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Highlight/Significance: 12 

• Gross primary productivity (GPP) increased with deeper topsoils under cropland, 13 

grassland, and shrubland. 14 

• Soils under forest have thin topsoils but the highest GPP.  15 

• Topsoil depth controls GPP through water availability, which is vital for arid regions.  16 

• Increases in GPP resilience to climatic extremes are associated to deeper topsoils in arid 17 

regions. 18 

 19 
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Abstract 23 

Understanding the controlling mechanisms of soil properties on ecosystem productivity is 24 

essential for sustaining productivity and increasing resilience under a changing climate. Here we 25 

investigate the control of topsoil depth (e.g., A horizons) on long-term ecosystem productivity. 26 

We used nationwide observations (n=2,401) of topsoil depth and multiple scaled datasets of 27 

gross primary productivity (GPP) for five ecosystems (cropland, forest, grassland, pasture, 28 

shrubland) over 36 years (1986–2021) across the conterminous USA. The relationship between 29 

topsoil depth and GPP is primarily associated with water availability, which is particularly 30 

significant in arid regions under grassland, shrubland, and cropland (r=0.37, 0.32, 0.15, 31 

respectively, p<0.0001). For every 10 cm increase in topsoil depth, the GPP increased by 114 to 32 

128 g C m−2 yr−1 in arid regions (r=0.33 and 0.45, p<0.0001). Paired comparison of relatively 33 

shallow and deep topsoils while holding other variables (climate, vegetation, parent material, soil 34 
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type) constant showed that the positive control of topsoil depth on GPP occurred primarily in 35 

cropland (0.73, confidence interval of 0.57–0.84) and shrubland (0.75, confidence interval of 36 

0.40–0.94). The GPP difference between deep and shallow topsoils was small and not statistically 37 

significant. Despite the positive control of topsoil depth on productivity in arid regions, its 38 

contribution (coefficients: 0.09–0.33) was similar to that of heat (coefficients: 0.06–0.39) but less 39 

than that of water (coefficients: 0.07–0.87). The resilience of ecosystem productivity to climate 40 

extremes varied in different ecosystems and climatic regions. Deeper topsoils increased stability 41 

and decreased the variability of GPP under climate extremes in most ecosystems, especially in 42 

shrubland and grassland. The conservation of topsoil in arid regions and improvements of soil 43 

depth representation and moisture-retention mechanisms are critical for carbon-sequestration 44 

ecosystem services under a changing climate. These findings and relationships should also be 45 

included in Earth system models. 46 

 47 

Keywords: gross primary production, soil properties, structural equation modeling, climate 48 

change, climate extremes 49 
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1. Introduction 50 

Terrestrial ecosystem productivity is essential for global food security and promoting carbon 51 

sequestration (Lorenz and Lal, 2009; Schmidhuber and Tubiello, 2007), but productivity is under 52 

pressure from climate change along with the increased frequency of fire, drought, floods, frost, 53 

and decreased biodiversity (Bellard et al., 2012; Grimm et al., 2013; Isbell et al., 2015; Wu et al., 54 

2021; Xiao et al., 2016). Understanding different factors and mechanisms that control the 55 

variability of ecosystem primary productivity provides a scientific basis to sustain its productivity 56 

and increase its resilience. Soil is the main terrestrial reservoir of carbon, nutrients, and biota and 57 

serves as the core habitat for plant growth and the thriving of global ecosystems (Blum, 2005). 58 

Productive soils not only lead to higher crop yield (Bhardwaj et al., 2011) but also to enhanced 59 

resilience to climate change (Qiao et al., 2022). Most studies focused on biological aspects or 60 

were conducted in cropland. However, soil properties and mechanisms are important for all 61 

terrestrial ecosystems.  62 

Among these properties, soil depth is important for regulating biogeochemical and 63 

hydrological cycles and ecosystem productivity (Shangguan et al., 2017). Soil formation from 64 

bedrock weathering is often accompanied by deepening soil regolith and the buildup of organic 65 

matter in the topsoil (Phillips, 2008), with formation rates controlled by climate, topography, and 66 

organisms (Jenny, 1941). However, soils are being lost since the past century from intensified 67 

