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We give explicit descriptions of rings of differential operators of toric face rings in characteristic 0. For
quotients of normal affine semigroup rings by radical monomial ideals, we also identify which of their
differential operators are induced by differential operators on the ambient ring. Lastly, we provide a
criterion for the Gorenstein property of a normal affine semigroup ring in terms of its differential operators.

Our main technique is to realize the k-algebras we study in terms of a suitable family of their algebra
retracts in a way that is compatible with the characterization of differential operators. This strategy
allows us to describe differential operators of any k-algebra realized by retracts in terms of the differential
operators on these retracts, without restriction on char(k).
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Introduction

Differential operators play a notable role in branches of mathematics as seemingly disparate as partial
differential equations and local cohomology, dynamical systems and invariant theory. Recently, there
have been many exciting new developments concerning differential operators and their applications in
commutative algebra, including to topics such as Bernstein–Sato polynomials, connections between
singularities and local cohomology, equivariant D-modules, and Hodge ideals; see, for example, [1; 2;
9; 16; 20; 21; 23; 24; 25; 31; 36; 37; 38; 39; 40; 41]. One obstruction to the even greater use of rings
of differential operators is the notorious difficulty of computing them explicitly. In fact, there are very
few classes of rings whose differential operators are systematically computed, namely polynomial rings,
Stanley–Reisner rings, affine semigroup rings, and coordinate rings of curves; see, for example, [11; 12;
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22; 26; 27; 28; 29; 30; 32; 42; 43; 44; 47; 48]. The goal of this article is to give a new class of explicitly
computed rings of differential operators.

A retract of a k-algebra R is a subring of R which is isomorphic to a quotient of R. We call R a
k-algebra realized by retracts if it can be embedded into a finite direct sum of domains, each of which
is a retract of R. Algebra retracts are of considerable interest; it is common in the literature to prove
desirable properties of retracts using information from the ambient ring; see, for example, [3; 6; 7;
10; 14; 15; 46]. In this work, we do the opposite; we use knowledge about the differential operators
on algebra retracts to compute differential operators of an ambient ring (see Theorems 2.6 and 2.8).
Naturally, this approach is most productive when the differential operators on the retracts are known.
This is the case for a combinatorially interesting class of k-algebras realized by retracts known as toric
face rings.

Toric face rings were first introduced by Stanley [45], and further developed in [3; 17; 18; 33;
34; 35; 49], among others. They include both Stanley–Reisner rings and affine semigroup rings as
special cases, thus bringing under a single umbrella two of the mainstays of combinatorial commutative
algebra. In this setting, the retracts we are interested in are affine semigroup rings, whose rings of
differential operators are known in characteristic zero; here we use the presentation given by Saito
and Traves in [42; 43]. Thus we can directly apply Theorem 2.8 to compute the ring of differential
operators of a toric face ring in Proposition 3.3. As a consequence, we recover results on differential
operators on Stanley–Reisner rings given by Tripp, Eriksson, and Traves in [12; 47; 48] over arbitrary
fields.

Theorem 2.6 finds the differential operators of a k-algebra realized by retracts as a subring of the direct
sum of the rings of differential operators of the retracts. This direct sum of the retracts is in general much
larger than the original ring. On the other hand, the differential operators on Stanley–Reisner rings and
affine semigroup rings are induced from differential operators over their natural ambient rings. In general,
however, the richness of the direct sum is really needed. To illustrate this, we provide a description of
which differential operators on a quotient of a normal affine semigroup ring by a radical monomial ideal
are induced from the differential operators on the ambient semigroup ring (see Theorem 4.3) and show
that this does not necessarily give the whole ring of differential operators.

Outline. In Section 2, we describe the ring of differential operators of a k-algebra realized by retracts
in terms of differential operators on these retracts. In Section 3, we apply the results of Section 2 in
characteristic zero to compute the rings of differential operators of Stanley–Reisner rings and of toric
face rings more generally. In Section 4, we consider the quotient of a normal affine semigroup ring R
by a radical monomial ideal J in characteristic zero and provide an explicit formula for the differential
operators on R/J that are induced by operators on R. Finally, in Section 5, we use differential operators
to provide a new condition for the Gorenstein property of an affine normal semigroup ring.

Throughout this paper, let k denote an algebraically closed field; in Sections 3, 4, and 5, assume that
the characteristic of k is zero.
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1. k-algebras realized by retracts

In this section we introduce k-algebras realized by retracts and provide examples. Let S and R be
k-algebras. An injective k-algebra homomorphism ι : S → R is called an algebra retract of R if there
exists a surjective homomorphism of k-algebras π : R → S such that π ◦ ι = idS . When S and R are
graded, we also assume that the homomorphisms ι and π are also graded. See [15] for a local version of
this definition.

Definition 1.1. Let R be a k-algebra, and let {Sℓ}ℓ∈3 be a finite collection of domains that are algebra
retracts of R with defining k-algebra homomorphisms ιℓ : Sℓ ↪→ R and πℓ : R ↠ Sℓ satisfying πℓ◦ιℓ = idSℓ

.
For each ℓ, let Pℓ := ker πℓ. We call R a k-algebra realized by retracts and say that R is realized by the
retracts {Sℓ | ℓ ∈ 3} when the following two conditions hold:

(i) The following map is injective:

φ : R →

⊕
ℓ∈3

Sℓ given by f 7→ (πℓ( f ) | ℓ ∈ 3); (1.2)

in other words,
⋂

ℓ∈3 Pℓ = 0.

(ii) The Sℓ are irredundant for (1.2); more precisely, for each i ∈ 3, we have
⋂

ℓ̸=i
ℓ∈3

Pℓ ̸= 0.

Since ιℓ is injective, if f ∈ Sℓ, we write f = ιℓ( f ) in R. For f ∈ R, we use φ( f )i to denote the i-th
coordinate of φ( f ) in

⊕
ℓ∈3 Sℓ.

For example, suppose that R is a quotient of a k-algebra T by a radical ideal I with associated primes
P1, . . . , Pr . Now if T/Pi are algebra retracts of R for all 1 ≤ i ≤ r , then R is realized by the retracts
{Sℓ | ℓ ∈ 3} = {T/P1, T/P2, . . . , T/Pr }. In the remainder of this section, we show that Stanley–Reisner
rings and toric face rings are k-algebras realized by retracts.

1A. Stanley–Reisner rings as k-algebras realized by retracts. Let 1 be a simplicial complex on a finite
vertex set V = {1, 2, . . . , d}. The Stanley–Reisner ring of 1 is the k-algebra given by

k[1] :=
k[t1, t2, . . . , td ]

⟨t a | a ∈ Nd , supp(a) /∈ 1⟩
,

where t a
= ta1

1 ta2
2 · · · tad

d and supp(a) := {i ∈ V | ai ̸= 0}. Retracts have been previously studied in
this context. For example, in [10], Epstein and Nguyen show that every graded algebra retract of a
Stanley–Reisner ring k[1] is a Stanley–Reisner ring. Further, all such retracts are isomorphic to k[1|W ],
where 1|W is the restriction of 1 to a subset W of V .

One way to view k[1] as a k-algebra realized by retracts is via the facets of 1. If {Fℓ}ℓ ∈ 3 denotes
the collection of facets of 1, then k[Fℓ]

∼= k[ti | i ∈ Fℓ], and

ιℓ : k[Fℓ] ↪→ k[1] and πℓ : k[1] ↠ k[Fℓ]

ti 7→

{
ti if i ∈ Fℓ,

0 otherwise,
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are the maps needed to see that

φ : k[1] →

⊕
ℓ∈3

k[Fℓ] given by ti 7→ (πℓ(ti ) | ℓ ∈ 3)

is an injective map. Since the retracts are domains, this implies that k[1] is a k-algebra realized by
retracts.

1B. Toric face rings as k-algebras realized by retracts. The building blocks of toric face rings are affine
semigroup rings, so we begin with those.

