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Abstract. Rising seas are a threat to human and natural systems along coastlines. The relation between global

warming and sea level rise is established, but the quantification of impacts of historical sea level rise on a

global scale is largely absent. To foster such quantification, here we present a reconstruction of historical hourly

(1979–2015) and monthly (1900–2015) coastal water levels and a corresponding counterfactual without long-

term trends in sea level. The dataset pair allows for impact attribution studies that quantify the contribution of

sea level rise to observed changes in coastal systems following the definition of the Intergovernmental Panel on

Climate Change (IPCC). Impacts are ultimately caused by water levels that are relative to the local land height,

which makes the inclusion of vertical land motion a necessary step. Also, many impacts are driven by sub-daily

extreme water levels. To capture these aspects, the factual data combine reconstructed geocentric sea level on

a monthly timescale since 1900, vertical land motion since 1900 and hourly storm-tide variations since 1979.

The inclusion of observation-based vertical land motion brings the trends of the combined dataset closer to tide

gauge records in most cases, but outliers remain. Daily maximum water levels get in closer agreement with tide

gauges through the inclusion of intra-annual ocean density variations. The counterfactual data are derived from

the factual data through subtraction of the quadratic trend. The dataset is made available openly through the

Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) at https://doi.org/10.48364/ISIMIP.749905 (Treu

et al., 2023a).

Published by Copernicus Publications.
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1 Introduction

Sea level rise is a threat to a significant proportion of

the world’s population, which is concentrated near the sea.

Global sea levels rose by 15 to 25 cm from 1901 to 2018

and are expected to rise by a further 28 (lower bound of the

SSP-1.9 scenario) to 101 cm (upper bound of the SSP-8.5

scenario) relative to the period 1995–2014 by 2100 (Fox-

Kemper et al., 2021). There are still gaps in the understand-

ing of fast Antarctic ice loss, which may lead to sea level rise

above the upper bound of the SSP-8.5 scenario. The trend

in relative sea level (RSL) rise is stated as a climate impact

driver (Ranasinghe et al., 2021) for seven of the eight Repre-

sentative Key Risks identified in the Working Group II con-

tribution to the sixth assessment report of the Intergovern-

mental Panel on Climate Change (IPCC, AR6, WGII, Chap-

ter 16; O’Neill et al., 2022a). It contributes in particular as a

driver of risks to low-lying coastal socio-ecological systems

through irreversible long-term loss of land, critical ecosys-

tem services, livelihoods, wellbeing or culture in combina-

tion with other drivers of risk.

Several studies assessed the future coastal risks from sea

level rise and incorporated important drivers such as socio-

economic development and population change (Hallegatte et

al., 2013; Hinkel et al., 2014; Neumann et al., 2015; Hunter

et al., 2017; Brown et al., 2018; Tiggeloven et al., 2020;

Vousdoukas et al., 2020; Kirezci et al., 2023). There is, how-

ever, an absence of works on observed impacts attributed to

sea level rise, though similar modeling approaches could be

used. In particular, there is a lack of studies to attribute his-

torical coastal change or disturbances to sea level rise in a

global setting (O’Neill et al., 2022a).

Studies on a regional scale exist. They attributed changes

in the physical quantities of historic flood events, e.g., for

Hurricane Katrina (Irish et al., 2014) and Hurricane Sandy

(Lin et al., 2016), coastal retreat to sea level rise in Senegal

(Enríquez-de-Salamanca, 2020) and Pakistan (Kanwal et al.,

2020), abrupt beach retreat in Tasmania to sea level rise and

wind changes (Sharples et al., 2020). Strauss et al. (2021)

quantified the role of historical sea level rise in economic

damages for the individual event of Hurricane Sandy. Ob-

served damages in Solomon Islands and Fiji have been as-

sessed to be driven by relative sea level rise (Albert et al.,

2016; McNamara and Des Combes, 2015). These examples

are taken from the literature review on impact attribution for

the IPCC AR6 WGII Chapter 16 (O’Neill et al., 2022a); see

O’Neill et al. (2022b) for a comprehensive overview of stud-

ies1.

Challenges for studies on impact attribution to sea level

rise include the sparse observational data on flood extent re-

quired to validate historical impact simulations on the global

1https://www.isipedia.org/report/

observed-impacts-of-climate-change/ (last access: 22 Febru-

ary 2022)

scale, with improvements becoming available only recently,

e.g., through the Global Flood Database (Tellman et al.,

2021) and the Flood Inundation Archive (Yang et al., 2021)

for flooded coastal areas. Few datasets exist for longer-term

change of coastlines (Mentaschi et al., 2018; Luijendijk et

al., 2018). Global digital elevation datasets are another im-

portant source of uncertainty as their vertical precision is

largely below that of historical sea level change (e.g., Van

de Sande et al., 2012; Gesch, 2018), but there are promising

recent advances (Hooijer and Vernimmen, 2021; Vernimmen

and Hooijer, 2023). There is, however, also a lack of forcing

data to facilitate impact attribution to sea level rise.

With this study we aim to address the lack of forcing data

and facilitate works that quantify the role of sea level rise

in historically observed phenomena at the coast. Such phe-

nomena can be slowly evolving changes like the retreat of

sandy beaches or extreme-event-driven effects like economic

damages from coastal flooding. Here we build on the impact

attribution framework outlined in the IPCC AR6 WG2, ch16

(O’Neill et al., 2022a). The IPCC defines an “observed im-

pact as the difference between the observed state of a natural,

human or managed system and a counterfactual baseline that

characterizes the system’s state in the absence of changes in

the climate-related systems” and further that the “difference

between the observed and the counterfactual baseline state

is considered the change in the natural, human or managed

system that is attributed to the changes in the climate-related

systems (impact attribution)” (O’Neill et al., 2022a).

