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cal characterization of phytoplankton-derived organic compounds found in marine sediments has been wide
ospheric pCO2 thoughout the Cenozoic. This is possible owing to a well-established relationship between th

of phytoplankton biomass and CO2 concentration in the ambient seawater. An ideal molecular target for su
s would be degradation resistant on geologic timescales and unambiguously associated with known, exper
nisms, so that species-specific models can be developed, calibrated, and applied to appropriate material.
ic matter targets do not quite meet these criteria, primarily owing to ambiguity in the source species of re
deep time. Here we explore the potential of a novel organic carbon target for isotopic analysis: acidic polysa
the calcite plates (coccoliths) that are produced by all calcifying haptophytes. Carbohydrates are usuall
in sediments, but coccolith-associated polysaccharides (CAPs) are mechanically protected from diagenes
calcite lattice. Coccoliths can be taxonomically separated by size and identified, often to species level
n, providing a species-specific record. Coccolith morphology and composition are important additiona
, which are then unambiguously associated with the extracted CAPs. We find that carbon isotope ratios
ponse to the environmental changes associated with a glacial cycle, which we attribute to temperature-driven
wth rate. Once the underlying biosynthetic processes and the associated isotope effects are better unders
tine organic matter has the potential to provide insight into phytoplankton growth rates and atmospheric
nozoic, to when the first coccolithophores inhabited the surface ocean over 200 million years ago.

rbon isotopes, CO2 proxies, acidic polysaccharides, coccolithophores, alkenones
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pe ratios (13C:12C) of organic carbon from an-
sediments have long been used to investigate
vironments (e.g. Arthur et al., 1985; Dean et al.,
t al., 1987; Rau et al., 1991; Hayes, 1993; Hayes
alkowski, 1991; Pearson, 2010; Ward and Shih,
nd Holland, 1996; Hayes and Waldbauer, 2006;
1999, 2005; Zhang et al., 2013; Freeman and
The basis of Cenozoic pCO2 reconstructions

ation of stable carbon isotopes between phyto-
ass and ambient CO2 (ϵp), which results from a
ffect associated with photosynthetic carbon fix-
ted by a reservoir effect. Early models of these
stems were fairly generic, consisting of a sin-
ent representing the cytosol (Sharkey and Berry,
al., 1996; Keller and Morel, 1999; Cassar et al.,
al., 1998), but it has recently been shown that in-
erences in metabolism and ultrastructure / com-
among cyanobacteria and various groups of al-
rked effect on ϵp and must be modeled explicitly

s: h.mcclelland@ucl.ac.uk (Harry-Luke Oliver

(Holtz et al., 2017; Wilkes and Pearson, 2019; Hurl
2021; Phelps et al., 2021). It is therefore essential to
source of any organic matter analyzed so that isotope
be interpreted with the appropriate model and experim
ibration. Stable isotope ratios are also subject to diag
teration, which has the potential to bias or corrupt the
signal (Freudenthal et al., 2001). An ongoing challen
liable quantitative paleoenvironmental reconstructions
fore the search for an organic matter target that can b
ambiguously attributed to a particular organism; and
integrity from deposition to analysis can be assured
manuscript we explore a novel organic matter target
the potential to meet both of these criteria.
ϵp is given by:

ϵp ≡ 1000
[
δCO2 + 1000
δbio + 1000

− 1
]
≈ δCO2 − δ

where δ values are given in permil (‰). δCO2 corres
the carbon isotopic composition of dissolved CO2, a
that of phytoplankton biomass (see Eq.2 for definitio
toplankton biomass is depleted in 13C relative to amb
so as defined here ϵp is positive, consistent with previ
(Farquhar et al., 1982; Jasper et al., 1994). Empirica
creases in magnitude with increasing CO2 concentr

d to GCA Septem
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ate reconstructions δbio (Eq.1) was originally es-
alyzing bulk sedimentary marine particulate or-
POC) (Hollander and McKenzie, 1991; Freeman
92). POC has been largely replaced by molecular
rs, specifically alkenone and, more recently, phy-
d their degradation products (Jasper and Hayes,
et al., 1999; Pagani, 2002; Laws et al., 2002; Pa-
05, 2011; Seki et al., 2010; Badger et al., 2013;
013, 2020; Witkowski et al., 2018, 2019, 2020).
lass of putative storage lipids (Conte et al., 1995),
in the modern ocean by a single known order of
gae, the Isochrysidales, which includes the cal-
Gephyrocapsa (Marlowe et al., 1990) including
tanG. huxleyi (synonym Emiliania huxleyi, Rein-
They are highly degradation-resistant, and found
ments as old as 120Ma (Brassell et al., 2004) (but
ly scarce prior to ∼ 30 Ma).
the calcite plates that are produced by calcify-
es (collectively known as coccolithophores), are
d in sediment alongside alkenones. All modern
appear to produce alkenones, and the appearance
n the sedimentary record coincides with the first
coccoliths of this group (Liu et al., 2010), provid-
their assumed affiliation on geologic timescales.
gy of coccoliths can be used to identify the taxo-
of the source organism (Young et al., 2017) and
size (Henderiks and Rickaby, 2007; Henderiks
008; Henderiks, 2008), and their trace metal ra-
tially even provide estimates of growth rate (Stoll
00; Rickaby et al., 2002; Langer et al., 2006).
e confidence with which alkenones in sediment
ted to the organisms that produced contempo-
liths is limited by the fact that cells disinte-
ath, and these components of cellular material
rately to one another in marine sediments. Non-
cies of Isochrysidales, which do not have a fos-
o contribute to sedimentary alkenones. Further-
ultiple species and sizes of Isochrisodales coccol-
t, attributing their weighted contibution to sedi-
ones depends on differences in coccolith preser-
leit et al., 2004) and variations in the number of
amount of alkenone lipids produced by differ-
hese ambiguities, in addition to the observation
may be transported and recycled differently to

