples were concentrated with a cen-
trivap and run again to confirm isotopic compositions. The iso-
topic composition of the blanks was consistently -27+1%o. The
1 standard deviation uncertainty in the isotopic composition of
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the sample (o75,) is calculated according to Eq. 5.19 of Hayes
(2002):

1 ny (6 — 67)\
) b (O — 07 2 2 2
= + +
Ty, E— [( p— ) Oy + N30,
1 nt (07 — 0p) : 2 2 2
+ (- , 4
(nr — np) [( nr —n ) o+ MY | &)

where n values are molar quantities, and & values are isotopic
compositions, of the total measured sample (subscript, T'), the
blank (subscript, b) and the true value of the sample (subscript,
s). A conservative value of 0.46 was used as the uncertainty
in the size of the blank (o7, ; 25% of the mean size of the three
blanks), which is significantly larger than the standard deviation
of the size of the blanks. These calculations give the errors
shown in Fig. 3.

2.6. Core location and Environmental reconstruction

ODP Site 1123 (Expedition 181) is located on Chatham rise,
east of New Zealand in the southernmost Pacific (41°47.2’S,
171°29.9°W, 3290m water depth). In the modern ocean sur-
face ocean, CO,(aq) at this site is close to equilibrium with
atmospheric pCO, (Martinez-Boti et al., 2015). We have pre-
viously found excellent preservation of coccoliths at this site
during the time period studied (McClelland et al., 2016). The
sediment age model for ODP Site 1123 was taken from Elder-
field et al. (2012a), which was based on a correlation with the
orbitally tuned benthic oxygen isotope stack of LR04 (Lisiecki
and Raymo, 2005). Owing to the location of Site 1123 just
north of the sub tropical front (STF), the site has the potential to
see local swings in temperature. We therefore reconstructed sea
surface temperatures (SSTs) directly using the alkenone tem-
perature proxy (U§7,) interpreted with the BAYSPLINE model
of (Tierney and Tingley, 2018). U§7, is the best available tem-
perature proxy for our purposes as it captures the depth habitat
of coccolithophores.

New sediment samples spanning the range of our coccol-
ith samples were processed for total lipid extracts (TLEs)
using a CEM-MARS microwave extraction system with
dichloromethane:methanol solvents as described in Polik et al.
(2018). The resulting TLEs were stored at -20°C. For anal-
ysis, aliquots of the TLEs were dissolved in 97:3 (v/v) hex-
ane:isopropanol, filtered, and analyzed on an Agilent 1290
Infinity series ultra-high-performance liquid chromatography
(UHPLC) system coupled to an Agilent 6410 triple-quadrupole
mass spectrometer (MS) using atmospheric pressure chemical
ionization (APCI). Core GDGT distributions were determined
on tandem Acquity BEH HILIC amide columns (2.1 x 150
mm, 1.7 um particle size, Waters Corporation, Milford, MA)
and quantified following the method outlined by Becker et al.
(2015) with modifications by Polik et al. (2018).

U‘§7, and TEXge calculations were conducted using estab-
lished methods. TEXge ratios were determined according to the
equation of Schouten et al. (2002) and TEXgs was converted to
SST (°C) using the BAYSPAR model of Tierney and Tingley

(2014). The Becker et al. (2015) method also generates simul-
taneous records of alkenone-derived SSTs (U§7’; (Miiller et al.,
1998)). U§7, was converted to SST using the BAYSPLINE
model of Tierney and Tingley (2018). The TEXge and U‘3‘7, SST
reconstructions both reveal similar relative changes throughout
the glacial cycle. Owing to the production of alkenones by coc-
colithophores, and the depth habitat represented by these data,
U§7, SSTs are presented in the main manuscript, and are com-
pared to TEXgs SSTs in the supplementary material.

The pCOxqm record is taken from a consensus compilation of
CO, mixing ratios from a number of Antarctic ice cores (Bere-
iter et al., 2015), and assumed to represent a well-mixed atmo-
sphere. By assuming equilibrium between the surface ocean
and atmosphere, [CO,(aq)] is estimated from SST and pCOz,tm
using the seacarb package in R (Gattuso et al., 2022), with dis-
solution assumed to be controlled only by SST at a constant
salinity of 35. As CO, is more soluble in seawater at low
SST, changes in inferred SST that accompany changes in atmo-
spheric pCO; result in an offset between pCO, and [CO,(aq)].
The highest value of [CO,(aq)] occurs at 120 ka when pCO,
is still high and reconstructed SST falls slightly. All sediment
core ages are projected onto the LR04 timescale (Lisiecki and
Raymo, 2005), and all gas ages, including pCO»,,, are on the
AICC2012 timescale (Bereiter et al., 2015; Bazin et al., 2013).
To account for the estimated ~3 ky temporal uncertainty in the
alignment of these sediment and gas records, both the pCO,
and SST records were smoothed with a LOESS filter with a
span that acts as a low pass filter with a cut off around 3 ky,
prior to combining to calculate [CO;(aq)].