As the counterfactual impact baseline cannot be observed,

it needs to be modeled by an impact model. A precondition

for impact attribution is that the impact model explains the

observed phenomenon under consideration reasonably well

given its drivers. This necessitates a model evaluation step,

which is followed by the attribution step itself. The presented

work aims to make forcing data available for both steps:

(i) factual forcing data to evaluate impact models and pro-

duce factual historical impact simulations and (ii) counter-

factual forcing data to produce counterfactual impact simu-

lations.

While the factual data should stay as close as possible to

reality and are thus in principle set, the counterfactual data

depend on the specific attribution question. As coastal sys-

tems changed fast over the past century, with climate and

sea level presumably two drivers but often not the dominant

ones, here we ask the following attribution question: “how

did historical sea level rise affect observed phenomena in dy-

namic coastal systems with a multitude of drivers, irrespec-

tive of the origin of the sea level rise?” We thus aim to de-

lineate sea level rise from other drivers of change like pop-

ulation change, construction activity at the coast or ecosys-

tem degradation through direct human intervention. We do

not focus on the causes of sea level rise itself but treat it as

one driver of coastal change or disturbance in line with the

IPCC definition (O’Neill et al., 2022a). Quantifying the frac-

tion of impacts from anthropogenic influence on sea level rise
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would need investigation of the causal chain from emissions

to sea level rise to impacts through a more complex attribu-

tion setup based on climate model ensembles (Hope et al.,

2022).

Coastal systems ultimately experience the change of the

water level at the coast relative to the height of the land,

which we term relative water levels. As relative water lev-

els are the most direct input for impact models, we provide

factual and counterfactual relative water levels. This neces-

sitates the inclusion of vertical land motion (VLM), which –

though an important driver of coastal impacts – has been less

rigorously observed and researched on a global level than sea

level, and global datasets have only recently become avail-

able (Oelsmann et al., 2024; Hammond et al., 2021; Fred-

erikse et al., 2020; Hawkins et al., 2019b; Pfeffer et al.,

2017). Consistent with the impact attribution definition of

the IPCC, we do not investigate the drivers of VLM itself

but treat it as a driver of impacts as a part of the relative sea

level. There is no predecessor for a global relative water level

dataset.

We construct relative hourly and extended monthly coastal

water levels globally for the historical period and a respective

counterfactual – the hourly coastal water levels with counter-

factual (HCC) dataset. We describe the approach in the “Ma-

terials and methods” section, present the main features of the

dataset in the subsequent “Results” section, and provide a

discussion in the final section.

2 Materials and methods

Many impacts manifest through extreme sea level condi-

tions that occur on the timescale of hours, which necessi-

tates a product that resolves these timescales. The construc-

tion of factual relative hourly coastal water levels in our HCC

dataset can be broken down into the sum of four components:

h = hLF + hHF + hT + hSC, (1)

where h is the water level relative to the coast, hLF is a low-

frequency component that includes the long-term evolution

of water levels and VLM, hHF is a high-frequency compo-

nent that describes hourly changes in water levels, hT is the

tidal component, and hSC is the regular seasonal cycle. We

derive them as follows:

– hLF (low frequency). This was derived from a geocen-

tric, deseasonalized version of the hybrid reconstruc-

tion (HR) dataset from Dangendorf et al. (2019) and

a probabilistic VLM reconstruction from Oelsmann et

al. (2024). This combined dataset is low-pass-filtered by

taking its 90 d running mean value to retain only contri-

butions with frequency longer than 3 months. To yield

hourly resolution, the result is interpolated with cubic

spline interpolation.

– hHF (high frequency). This was sourced from desea-

sonalized non-tidal residuals of the Coastal Dataset for

the Evaluation of Climate impact (CoDEC; Muis et al.,

2020) to cover the high-frequency variation of storm

tides. This is then high-pass-filtered by removing the

90 d running mean value, to represent water level fre-

quencies higher than 3 months.

– hT (tidal levels). This was derived from the tidal com-

ponent of CoDEC.

– hSC (seasonal cycle). This denotes the multiyear sea-

sonality computed over the years 1993 to 2015 from

the satellite altimetry dataset used in Dangendorf et

al. (2019). To yield hourly resolution, the seasonal cycle

is interpolated with cubic spline interpolation.

To ensure no overlap, the regular seasonal cycle is excluded

from both hLF and hHF components. Barotropic water level

changes due to wind and atmospheric pressure on timescales

longer than or equal to 1 month are covered in both the

HR and the CoDEC dataset. We use frequency filtering to

prevent double counting. CoDEC models these water level

changes explicitly, whereas HR is based on a statistical re-

construction method based on sparse observations. However,

HR is not restricted to barotropic variations alone and covers

the full spectrum of intra-annual and longer sea level varia-

tions (including sterodynamic and barystatic processes). The

dominating process at different timescales depends on lo-

cal conditions (Zhu et al., 2021; Dangendorf et al., 2014).

We thus expect that it depends on the location which prod-

uct performs better. Our method’s cutoff frequency deter-

mines which scale of variations is captured by each product.

CoDEC captures variations with higher frequencies than the

cutoff, while HR captures variations with lower frequencies.

We have tested for different cutoff frequencies and how it

affects the performance of the combined product when com-

pared to tide gauges. We varied the cutoff frequency for val-

ues of 1, 2, 3, 4, 5, 6, and 12 months and found an optimal

cutoff frequency of 3 months (90 d).

We apply the same process but exclude the VLM re-

construction to yield a geocentric version of the combined

dataset. To yield a common vertical reference, we shift the

geocentric version of our dataset vertically to yield instan-

taneous height above the WGS 84 geoid, which is also

called absolute dynamic topography. To that end, we re-

move the mean value for the time period 1993–2012 from

our geocentric dataset and add the mean dynamic topogra-

phy from Copernicus Marine Environment Monitoring Ser-

vice (CMEMS) SEALEVEL_GLO_PHY_MDT_008_063

https://doi.org/10.48670/moi-00150 (E.U. Copernicus Ma-

rine Service Information (CMEMS), 2024) that is derived

from satellite altimetry over the same time period. We align

our relative version of the dataset with the geocentric version

such that the water levels in both datasets are equal on the

last date of the record.