Notation 1.3. Let M be a finitely generated submonoid of Zd . The affine semigroup ring defined by M is

k[M] :=

⊕
a∈M

k · t a,

where t a
= ta1

1 ta2
2 · · · tad

d for a = (a1, a2, . . . , ad).

Finitely generated submonoids of Zd are usually called affine semigroups. It is convenient to view the
generators of an affine semigroup M as the columns of a d × n integer matrix A; in this case, we use
the notation M = NA. Throughout this article, we assume that the group generated by the columns of
A is the full ambient lattice, so ZA = Zd and also that the real positive cone over A, R≥0 A, is pointed,
meaning that it contains no lines.

A semigroup NA is normal if NA = R≥0 A ∩ ZA. In this case, the semigroup ring k[NA] is normal in
the sense of commutative algebra.

A hyperplane H in Rd is a supporting hyperplane of R≥0 A if this cone lies entirely in one of the closed
half spaces defined by H . A face σ of R≥0 A (or A or NA) is the intersection of NA with a supporting
hyperplane of R≥0 A. Such a face is called a facet if its linear span has dimension d −1. This is somewhat
nonstandard terminology, as our faces and facets are submonoids of NA instead of cones.

Recall that the Zd-graded prime ideals in k[NA] are in one-to-one correspondence with the faces of
A (or R≥0 A) [19, Proposition 1.5], as a face τ of A corresponds to the multigraded prime k[NA]-ideal
Pτ = ⟨t a

| a ∈ NA \ τ ⟩.
Next, let 6 ⊂ Rd be a rational polyhedral fan consisting of strongly convex (or pointed) cones. A

monoidal complex M supported on 6 is a collection of monoids {Mσ | σ ∈ 6} such that:

(i) Mτ ⊆ τ ∩ Zd and R≥0 Mτ = τ .

(ii) if σ, τ ∈ 6 and σ ⊆ τ , then Mσ = σ ∩ Mτ .

Denote |M | =
⋃

τ∈6 Mτ .

Definition 1.4. The toric face ring of M over k is given as a graded vector space by

k[M ] =

⊕
a∈|M |

k · t a
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with multiplication defined by

t a
· t b

=

{
t a+b if there is τ ∈ 6 such that a, b ∈ τ,

0 otherwise.

Given τ ∈ 6, the semigroup ring k[Mτ ] is a subring of k[M ]; we denote by

ιτ : k[Mτ ] ↪→ k[M ]

the natural inclusion. For τ ∈ 6, let

Pτ := ⟨t a
| a ∈ |M | \ Mτ ⟩.

Then k[M ]/Pτ is isomorphic to the semigroup ring k[Mτ ], so that Pτ is a monomial prime ideal of k[M ].
We identify k[M ]/Pτ with k[Mτ ], and denote by

πτ : k[M ] ↠ k[Mτ ]

the natural projection onto the quotient. Clearly, k[Mτ ] is a retract of k[M ].
A facet of 6 is a cone in 6 which is maximal with respect to inclusion among all elements of 6. Let

F (6) denote the collection of all facets of 6. Since
⋂

τ∈F (6) Pτ = 0, the ring homomorphism

φ : k[M ] →

⊕
τ∈F (6)

k[Mτ ] given by f 7→ (πτ ( f ) | τ ∈ F (6)) (1.5)

is injective. It follows that k[M ] is a k-algebra realized by retracts.
In general, the algebra retracts of toric face rings of k[M ] are given by restricting M to a subfan 0 of

6 [10, Proposition 4.5]. The retracts that we consider here are those given by the restriction of 6 to one
of its maximal cones 0, yielding an affine semigroup ring.

Example 1.6. Stanley–Reisner rings of simplicial complexes are toric face rings. To see this, let 1 be a
simplicial complex on the vertex set V = {1, 2, . . . , d −1}. For each subset F of V , associate the pointed
cone CF generated by the set of elements of the form ei + ed for i ∈ F , where ei denotes the i-th standard
basis vector in Rd . If 6 denotes the fan in Rd consisting of the cones CF for F ∈ 1, then the toric face
ring k[M ] is isomorphic to the Stanley–Reisner ring k[1]. □

Example 1.7. On the other hand, when 6 has a unique maximal cone, then k[M ] is simply an affine
semigroup ring. An affine semigroup ring k[NA] modulo a radical monomial ideal J is also a toric face
ring. In this case, if the ideal J =

⋂r
i=1 Pτi , then the fan 6 consists of faces of the cone R≥0 A that are

contained in τi for some 1 ≤ i ≤ r . We will examine this case more closely in Sections 4 and 5. □

2. Rings of differential operators on k-algebras realized by retracts

Fix a k-algebra R and R-module M , and note that in this section we have no requirements on the
characteristic of k unless explicitly mentioned. The k-linear differential operators D(R, M) are defined
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inductively by the degree i of the operator. The degree 0 differential operators are

D0(R, M) := HomR(R, M),

and, for i > 0, the degree i differential operators are

Di (R, M) := {δ ∈ Homk(R, M) | [δ, r ] ∈ Di−1(R, M) for all r ∈ R},

where [δ, r ] := δ ◦ r − r ◦ δ is the commutator. The module of differential operators on M , denoted
D(R, M), is

⋃
i≥0 Di (R, M). We write D(R) for D(R, R). Note that D(R, −) is a left-exact functor,

and that, in particular, for any R-ideal J , D(R, J ) = {δ ∈ D(R) | δ(R) ⊂ J }.

Example 2.1. If char(k) = 0, the ring of differential operators of the polynomial ring in d variables with
coefficients in k is the Weyl algebra

W = k[t1, . . . , td ]⟨∂1, . . . , ∂d⟩,

where the relations defined on the generators are ti t j − t j ti = 0 = ∂i∂ j − ∂ j∂i , and ∂i t j − t j∂i = δi j ,
the Kronecker-δ function. The ring of differential operators of the ring of Laurent polynomials in d
variables is the extended Weyl algebra k[t±1

1 , . . . , t±1
d ]⟨∂1, . . . , ∂d⟩ with the relations as in the ordinary

Weyl algebra together with the additional relation t−1
i ∂ j − ∂ j t−1

i = t−2
i δi j . □

Let R be a k-algebra realized by the retracts {Sℓ | ℓ ∈ 3}, as in Definition 1.1. Given ℓ ∈ 3, and
δ ∈ D(R), set δℓ = πℓ ◦ δ ◦ ιℓ. In this section, we show that the map:

D(R) →

⊕
ℓ∈3

D(Sℓ) given by δ 7→ (δℓ := πℓ ◦ δ ◦ ιℓ | ℓ ∈ 3), (2.2)

is injective and compute the ring of differential operators D(R) in terms of the rings of differential
operators D(Sℓ) for ℓ ∈ 3. We do this in two ways (see Theorems 2.6 and 2.8). First, we include two
lemmas.

Lemma 2.3. Assume that the k-algebra R is realized by the retracts {Sℓ | ℓ ∈ 3}. Let δ ∈ Di (R). If ℓ ∈ 3,
then δℓ ∈ Di (Sℓ).

Proof. We use induction on i . If δ ∈ D0(R) = HomR(R, R), then δ is given by multiplication by a fixed
element of R, say r . But then δℓ is given by multiplication by πℓ(r), and so δℓ ∈ D0(Sℓ).

Now assume the result is true for operators of order i − 1, and let δ ∈ Di (R). The k-linearity of δℓ

follows from k-linearity of δ, since ιℓ and πℓ are k-linear. To show that δℓ ∈ Di (Sℓ), it is enough to verify
that [δℓ, f ] ∈ Di−1(Sℓ) for all f ∈ Sℓ. This follows by induction since, for f ∈ Sℓ, [δℓ, f ] = [δ, ιℓ( f )]ℓ.
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To see this, note that ιℓ ◦ f is the map ιℓ( f )ιℓ and for any g ∈ R, πℓ ◦g is the map πℓ(g)πℓ. Then we have

[δℓ, f ] = πℓ ◦ δ ◦ ιℓ ◦ f − f ◦ πℓ ◦ δ ◦ ιℓ

= πℓ ◦ δ ◦ ιℓ( f )ιℓ − πℓ(ιℓ( f ))πℓ ◦ δ ◦ ιℓ

= πℓ ◦ δ ◦ ιℓ( f )ιℓ − πℓ ◦ ιℓ( f )δ ◦ ιℓ

= πℓ ◦ (δ ◦ ιℓ( f ) − ιℓ( f )δ) ◦ ιℓ

= [δ, ιℓ( f )]ℓ. □

Lemma 2.4. Assume that the k-algebra R is realized by the retracts {Sℓ | ℓ ∈ 3}. Let δ ∈ Di (R), ℓ ∈ 3,
and f ∈ R. If πℓ( f ) = 0, then πℓ(δ( f )) = 0.