ents of sediment (Hayes et al., 1987; Ohkouchi
ollenhauer et al., 2003) weakens the assumption
ary information derived from coccoliths pertains
rs of the alkenones in the same samples.
plore the potential of coccolith associated acidic
es (CAPs) as a novel target for organic carbon iso-
CAPs are carbohydrates, molecules that are not

ved on geologic timescales. In coccolithophores,
recipitation of calcite occurs in an intracellular
rived compartment called the coccolith vesicle
), onto a precursor organic framework consist-

the crystal lattice of coccolith calcite (Lee et al., 20
far, CAPs have been found to be present inside the c
produced by coccolithophores of all taxonomic affin
ages (at least as old as the Early Jurassic; 184 Ma L
2016). Thus CAPs constitute an archive of coccolit
associated organic carbon which is unambiguously a
with the source organism, and whose taxonomic dive
temporal range far exceeds that of alkenones.

The concept for our approach is as follows (Fig.
ments from sediment core fine fractions are taxonomic
arated by size using established techniques (Minole
2009; Bolton et al., 2012). The carbon isotope ratio
cite and of the extracted and purified CAPs are determ
each single size fraction. The carbon isotope valu
CAPs (δCAP) and the calcite (δcal) are controlled by
processes, so the fractionation of carbon isotopes betw
phases (∆cal-CAP) is itself a function of these proces
2). ∆cal-CAP bypasses the need for a secondary refere
foraminiferal calcite) for the isotopic composition o
seawater. This approach further resolves the ambigu
association between the coccoliths (and their associa
mation) and the organic matter target. Though this
in principle solves several shortcomings associated w
methods, a number of questions have emerged. In th
ing we outline the potential, and current limitations, o
proach.

2. Materials and Methods

2.1. Isotope notation
Carbon isotope values are reported as δ values, relat

VPDB calcite standard. As we only discuss carbon iso
use the following shorthand for brevity:

δx ≡ 1000



13C
12C x

13C
12CVPDB

− 1
 ,

where the subscript, x, refers to the analyzed phase.
out this manuscript we use ∆ notation, which is defin
difference in δ values, and closely approximates ϵ a
carbon isotope δ values. The generic form is given as:

∆a-b ≡ δa − δb
≈ ϵa-b ≡ 1000

[
δa + 1000
δb + 1000

− 1
]

where a and b refer to different phases. Note orderin
scripts throughout.

2.2. Size-separation
To investigate changes in coccolithophore carbon

over the penultimate glacial cycle (marine isotope st
7-5), we selected twenty samples from ODP Site 112
ing ten samples spaced at higher resolution across the
tion (TII). Each sample initially consisted of approx

2
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atic of the concept. A: Carbon fluxes and relevant pools within a coccolithophore cell with four relevant stages: 1. Dissolved inorg
ccolithophore cell from the ambient seawater (in the form of CO2 and bicarbonate), and is redistributed among intracellular compa
ed CO2 fixation into organic matter in the chloroplast is associated with a large kinetic isotope effect (ϵ f ). The primary photosynthate
source CO2; 3. Acidic polysaccarides are synthesised from simple sugars, and are enriched relative to bulk biomass by an amount (
on occurs in the coccolith vesicle onto a precursor organic framework consisting of acidic polysaccharides (coccolith-associated poly
Ps are protected within the calcite crystal, and are stable as long as the calcite is intact. The coccolith is constructed intracellular
orporated in to the extracellular coccosphere. B: Coccolithophores grow in the surface ocean, producing organic matter and calci
ions that reflect cellular physiology and the ambient environment. Coccoliths sink out of the surface ocean (export) and accumulate
lls do not remain in tact after death, so the calcite coccoliths are usually found in sediment as isolated plates, rather than as fully
Coccoliths in sediment accumulated over time are extracted by drill core and a sediment sample representing a single time interval
ecific fractions by size. D: Each size fraction is then cleaned of all external organic matter, and the CAPs are extracted and purified.
he CAPs are analysed together with the encasing calcite.