3. Results

CAPs were successfully extracted from within the calcite
comprising the 2-3 ym and 8-12 um fractions, which we refer to
as the small and large size fractions respectively. For each 1g of
size-separated coccoliths (dry weight) from the small size frac-
tion, the final yield was on the order of 5 - 15 ug CAP (~ 165 -
500 nmolC). An approximate yield is around 300 nmolC (CAP)
g~! (coccolith calcite). The carbon isotopic compositions of the
calcite (6.a) and of the CAPs (6cap) of both size fractions were
measured. For the small size fraction d., values range from -0.5
to 1.7 %ovppp throughout the glacial cycle, while the large size
fraction 0., values range from -2.0 to -0.6 %oyppgp (Fig. 3). The
variation in dcap throughout the glacial cycle was somewhat
larger with values ranging from -18.4 to -13.8 %ovppg in the
small size fraction, and -22.2 to -11.8 %ovyppg in the large size
fraction. Both dcap records transiently shift towards the most
negative values at around 130 ka, coincident with the glacial
termination. As the CAP yield for the large size fraction was so
low, the uncertainties in dcap values are much higher than for
the small size fraction, and relative changes in this series should
be treated with caution. The dcap values of the large size frac-
tion are, however, consistently 3-4 %o lower than those of the
small size fraction. All raw data are shown in Fig. 3.

We define Acais.cap:s to be the magnitude of the difference
between dcap and O¢, of the small size fraction, and Acap.-cap-L
to be the equivalent for the large size fraction (Fig. 3). The

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380



381

382

383

384

385

386

387

388

389

390

392

393

394

IG GM
o —
AcaI:S—calI:L
L(I‘) —
|AcaI:S—CAP:S |
‘@
£
s 24
> \
&\°,
O
(2]
©
m —
CAP:S
o
§
CAP:L
To]
-

[ I I I I
100 120 140 160 180

Age (ka)

Figure 3: Raw data. Time series of carbon isotope compositions of calcite from
the 2-3 um (small) size fraction (cal:S), calcite from the 8-12 um (large) size
fraction (cal:L), CAPs from the small size fraction (CAP:S), and CAPs from the
large size fraction (CAP:L). The point in parentheses was contaminated with a
larger size fraction but is included here for completeness. A values defined as
in Eq.3. The blue shaded box highlights the glacial maximum (GM), and the
red shaded box highlights the inter-glacial (IG).

fractionation of carbon isotopes between CAPs and calcite is
independent of the isotopic composition of extracellular DIC.
For comparison with recent literature (Bolton and Stoll, 2013;
Bolton et al., 2016; McClelland et al., 2017; Claxton et al.,
2022), we also define Aca.s-cai.L to be the difference in § values
for the calcite from the small and large size fractions (Fig. 3).
Acai:s-cap:s has a large range across the glacial cycle with a min-
imum of 14.8 and a maximum of 19.4, which occurs at around
125-130 ka (Fig. 4). These changes reflect primarily changes
in dcap as although d., in the small size fraction does change,
these changes are small and the direction of change dampens
rather than amplifies changes in Aca.s.cap:s (Fig.3). Proxy re-
constructions show SSTs ranging from around 10°C at 165 ka
to around 14°C at around 130-125 ka, which coincides with the

maximum in Ac,:s.caps (Fig. 4). [CO; (aq)] in surface waters
is calculated based on the Antarctic ice-core pCO, record and
SST, and exhibits a maximum value which occurs around 10ky
later than the maximum in Ac,.s.cAp-S.