We describe in Sect. 2.1, 2.2 and 2.3 the different source

datasets and how we adjusted them for this application.
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We describe how we derived the counterfactual dataset in

Sect. 2.5, “Counterfactual water levels”.

2.1 Coastal Dataset for the Evaluation of Climate impact
(CoDEC)

CoDEC is an update of the Global Tide and Surge Reanaly-

sis (GTSR; Muis et al., 2016) dataset and uses a newer mod-

eling framework, with higher-resolution and newer climate

forcing data. It is based on the hydrodynamic Global Tide

and Surge Model (GTSMv3.0), which uses the unstructured

Delft3D Flexible Mesh software (Kernkamp et al., 2011) as

the shallow-water flow solver and resolves coastal areas at

high detail while being efficiently coarse in the open ocean.

GTSM uses the depth-averaged, barotropic mode of Delft3D,

assuming a constant density of ocean waters. It explicitly

models tides and storm surges at a high temporal resolution.

The model has global coverage and thus no open boundaries.

The coastal resolution is 1.25 km at European coasts and

2.5 km at other global coasts. To produce CoDEC, GTSM

is forced with the 10 m wind speed and atmospheric pressure

from the ERA5 reanalysis (Hersbach et al., 2020). ERA5 de-

termines the time coverage of CoDEC from 1979 to 2017.

The spatial resolution of ERA5 is 0.25° × 0.25° (∼ 31 km).

Time series are saved at approximately 18 000 output loca-

tions that are located at 10–50 km distance along a smoothed

global coastline. Validation by Muis et al. (2020) has demon-

strated that CoDEC has an average root mean squared error

(RMSE) of 0.26 m (SD 0.73 m) for the comparison between

modeled and observed annual maxima at 485 tide gauge sta-

tions in the Global Extreme Sea Level Analysis database

(GESLA-2; Woodworth et al., 2016). For tropical cyclones

with wind fields of relatively small spatial extent, extreme

water levels are expected to be underestimated due to poor

representation of the meteorological forcing in ERA5 (Dul-

laart et al., 2020). Polar regions are not well resolved due

to low-quality atmospheric forcing, poor bathymetry and the

poor representation of ice dynamics.

For the HCC dataset we separate the total CoDEC water

levels into components of tidal elevation and non-tidal storm

surge residuals. We deseasonalize the storm surge residuals

by removing the monthly average climatology over the years

1993–2015, which is interpolated to hourly resolution with

cubic spline interpolation.

2.2 The hybrid reconstruction (HR) dataset

The HR dataset (Dangendorf et al., 2019) combines two

methodologies to reconstruct historical sea level rise from

tide gauge and satellite observations. Both methodologies are

prominent sea level reconstruction approaches on their own

(Church et al., 2011; Hay et al., 2015) and have their distinct

advantages and shortcomings. HR applies each methodology

at timescales where they have well-proven performance. The

HR dataset covers the period 1900–2015 and has monthly

time resolution. Thus it cannot provide sea level variability

on timescales shorter than months, which needs to be intro-

duced by CoDEC. Since HR is based on observations, the

data include all sea level processes that are not explicitly re-

moved. Most importantly, it includes the effects of gravita-

tion, rotation and deformation of the Earth accompanying the

sea level change from mass addition through melting glaciers

and ice sheets, changes due to density variations of the ocean

water and dynamic ocean currents, and variations induced by

the inverse barometer effect. By construction, HR includes

the sea level variability from wind and atmospheric pressure

changes, which are also represented in the CoDEC dataset.

Note that modulations due to the nodal cycle driven by the

varying declination of the moon in time are not explicitly

modeled within the HR framework.

We remove VLM contributions from HR to represent the

evolution of water levels relative to the geoid (geocentric).

HR contains VLM from long-term glacial isostatic adjust-

ment (GIA) since the glacial maximum 21 000 years ago

and from short-term crustal responses to present-day ice melt

since 1900 (Pfeffer et al., 2017; Spada, 2017; Riva et al.,

2017). GIA is explicitly modeled in HR and can thus be read-

ily taken out. The crustal responses to present-day ice melt

are implicitly contained in HR through cryostatic fingerprints

that are fitted to tide gauges. We use the annual reconstruc-

tions of the crustal responses to present-day ice melt from

glaciers and the Antarctic ice sheet and the Greenland ice

sheet from Frederikse et al. (2020) to remove this contribu-

tion. For the HCC dataset we deseasonalize the geocentric

version of HR by removing the monthly average climatology

over the years 1993–2015.

2.3 Vertical land motion dataset

We use VLM data from Oelsmann et al. (2024) that provide

a probabilistic annual VLM reconstruction from 1995–2020

based on more than 10 000 time series from global naviga-

tion satellite system (GNSS) stations and differences of al-

timetry and tide gauge observations. Their approach incor-

porates long-term secular VLM based on present-day obser-

vations of the combined effects of GIA and various other

VLM processes. In regions that are dominated by GIA, such

as the Baltic Sea and the NE-US coast, the trends of the

VLM reconstruction align well with a GIA model by Caron

et al. (2018) (as can be seen in Fig. 3c in Oelsmann et al.,

2024). They explicitly account for a linear trend component

and non-linear variations with time. Oelsmann et al. (2024)

adapt methods so far used for the reconstruction of abso-

lute sea level changes (e.g., Church and White, 2011) us-

ing empirical orthogonal functions. The spatiotemporal vari-

ations are interpolated along the world’s coastlines using

adaptive Bayesian transdimensional processes (Hawkins et

al., 2019a). By accounting for the non-linear components of

the temporal evolution, the estimated linear trends over the

last century (1900–2000) are expected to be more robust. The
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non-linear components capture, for example, the present-day

effects (since 1995) of earthquakes, which can introduce ex-

treme variations in observed VLM trends up to centimeters

per year or instantaneous displacements with a magnitude

of several centimeters to meters. For this study, we derive

VLM from 1900–2015 by interpolating the annual VLM re-

constructions linearly to a monthly scale and extrapolate it

back to the year 1900 with the reconstruction of the linear

component of VLM.