fine fraction (dry weight following wet-sieving
ollowing qualitative light-microscope taxonomic
etric assessment of sample smear slides, we tar-
fraction within the range 2-3 µm, which consisted
hrocapsa spp.. This size fraction was obtained
mbination of differential settling and the micro-
col of (Minoletti et al., 2009). Non-coccolith car-
was rare in the final samples, with intact coccol-
by visual inspection to comprise >95% of the
ample (with the exception of one contaminated
is excluded from further analysis). The final 2-3
on was typically 2 g dry weight (∼ 40% of total
We also generated a 8-12µm fraction, containing
us pelagicus. However, due to the relatively low
cite in this pure fraction, the yield of extracted
low, which resulted in large uncertainties in iso-
Fig. 3; CAP:L). The requirement for very large
s presents a significant logistical challenge, due
of securing large sediment samples, and the sub-
quired for size separation.

arbon isotopes
opic compositions of the size-separated calcite
d using a VG Isogas Prism II mass spectrome-
-line VG Isocarb common acid bath preparation
Department of Earth Sciences, University of Ox-
ples were dosed with acetone and dried at 60◦C

for at least 30 minutes. In the instrument they were rea
purified phosphoric acid at 90◦C. Calibration to PDB
was via the international standard NBS-19 using th
in-house (NOCZ) Carrara marble standard. Reproduc
replicated standards was around 0.1‰ for δ13C (1σ) e
relative to the VPDB standard.

2.4. CAP extraction

From the size separated samples, 1.000 g (dry w
the 2-3 µm fraction was taken for CAP extraction.
µm fractions were much smaller but were not weighe
CAP extraction. The polysaccharide extraction proto
here was adapted in Lee et al. (2016) from establish
cols (De Jong et al., 1976; Ramus, 1977; Marsh et a
and comprises the following steps:

1. Removal of residual external organic matter:
were suspended in 10 ml 1% (v/v) TritonX-100
(v/v) NaOCl in 0.05 M NaHCO3, and gently shak
minutes. Samples were rinsed thoroughly in d
water (de-ionized to 18.2 MΩ.cm with MilliQ
Following suspension in 0.05 M NH4HCO3, th
was centrifuged through a gradient of 100 ml
TM-50 colloidal silica layered with 20% (w/v
at 23,000 g for 20 min at 4◦C. The pellet (c
the clean coccoliths) was rinsed five times with
NH4HCO3.

3



Journal Pre-proof

Figure 2: Outlin
tions represented
ical conditions. F
variable. See tex
negative, and the
the blue loosely d
fractionations.

2. Decalcifi195

CAPs: Th196

EDTA (p197

cation. F198

residue, c199

3. Isolation200

buffer ex201

10,000 M202

extract la203

lution int204

tion was205

phy (HiT206

manufact207

molecule208

pounds to209

column u210

(10,000 M211

and store212

The pristine c213

this approach214

tracted from215

ages using rev216

raphy (RP-HP217

2.5. CAP carb218

The purified219

Plus Advantag220

ing Wire Mic221

(2005), at Har222

surement of n223

wire is passed through a cleaning oven, which removes organic 224

carbon on the wire and forms the nickel oxide catalyst. A 0.8 225

e solvent 226

ramic re- 227

atalyst to 228

and CO2 229

o the iso- 230

ion of the 231

05). Or- 232

alibrated 233

using an 234

235

es of pro- 236

on is ac- 237

rification 238

ed in sec- 239

bon: 240

, roasted 241

nt. This 242

n occurs 243

244

samples, 245

nate, and 246

his blank 247

e not en- 248

ved prior 249

250

is blank 251

ic matter 252

inate the 253

protocol 254

255

ount and 256

analysis 257

s that the 258

n. 259

s-balance 260

pic com- 261

elative to 262

ty in the 263

blank are 264

cross the 265

arbon in 266

5 nmolC 267

optimal 268

s applied 269

1 nmolC 270

the large 271

L−1 (σ = 272

ntrations, 273

th a cen- 274

The iso- 275

1‰. The 276

osition of 277
Jo
ur

na
l P

re
-p

ro
of

e of approximate δ values of relevant phases. Fractiona-
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ractionations represented by red densely dashed arrows are
t for discussion of “vital effects”, which can be positive or
factors controlling ϵp and ϵCAP-bio. ϵcal-CAP, represented by
ashed arrow, represents the net result from several variable

cation of cleaned coccoliths and liberation of the
e cleaned coccoliths were decalcified with 0.5 M
H 8.0) at 4◦C for 12 hours, followed by ultrasoni-
ollowing centrifugation at 31,000 g, the insoluble
onsisting mostly of clays, was discarded.
and Purfication of CAPs: The supernatant was
changed with 20 mM TrisHCl (pH 8.0) using a
WCO Amicon Ultra-4 membrane (Millipore) to
rger organic molecules from the complex salt so-
o a stable buffer for subsequent steps. The solu-
subjected to anion exchange liquid chromatogra-
rap DEAE FF, GE Healthcare) according to the
urer’s protocol, which binds the charged, acidic
s to the column, and allows any uncharged com-
flow through. The CAPs were eluted from the
sing 0.5 M NaCl, buffer exchanged with MilliQ
WCO Amicon Ultra-4 membrane, Millipore)

d at -20◦C.