Example 2.5. Lemma 2.4 is a key ingredient for the main results of this section and provides an easily
checked necessary condition for a linear operator on R to be a differential operator on R. To see this more
concretely, consider R = k[x, y]/⟨xy⟩. This Stanley–Reisner ring is realized by the retracts k[x] ∼= R/⟨y⟩

and k[y] ∼= R/⟨x⟩, where the canonical projections are denoted πx and πy , respectively. The ring of
differential operators on R is generated as a k-algebra by the operators x i∂

j
x and yk∂ℓ

y such that i ≥ j and
k ≥ ℓ. To see why ∂x is not a differential operator on R, note that πy(x) = 0, but πy(∂x(x)) = πy(1) ̸= 0,
contradicting the conclusion of Lemma 2.4. □

Proof of Lemma 2.4. By induction on i as before, if i = 0, then δ( f ) = r · f for a fixed r ∈ R. If πℓ( f ) = 0,
it follows that πℓ(r · f ) = 0, since πℓ is a ring homomorphism.

Now assume the result is true for operators of order i − 1, and let δ ∈ Di (R). Suppose πℓ( f ) = 0 and
let P =

⋂
f /∈Pj

Pj where Pj = ker π j . Let g be a nonzero element in P such that πℓ(g) ̸= 0. Such an
element exists since R is realized by the retracts {Sℓ | ℓ ∈ 3}. Then since f ·g ∈

(⋂
f ∈Pi

Pi
)(⋂

f /∈Pj
Pj

)
⊆⋂

ℓ∈3 Pℓ = 0, we have f · g = 0 in R. By the inductive hypothesis, πℓ([δ, g]( f )) = 0. Then

[δ, g]( f ) = δ(g · f ) − gδ( f ) = −gδ( f ),

where the last equality holds because δ(g · f ) = δ(0) = 0. Hence

0 = πℓ([δ, g]( f )) = πℓ(−gδ( f )) = −πℓ(g)πℓ(δ( f )).

As g was chosen so that πℓ(g) ̸= 0, it follows that πℓ(δ( f )) = 0 since Sℓ is a domain. □

We are now ready to give a first description of D(R).

Theorem 2.6. Assume that the k-algebra R is realized by the retracts {Sℓ | ℓ ∈ 3} with the injective map
φ : R →

⊕
ℓ∈3 Sℓ. Let δ : R → R be k-linear. Then δ ∈ Di (R) if and only if the following two conditions

hold:

(1) δℓ ∈ Di (Sℓ) for all ℓ ∈ 3.

(2) If ℓ ∈ 3 and πℓ( f ) = 0, then πℓ(δ( f )) = 0.
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Proof. If δ ∈ Di (R), then δ satisfies Conditions (1) and (2) by Lemmas 2.3 and 2.4.
Now assume that δ is k-linear and satisfies Conditions (1) and (2). Fix f ∈ R. For each ℓ ∈ 3, set

fℓ = ιℓ(πℓ( f )). Then πℓ( f ) = πℓ( fℓ) for all ℓ ∈ 3, and so πℓ( f − fℓ) = 0 for all ℓ ∈ 3. By Condition
(2), we have πℓ(δ( f − fℓ)) = 0. Hence,

πℓ(δ( f )) = πℓ(δ( fℓ)) for each ℓ ∈ 3. (2.7)

We now show that δ ∈ Di (R) by induction on i . Set r = δ(1), and assume that, for ℓ ∈ 3, δℓ ∈ D0(Sℓ)

by Condition (1). Note that δℓ = πℓ ◦δ ◦ ιℓ. As an Sℓ-module homomorphism on D0(Sℓ), δℓ is determined
by the image of the identity element 1Sℓ

in Sℓ under δℓ. That is, for any g ∈ Sℓ,

δℓ(g) = δℓ(1Sℓ
· g) = δℓ(1Sℓ

)g.

Applying (2.7) to f = 1 in R, we have πℓ(δ(1ℓ)) = πℓ(δ(1)) = πℓ(r). On the other hand,

πℓ(δ(1ℓ)) = (πℓ ◦ δ)(ιℓ(πℓ(1))) = (πℓ ◦ δ ◦ ιℓ)(πℓ(1)) = δℓ(πℓ(1)) = δℓ(1Sℓ
).

It follows that δℓ is given by multiplication by πℓ(r) for each ℓ ∈ 3. Next note that

πℓ(δ( fℓ)) = πℓ ◦ δ ◦ ιℓ(πℓ( f )) = δℓ(πℓ( f )) = πℓ(r)πℓ( f ) = πℓ(r f ).

Combining these two observations, we have, by definition of φ,

φ(δ( f )) = (πℓ(δ( f )))ℓ∈3 = (πℓ(r f ))ℓ∈3 = φ(r f ).

Since φ is injective, δ( f ) = r f , which implies that δ ∈ D0(R).
Assume now that the result is true for operators of order i − 1, and let δ satisfy the required conditions

for order i : (1) δℓ ∈ Di (Sℓ) for all ℓ ∈ 3. (2) If ℓ ∈ 3 and πℓ(g) = 0 then πℓ(δ(g)) = 0.
We need to show that [δ, f ] ∈ Di−1(R) for f ∈ R. By induction, it suffices to show that Conditions (1)

and (2) hold for [δ, f ]. To address Condition (1), fix ℓ ∈ 3. Since [δ, f ]ℓ = πℓ ◦ [δ, f ] ◦ ιℓ, we will show
that πℓ ◦ [δ, f ] ◦ ιℓ ∈ Di−1(Sℓ) for all ℓ ∈ 3. Let us now expand:

πℓ ◦ [δ, f ] ◦ ιℓ = πℓ ◦ (δ ◦ f − f δ) ◦ ιℓ

= πℓ ◦ δ ◦ f ◦ ιℓ − πℓ( f δ) ◦ ιℓ

= πℓ ◦ δ ◦ fℓ ◦ ιℓ − πℓ( f )πℓ ◦ δ ◦ ιℓ by (2.7)

= πℓ ◦ δ ◦ ιℓ(πℓ( f )) ◦ ιℓ − πℓ( f )πℓ ◦ δ ◦ ιℓ by the definition of fℓ

= πℓ ◦ δ ◦ ιℓ ◦ πℓ( f ) − πℓ( f )πℓ ◦ δ ◦ ιℓ as ιℓ is a homomorphism

= δℓ ◦ πℓ( f ) − πℓ( f )δℓ by the definition of δℓ

= [δℓ, πℓ( f )].

Since δℓ ∈ Di (Sℓ) by assumption, [δℓ, πℓ( f )] ∈ Di−1(Sℓ) by the definition of an order i differential
operator.
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To address Condition (2), assume ℓ ∈ 3 and πℓ(g) = 0 for some g ∈ R. Because πℓ is a homomorphism
and δ satisfies Condition (2), πℓ( f g) = πℓ( f )πℓ(g) = 0, and so πℓ(δ( f g)) = 0. Then

πℓ ◦ [δ, f ](g) = πℓ(δ( f g)) − πℓ( f δ(g)) = 0 − πℓ( f )πℓ(δ(g)) = 0.