4. Discussion

4.1. Controls on carbon isotope fractionation

Traditionally, it has been assumed that the maximum value
of g, is set by the CO, fixation step in the Calvin cycle, which
is catalyzed by the enzyme Ribulose-1,5-bisphosphate carboxy-
lase/oxygenase (RuBisCO), and is associated with a large nor-
mal kinetic isotope effect (¢). € varies between RuBisCO types
(reviewed in Wilkes and Pearson (2019)), and between species
(Boller et al., 2011, 2015). The modulation of this maximum
fractionation has typically been described as an open system
reservoir effect, where ¢, is a linear function of carbon utiliza-
tion (Hayes, 2002). The theoretical relationship deviates from
linear as more complex features are included in models includ-
ing: intracellular compartmentalization (Cassar et al., 2006),
dynamic carbonate chemistry (Holtz et al., 2017), the presence
of carbonic anhydrase (CA) (Holtz et al., 2017), cellular bound-
ary layers (Rau et al., 1996; Riebesell et al., 1993), respiration
(Holtz et al., 2017), facultative mixotrophy (Gould et al., 2008;
de Vargas et al., 2007), light availability (Rost et al., 2002; Holtz
et al., 2017; Wilkes and Pearson, 2019; Phelps et al., 2021) and
bicarbonate uptake (e.g. Sharkey and Berry, 1985; Kottmeier
etal., 2014; Nimer et al., 1997; Herfort et al., 2002; Nimer et al.,
1996; Keller and Morel, 1999; Cassar et al., 2006; Holtz et al.,
2017; McClelland et al., 2017; Wilkes and Pearson, 2019).

Here we consider changes in the CO, utilization parameter,
7, defined as the ratio of the rate of carbon fixation to CO, en-
tering the cell by passive diffusion alone. For a spherical cell
of radius r, the rate of fixation of CO, into organic matter can
be estimated by the product of the cell’s volume (%nr3), it’s
carbon molar density (p), and its instantaneous division rate y;
(Sharkey and Berry, 1985; Rau et al., 1996; Holtz et al., 2017;
Rost et al., 2002). The supply rate of CO, delivered by passive
diffusion through the membrane is given by the product of the
cell’s surface area (47r%), the CO, concentration at the cell’s
surface (C,), and the effective membrane permeability to CO,
(K) (Popp et al., 1998). Following notation introduced previ-
ously (McClelland et al., 2017):

Hilp
3C.K

In reality diffusive CO, is supplemented by various ancillary
mechanisms of carbon uptake, so 7 does not equate directly to
utilization (for example, 7 can take a value of greater than 1).
Nevertheless, we find this compound variable to be a useful
way to consider changes in €,: An increase in T corresponds to
a decrease in €,. We emphasise that quantitative interpretations
require a more sophisticated model. Relative to bulk biomass
CAPs are enriched in 1*C (Fig.2), with a variable offset (see
Section 4.2 for discussion).

The fractionation of carbon isotopes between DIC and coc-
colith calcite is also impacted by biological processes, and is
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Figure 4: Proxy data. A: pCO; record from Antarctic ice cores (Bereiter
et al., 2015), assumed to represent a well-mixed atmosphere. & 180 of benthic
foraminifera shells from ODP Site 1123 (Elderfield et al., 2012b) for visual ref-
erence to the LR04 stack (Lisiecki and Raymo, 2005). B: SST record derived
from U§7,. Line represents a LOESS regression, and shaded region represents
1o~ uncertainty. C: [CO,(aq)] calculated from SST and pCO; assuming surface
ocean / atmospheric equilibrium. Shaded region represents 1o~ uncertainty. D-
F: Carbon isotope fractionations defined in Fig.3.

called the vital effect. The magnitude of the vital effect in-
creases with an increase in 7, but the direction of the vital effect
depends on the ratio of the rates of calcification to photosyn-
thetic carbon fixation (R.y : Rgx) of the cell (Hermoso et al.,
2016; McClelland et al., 2017). Carbon that leaks from the
cell is depleted in '3C relative to the intracellular pool, as the
membrane is more permeable to the most '*C-depleted phase
of DIC, CO,, than to HCO3, which is '*C-enriched. As 7 in-
creases, this leakage flux decreases, and the DIC pool in the cell
becomes depleted in 1*C. This effect is most pronounced in cells
with a relatively high R., : Rsx (X 1). In cells that have a low
Rea : Rix (£ 1), the 13C of the intracellular DIC pool is over-
printed by leakage of '3C-enriched carbon from the chloroplast.
This interplay is affected by cellular compartmentation and in-
tracellular bicarbonate transport (McClelland et al., 2017; Holtz
et al., 2017). Although the large and variable nature of vital ef-
fects in coccolith calcite was once considered to be a negative
attribute, which limited their utility in paleoclimate research,
carbon isotope vital effects are themselves emerging as useful
proxies, based on the observation that the difference in vital
effects between taxa is reduced when 7 is low (Bolton et al.,
2012; Bolton and Stoll, 2013; Hermoso et al., 2020; Claxton
et al., 2022).