ondition of CAPs extracted from fossils using
is supported by a comparison between CAPs ex-
growing cultures and fossil samples of various
erse-phase high-performance liquid chromatog-
LC) (Lee et al., 2016).

on isotopes
CAP samples were measured on a Thermo Delta
e stable isotope mass spectrometer, with Spool-
rocombustion (SWiM) interface Sessions et al.
vard University. The SWiM interface allows mea-
g scale samples, and works as follows. A nickel

µL droplet of sample is placed on the wire before th
is evaporated and organic carbon is combusted in a ce
actor tube in the presence of a copper and platinum c
form CO2; water is removed through a Nafion dryer
passes through a continuous-flow open split capillary t
tope ratio mass spectrometer. Amore detailed descript
equipment and protocol is given in Sessions et al. (20
ganic carbon measurements made in Harvard were c
for consistency with measurements made in Oxford,
apple pectin standard in a dilution series.

In addition to blanks used during analysis, three typ
cess blank were created to test whether contaminati
crued at various points of the CAP extraction and pu
protocol. When processed through the protocol outlin
tion 2.4, each sample should theoretically yield no car

• Samples of laboratory-grade calcium carbonate
at ∼600◦C to combust any organic matter prese
blank tests whether organic matter contaminatio
after decalcification with EDTA.

• Sediment fine fractions from the same core as our
treated with acid to dissolve the calcium carbo
then neutralised and washed. The purpose of t
is to check that any organic matter in the sampl
cased within coccolith calcite is effectively remo
to decalcification with EDTA.

• Picked, cleaned and crushed foraminifera. Th
tests whether foraminiferal debris (and the organ
locked inside them) has the potential to contam
CAP sample via the extraction and purification
described above.

There was no significant difference between the am
isotopic composition of carbon detected across the
blanks and the different process blanks, which suggest
extraction protocol introduces negligible contaminatio

For the isotopic analysis of CAP samples, a mas
correction was applied to account for the size and isoto
position of the background. The size of the sample r
the size of the blank strongly influences the uncertain
final reported δ13C values. If the sizes of sample and
similar, the inferred isotope value is also affected. A
three blanks described above, the concentration of c
each droplet introduced to the wire was on average 1.8
µL−1 (σ = 0.15 nmolC µL−1). Following dilution to
concentrations, the concentrations of CAP suspension
to the wire were on average 7.21 nmolC µL−1 (σ = 1.8
µL−1) across the small size fraction samples. Across
size fraction samples the average was 3.75 nmolC µ
0.91 nmolC µL−1). Given their lower undiluted conce
the large size fraction samples were concentrated wi
trivap and run again to confirm isotopic compositions.
topic composition of the blanks was consistently -27±
1 standard deviation uncertainty in the isotopic comp

4
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1
− nb)


(
nb (δb − δT )
nT − nb

)2
σ2nT + n

2
Tσ

2
δT

+

1

T − nb)


(
nT (δT − δb)
nT − nb

)2
σ2nb + (−nb)2σ2δb

 , (4)

s are molar quantities, and δ values are isotopic
of the total measured sample (subscript, T ), the
pt, b) and the true value of the sample (subscript,
ative value of 0.46 was used as the uncertainty
he blank (σnb ; 25% of the mean size of the three
is significantly larger than the standard deviation
the blanks. These calculations give the errors
3.

tion and Environmental reconstruction

123 (Expedition 181) is located on Chatham rise,
ealand in the southernmost Pacific (41◦47.2’S,
290m water depth). In the modern ocean sur-
O2(aq) at this site is close to equilibrium with
CO2 (Martı́nez-Botı́ et al., 2015). We have pre-
excellent preservation of coccoliths at this site
e period studied (McClelland et al., 2016). The
model for ODP Site 1123 was taken from Elder-
12a), which was based on a correlation with the
benthic oxygen isotope stack of LR04 (Lisiecki
005). Owing to the location of Site 1123 just
b tropical front (STF), the site has the potential to
gs in temperature. We therefore reconstructed sea
ratures (SSTs) directly using the alkenone tem-
(Uk