Hence [δ, f ] satisfied Condition (2) as well as Condition (1), and so, by induction, [δ, f ] ∈ Di−1(R),
and then δ ∈ Di (R). □

To state our second characterization of D(R), if λ ⊂ 3, we need some additional notation. Set
Sλ =

⋂
ℓ∈λ Sℓ. Since Sℓ is an algebra retract of R for all ℓ ∈ λ, Sλ is also an algebra retract of R in a

natural way (and indeed Sλ is also an algebra retract of Sℓ for all ℓ ∈ λ). We define ιλ,ℓ to be the natural
inclusion that identifies Sλ as a subring of Sℓ, and πℓ,λ is the natural projection from Sℓ to Sλ, where the
latter is considered as a quotient of the former.

Theorem 2.8. Assume that the k-algebra R is realized by the retracts {Sℓ | ℓ ∈ 3}. The map

D(R) →

⊕
ℓ∈3

D(Sℓ) given by δ 7→ (δℓ = πℓ ◦ δ ◦ ιℓ | ℓ ∈ 3)

from (2.2) is an injective ring homomorphism. A tuple (ρℓ | ℓ ∈ 3) ∈
⊕

ℓ∈3 D(Sℓ) is in the image of (2.2)
if and only if it satisfies the following two conditions:

(a) If λ ⊂ 3 and j, k ∈ λ, then π j,λ ◦ ρ j ◦ ιλ, j = πk,λ ◦ ρk ◦ ιλ,k .

(b) If λ = { j, k}, then π j,λ(ρ j ( f )) = 0 if πk( f ) = 0.

Proof. Since (2.2) is given by composition and direct sums of ring homomorphisms, it is itself a ring
homomorphism.

First, for δ ∈ D(R), its image satisfies Conditions (a) (by construction) and (b) by Condition (2) of
Theorem 2.6. To prove injectivity, as well as verify the description of the image of (2.2), we construct an
inverse.

For λ ⊂ 3 and ρ ∈ D(Sλ), set ρ = ιλ ◦ ρ ◦πλ. When ρ satisfies Condition (b), then, by an argument
similar to that at the end of the proof of Theorem 2.6, ρ ∈ D(R).

If (ρℓ | τ ∈ 3) ∈
⊕

ℓ∈3 D(Sℓ) satisfies Condition (a) and ∅ ̸= λ ⊂ 3, choose ℓ ∈ λ, and set ρλ =

πℓ,λ ◦ ρℓ ◦ ιλ,ℓ. By Condition (a), ρλ is independent of the choice of λ ∈ 3. Now let

ρ =

∑
∅̸=λ⊂3

(−1)|λ|−1ρλ.

We claim that if (ρℓ | ℓ ∈ 3) ∈
⊕

ℓ∈3 D(Sℓ) satisfies Conditions (a) and (b), then ρ ∈ D(R), and the
image of ρ under the map (2.2) is (ρℓ | ℓ ∈ 3). This gives the desired inverse and finishes the proof. □
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3. Applications

In this section, we apply the results of Section 2 to compute rings of differential operators for examples
of k-algebras realized by retracts discussed in Section 1. Throughout this section, we assume that the
characteristic of k is zero.

3A. Differential operators of Stanley–Reisner rings. Traves [47] gave a nice classification of the ring
of differential operators for Stanley–Reisner ring. In particular, he proved that D(k[1]) is generated as a
k-algebra by

{t a∂b
| t a

∈ P or t b /∈ P for each minimal prime P of R}.

where t a∂b
= ta1

1 . . . tad
d ∂

b1
1 . . . ∂

bd
d and ∂i =

∂
∂ti

.
One can see directly that this description matches our description of the ring of differential operators

in terms of algebra retracts. In particular, for a Stanley–Reisner ring k[1], recall that k[1] is realized by
the retracts {k[Fℓ] | ℓ ∈ 3}, where {Fℓ | ℓ ∈ 3} are the facets of 1. Further, we know that the minimal
primes of k[1] are exactly those corresponding to the facets, namely PFℓ

= ⟨t a
| a ∈ Nd , supp(a) /∈ Fℓ⟩;

see for example [13].
For any k-linear map δ : k[1] → k[1], Theorem 2.6 tells us that δ ∈ Di (k[1]) if and only if

(1) δℓ ∈ Di (k[Fℓ]) for all ℓ ∈ 3 and

(2) πℓ(δ( f )) = 0 for all ℓ ∈ 3 and f /∈ k[Fℓ].

Now for any facet Fℓ of 1, notice that k[Fℓ]
∼= k[ti | i ∈ Fℓ], so that D(k[Fℓ]) is the standard Weyl

algebra on the variables {ti | i ∈ Fℓ}. By Condition (1), D(k[1]) must be generated by elements of the
form x a∂b.

Further, we have that πℓ(t a∂b( f )) = 0 for all f /∈ k[Fℓ] if and only if t a /∈ k[Fℓ] or ∂b( f ) = 0 for
all f /∈ k[Fℓ]. This happens if and only if supp(a) /∈ Fℓ or supp(b) ∈ Fℓ. In other words, we have
Condition (2) if and only if t a

∈ PFℓ
or t b /∈ PFℓ

for every ℓ ∈ 3.

3B. Differential operators of toric face rings. The algebra retracts of toric face rings that we will
consider are affine semigroup rings. Saito and Traves [42] described the ring of differential operators
for an affine semigroup ring k[NA] over the complex numbers, when viewed as a subring of the ring of
differential operators of the Laurent polynomials, i.e.,

D(k[Zd
]) = k[t±1

1 , . . . , t±1
d ]⟨∂1, . . . , ∂d⟩,

where ∂i denotes the differential operator ∂
∂ti

. Setting θ j = t j∂ j for 1 ≤ j ≤ d and noting that θiθ j = θ jθi

for all i and j , the ring k[θ ] = k[θ1, θ2, . . . , θd ] is a polynomial ring. Set

�(m) := {a ∈ NA | a + m /∈ NA} = NA \ (−m + NA).

The idealizer of �(m) is defined to be the k[θ ]-ideal

I(�(m)) := ⟨ f (θ) ∈ k[θ ] | f (a) = 0 for all a ∈ �(m)⟩,
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with the θi of degree 0. In fact, I(�(m)) consists of f (θ) such that t m f (θ) ∈ D(k[NA]). This is a
consequence of the work of Saito and Traves [42, Theorem 2.1], where they show that

D(k[NA]) =

⊕
m∈Zd

t m
· I(�(m)).

To compute I(�(m)) for a normal semigroup ring, consider a facet σ of A, recalling that by this we
mean a submonoid of NA whose linear span has dimension d −1. The primitive integral support function
(or simply support function) Fσ is the unique linear form on Rd such that

(1) Fσ (R≥0 A) ≥ 0, (2) Fσ (σ ) = 0, and (3) Fσ (Zd) = Z.

Saito and Traves used the Fσ (m) to determine the precise form of I(�(m)) for normal k[NA]. The
ideas of the computation in [42] can be traced back to [22] and [28]. Set

Gm(θ) :=

∏
Fσ (m)<0

−Fσ (m)−1∏
i=0

(Fσ (θ) − i). (3.1)

Theorem 3.2 [42, Theorem 3.2.2]. Let R be a normal affine semigroup ring of dimension d. Let
Fσ1, . . . , Fσr be the support functions of the facets σi of the semigroup defining R. Let m be a multidegree
in Zd . Then

D(R)m = t m
· ⟨Gm(θ)⟩.

We now provide a graded description of Di (R) when R = k[M ] is a toric face ring. Let σ ∈ 6, and
let ρ ∈ Di (k[Mσ ]). Then ρ is a sum of operators of order i each of which is homogeneous with respect
to the natural Zσ -grading (where Zσ is the abelian group generated by Mσ ). We claim that if ρ satisfies
Condition (b) of Theorem 2.8, then each homogeneous component does as well. This holds since applying
an operator of multidegree b ∈ Zσ to a monomial t a yields a (possibly zero) scalar multiple of t a+b. As
ρ is a finite sum of operators of multidegrees b1, . . . bn , ρ(t a) = 0 if and only if the constant multiple of
t a+bi is 0 for all 1 ≤ i ≤ n.