Together, the carbon isotopes of coccolith calcite from the
small and large size fractions (d¢a.s and d¢,1.1. respectively), and
CAPs extracted from within (6cap.s and dcap.1), in theory pro-
vide simultaneous constraints on the isotopic system indepen-
dent of an external calcite reference, and with three degrees of
freedom. However, given the large uncertainties in dcap.r., we
considerjust Acal:S-cal:L and Acal:S-CAP:S-

4.1.1. Response of Acal:s-cai-L

The genus that dominates the small size fraction in this study
(Gephyrocapsa spp.; 2-3 um) has been shown in laboratory ex-
periments to have a R, : R ratio of close to 1. Therefore, the
magnitude of carbon isotopic vital effects in this size fraction is
likely to be small. The large size fraction by contrast is domi-
nated by Coccolithus pelagicus which has been shown to gen-
erally have a Ry : Rjx of > 1, thus the calcite that it produces
is relatively '*C-depleted, and this depletion is predicted to in-
crease with increasing 7. Our data support these expectations,
with 8., values being on average a couple of %o lower than
dcal:s Values, and each size fraction plotting either side of the
planktic foraminifera record from this site, which is expected to
exhibit small and relatively invariant vital effects. In time series,
Acai:s-cai:L. decreases with increasing [CO;(aq)] over the highly
resolved period of the glacial termination, as expected (Fig. 4
C and F). However, the lowest values of A.,:s.cai:. Occur early
in the time series when pCO; is low. The increase in Acap:s-cal:L,
between 190 and 160 ka that does not accompany a change in
pCO; could have been driven by a shift in species composi-
tion within either the large or small size fractions. In the large
size fraction this trend could be explained by an increasing frac-
tion of forms with high Ry : Rgx, or in the small size fraction
by an increasing fraction of coccoliths from species with a low
R.a : Rix. However we do not have quantitative species abun-
dances for these samples which is required to decouple these
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Figure 5: Fractionation of carbon isotopes between CAPs and bulk biomass
(€cAp-bio)- A re-interpretation of the data of Wilkes et al. (2018). Here we hy-
pothesise that changes in ecap-bio are determined by growth rate alone. Equa-
tion of this OLS regression line is given in Eq.8.

possibilities (e.g. as in Claxton et al. (2022)).

4.2. Response of Acar:s.cap:s

Acai:s-cap:s 1s dependent on processes affecting carbon iso-
tope ratios of both the calcite and the CAPs (Fig.2). Abso-
lute variation in ., .5 is relatively small over the glacial ter-
mination, but does change in such a way to dampen changes
in Acas.cap:s- For rough initial interpretations, we therefore
assume a constant offset: Acypic = +1%o. Over pH changes
throughout a glacial cycle on the order of 0.2 pH units (Chalk
et al., 2019), changes in DIC speciation have only a small ef-
fect on the fractionation of carbon isotopes between CO, and
DIC (Zeebe and Wolf-Gladrow, 2001). Similarly, for an in-
crease in temperature from ~11°C to ~17°C as inferred across
the glacial termination, CO,(aq) becomes less depleted rela-
tive to DIC by around 1%.. Like the coccolith calcite vital ef-
fects, these changes in SST and pH would have had the effect
of dampening the change in Ac,.s.cap:s across the glacial ter-
mination, and thus do not contribute to explaining the observed
change in A.,:s.cap:s- For simplicity, we therefore assume a
constant offset: Apjc.co, = +9 %o. Acai:s-cap:s is then roughly
approximated by the following:

Acascap:s ~ (6pic + 1%0) = (dpic — 9%e — € + €capbio) (6)

~ 10%o + €, — €cap-bio @)

where ecap.bio describes the fractionation of isotopes between
CAPs and biomass. Given these assumptions, the observed
change in A.y.s.cap:s over time therefore reflects a change in
€ and / OI' €ECAP-bio-

Across the glacial termination, we would predict that the
increase in CO, would drive an increase in €,, however, the

Aca:s-cap:s curve is misaligned with that of the calculated his-
tory of [CO,(aq)] at this site. Increases in temperature would
likely cause an increase in average growth rate, and therefore
drive a decrease in . However, the changes in temperature,
which are well aligned with Acy.s.cap:s would drive €, in the
wrong direction to explain the observed trend. We therefore ex-
plore how changes in the remaining variable in Eq. 7, €cap-bio»
could be responsible for these signals.