We incorporated this VLM dataset, which is directly de-

rived from observations, as the most independent source for

such data. Alternatives to this approach exist and have al-

ready been used in earlier datasets. One possibility is to only

account for VLM that is caused by GIA which can directly be

modeled or implicitly through cryostatic fingerprints in the

case of responses to present-day ice melt (Dangendorf et al.,

2019). Another possibility is to approximate non-linear ef-

fects from the residual between tide gauge observations and

reconstructions (Hay et al., 2015; Kopp et al., 2014; Dangen-

dorf et al., 2021), which can be valuable to extend observa-

tions in time when no GNSS data are available. This residual

approach depends on long tide gauge records which have an

uneven and sparse global coverage and is thus not fully suit-

able to generate a densely interpolated coastal estimate.

2.4 Tide gauge datasets

We use two different tide gauge datasets to evaluate the HCC

dataset. To evaluate long-term sea level change, we use the

tide gauge measurements of monthly mean sea level from

the Permanent Service for Mean Sea Level (PSMSL, 2022;

Holgate et al., 2013). We restrict our analysis to 663 PSMSL

records of at least 20 years’ length and with at least 30 %

data coverage in the 1993–2012 period. To align PSMSL

with HCC or HR we remove the 1993–2012 average from

each of those datasets respectively. We specifically calculate

the average only over all time steps where the associated ob-

servational record has valid data. This reduces the alignment

error between the observations and modeled data.

To evaluate the higher frequencies shorter than a month we

use the tide gauge data provided by the GESLA-3 database

(Woodworth et al., 2016; Haigh et al., 2022a, b, 2023; Cald-

well et al., 2015), which is provided on an hourly or sub-

hourly sampling frequency. We aggregated all records with

higher sampling frequency to hourly resolution by taking the

average over all time samples that fall within plus or minus

30 min of a specific hour. We use GESLA-3 records to eval-

uate the HCC dataset at daily maximum water levels and to

assess the 99th percentile of the storm surge residual. Both

analyses have slightly different requirements for the data

availability. For the first analysis we use daily maximum wa-

ter levels, which are detrended by removing their respective

annual mean value. Here we only include years in the calcu-

lation that have at least 11 months of valid data. For compara-

bility between stations, we require at least 30 % of valid years

between 1979 and 2015. Observations and modeled data are

aligned by the annual detrending, and thus no further vertical

alignment is necessary. With these restrictions we use 1040

tide gauge records from GESLA-3 for this analysis.

The second analysis is based on storm surge time series

from GESLA-3. To remove the tidal contribution we esti-

mate tides for the observations by fitting harmonic functions

with 69 harmonic components as described by Annunziato

and Probst (2016). To preserve variability with frequencies

that are larger than or equal to 1 month, we predict harmonic

tides based on fitted parameters for 65 sub-monthly harmonic

components only, leaving out 4 components with frequencies

larger than or equal to 1 month. We then remove the predicted

harmonic tides from the observations.

We evaluate the performance of HCC on the 99th per-

centile of daily maxima storm surge in the 2011–2015 pe-

riod. To that end, we vertically align the observational and

factual datasets by removing their respective mean value for

time steps with valid observations in this period. We require

at least 90 % data coverage in this period. With these restric-

tions we use 999 tide gauge records from GESLA-3 for this

analysis. In Text S1 and Fig. S1 in the Supplement, we per-

form a statistical test on how sensitive the vertical alignment

is on different percentages of data coverage in the alignment

period.

The tide gauge stations used in this study are illustrated

in Fig. 1, with colors referring to ocean basins following the

definition of Thompson and Merrifield (2014).

2.5 Counterfactual water levels

We generate counterfactual water levels that exclude the

trends since the beginning of the 20th century but preserve

the short-term sea level variability of the factual dataset.

There is increased evidence for an acceleration in global sea

level rise (Church and White, 2011; Hay et al., 2015; Fred-

erikse et al., 2020; Dangendorf et al., 2017, 2019). To ac-

count for the accelerated trend in sea level rise, we employ

a quadratic trend model. For each location, we estimate this

trend using linear regression on the annual mean time series,

setting the intercept to the average sea level from 1900–1905.

After removing this long-term trend, we obtain the counter-

factual time series. We evaluate the robustness of this trend

estimate using the moving block bootstrapping algorithm, as

described by Mudelsee (2019). We find that the total sea

level rise derived from the trend estimate varies depending

on the location, with standard deviations ranging from 3.4 to

16.7 mm and an average standard deviation of 8.1 mm (See

supplement Text S2 and Fig. S2). While uncertainties exist,

this demonstrates that the quadratic model provides a robust

representation of the long-term trend in sea level rise. Im-

portantly, the uncertainty associated with our model is rela-

tively small when compared to the uncertainties in the factual

dataset itself.
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Figure 1. Tide gauge stations used for the evaluation of the presented dataset. Orange circles show 663 tide gauge stations from PSMSL,

black dots show 1040 tide gauge stations from the GESLA-3 database with 30 % data coverage in the period 1979 to 2015 and blue circles

show 999 GESLA-3 stations that have at least 90 % data coverage in the period 2011–2015. The respective ocean basins are shown as

colored areas. Map adapted from Thompson and Merrifield (2014) with an additional division of the North Atlantic into West and East and

are extended by nearest-neighbor interpolation.