The following result then provides the final key to describe differential operators on toric face rings, as
we illustrate in examples later.

Proposition 3.3. Let σ ∈ F (6), and let ρ ∈ Di (k[Mσ ]) be homogeneous of degree b ∈ Zσ satisfying
Condition (b) from Theorem 2.8. Then ρ = t bq(θ) for some q ∈ k[θ ] such that

(i) q(a) = 0 if a + b /∈ Mσ when a ∈ Mσ , and

(ii) for τ ∈ F (6) \ {σ } and a ∈ Mσ \ Mσ∩τ such that a + b ∈ Mσ∩τ , we have q(a) = 0.

Proof. Condition (i) follows from the description of D(k[Mτ ]). Condition (ii) follows from the assumption
that Condition (b) of Theorem 2.8 is satisfied for ρ. □

Remark 3.4. The two conditions in the previous result arise from the multigraded nature of our descrip-
tions of rings of differential operators. For a given multidegree b, operators of this degree are spanned
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by operators of the form δ = t bq(θ), where q is a polynomial. Then δ(t a) = q(a)t a+b. If a belongs to
our semigroup but a + b does not, then we must have q(a) = 0 if δ is to be a differential operator on the
semigroup ring. This is the first condition in Proposition 3.3.

Similarly, if we are working with a semigroup coming from a monoidal complex, it may happen that
a belongs to a semigroup, and a + b belongs to both the semigroup and some other semigroup in the
complex. In this case the projection of δ(t a) = q(a)t a+b onto this second semigroup will not vanish
unless q(a) = 0. This explains the second condition in Proposition 3.3.

For each b, the set of a at which the polynomials q are forced to vanish lie on a finite collection of
translates of the linear spans of the faces of the maximal cones in the fan 6. This explains why their
vanishing ideal is generated by products of shifts of linear forms corresponding to supporting hyperplanes
of those faces. □

We now include concrete examples of differential operators in the toric face ring setting.

Example 3.5. Let

A =

1 1 1 1 1
0 1 2 0 0
0 0 0 1 2

 , B =

1 1 1
0 1 2
0 0 0

 and C =

1 1 1
0 0 0
0 1 2

 .

Two of the facets of the integral cone NA are σ = NB and τ = NC . Define

R :=
k[NA]

Pσ ∩ Pτ

=
k[x, xy, xy2, xz, xz2

]

⟨x2 yz, x2 y2z, x2 yz2, x2 y2z2⟩
.

Note that there is a natural map

φ : R →
R
Pσ

⊕
R
Pτ

∼= k[NB] ⊕ k[NC] ∼= k[x, xy, xy2
] ⊕ k[x, xz, xz2

].

The differential operators defined on the face σ ∩ τ in each multidegree (u, 0, 0) can be realized by
operators in k[NB] ⊕ k[NC] in multidegree ((u, 0), (u, 0)) generated by

(ρu, δu) :=

(
xu

·

−2u−1∏
i=0

(2θx − θy − i), xu
·

−2u−1∏
i=0

(2θx − θz − i)
)

(3.6)

This is the case by Theorem 2.8 since

πσ,σ∩τ ◦ ρu ◦ ισ∩τ,σ = xu
·

−2u−1∏
i=0

(2θx − i) = πτ,σ∩τ ◦ δu ◦ ισ∩τ,τ

and

πσ,σ∩τ (ρu(xu yv)) = 0 for (u, v) ∈ σ \ τ,

as well as

πτ,σ∩τ (ρu(xuzv)) = 0 for (u, v) ∈ τ \ σ.
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The operators on σ \ σ ∩ τ in each multidegree (u, v, 0) (for v ̸= 0) can be realized by operators in
k[NB] ⊕ k[NC] in multidegree ((u, v), (0, 0)) generated by

(ρu,v, 0) :=

(
xu yv

·

(−2u+v−1∏
i=0

(2θx − θy − i)
)( −v∏

i=0

(θy − i)
)

, 0
)

. (3.7)

Since

πσ,σ∩τ (ρu,v(xu yv)) = 0 for (u, v) ∈ σ,

both Conditions (a) and (b) of Theorem 2.8 are clearly satisfied.
A similar argument shows that the operators on τ \ σ ∩ τ in each multidegree (u, 0, v) (for v ̸= 0) can

be realized by operators in k[NB] ⊕ k[NC] in multidegree ((0, 0), (u, v)) generated by

(0, δu,v) :=

(
0, xuzv

·

(−2u+v−1∏
i=0

(2θx − θz − i)
)( −v∏

i=0

(θz − i)
))

. (3.8)

Combinations of operators of the forms represented by (3.6), (3.7) and (3.8) also produce operators in
our ring of differential operators for all v ̸= 0. □

Example 3.9. Set

A =

1 1 1 1
0 1 0 1
0 0 1 1

 .

Recall NA gives the integral cone of the ring S = k[NA] = k[x, xy, xz, xyz]. The facets of NA are

σ1 = N⟨e1, e1 + e2⟩, σ3 = N⟨e1 + e3, e1 + e2 + e3⟩,

σ2 = N⟨e1, e1 + e3⟩, σ4 = N⟨e1 + e3, e1 + e2 + e3⟩.

The support functions of the facets of NA are θz , θy , θx − θy , θx − θy , respectively. By Theorem 3.2, the
differential operators on R in multidegree m are given by

xm1 ym2 zm3 ·

〈(−m3−1∏
i=1

(θz − i)
)(−m2−1∏

i=1

(θy − i)
)(−m1+m3−1∏

i=1

(θx − θz − i)
)(−m1+m2−1∏

i=1

(θx − θy − i)
)〉

.

Set

R =
S

Pσ1 ∩ Pσ2 ∩ Pσ3 ∩ Pσ4

=
k[x, xy, xz, xyz]

⟨x2 yz⟩
.

Note that T := k[a, b, c, d]/⟨ad, bc⟩ ∼= R. We know the differential operators of T by [47] since T is a
Stanley–Reisner ring. The generators of D(T ) in multidegree −e1 are

a−1θa(θa − 1), a−1θaθb, a−1θaθc.
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There are not enough operators in the extended Weyl algebra in three variable to express these three
operators. Given the mappings

D(T )

∼=

��

// D(k[a, b]) ⊕ D(k[a, c]) ⊕ D(k[b, d]) ⊕ D(k[c, d])

∼=

��

D(R) // D(k[x, xy]) ⊕ D(k[x, xz]) ⊕ D(k[xy, xyz]) ⊕ D(k[xz, xyz])

with horizontal maps as in Theorem 2.8, we see that

a−1θa(θa−1) 7→ (a−1θa(θa−1),a−1θa(θa−1),0,0) ∼=

(
x−1

1∏
i=0

(θx−θy−i), x−1
1∏

i=0

(θx−θz−i),0,0
)

a−1θaθb 7→ (a−1θaθb,0,0,0) ∼= (x−1(θx−θy)θy,0,0,0)

a−1θaθc 7→ (0,a−1θaθc,0,0) ∼= (0, x−1(θx−θz)θz,0,0).

To get an operator acting as a−1θa(θa − 1), a−1θaθb, or a−1θaθc in terms of the linear support functions
on S, we would need fractional expressions of the forms

x−1
·

∏1
i=0(θx − θy − i)

∏1
i=0(θx − θz − i)∏1

i=0(θx − i)
, x−1

·
(θx − θy)θy(θx − θz)

θx
, x−1

·
(θx − θy)(θx − θz)θz

θx
,

which do not come from the extended Weyl algebra. □

4. Rings of differential operators of quotient rings

In this section, we consider a special class of toric face rings, namely quotients of normal affine semigroup
rings by radical monomial ideals. Our main goal is to characterize which differential operators on the
quotient arise from operators on the ambient affine semigroup ring. We build off the techniques of [44,
Proposition 1.6] and provide a careful inductive argument on the number of facets of the Newton polytope
in order to generalize beyond the case where the ambient ring S is regular. In Section 5, we show that, if
S is regular (or even Gorenstein) and J is the interior ideal of S, then J D(S) = D(S, J ), which gives a
direct argument that our result agrees with [44, Proposition 1.6] in that case.