37′ ) interpreted with the BAYSPLINE model
d Tingley, 2018). Uk

37′ is the best available tem-
for our purposes as it captures the depth habitat
hores.
ent samples spanning the range of our coccol-
ere processed for total lipid extracts (TLEs)
-MARS microwave extraction system with
ne:methanol solvents as described in Polik et al.
resulting TLEs were stored at -20◦C. For anal-
of the TLEs were dissolved in 97:3 (v/v) hex-
ol, filtered, and analyzed on an Agilent 1290
ultra-high-performance liquid chromatography
em coupled to an Agilent 6410 triple-quadrupole
eter (MS) using atmospheric pressure chemical
CI). Core GDGT distributions were determined
quity BEH HILIC amide columns (2.1 × 150
article size, Waters Corporation, Milford, MA)
following the method outlined by Becker et al.
odifications by Polik et al. (2018).
EX86 calculations were conducted using estab-
s. TEX86 ratios were determined according to the
houten et al. (2002) and TEX86 was converted to
g the BAYSPAR model of Tierney and Tingley

37
1998)). Uk

37′ was converted to SST using the BAY
model of Tierney and Tingley (2018). The TEX86 and
reconstructions both reveal similar relative changes th
the glacial cycle. Owing to the production of alkenone
colithophores, and the depth habitat represented by th
Uk

37′ SSTs are presented in the main manuscript, and
pared to TEX86 SSTs in the supplementary material.

The pCO2atm record is taken from a consensus comp
CO2 mixing ratios from a number of Antarctic ice cor
iter et al., 2015), and assumed to represent a well-mix
sphere. By assuming equilibrium between the surfa
and atmosphere, [CO2(aq)] is estimated from SST and
using the seacarb package in R (Gattuso et al., 2022),
solution assumed to be controlled only by SST at a
salinity of 35. As CO2 is more soluble in seawate
SST, changes in inferred SST that accompany changes
spheric pCO2 result in an offset between pCO2 and [C
The highest value of [CO2(aq)] occurs at 120 ka wh
is still high and reconstructed SST falls slightly. All
core ages are projected onto the LR04 timescale (Lis
Raymo, 2005), and all gas ages, including pCO2atm, a
AICC2012 timescale (Bereiter et al., 2015; Bazin et a
To account for the estimated ∼3 ky temporal uncertai
alignment of these sediment and gas records, both t
and SST records were smoothed with a LOESS filt
span that acts as a low pass filter with a cut off arou
prior to combining to calculate [CO2(aq)].

3. Results

CAPs were successfully extracted from within th
comprising the 2-3 µm and 8-12 µm fractions, which w
as the small and large size fractions respectively. For e
size-separated coccoliths (dry weight) from the small
tion, the final yield was on the order of 5 - 15 µg CAP
500 nmolC). An approximate yield is around 300 nmo
g−1 (coccolith calcite). The carbon isotopic compositio
calcite (δcal) and of the CAPs (δCAP) of both size fracti
measured. For the small size fraction δcal values range
to 1.7 ‰VPDB throughout the glacial cycle, while the
fraction δcal values range from -2.0 to -0.6 ‰VPDB (Fig
variation in δCAP throughout the glacial cycle was s
larger with values ranging from -18.4 to -13.8 ‰VP
small size fraction, and -22.2 to -11.8 ‰VPDB in the
fraction. Both δCAP records transiently shift towards
negative values at around 130 ka, coincident with th
termination. As the CAP yield for the large size fractio
low, the uncertainties in δCAP values are much higher
the small size fraction, and relative changes in this seri
be treated with caution. The δCAP values of the large
tion are, however, consistently 3-4 ‰ lower than tho
small size fraction. All raw data are shown in Fig. 3.
We define ∆cal:S-CAP:S to be the magnitude of the d

between δCAP and δcal of the small size fraction, and ∆
to be the equivalent for the large size fraction (Fig.
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forams
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ta. Time series of carbon isotope compositions of calcite from
l) size fraction (cal:S), calcite from the 8-12 µm (large) size
APs from the small size fraction (CAP:S), and CAPs from the
(CAP:L). The point in parentheses was contaminated with a
n but is included here for completeness. ∆ values defined as
shaded box highlights the glacial maximum (GM), and the

ghlights the inter-glacial (IG).

f carbon isotopes between CAPs and calcite is
f the isotopic composition of extracellular DIC.
n with recent literature (Bolton and Stoll, 2013;
2016; McClelland et al., 2017; Claxton et al.,
define ∆cal:S-cal:L to be the difference in δ values
from the small and large size fractions (Fig. 3).
a large range across the glacial cycle with a min-
and a maximum of 19.4, which occurs at around
ig. 4). These changes reflect primarily changes
ough δcal in the small size fraction does change,
are small and the direction of change dampens
plifies changes in ∆cal:S-CAP:S (Fig.3). Proxy re-
show SSTs ranging from around 10◦C at 165 ka
at around 130-125 ka, which coincides with the

SST, and exhibits a maximum value which occurs aro
later than the maximum in ∆cal:S-CAP:S.