4.3. Large vs. small CAP signals

While the uncertainties in dcap.. values are too large for de-
tailed interpretation, a surprising aspect of our dataset is that
they are consistently more negative than dcap.s values. Accord-
ing to Eq.5, larger cells are generally characterized by higher 7
values, and therefore smaller €,, which corresponds to higher
Obio Values. One possibility that we have considered elsewhere
is that larger cells may grow disproportionately slowly in the
ocean owing to diffusion limitation of nutrients to the cell’s
surface (Pasciak and Gavis, 1974). Extremely slow nutrient-
limited growth rates would also explain the flatter response of
the large size fraction dcap values to changes in temperature.
This difference could alternatively be explained by a larger iso-
tope effect imparted by the RuBisCO (e;) of coccolithophore
species represented in the large size fraction. However, these
measurements have not yet been made in vitro for large coc-
colithophores, and therefore, in the absence of evidence we as-
sume that €/ is constant. Lastly, this difference could also be
achieved with similar 6y, values in the large and small size
fractions, but smaller values of ecap.hio in the large size frac-
tion. Wilkes et al. (2018) suggested that the variation in ecap-pio,
and the constancy of €,x.pio, in chemostat cultures is consistent
with a constant partitioning of carbon between the broad classes
of organic compounds, lipids, proteins and carbohydrates, but a
variable partitioning of carbohydrate carbon between CAPs and
other saccharides across experiments. However, it is unlikely
that this constant partitioning between the broad classes holds
when comparing taxa of highly contrasting cell size. Larger
cells with lower surface area to volume ratios, will likely main-
tain a lower fraction of total fixed carbon as lipids (Finkel et al.,
2016; Roy, 2018). Lipids are '3C-depleted relative to bulk
biomass, while carbohydrates are '3C-enriched relative to bulk
biomass. For a larger cell with a lower lipid fraction, the iso-
topic partitioning between the broad classes of lipids and carbo-
hydrates would shift, resulting in large cells with '3C-depleted
lipids and '3C-depleted carbohydrates (including CAPs) rela-
tive to smaller cells (Hayes, 2002).

4.4. Reconciling alkenones and CAPs

The alkenone CO; proxy has been calibrated with culture ex-
periments (Popp et al., 1998), and shown to vary as predicted
with seawater CO, concentrations in the modern ocean (Pagani
et al., 2002; Pagani, 2002). However, drill core studies using
alkenones as the sedimentary organic matter target have shown
that d, is often relatively invariant over glacial/interglacial cy-
cles despite large changes in [CO,(aq)] (Zhang et al., 2013;
Badger et al., 2019; Badger, 2021). Alkenone carbon isotope
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Figure 6: Isotope fractionation in a CO, and growth rate (u) parameter space. A) Ay;,-pic as a function of CO; and u. Contours are calculated according to the
following equation: Apjo.pic = 189.8%02 —32.3 (assuming a constant Spyc between experiments of Wilkes et al. (2018)). B) Acap-pic as a function of CO; and p.
Equation used to generate contours is given by: Acap-pic = Abio-DIC + ACAP-bio- ACAP-bio as a function of u is given in the text (Eq. 8). In both panels, white points
represent the parameter space represented by chemostat data from (Wilkes et al., 2018). Across the four experiments represented by these points, a greater range of
values are seen in Apjo.prc than in Acap.pic. The dashed lines represent the approximate range of glacial-interglacial [CO, (aq)]. In both panels, the black arrow
represents the same possible path in parameter space within this CO, change where a slight increase in u results in negligible change in Apio-pic, but a significant

change in Acap-pic.