For any δ ∈ D(R), we will use δ J to denote the set consisting of products δ ◦ f of differential operators
for any f ∈ J and δ ∗ f to denote the action δ( f ) to avoid any possible confusion.

Proposition 4.1. Let R be commutative k-algebra and J be an ideal of R. Let

I(J ) := {δ ∈ D(R) | δ ∗ J ⊂ J }.

The differential operators on R that induce maps on R/J are precisely those in I(J ). Further, there is an
embedding of rings

I(J )

D(R, J )
↪→ D(R/J ).
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Proof. The first statement follows from the universal property of quotients. In fact, for any δ ∈ D(R),
if δ induces an operator in D(R/J ), i.e., a map from R/J to R/J , then we must have δ ∗ J ⊂ J . So, δ

belongs to I(J ) by definition.
Every operator in I(J ) induces a differential operator from R/J to itself. Now consider the map

ρ : I(J ) → D(R/J ) given by ρ(δ) = δ′.

The kernel is ker(ρ) = {δ | δ ∗ R ⊆ J } = D(R, J ) by [28, 1.2]. Hence ρ induces an injective map
ρ : I(J )/D(R, J ) ↪→ D(R/J ) given by ρ(δ) = δ′, as desired. □

Before stating the main theorem, we will need some notation. Let R be the normal affine semigroup
ring defined by a matrix A. When referring to an arbitrary face or facet of A, we will use τ or σ ,
respectively. Every face of A can be expressed as an intersection of facets. Recall the correspondence
between the Zd-graded primes of R and the faces of A. A face τ of A corresponds to the prime ideal
Pτ := ⟨t m

| m ∈ NA \ Nτ ⟩.
Consider the Zd -graded radical monomial ideal J :=

⋂r
i=1 Pτi , with the face τi :=

⋂ki
j=1 σi, j for facets

σi, j of A. For a fixed facet σ of A, set

Hσ,m(θ) := Fσ (θ) + Fσ (m). (4.2)

When referring to a facet σi, j from the definition of J , we will replace σ in Fσ and Hσ,m(θ) with i, j ,
writing instead Fi, j and Hi, j,m. Lastly, for an integer k, let [k] denote the set {1, 2, . . . , k}, and let
j = ( j1, j2, . . . , jr ) ∈ K J := [k1] × [k2] × · · · × [kr ] denote an r -tuple of integers in the allowable range

with respect to the ideal J .
Finally whenever we have a product L of linear factors, let rad(L) denote the (monic) generator of the

radical of the ideal generated by L; in other words, rad(L) is a product of distinct linear polynomials in θ .

Theorem 4.3. Let R be a normal affine semigroup ring defined by the d×n matrix A, and let J =
⋂r

i=1 Pτi

be the radical monomial ideal corresponding to the faces τi =
⋂ki

j=1 σi j . Let Gm(θ) and Hi, j,m(θ) be as
in (3.1) and (4.2), respectively. Then for m ∈ Zd ,[

I(J )

D(R, J )

]
m

= t m
·

〈
Gm(θ) · rad

(∏r
i=1

∏
Fi, j (m)<0 Hi, j,m(θ)

)
| j ∈ K J

〉〈
Gm(θ) · rad

(∏r
i=1

∏
Fi, j (m)≤0 Hi, j,m(θ)

)
| j ∈ K J

〉 ,
which is precisely the contribution from D(R) within the m-th graded piece of D(R/J ) induced by the
operators in D(R).

To clarify notation, we will consider an example before proceeding with the proof of Theorem 4.3.

Example 4.4. Let R = k[x1, x2, x3] and J = ⟨x1x2, x1x3⟩, in which case r = 2, k1 = 1, k2 = 2, and
K J = {1}×{1, 2}. The prime decomposition of J is J = ⟨x1⟩∩⟨x2, x3⟩ = Pσ1,1 ∩ Pσ2,1∩σ2,2 , and an element
of K J corresponds to a choice of one prime from the set {⟨x1⟩} and one prime from the set {⟨x2⟩, ⟨x3⟩}.
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In the notation of Theorem 4.3,

I(J )m = xm
·

〈
Gm(θ)

∏
F1,1(m)<0,
F2,1(m)<0

H1,1,m(θ)H2,1,m(θ), Gm(θ)
∏

F1,1(m)<0,
F2,2(m)<0

H1,1,m(θ)H2,2,m(θ)

〉
.

It is the presence of H1,1,m(θ) as a factor of each generator f of I(J )m that guarantees that whenever
xm′

∈ J , we have f ∗ xm′

∈ ⟨x1⟩. Similarly, it is the presence of either H2,1,m(θ) or H2,2,m(θ) that
guarantees that f ∗ xm′

∈ ⟨x2, x3⟩. Similarly, we have

D(R, J )m = xm
·

〈
Gm(θ)

∏
F1,1(m)≤0,
F2,1(m)≤0

H1,1,m(θ)H2,1,m(θ), Gm(θ)
∏

F1,1(m)≤0,
F2,2(m)≤0

H1,1,m(θ)H2,2,m(θ)

〉
.

As in the general formula, the difference between the computations of I(J )m and D(R, J )m is seen in the
difference between the strict inequalities Fi, j (m) < 0 of I(J )m and the weak inequalities Fi, j (m) ≤ 0 of
D(R, J )m. Finally, the differential operators in D(R)m which induce maps on R/J are precisely those
in I(J )m making I(J )m/D(R, J )m a submodule of D(R/J )m, which respects the grading on numerator
and denominator. □

Proof of Theorem 4.3. Observe that

t m
· I(�(m)) = t m

·

〈 ∏
Fσ (m)<0

−Fσ (m)−1∏
i=0

(Fσ (θ) − i)
〉
.

Now for each m′
∈ Zd , t m′

∈ J if and only if Fσ (m′) > 0 for all facets σ of A. Because θi ∗ t m′

= m′

i t
m′

for each i , [
t m

·

∏
Fσ (m)<0

−Fσ (m)−1∏
i=0

(Fσ (θ) − i)
]

∗ t m′

= t m+m′

·

∏
Fσ (m)<0

−Fσ (m)−1∏
i=0

(Fσ (m′) − i).

Hence,

[t m
· Gm(θ)] ∗ t m′

= t m+m′

· Gm(m′) ∈ J

exactly when at least one of the following two conditions is satisfied:

(1) t m+m′

∈ J .

(2) Gm(m′) = 0.

First, for each m′ such that t m′

∈ J , we must have that Fσ (m′)+ Fσ (m) = Fσ (m + m′) ≥ 0 for all facets σ

and that, for each i ∈ [r ], there exists some j ∈ [ki ] so that Fi, j (m + m′) > 0. We consider two conditions:

(i) m satisfies Fσ ′(m) < 0 for some facet σ ′.

(ii) Fσ ′(m) ≥ 0 for all facets σ ′ and there exists some i ∈ [r ] for which Fi, j (m+m′) = 0 for all j ∈ [ki ].
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We claim that if either Condition (i) or Condition (ii) holds, then there exists some m′ with t m′

∈ J and
Gm(m′) ̸= 0. If Condition (i) holds, then Gm(m′) ̸= 0 for exactly the m′ that satisfy Fσ ′(m) = −Fσ ′(m′)

and Fσ (m′) ≫ Fσ (m) for all facets σ ̸= σ ′. However, for all such m, Hσ ′,m(m′)Gm(m′) = 0 for all m′

that satisfy Fσ ′(m) = −Fσ ′(m′) and Fσ (m′) ≫ −Fσ (m) for all facets σ ̸= σ ′.
If Condition (ii) holds, then Gm(m′) will fail to vanish exactly for the m′ for which there exists an i

with Fi, j (m)=−Fi, j (m′) for all j ∈ [ki ] and Fi ′, j (m′)≫ Fi ′, j (m) for all facets σi ′, j with i ̸= i ′. However,
for all such m, Hi, j,m(m′)Gm(m′) = 0 for all i ∈ [r ], j ∈ [ki ], and m′ satisfying the hypotheses that
Fi, j (m) = −Fi, j (m′) for all j ∈ [ki ] and Fi ′, j (m′) ≫ Fi ′, j (m) for all facets σi ′, j for i ̸= i ′.