4. Discussion

4.1. Controls on carbon isotope fractionation
Traditionally, it has been assumed that the maxim

of ϵp is set by the CO2 fixation step in the Calvin cyc
is catalyzed by the enzyme Ribulose-1,5-bisphosphate
lase/oxygenase (RuBisCO), and is associated with a l
mal kinetic isotope effect (ϵf). ϵf varies between RuBis
(reviewed in Wilkes and Pearson (2019)), and betwee
(Boller et al., 2011, 2015). The modulation of this m
fractionation has typically been described as an ope
reservoir effect, where ϵp is a linear function of carbo
tion (Hayes, 2002). The theoretical relationship devi
linear as more complex features are included in mode
ing: intracellular compartmentalization (Cassar et a
dynamic carbonate chemistry (Holtz et al., 2017), the
of carbonic anhydrase (CA) (Holtz et al., 2017), cellul
ary layers (Rau et al., 1996; Riebesell et al., 1993), re
(Holtz et al., 2017), facultative mixotrophy (Gould et
de Vargas et al., 2007), light availability (Rost et al., 20
et al., 2017; Wilkes and Pearson, 2019; Phelps et al., 2
bicarbonate uptake (e.g. Sharkey and Berry, 1985; K
et al., 2014; Nimer et al., 1997; Herfort et al., 2002; Nim
1996; Keller and Morel, 1999; Cassar et al., 2006; Ho
2017; McClelland et al., 2017; Wilkes and Pearson, 2

Here we consider changes in the CO2 utilization p
τ, defined as the ratio of the rate of carbon fixation to
tering the cell by passive diffusion alone. For a sphe
of radius r, the rate of fixation of CO2 into organic m
be estimated by the product of the cell’s volume ( 43
carbon molar density (ρ), and its instantaneous divisi
(Sharkey and Berry, 1985; Rau et al., 1996; Holtz et
Rost et al., 2002). The supply rate of CO2 delivered b
diffusion through the membrane is given by the produ
cell’s surface area (4πr2), the CO2 concentration at
surface (Ce), and the effective membrane permeabilit
(K) (Popp et al., 1998). Following notation introduc
ously (McClelland et al., 2017):

τ =
µirρ
3CeK

.

In reality diffusive CO2 is supplemented by various
mechanisms of carbon uptake, so τ does not equate d
utilization (for example, τ can take a value of greate
Nevertheless, we find this compound variable to be
way to consider changes in ϵp: An increase in τ corre
a decrease in ϵp. We emphasise that quantitative interp
require a more sophisticated model. Relative to bulk
CAPs are enriched in 13C (Fig.2), with a variable o
Section 4.2 for discussion).

The fractionation of carbon isotopes between DIC
colith calcite is also impacted by biological processe

6
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fractionations defined in Fig.3.

depends on the ratio of the rates of calcification to p
thetic carbon fixation (Rcal : Rfix) of the cell (Hermo
2016; McClelland et al., 2017). Carbon that leaks
cell is depleted in 13C relative to the intracellular po
membrane is more permeable to the most 13C-deple
of DIC, CO2, than to HCO−3 , which is 13C-enriched.
creases, this leakage flux decreases, and the DIC pool i
becomes depleted in 13C. This effect is most pronounce
with a relatively high Rcal : Rfix (⪆ 1). In cells that ha
Rcal : Rfix (⪅ 1), the 13C of the intracellular DIC poo
printed by leakage of 13C-enriched carbon from the ch
This interplay is affected by cellular compartmentatio
tracellular bicarbonate transport (McClelland et al., 20
et al., 2017). Although the large and variable nature o
fects in coccolith calcite was once considered to be a
attribute, which limited their utility in paleoclimate
carbon isotope vital effects are themselves emerging
proxies, based on the observation that the differenc
effects between taxa is reduced when τ is low (Bolt
2012; Bolton and Stoll, 2013; Hermoso et al., 2020
et al., 2022).

Together, the carbon isotopes of coccolith calcite
small and large size fractions (δcal:S and δcal:L respectiv
CAPs extracted from within (δCAP:S and δCAP:L), in th
vide simultaneous constraints on the isotopic system
dent of an external calcite reference, and with three d
freedom. However, given the large uncertainties in δ
consider just ∆cal:S-cal:L and ∆cal:S-CAP:S.