As the water height relative to the coast is needed as in-

put for impact models, the factual/counterfactual pair can be

used as forcing in such models directly. We additionally pro-

vide a counterfactual of the geocentric version of the factual

dataset excluding the effects of VLM. The geocentric factu-

al/counterfactual pair can be used if it is known from other

sources that VLM is negligible or if better VLM estimates

are available regionally. To yield a counterfactual consistent

with our approach, the VLM quadratic trend since 1900–

1905 would need to be estimated from the regional VLM

data and then subtracted from the geocentric counterfactual

dataset.

3 Results

We provide the factual and counterfactual datasets with

hourly resolution for the time period 1979–2015 and monthly

resolution for the time period 1900–2015.

3.1 Long-term sea level trends

We evaluate the performance of our dataset by comparing it

to tide gauge measurements from the PSMSL database. In

the “Materials and methods” section we describe in more de-

tail how we select tide gauge measurements from PSMSL

and how we align it with the HCC and HR datasets. To vi-

sualize long-term sea level change we plot the linear trend

from the tide gauge records and the modeled coastal wa-

ter levels respectively for years with valid observations. Our

dataset reflects the different trends in different world re-

gions well (Fig. 2a) and shows a comparable RMSE against

observations. Figure 2b shows the RMSE of the monthly

HCC dataset and the HR dataset against observations. Fig-

ure 2c depicts latitudes for all tide gauge stations from the

PSMSL record that were used to analyze monthly water lev-

els, aligned by ocean basins.

We evaluate the performance of the HCC dataset through

its RMSE against observations and compare it to the perfor-

mance of the HR dataset (Table 1). The HCC dataset shows

a median RMSE of 5.43 cm (SD 5.34 cm) over all tide gauge

stations, which is an improvement compared to the HR, with

a median RMSE of 5.69 cm (SD 6.00 cm). We performed a

Wilcoxon signed-rank test to compare the RMSE samples

and found that the improvement is statistically significant,

with a p value of 5.36 × 10−10. However, the improvement

of 0.26 cm is only modest when compared to the total er-

ror magnitudes. The improvement occurs in all seven basins

and is pronounced in the Subtropical North Atlantic, with

a median RMSE of 4.55 cm (SD 2.79 cm) as compared to

5.45 cm (SD 6.2 cm) in HR. Figure 2b provides more de-

tail, showing RMSE per tide gauge. In the higher latitudes

of the East Pacific, our dataset has a lower RMSE than HR

for most stations (Fig. 2b). The performance also decreases

at tide gauges in the lower northern latitudes of the East Pa-

cific. As these regions are all located at plate boundaries and

are thus highly prone to tectonically induced VLM, this may

hint at problems in the extrapolation back in time to 1900

from recent VLM data for such regions. However, in sum-

mary, for all locations we see the inclusion of observational

VLM and its backward extrapolation superior to approaches

that only include the GIA component of VLM and neglect

other contributing processes, as can be seen in the overall

improvement of median RMSE.

3.2 Intra-annual variability

To evaluate our dataset on timescales shorter than a year, we

compare it with observations from the GESLA-3 database.

For illustration, in Fig. 3 we first show daily mean values for

Earth Syst. Sci. Data, 16, 1121–1136, 2024 https://doi.org/10.5194/essd-16-1121-2024



S. Treu et al.: Reconstruction of hourly coastal water levels 1127

Table 1. RMSE in centimeters between tide gauge observations and different reconstructions of coastal water levels. For the comparison on

daily maximum values, time series are detrended by removing annual means (marked with an ∗ in the table header). Rows contain median and

standard deviation (in brackets) of RMSE in centimeters, aggregated for different basins and globally. The rightmost column shows median

bias of the top 1 % daily maximum surge levels between HCC and tide gauge observations. Negative values indicate that HCC underestimates

the observed surge level.

PSMSL GESLA-3

1900–2015 1979–2015 2011–2015

Monthly means Daily max. values Monthly means Bias of extreme surges

HCC (ours) HR HCC∗ (ours) CoDEC∗ HCC∗ (ours) HR∗ HCC (ours)

Subpolar North 5.48 (3.58) 5.56 (3.46) 12.09 (13.05) 12.40 (12.74) 2.98 (3.41) 3.57 (3.37) −8.39 (28.2)

Atlantic East

Subpolar North 4.30 (11.94) 4.50 (12.46) 50.26 (37.05) 50.16 (36.92) 2.69 (2.86) 3.35 (2.93) −15.03 (24.51)

Atlantic West

Subtropical 4.55 (2.79) 5.45 (6.20) 13.55 (11.56) 14.37 (11.13) 3.37 (1.21) 3.70 (1.24) −12.91 (15.19)

North Atlantic

South Atlantic 7.60 (2.59) 8.11 (2.59) 14.65 (4.92) 14.54 (4.74) 3.22 (1.26) 3.92 (1.31) −11.89 (8.92)

East Pacific 7.01 (4.17) 7.22 (7.72) 11.93 (18.78) 12.68 (18.56) 3.68 (2.56) 3.88 (2.76) −18.22 (20.07)

Northwest 5.45 (5.69) 5.53 (5.45) 8.11 (9.77) 10.93 (9.13) 3.59 (1.82) 3.47 (1.87) −13.19 (18.40)

Pacific

Indian Ocean– 5.21 (6.49) 5.41 (6.62) 12.70 (32.12) 13.34 (31.96) 3.42 (2.56) 3.82 (2.26) −14.66 (19.89)

South Pacific

Global 5.43 (5.34) 5.69 (6.00) 12.02 (22.15) 12.68 (21.85) 3.35 (2.60) 3.71 (2.55) −12.78 (22.22)