Combining these calculations,

I(J )m = t m
·

〈
Gm(θ) · rad

( r∏
i=1

∏
Fi, j (m)<0

Hi, j,m(θ)

) ∣∣∣ j ∈ K J

〉
.

We compute D(R, J ) similarly. Now we begin with an arbitrary m ∈ Zd and t m′

∈ R. The only
distinction between this calculation and the previous calculations for I(J ) is that m′ is now taken from
a larger set. Namely, Fσ (m′) can now be 0 as well. Then, Condition (1) holds when Fσ (m + m′) > 0
whenever t m′

∈ R, a condition automatically satisfied when Fσ (m) > 0. Again, in order to address
Condition (2), we consider the two Conditions (i) and (ii), above. We note that, by the same argument
used to compute I(J ), if either Condition (i) or Condition (ii) holds, then there exists some vector j ∈ K J

for which

Gm(m′) · rad
( r∏

i=1

∏
Fi, j (m)<0

Hi, j,m(m′)

)

is nonzero for some m′ with t m′

∈ R. Hence

D(R, J )m = t m
·

〈
Gm(θ) · rad

( r∏
i=1

∏
Fi, j (m)≤0

Hi, j,m(θ)

) ∣∣∣ j ∈ K J

〉
.

It now follows from Proposition 4.1 that

I(J )m

D(R, J )m
= t m

·

〈
Gm(θ) · rad

(∏r
i=1

∏
Fi, j (m)<0 Hi, j,m(θ)

)
| j ∈ K J

〉〈
Gm(θ) · rad

(∏r
i=1

∏
Fi, j (m)≤0 Hi, j,m(θ)

)
| j ∈ K J

〉 ,
as desired. □

5. Characterizing Gorenstein rings via differential operators

In this section, we compare D(R, J ) and J D(R) when R is a normal affine semigroup ring. We find that
the equality D(R, J ) = J D(R) holds if J is a principal monomial ideal (see Proposition 5.5). We then
restrict to the special case of J = ωR , the intersection of all graded height one prime ideals of R. That is,
ωR is the defining ideal of the union of all facets. We choose the notation ωR for this ideal, sometimes
called the interior ideal, because it is a canonical module for R; see, for example, [8, Proposition 8.2.9].
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Recall that R is Gorenstein if and only if ωR is principal; see, for example, [5, Theorem 3.3.7]. The main
result of the section is as follows:

Theorem 5.1. Let R be a normal affine semigroup ring, and let ωR be the intersection of all graded height
one prime ideals of R. Then R is Gorenstein if and only if ωR D(R) = D(R, ωR).

Before giving the proof of Theorem 5.1, we include two examples.

Example 5.2. Let

A =

[
1 1 1
0 1 2

]
, R = k[NA] = k[s, st, st2

] and J = ωR = ⟨st⟩.

Note that R is Gorenstein since ωR is principal. We will see in this case that ωR D(R) = D(R, ωR).
We denote the faces of A by σ1,1 and σ2,1, and so that the primitive integral support functions are

F1,1(θ) = θ2 and F2,1(θ) = 2θ1 − θ2.

Then recall that

H1,1,m(θ) := F1,1(θ) + F1,1(m) and H2,1,m(θ) := F2,1(θ) + F2,1(m)

and

Gm(θ) :=

−F1,1(m)−1∏
i=0

(F1,1(θ) − i)
−F2,1(m)−1∏

j=0

(F2,1(θ) − j).

By (the proof of) Theorem 4.3,

D(R, ωR)m = sm1 tm2

〈
Gm(θ) ·

( 2∏
i=1

∏
Fi,1(m)≤0

Hi,1,m(θ)

)〉

= sm1 tm2

〈−F1,1(m)∏
i=0

(F1,1(θ) − i)
−F2,1(m)∏

j=0

(F2,1(θ) − j)
〉

= sm1 tm2

〈−m2∏
i=0

(θ2 − i)
−2m1+m2∏

j=0

(2θ1 − θ2 − j)
〉
,

where, by convention, an empty product is 1 and ⟨−⟩ denotes an ideal in k[θ1, θ2]. Multiplying the
expression for D(R) given in Theorem 3.2 by ωR , we obtain

ωR D(R) = ⟨st⟩ ·

⊕
m∈Z2

sm1 tm2 · ⟨Gm(θ)⟩.
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We define 1 := (1, 1). Then we have

(ωR D(R))m = sm1 tm2 · ⟨Gm−1(θ)⟩

= sm1 tm2 ·

〈−F1,1(m−1)−1∏
i=0

(F1,1(θ) − i)
−F2,1(m−1)−1∏

i=0

(F2,1(θ) − i)
〉

= sm1 tm2 ·

〈−F1,1(m)+F1,1(1)−1∏
i=0

(F1,1(θ) − i)
−F2,1(m)+F2,1(1)−1∏

i=0

(F2,1(θ) − i)
〉

= sm1 tm2 ·

〈−F1,1(m)∏
i=0

(F1,1(θ) − i)
−F2,1(m)∏

i=0

(F2,1(θ) − i)
〉

= sm1 tm2

〈−m2∏
i=0

(θ2 − i)
−2m1+m2∏

j=0

(2θ1 − θ2 − j)
〉
.

It follows that ωR D(R) = D(R, ωR). □

Example 5.3. Let

A =

[
1 1 1 1
0 1 2 3

]
, R = k[NA] = k[s, st, st2, st3

] and J = ωR = ⟨st, st2
⟩.

Note that R is not Gorenstein. We denote the faces of A by σ1,1 and σ2,1, and so that the primitive integral
support functions are

F1,1(θ) = θ2 and F2,1(θ) = 3θ1 − θ2.

Then for m = (m1, m2), we have

H1,1,m(θ) = F1,1(θ) + F1,1(m) and H2,1,m(θ) = F2,1(θ) + F2,1(m)

and

Gm(θ) =

−F1,1(m)−1∏
i=0

(F1,1(θ) − i)
−F2,1(m)−1∏

i=0

(F2,1(θ) − i).

Multiplying the expression for D(R) given in Theorem 3.2 by ωR , we obtain

ωR D(R) = ⟨st, st2
⟩ ·

⊕
m∈Z2

sm1 tm2 · ⟨Gm(θ)⟩,

so that

(ωR D(R))m = sm1 tm2 · ⟨Gm−(1,1)(θ), Gm−(1,2)(θ)⟩,
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where

Gm−(1,1)(θ) =

−F1,1(m−(1,1))−1∏
j=0

(F1,1(θ) − j)
−F2,1(m−(1,1))−1∏

j=0

(F2,1(θ) − j)

=

−F1,1(m)∏
j=0

(F1,1(θ) − j)
−F2,1(m)+1∏

j=0

(F2,1(θ) − j)

=

−m2∏
j=0

(θ2 − j)
−3m1+m2+1∏

j=0

(3θ2 − θ1 − j)

when F1,1(m)= m2 ≤ 0 and F2,1(m)= 3m1 − m2 ≤ 1 and

Gm−(1,2)(θ) =

−F1,1(m−(1,2))−1∏
j=0

(F1,1(θ) − j)
−F2,1(m−(1,2))−1∏

j=0

(F2,1(θ) − j)

=

−F1,1(m)+1∏
j=0

(F1,1(θ) − j)
−F2,1(m)∏

j=0

(F2,1(θ) − j)

=

−m2+1∏
j=0

(θ2 − j)
−3m1+m2∏

j=0

(3θ1 − θ2 − j)

when F1,1(m)= m2 ≤ 1 and F2,1(m)= 3m1 − m2 ≤ 0.
On the other hand, by Theorem 4.3 and a computation similar to the one in Example 5.2,