4.1.1. Response of ∆cal:S-cal:L
The genus that dominates the small size fraction in

(Gephyrocapsa spp.; 2-3 µm) has been shown in labor
periments to have a Rcal : Rfix ratio of close to 1. Ther
magnitude of carbon isotopic vital effects in this size f
likely to be small. The large size fraction by contrast
nated by Coccolithus pelagicus which has been show
erally have a Rcal : Rfix of > 1, thus the calcite that it
is relatively 13C-depleted, and this depletion is predic
crease with increasing τ. Our data support these exp
with δcal:L values being on average a couple of ‰ lo
δcal:S values, and each size fraction plotting either si
planktic foraminifera record from this site, which is ex
exhibit small and relatively invariant vital effects. In tim
∆cal:S-cal:L decreases with increasing [CO2(aq)] over t
resolved period of the glacial termination, as expecte
C and F). However, the lowest values of ∆cal:S-cal:L oc
in the time series when pCO2 is low. The increase in
between 190 and 160 ka that does not accompany a c
pCO2 could have been driven by a shift in species
tion within either the large or small size fractions. In
size fraction this trend could be explained by an increa
tion of forms with high Rcal : Rfix, or in the small siz
by an increasing fraction of coccoliths from species w
Rcal : Rfix. However we do not have quantitative spec
dances for these samples which is required to decou

7
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μ (d−1)

nation of carbon isotopes between CAPs and bulk biomass
nterpretation of the data of Wilkes et al. (2018). Here we hy-
nges in ϵCAP-bio are determined by growth rate alone. Equa-
egression line is given in Eq.8.

.g. as in Claxton et al. (2022)).

of ∆cal:S-CAP:S
is dependent on processes affecting carbon iso-
both the calcite and the CAPs (Fig.2). Abso-
in δcal:S is relatively small over the glacial ter-
does change in such a way to dampen changes
For rough initial interpretations, we therefore

tant offset: ∆cal-DIC = +1‰. Over pH changes
lacial cycle on the order of 0.2 pH units (Chalk
hanges in DIC speciation have only a small ef-
ctionation of carbon isotopes between CO2 and
nd Wolf-Gladrow, 2001). Similarly, for an in-
erature from ∼11◦C to ∼17◦C as inferred across
mination, CO2(aq) becomes less depleted rela-
around 1‰. Like the coccolith calcite vital ef-
anges in SST and pH would have had the effect
the change in ∆cal:S-CAP:S across the glacial ter-
thus do not contribute to explaining the observed
l:S-CAP:S. For simplicity, we therefore assume a
t: ∆DIC-CO2 = +9 ‰. ∆cal:S-CAP:S is then roughly
by the following:

(δDIC + 1‰) −
(
δDIC − 9‰ − ϵp + ϵCAP-bio

)
(6)

10‰ + ϵp − ϵCAP-bio (7)

describes the fractionation of isotopes between
mass. Given these assumptions, the observed
l:S-CAP:S over time therefore reflects a change in
P-bio.
glacial termination, we would predict that the
2 would drive an increase in ϵp, however, the

likely cause an increase in average growth rate, and
drive a decrease in ϵp. However, the changes in tem
which are well aligned with ∆cal:S-CAP:S would drive
wrong direction to explain the observed trend. We ther
plore how changes in the remaining variable in Eq. 7
could be responsible for these signals.

4.3. Large vs. small CAP signals

While the uncertainties in δCAP:L values are too larg
tailed interpretation, a surprising aspect of our datas
they are consistently more negative than δCAP:S values
ing to Eq.5, larger cells are generally characterized by
values, and therefore smaller ϵp, which corresponds
δbio values. One possibility that we have considered e
is that larger cells may grow disproportionately slow
ocean owing to diffusion limitation of nutrients to
surface (Pasciak and Gavis, 1974). Extremely slow
limited growth rates would also explain the flatter res
the large size fraction δCAP values to changes in tem
This difference could alternatively be explained by a l
tope effect imparted by the RuBisCO (ϵ f ) of coccol
species represented in the large size fraction. Howev
measurements have not yet been made in vitro for l
colithophores, and therefore, in the absence of eviden
sume that ϵ f is constant. Lastly, this difference coul
achieved with similar δbio values in the large and s
fractions, but smaller values of ϵCAP-bio in the large
tion. Wilkes et al. (2018) suggested that the variation in
and the constancy of ϵalk-bio, in chemostat cultures is c
with a constant partitioning of carbon between the broa
of organic compounds, lipids, proteins and carbohydra
variable partitioning of carbohydrate carbon between C
other saccharides across experiments. However, it is
that this constant partitioning between the broad clas
when comparing taxa of highly contrasting cell size
cells with lower surface area to volume ratios, will lik
tain a lower fraction of total fixed carbon as lipids (Fin
2016; Roy, 2018). Lipids are 13C-depleted relative
biomass, while carbohydrates are 13C-enriched relativ
biomass. For a larger cell with a lower lipid fraction
topic partitioning between the broad classes of lipids a
hydrates would shift, resulting in large cells with 13C
lipids and 13C-depleted carbohydrates (including CA
tive to smaller cells (Hayes, 2002).