CoDEC, HR and our dataset as anomalies to their respec-

tive yearly mean in the year 2001 for five selected tide gauge

stations. For the example of Stockholm, Sweden, the den-

sity variations modulating sea level during the annual cycle

as present in HR bring the atmospheric wind- and pressure-

driven variability from CoDEC significantly closer to obser-

vations and thus improve the performance in our combined

dataset. A similar effect is evident for Toyama, Japan, and

Miami, USA. Notably, also after including HR, the HCC wa-

ter levels do not perfectly match the observations. Discrep-

ancies remain, e.g., in Miami, USA, between October and

November 2001. However this falls well within the uncer-

tainty margins of the HR dataset, given that it represents a

global statistical reconstruction of water levels. For the sta-

tions of Zanzibar, Tanzania, and Rio de Janeiro, Brazil, sea

level variation of HR is low as compared to the total sea level

amplitude; thus the factual dataset and CoDEC evolve sim-

ilarly, and an improvement is not evident. Both stations are

located in areas that are barely covered by tide gauges used

in HR.

We assess if improvements are visible over all tide gauges

in Fig. 4. We compare coastal water levels from our dataset,

CoDEC and HR through their respective RMSE against

tide gauge observations. Following Muis et al. (2020), each

dataset is detrended by subtracting the annual mean from

each time series and each year respectively. This means that

a performance improvement is due to better alignment of

intra-annual variability with tide gauges as inter-annual mean

sea level change is explicitly excluded. For most locations

the RMSE against tide gauge observations from GESLA-3

is lower for our detrended monthly dataset than for HR, vi-

sualized by blue bars in Fig. 4a. The global median RMSE

of our dataset is 3.35 cm (SD 2.60 cm) compared to 3.71 cm

(SD 2.55 cm) for the HR dataset. The improvement is consis-

tent over all basins except for the Northwest Pacific, where

the median RMSE for our dataset of 3.59 cm (SD 1.82 cm) is

slightly higher than for HR with 3.47 cm (SD 1.87 cm) (Ta-

ble 1). The improved performance of our dataset is stronger

in midlatitudes to higher latitudes of the North Atlantic and

some stations in the East Pacific. In the East Pacific and

Indian Ocean–South Pacific, there is a mixed picture, with

some stations showing a lower performance than HR (green

bars Fig. 4a). Wind-driven and air-pressure-driven barotropic

sea level variability is more pronounced in midlatitudes to

higher latitudes (Merrifield et al., 2013), which might explain

the improved performance of our dataset in these regions

since it uses sea level variability from CoDEC on a timescale

up to 3 months. This is plausible as wind-driven variabil-

ity and air-pressure-driven sea level variability are explicitly

modeled in CoDEC and only interpolated from sparse obser-

vations in HR. Daily maximum water levels in our dataset

have a global median RMSE of 12.02 cm (SD 22.15 cm),
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Figure 2. Performance of our HCC dataset and the HR dataset compared to tide gauges from the PSMSL record. (a) Linear sea level trend

for years with valid observations for tide gauge records (black) and HCC (blue) connected by a gray bar. (b) RMSE between observed and

modeled RSL as blue and pink dots for HCC and HR respectively. RMSE values for the same tide gauge station are connected with a blue

bar if HCC has a lower RMSE than HR and with a pink bar if it is higher. (c) Latitude of tide gauge locations sorted by ocean basin. A

progressive integer of the considered tide gauge is plotted on the x axis. Outliers are not plotted.

which is lower compared to CoDEC, with a median RMSE

of 12.68 cm (SD 21.85 cm). This improvement is evident for

almost all stations, as illustrated by the blue bars in Fig. 4b.

The largest performance increases are in the Northwest Pa-

cific where our dataset has a median RMSE of 8.11 cm (SD

9.77 cm) compared to 10.93 cm (SD 9.13 cm) for CoDEC

and is almost halved to values as low as 50 mm for some

stations (Fig. 4b). The more important role of ocean den-

sity variations as compared to wind-driven and air-pressure-

driven variability is a plausible explanation for the stronger

increase in performance in the lower latitudes. Density varia-

tions are captured in our dataset through the inclusion of HR

and the seasonal cycle from AVISO.

3.3 Extreme water levels

To illustrate the role of the long-term trend in sea level ex-

tremes, we investigate extreme water levels in our factual and

counterfactual dataset and compare them to tide gauge ob-

servations from GESLA-3. We only consider extreme events

from 2011–2015 because this period is covered well in the

observations, and sea level rise is close to its maximum. We

restrict our analysis of extreme water levels to tide gauge

stations with at least 90 % of data in the considered period

which leaves a total of 999 stations. As astronomical tides in-

troduce a strong offset in extreme water levels and thus make

the comparison between different locations difficult, here we

remove astronomical tides from the modeled and observed

water levels and focus on the surge component. As coasts are

historically adapted to their tides, extreme surges are an im-

portant cause for extreme impact events and their damages.

We therefore analyze the 99th percentile of daily maximum

surge levels. To that end, we pick the 1 % highest daily max-

imum surge levels from the observational data in the years

2011–2015 and compare those to our factual and counter-

factual dataset. We focus solely on sea level anomalies, to

level out differences in surge height between different sta-

tions, caused by permanent differences to the geoid. We cal-

culate sea level anomalies for tide gauge records by remov-

ing the mean sea level over time steps with valid observations

in the period 2011–2015. To reduce the alignment error, we

calculate the mean sea level for the factual dataset only for

time steps with valid observations in the tide gauge record.

From that we derive sea level anomalies for the factual and

counterfactual by removing the factual mean sea level from

both datasets. This maintains the difference between the fac-

tual and counterfactual datasets resulting from long-term sea

level rise.