D(R, ωR)m = sm1 tm2 ·

〈−F1,1(m)∏
i=0

(F1,1(θ) − i)
−F2,1(m)∏

i=0

(F2,1(θ) − i)
〉

= sm1 tm2 ·

〈−m2∏
i=0

(θ2 − i)
−3m1+m2∏

i=0

(3θ1 − θ2 − i)
〉

when F1,1(m)= m2 ≤ 0 and F2,1(m) = 3m1 − m2 ≤ 0.
To see ωR D(R) and D(R, ωR) are different, consider any degree, say m = (−1, −1). Note that the

degree m piece of D(R, ωR) is generated by one element, namely

s−1t−1
1∏

i=0

(F1,1(θ) − i)
2∏

i=0

(F2,1(θ) − i)

On the other hand, the degree m piece of ωR D(R) is generated by two elements; it is generated in
k[θ1, θ2] by

s−1t−1
1∏

i=0

(F1,1(θ) − i)
3∏

i=0

(F2,1(θ) − i) and s−1t−1
2∏

i=0

(F1,1(θ) − i)
2∏

i=0

(F2,1(θ) − i)
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In particular,

s−1t−1
1∏

i=0

(F1,1(θ) − i)
2∏

i=0

(F2,1(θ) − i) ∈ D(R, ωR)

but

s−1t−1
1∏

i=0

(F1,1(θ) − i)
2∏

i=0

(F2,1(θ) − i) /∈ ωR D(R). □

In order to prove Theorem 5.1, we will need some preliminary results.

Lemma 5.4 [4, Theorem 6.33]. Let R be a normal affine semigroup ring of dimension d, and let
Fσ1, . . . , Fσr be the support functions of the facets σi of the semigroup defining R. Let ωR be the
intersection of all graded height one prime ideals of R. Then ωR is a principal ideal if and only if there
exists t c

∈ ω for some c ∈ Zd such that Fσi (c) = 1 for all i = 1, . . . , k.

We first show that principal monomial ideals J behave well (i.e., J D(R) = D(R, J )) for affine normal
semigroup rings.

Proposition 5.5. Let R be a normal affine semigroup ring and let J = ⟨t c
⟩, then

J D(R) = D(R, J ).

Proof. Since J D(R) ⊆ D(R, J ), it suffices to prove that J D(R)m = D(R, J )m for all multidegrees m.
We do so by showing that they are both cyclic and are generated by the same differential operator.

Since J = ⟨t c
⟩, by the expression obtained in Theorem 3.2, we have

J D(R)m = t m D(R)m−c = t m
⟨Gm−c(θ)⟩.

Since Fi is linear, we have

Fi (−(m − c)) − Fi (c) = −Fi (m) + Fi (c) − Fi (c) = −Fi (m).

Hence the single generator for the graded piece J D(R)m can be viewed as

t m
·

〈
Gm(θ)

r∏
i=1

Hi,m(θ)

〉
,

which is exactly the generator of D(R, J )m, completing the proof. □

Now we are ready to prove the main theorem of the section: Theorem 5.1. As above, we will write Fi

and Hi,m for Fσi and Hσi ,m, respectively.

Proof of Theorem 5.1. Suppose first that R is Gorenstein. Then ωR is principal, say ωR = ⟨t c
⟩. Now by

Proposition 5.5, we obtain ωR D(R) = D(R, ωR).
Conversely assume that R is not Gorenstein, that is, ωR is not principal. Since D(R, ωR) and ωR D(R)

are both multigraded and it is always true that ωR D(R) ⊆ D(R, ωR), we may prove that they are not
equal by identifying their difference at m = 0.
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As mentioned above, D(R, ωR)m is generated by a single element t m〈
Gm(θ)

∏r
i=1 Hi,m(θ)

〉
. Thus

D(R, ωR)0 =

〈 r∏
i=1

Hi,0(θ)

〉
= ⟨F1(θ) · · · Fr (θ)⟩.

Let ωR be minimally generated by t c1, t c2, . . . , t ch . Then

(ωD(R))m =

h∑
j=1

t c j t m−c j · D(R)m−c j =

h∑
j=1

t m
· ⟨Gm−c j (θ)⟩ = t m

· ⟨Gm−c j (θ) | j = 1, 2, . . . , h⟩.

In particular, when m = 0,

(ωD(R))0 = ⟨G−c j (θ) | j = 1, 2, . . . , h⟩.

We know from Lemma 5.4 that some Fσi (c j ) ̸= 1. Therefore

(ωD(R))0 =

h∑
j=1

〈 r∏
i=1

Fi (θ)(Fi (θ) − 1) · · · (Fi (θ) − (Fi (c j ) − 1))

〉
(5.6)

= ⟨F1(θ)F2(θ) · · · Fr (θ)⟩ ∩

h∑
j=1

〈 r∏
i=1

(Fi (θ) − 1) · · · (Fi (θ) − (Fi (c j ) − 1))

〉
(5.7)

We claim that the ideal

h∑
j=1

〈 r∏
i=1

(Fi (θ) − 1) · · · (Fi (θ) − (Fi (c j ) − 1))

〉
(5.8)

from (5.6) is a proper ideal of k[θ ]. Once this is established, it will follow from (5.6) that the inclusion

(ωR D(R))0 ⊆ D(R, ωR)0 = ⟨F1(θ) · · · Fr (θ)⟩,

is proper, which will conclude the proof.
To see that (5.8) is a proper ideal of k[θ ], we may assume after reordering that c1 generates a ray of

the cone

C := R≥0{c1, c2, . . . , ch} = {m ∈ NA | F1(m) ≥ 1, . . . , Fr (m) ≥ 1} ⊆ Rd

over the exponents of the minimal generators of ωR and, in light of Lemma 5.4, that there are d −1 linearly
independent primitive integral support functions, which after relabeling can be taken as F1, . . . , Fd−1,
such that

F1(c1) = F2(c1) = · · · = Fd−1(c1) = 1 and Fd(c1) > 1.

(There may be more i such that Fi (c1) = 1, but we need to make use of only a linearly independent set of
them, which is necessarily of size d − 1, since c1 generates a ray of C .)
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F2(θ) = 1

F1(θ) = 1

c1

c2

c3

Figure 1. Hypothetical generators of ωR in dimension 3.

Example 5.9. We pause our proof to give an example illustrating the newly introduced notation. Consider
the case d = 3 and refer to Figure 1 as a visualization. Fix c1 to be a vertex of the convex hull of the ci ,
or, rather, a generator of a ray of the Newton polyhedron of ωR . Without loss of generality,

F1(c1) = 1 = F2(c1) and F3(c1) > 1.

Further, there exists an r such that

F1(ci ) > 1 for all r + 1 ≤ i ≤ h and F1(ci ) = 1 for all 1 ≤ i ≤ r.

Note that in Figure 1, we have chosen r = 3. Now, since c1 is a vertex, it must be that

F2(ci ) > 1 for all 2 ≤ i ≤ r.

Hence, ⟨F1(θ) − 1, F2(θ) − 1, F3(θ) − 1⟩ is a primary component of (5.8). □

We resume our proof in full generality. Given that c1 is a ray of the cone C with Fi (c1) = 1 for every i
with 1 ≤ i ≤ d −1, it follows that, for every j > 1, there is an i j with 1 ≤ i j ≤ d −1 such that Fi j (c j ) > 1.
Now set i1 = d because Fd(c1) > 1. Then since 1 ≤ i j ≤ d for all j and the hyperplanes defined by
{Fi (θ) = 0}

d
i=1 are necessarily nonparallel, the ideal

⟨Fi1(θ) − 1, Fi2(θ) − 1, . . . , Fid (θ) − 1⟩

is a proper, primary (in fact, prime) component of (5.8). Thus (5.8) is a proper ideal of k[θ ], as desired to
establish the final needed claim. □
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[31] M. Mustaţă and M. Popa, “Hodge ideals”, pp. v+80 in Mem. Amer. Math. Soc. 1268, Amer. Math. Soc., Providence, RI,
2019. MR Zbl
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