land use change, agricultural practices, and climate extremes (Brown, 1984; Montgomery, 2007), 68 

which poses threats to ecosystem productivity (Berhe et al., 2018; Larson et al., 1983; Quinton 69 

et al., 2010). Deep topsoils have been related to high soil fertility and productivity. Studies have 70 

shown that for every 10 cm of soil loss, crop productivity dropped by 4.3% due to the loss of 71 
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nutrients and organic matter (Bakker et al., 2004). For every 2.5 cm of topsoil loss in the US, crop 72 

yield dropped up to 10% for wheat and corn (Lyles, 1975), and liming, fertilization, manure 73 

application, and other best management practices cannot compensate for the yield reduction 74 

from topsoil loss (Mielke and Schepers, 1986). Most of the studies on soil erosion have focused 75 

on cropland, but the capacity of soil depth and in particular the thickness of the A horizon to 76 

support productivity at other ecosystems and its effectiveness in different climate zones has not 77 

been extensively studied.   78 

Topsoil depth, defined here as the thickness of the A horizon, is spatially variable (Francés 79 

and Lubczynski, 2011), due to soil forming factors (e.g., climate, vegetation, topography) and 80 

human-induced erosional and management effects (Zhang et al., 2023). The vulnerability of soil 81 

to erosion and the relationship between soil erosion and production differs by soil type (Larson 82 

et al., 1983). Plant productivity is also determined by many factors such as climate and varies for 83 

different vegetation types (O'Sullivan et al., 2020) but there are limited studies on the interactive 84 

effect of climate and soil on ecosystem productivity.  85 

Here, we investigate the control of topsoil depth on ecosystem productivity using 86 

nationwide observations of topsoil depth and datasets of gross primary productivity (GPP). We 87 

aim to address the following questions: 1) Is the relationship of topsoil depth to GPP consistent 88 

for different ecosystems (e.g., natural vs. managed ecosystems)? 2) Is this relationship affected 89 

by different climatic conditions? 3) How strong is this relationship compared to other 90 

environmental controlling factors on GPP? 4) To what extent is the sensitivity of ecosystem 91 

productivity to climate change affected by topsoil depth? We hypothesize that the control of 92 

topsoil depth on ecosystem productivity is more significant in natural than in managed 93 
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ecosystems and in dry and cold environments. We hypothesize that deeper topsoils can increase 94 

the resilience of ecosystem productivity under climate change and climate extremes in arid 95 

regions. The findings of this study will advance our understanding of the role of soil in ecosystem 96 

productivity.   97 

 98 

2. Materials and methods 99 

2.1. Topsoil dataset 100 

The soil dataset was obtained from the National Cooperative Soil Survey (NCSS) Soil 101 

Characterization Database which contains profile descriptions and analytical data for over 30,000 102 

pedons collected across the USA (National Cooperative Soil Survey). The sampling locations were 103 

selected to represent each mapping unit of the SSURGO map (Soil Survey Staff), and the final 104 

dataset covered half of all the mapping units; some mapping units contained more than one 105 

pedon. The samples of each pedon were collected by horizon and analyzed using standard 106 

analytical methods (Schoeneberger et al., 2012). We selected pedons that: 1) have records of 107 

longitude and latitude coordinates and are within the conterminous US (CONUS); 2) have explicit 108 

sampling year and were sampled after 1986 at which the GPP dataset became available; 3) have 109 

data from horizons collected from the ground surface down to at least a B horizon or a C horizon 110 

if a B horizon does not exist, and do not have reporting, buried, D (the previous letter of indicating 111 

rock), vesicular, or limnic horizons, or bi-sequences or formed in human-transported materials; 112 

4) have measurements of soil organic carbon (SOC) content and texture for A horizons; 5) have 113 

consistent land use type since 1938 belonging to cropland, forest, grassland, pasture, or 114 
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shrubland (see below for details); 6) have continuous measurements of GPP from 1986 to 2021 115 

(see below for details). In total 2,401 pedons (about 8% of the total) fitted these criteria.  116 