We show these top 1 % highest water levels for our fac-

tual and counterfactual dataset and the tide gauge obser-
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Figure 3. Illustrative comparison of our HCC (blue line), the HR (pink line) and CoDEC (red line) datasets with observations (black line) at

five example tide gauge stations. We show daily mean values for the year 2001 that are vertically aligned by removing the respective annual

mean sea level.

vations in Fig. 5a. In general, there is a good agreement

between modeled extreme water levels (blue bars) and ob-

servations (black markers). However, our dataset underesti-

mates the extreme water levels at most locations, with a me-

dian bias of −12.78 cm (SD 22.22 cm). This underestima-

tion is pronounced for the East Pacific with −18.22 cm (SD

20.07 cm) and Subpolar North Atlantic West with −15.03 cm

(SD 24.51 cm) (Table 1). There is a known low bias in the

model, in particular for the highest water levels originating

from the CoDEC dataset. It is largely attributed to the spatial

resolution of the atmospheric inputs (Muis et al., 2020).

By design, the counterfactual dataset preserves the daily,

monthly and inter-annual variability of the factual dataset.

Extreme sea level events have the same timing in the coun-

terfactual and the factual. We can thus pick the timings of the

1 % highest water levels from the factual dataset and assess

the events in the counterfactual dataset in Fig. 5a. The trend

in relative coastal water levels increased extreme water lev-

els for almost all world regions with the counterfactual lying

below the factual for most tide gauge locations. In particular,

for regions with low surge magnitudes, it often contributes

a significant fraction to the extreme event. The situation is

different for the high northern latitudes where counterfactual

sea level rise is above the factual. In these regions the extreme

event magnitude is reduced, primarily due to the influence of

GIA (Emery and Aubrey, 1985). In some regions the coun-

terfactual is below zero. These are regions where the highest

surge levels are close to the mean sea level from 2011–2015.

With the factual not much higher than zero, the counterfac-

tual without the sea level trend since 1900 easily falls below

zero.
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Figure 4. Comparison between our HCC dataset, HR, CoDEC and tide gauge records from GESLA-3. (a) RMSE of monthly mean sea level

between HCC and GESLA-3 (blue dots) and HR and GESLA-3 (pink dots). Dots are connected with a blue bar if monthly HCC has a lower

RMSE than HR and with a pink bar if it has a higher RMSE. (b) RMSE between annually detrended HCC and GESLA-3 (blue dots) and

annually detrended CoDEC and GESLA-3 (red dots). Dots connected analogously to (a). (c) Latitude of tide gauge locations sorted by ocean

basin. A progressive integer of the considered tide gauge is plotted on the x axis. Outliers are not plotted.

We illustrate the contribution from geocentric water lev-

els and VLM to the relative coastal water levels in Fig. 5b.

The contribution of geocentric water levels is relatively sta-

ble across locations. This is in contrast to the contribution

from VLM, which is more variable across locations. In many

places both processes have a similar order of magnitude,

and there are some regions where VLM exceeds changes in

geocentric water levels. This has been recognized in earlier

works (Oelsmann et al., 2024; Nicholls et al., 2021; Pfeffer

et al., 2017; Hawkins et al., 2019b; Hammond et al., 2021;

Wöppelmann and Marcos, 2016).

4 Data availability

The HCC dataset is made available openly through the Inter-

Sectoral Impact Model Intercomparison Project (ISIMIP) at

https://doi.org/10.48364/ISIMIP.749905 (Treu et al., 2023a).

The source code (v1.1) underlying the analysis and pro-

ducing the figures presented in the paper is archived at

https://doi.org/10.5281/zenodo.10359838 (Treu, 2023). All

code is open to use under the Creative Commons Attribution

4.0 International license.

We provide direct links to all datasets used in this study:

– CoDEC and HR –

https://doi.org/10.5281/zenodo.8322750 (Muis et

al., 2023);

– VLM – https://doi.org/10.5281/zenodo.8308347 (Oels-

mann et al., 2023);

– PSMSL tide gauge data (PSMSL, 2022; Holgate et

al., 2013), retrieved on 26 September 2022 from https:

//psmsl.org/data/optaining/year_end/2022 (last access:

21 February 2024);

– GESLA-3 tide gauge data (Haigh et al, 2022a,

b), retrieved on 23 August 2023 from https://

gesla787883612.wordpress.com/downloads/ (last ac-

cess: 21 February 2024).

We use two different sources of satellite altimetry:

– To separate the seasonal cycle from HR, we use the

same satellite altimetry dataset that was employed in

the production of HR. The dataset is a merged prod-

uct of TOPEX/Poseidon and Jason altimeter missions

and was at that time distributed by AVISO. This dataset,

including the corrections described in Dangendorf et

al. (2019), is archived together with the HR dataset

at https://doi.org/10.5281/zenodo.8322750 (Muis et al.,

2023).
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Figure 5. Range and mean of the top 1 % of extreme coastal water levels without astronomical tides for tide gauge observations (black) and

our factual (blue) and our counterfactual (orange) HCC data (a). The mean value of the factual HCC data from 2011–2015 is subtracted from

all three datasets. Panel (b) shows mean coastal water level change from 1900 to 2015, computed by subtracting the mean value over 2010–

2015 from the mean value over 1900 to 1905. Blue markers show coastal water level change for the presented dataset and is decomposed into

the geocentric component (gray bars) and the contribution of VLM (brown bars). Latitude of tide gauge locations sorted by ocean basin (c).
A progressive integer of the considered tide gauge is plotted on the x axis. Outliers are not plotted.

– To reference our dataset to the WGS 84 geoid, we

use the CMEMS mean dynamic topography dataset

SEALEVEL_GLO_PHY_MDT_008_063, available at

https://doi.org/10.48670/moi-00150 (E.U. Copernicus

Marine Service Information (CMEMS), 2024).