values (d,1x) are consistently around 4 %o lower than 6y;, across
a wide range of conditions (i.e. dpio = Gk + 4 %0) (Schouten
et al., 1998; Laws et al., 2001; Wilkes et al., 2017) (Fig. 2;
however, it should be noted that this relationship has been es-
tablished only for the relatively recent species, G. huxleyi). As
alkenones exhibit a constant isotopic offset from biomass, ex-
planations for this apparent insensitivity have focused on mech-
anisms that could counter the effect of changes in CO, on bulk
biomass. One possibility is that changes in growth rate parallel
the change in CO, (Badger et al., 2019; Zhang et al., 2020). As
w and C, appear on opposite sides of the ratio in Eq. 5, an in-
crease in u with increasing C, could minimize changes in 7. A
second possibility is an increase in the uptake of carbon during
periods of low C, (Stoll et al., 2019; Badger, 2021). As K and
C. appear on the same side of the ratio in Eq. 5, an increase in
K when C, is low would also minimize the impact on 7. Both
mechanisms make sense physiologically, however, neither ex-
plain the changes we observe in Acy.cap-

‘We present a hypothesis that is consistent with an insensitiv-
ity of ¢, to changes associated with glacial cycles, and therefore
involves changes in ecap-bio- Wilkes et al. (2018) showed that
CAPs are enriched in '3C relative to bulk biomass, and that this
enrichment decreases with increasing (/CO, (o< T at constant r).
In these experiments, the variables u and CO, were not decou-
pled (white points, Fig. 6 show the parameter space explored),
and results were originally interpreted relative to the compound
variable, 1/CO,. Here we hypothesise that ecap.pio in the exper-
iments of Wilkes et al. (2018) is driven by changes in y, and is
independent of CO,. A linear regression between ecap.io and u
from the experiments of Wilkes et al. (2018) (Fig. 5) gives the
following equation:

®)

Under this interpretation, while Apio_pic is a function of p/CO,
(straight contours in Fig. 6A), Acap-pic is a combined function

ECAP-bio = 13.1 - 12.9/1.

of both ¢1/CO, and u (curved contours in Fig. 6B). We conclude
that coupled increases in u and CO, could theoretically result
in no changes in Ayio.pic, and therefore no changes in Ak.pic
(i.e. black arrow does not cross contours in Fig. 6A), but drive
an increase in the magnitude of Acap.pic (i.e. black arrow does
cross contours in Fig. 6B).

The positive effect of temperature on y in the species present
in our samples (over low to moderate temperatures) is well es-
tablished (e.g. Buitenhuis et al., 2008; Sett et al., 2014). There-
fore, while instantaneous growth rate in the surface ocean above
our core location was probably limited by nutrient concentra-
tions or light availability, the inferred ~6°C SST increase that
accompanied the deglaciation at this site would likely have in-
duced an increase in average u during times of exponential
growth. In our data, we find a strong correlation between
Acai.cap and reconstructed SSTs (Fig. 7), which supports this
hypothesis.

5. Conclusions

Coccolith associated polysaccharides (CAPs) are a promis-
ing new target for organic matter analysis in sediments, which
may reveal insights into metabolic rates of ancient algae. We
have shown that pristine CAPs can be successfully extracted
from within calcite fossil coccoliths from marine sediments,
purified and isotopically analysed. The carbon isotope ratios
of these molecules appear to be primarily controlled by temper-
ature regulated growth rate changes, but further experimental
investigation is required before its use as a quantitative proxy
can be realized. Specifically, it will be necessary to better un-
derstand the biochemistry of CAP formation in calcifying al-
gae, and the isotope effects associated with each biosynthetic
step. It will be furthermore essential to determine how or-
ganic carbon and carbon isotope partitioning differs between
species, and between cells of different sizes. The ubiquity and
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Figure 7: Hypothesis: Temperature-controlled changes in growth rate

dominate changes in Acap.cal. A: U§7, SST record plotted underneath

Acap-cal data against time. B: Acap-cal for each sample plotted directly against
interpolated LOESS fit to UY,, SST.

high preservation of CAPs extends the species-specific organic
matter record back over 200 million years into the geologic
past, and, with sufficient material, opens up the possibility of
species-specific records of organic carbon across multiple sizes
of coccolithophore simultaneously. The unambiguous associa-
tion between the organic carbon isotope measurement and fos-
sils of the host organism will be invaluable. As with the modest
original applications of €, (Freeman and Hayes, 1992), precise
interpretations of Acy.cap from sediments will likely be elu-
sive. However, approaches using CAPs as the target for organic
geochemical analysis have the potential to constrain parameter
space more comprehensively than has previously been possi-
ble, and extend investigations of CO; and algal physiology 200
million years to the Late Triassic.
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the manuscript are available through the UCL Research Data
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