4.4. Reconciling alkenones and CAPs

The alkenone CO2 proxy has been calibrated with c
periments (Popp et al., 1998), and shown to vary as
with seawater CO2 concentrations in the modern ocea
et al., 2002; Pagani, 2002). However, drill core stud
alkenones as the sedimentary organic matter target ha
that δalk is often relatively invariant over glacial/interg
cles despite large changes in [CO2(aq)] (Zhang et a
Badger et al., 2019; Badger, 2021). Alkenone carbo

8
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fractionation in a CO2 and growth rate (µ) parameter space. A) ∆bio-DIC as a function of CO2 and µ. Contours are calculated acco
n: ∆bio-DIC = 189.8 µ

CO2
− 32.3 (assuming a constant δDIC between experiments of Wilkes et al. (2018)). B) ∆CAP-DIC as a function of

generate contours is given by: ∆CAP-DIC = ∆bio-DIC + ∆CAP-bio. ∆CAP-bio as a function of µ is given in the text (Eq. 8). In both panels, w
meter space represented by chemostat data from (Wilkes et al., 2018). Across the four experiments represented by these points, a grea
∆bio-DIC than in ∆CAP-DIC. The dashed lines represent the approximate range of glacial-interglacial [CO2 (aq)]. In both panels, the
e possible path in parameter space within this CO2 change where a slight increase in µ results in negligible change in ∆bio-DIC, but a

IC.

e consistently around 4 ‰ lower than δbio across
of conditions (i.e. δbio = δalk + 4 ‰) (Schouten
aws et al., 2001; Wilkes et al., 2017) (Fig. 2;
ould be noted that this relationship has been es-
for the relatively recent species, G. huxleyi). As
ibit a constant isotopic offset from biomass, ex-
this apparent insensitivity have focused on mech-
uld counter the effect of changes in CO2 on bulk
possibility is that changes in growth rate parallel
CO2 (Badger et al., 2019; Zhang et al., 2020). As
ar on opposite sides of the ratio in Eq. 5, an in-
th increasing Ce could minimize changes in τ. A
ility is an increase in the uptake of carbon during
Ce (Stoll et al., 2019; Badger, 2021). As K and
he same side of the ratio in Eq. 5, an increase in
low would also minimize the impact on τ. Both
ake sense physiologically, however, neither ex-
ges we observe in ∆cal-CAP.
a hypothesis that is consistent with an insensitiv-
nges associated with glacial cycles, and therefore
es in ϵCAP-bio. Wilkes et al. (2018) showed that
ched in 13C relative to bulk biomass, and that this
creases with increasing µ/CO2 (∝ τ at constant r).
iments, the variables µ and CO2 were not decou-
ints, Fig. 6 show the parameter space explored),
re originally interpreted relative to the compound
2. Here we hypothesise that ϵCAP-bio in the exper-
es et al. (2018) is driven by changes in µ, and is
f CO2. A linear regression between ϵCAP-bio and µ
riments of Wilkes et al. (2018) (Fig. 5) gives the
ation:

ϵCAP-bio = 13.1 − 12.9µ. (8)

erpretation, while ∆bio-DIC is a function of µ/CO2
urs in Fig. 6A), ∆CAP-DIC is a combined function

of both µ/CO2 and µ (curved contours in Fig. 6B). We
that coupled increases in µ and CO2 could theoretica
in no changes in ∆bio-DIC, and therefore no changes i
(i.e. black arrow does not cross contours in Fig. 6A),
an increase in the magnitude of ∆CAP-DIC (i.e. black ar
cross contours in Fig. 6B).

The positive effect of temperature on µ in the specie
in our samples (over low to moderate temperatures) i
tablished (e.g. Buitenhuis et al., 2008; Sett et al., 2014
fore, while instantaneous growth rate in the surface oce
our core location was probably limited by nutrient c
tions or light availability, the inferred ∼6◦C SST incr
accompanied the deglaciation at this site would likely
duced an increase in average µ during times of ex
growth. In our data, we find a strong correlation
∆cal-CAP and reconstructed SSTs (Fig. 7), which sup
hypothesis.

5. Conclusions

Coccolith associated polysaccharides (CAPs) are a
ing new target for organic matter analysis in sedimen
may reveal insights into metabolic rates of ancient a
have shown that pristine CAPs can be successfully
from within calcite fossil coccoliths from marine se
purified and isotopically analysed. The carbon isoto
of these molecules appear to be primarily controlled b
ature regulated growth rate changes, but further exp
investigation is required before its use as a quantitati
can be realized. Specifically, it will be necessary to b
derstand the biochemistry of CAP formation in calc
gae, and the isotope effects associated with each bio
step. It will be furthermore essential to determine
ganic carbon and carbon isotope partitioning differs
species, and between cells of different sizes. The ubi
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back over 200 million years into the geologic
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c records of organic carbon across multiple sizes
hore simultaneously. The unambiguous associa-
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organism will be invaluable. As with the modest
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