5 Code availability

Data and code used to produce the table and figures pre-

sented in this study, based on v1.2 of the source code, are

archived at https://doi.org/10.5281/zenodo.10354898 (Treu

et al., 2023b).

6 Discussion

In this work, we combine datasets of long-term sea level

change, short-term coastal water level variability and VLM

to yield a forcing dataset for historical simulations with

coastal impact models. To facilitate the attribution of histori-

cal impacts to sea level rise, we complement the dataset with

a counterfactual.

The task poses several challenges. A major one is the in-

clusion of VLM to yield relative coastal water levels. Given

the sparsity of direct observational data, particularly prior to

the 1990s, extrapolating VLM back to the early 20th century

makes our estimates error prone, and anthropogenic influ-

ence post-WWII adds additional difficulties. It is difficult to

exclude anthropogenic influences like fluid extraction from

the trend estimation. Further advances in this field should be

incorporated in future sea level assessments. By providing a

geocentric version of the HCC dataset, it is possible to com-

bine our water levels with other reconstructions of VLM.

Another challenge originates from the different nature of

the source datasets that we combine. HR and the VLM data

are built from observations; thus they include all contribut-

ing processes, but there are limits for the disentanglement

of components in these datasets. CoDEC is a simulation-

based dataset in which the individual components are avail-

able, but CoDEC does not capture all processes. We avoid

double counting atmospherically driven barotropic sea level

changes by frequency filtering, which affects all processes.

The choice of a specific cutoff frequency is a trade-off as

it means that processes with higher frequencies come from

the CoDEC dataset without coverage of density-driven sea

level variability. Partly, we can account for that by fre-

quency filtering only deseasonalized data and adding the sea-

sonal cycle from AVISO satellite altimetry. For processes

with lower frequencies than the cutoff, sea level variability
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comes from HR which covers density-driven variability but

is for many regions not as good at covering atmospherically

driven variability as CoDEC. Future work could explore us-

ing region-specific cutoff frequencies to better harness the

individual strengths of HR and CoDEC. This approach, how-

ever, would necessitate a comprehensive analysis of the dom-

inant timescales of variability within each dataset for differ-

ent regions.

HR does not cover regions with sea ice because there is

no continuous coverage of altimetry for those regions. Our

coastal water levels in those regions are based on extrapola-

tion of HR and need to be used with extreme care. We pro-

vide a mask along with the dataset so users can exclude sea

ice areas. For some of these regions, namely for Greenland,

Siberia and Antarctica, VLM data are also absent (Oelsmann

et al., 2024).

To derive a counterfactual dataset in line with the concept

of impact attribution of the IPCC, we use a quadratic model

to first estimate and then remove the sea level trend since

1900 from the factual dataset. The quadratic model assumes

a constant acceleration of sea level rise over time. Analy-

sis of sea level rise shows variation throughout the last cen-

tury, with an acceleration phase early in the century, followed

by a deceleration and then again an acceleration until today

(Frederikse et al., 2020; Dangendorf et al., 2019; Slangen et

al., 2016). By design, this variation is not included in our

quadratic trend estimate. In general, we expect our trend es-

timation to largely exclude natural variability due to its low

dimension and the long data period. This is a desired out-

come and preserves the natural variability in the counterfac-

tual. The quadratic model provides robust trend estimates,

given the fact that we do not extrapolate the trend into the fu-

ture, which would increase uncertainties. To further increase

the robustness of the trend estimate, future studies should in-

clude predictors for the main modes of climate variability as,

for example, in Menéndez and Woodworth (2010), Marcos

and Woodworth (2017), and Wang et al. (2021).

In contrast to atmospheric climate change, there is no pre-

industrial period in which sea level was stable over time.

There is therefore not a clear indication for the time pe-

riod that we can reference as the baseline for the counterfac-

tual. Here we took the practical choice of making the years

1900–1905 the reference time because this is when the HR

dataset starts. In a strict sense, with the counterfactual forc-

ing data, we thus mimic a sea level world of the beginning

of the 20th century and not a world in which sea level rise

has not occurred. The approach produces counterfactuals that

are largely stationary but incorporates the same shorter-term

variability as the factual dataset. The data thus also allow

for impact attribution of individual coastal extreme events.

For an extended discussion of the concept, see Mengel et

al. (2021).

Without additional analysis, the presented work does not

allow for the attribution of coastal impacts to anthropogenic

greenhouse gas emissions, mediated through sea level rise.

Such additional steps would need the differentiation between

climate variability and forced climate response. This is usu-

ally done via large model ensembles and dedicated experi-

mental setups like DAMIP (Gillett et al., 2016). While at-

tribution of global mean sea level change to anthropogenic

emissions is possible (e.g., Slangen et al., 2016), the task of

separating variability from the forced signal is more chal-

lenging on the regional level that is necessary for impact as-

sessments and not yet possible over the 20th century (Fox-

Kemper et al., 2021). Here we deliberately exclude the sep-

aration of anthropogenic and non-anthropogenic forcing of

sea level rise as it often becomes the focus of impact attri-

bution studies and sidelines the more difficult and less re-

searched but, in our view, very relevant issue of separation

of climate change from direct human interventions as drivers

of observed changes in natural, human and managed systems.

Additionally, large Earth system model ensembles that would

allow for the attribution to emissions but also reliably capture

all major sea level components are not available so far.

We provide the factual and counterfactual dataset as part

of the ISIMIP3a simulation round. This simulation round is

dedicated to the evaluation of impact models and to impact

attribution. ISIMIP already provides datasets on some addi-

tional drivers of coastal impacts, such as change in popula-

tion, land use, economy or urban area2. With the presented

data, we aim to facilitate the development of a new gen-

eration of coastal impact models that explicitly resolve the

observed spatial and temporal coastal changes and distur-

bances.

Supplement. The supplement related to this article is available
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