We calculated the topsoil depth in each pedon by summing up the thickness of all the A 117 

horizons. Transitional horizons (e.g., AB, AE) were not included. Topsoil SOC and texture were 118 

weight-averaged for A horizons using horizon thickness as weights. Soil texture was determined 119 

by pipette method for particles smaller than 2 mm and textural classes were based on the USDA 120 

classification (Soil Survey Staff, 2014). The total carbon was determined by dry combustion 121 

method and inorganic carbon was determined using gas chromatography with HCl addition. The 122 

SOC content was estimated by subtracting the inorganic carbon from the total carbon (Soil Survey 123 

Staff, 2014). We used a generalized additive model to explore the spatial-temporal variation of 124 

topsoil depth and found that the temporal term (year) was non-significant (p>0.05, data not 125 

shown here). This indicated that the topsoil depth was stable for the study period (1986–2021), 126 

and we did not consider a temporal change of topsoil depth in this study.  127 

 128 

2.2. Productivity data 129 

Ecosystem productivity was characterized by GPP from three different datasets. Although eddy 130 

covariance flux towers provide in-situ GPP data, these data are often location-specific and cannot 131 

represent the productivity of our sample locations. Instead, we used raster GPP products which 132 

were calibrated from and correlated with the flux GPP. The first GPP dataset was derived from 133 

the Landsat satellite data with 30-m spatial resolution and 16-day temporal variation since 1986 134 

(Robinson et al., 2018). GPP was calculated using Landsat Surface Reflectance and MOD17 135 

algorithm (Running and Zhao, 2015). The principle of the MOD17 algorithm calculated GPP from 136 
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a biome-specific Light Use Efficiency (LUE) and Absorbed Photosynthetically Active Radiation 137 

(APAR), with the former optimized using eddy covariance flux tower measurements and the latter 138 

estimated from the gridded shortwave radiation (Abatzoglou, 2013) and Landsat’s Normalized 139 

Difference Vegetation Index ‒ NDVI (Robinson et al., 2018). The dynamic biome information was 140 

provided by the National Land Cover Database (NLCD) from 1992, 2001, 2006, and 2011 (Yang et 141 

al., 2018). Smoothing and gap-filling of the Landsat’s NDVI data were conducted using a 142 

climatology driven approach (Robinson et al., 2017). For details on this GPP product, readers can 143 

refer to Robinson et al. (2018). 144 

The GPP dataset from 1986 to 2021 was extracted to pedon locations using the Nearest 145 

Neighbor method with the Google Earth Engine. As the soil profile was selected to best represent 146 

the mapping unit, we assumed that the soil thickness of the single profile is representative within 147 

the 30-m pixel of Landsat data. This means that the short-scale variation of soil is not considered 148 

in this study. The annual accumulated GPP was calculated for each location and then averaged 149 

for 35 years to obtain the temporal mean GPP. The pedons that have missing GPP data were 150 

removed, and descriptive statistics of GPP for different ecosystems were calculated. 151 

Given the uncertainty of the MOD17 algorithm and the Landsat data, a multi-model 152 

comparison was conducted to minimize the effect of the uncertain GPP estimates on the 153 

subsequent analysis. Here, we included two other GPP datasets that were generated from 154 

different principles for comparison. 155 

Solar-induced chlorophyll fluorescence (SIF) has been recently proposed as a better proxy 156 

for GPP (Li et al., 2018). It measures the sunlight-induced photon emission from plant chlorophyll 157 

in the range from 600 to 800 nm (Baker, 2008). SIF can be retrieved from satellite observations 158 
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at certain wavelengths between 600 and 800 nm. When heat dissipation occurs at high light 159 

levels, SIF is strongly correlated with photosynthesis (Baker, 2008) and has a better performance 160 

than the traditionally used vegetation index (e.g., NDVI). The GOSIF GPP dataset used here (Li 161 

and Xiao, 2019b) was derived from a global, OCO-2 based SIF product (GOSIF) (Li and Xiao, 2019a). 162 

GOSIF consists of 0.05° and 8-day SIF estimates globally, and was based on discrete SIF 163 

observations from the Orbiting Carbon Observatory-2 (OCO-2), meteorological reanalysis data 164 

(PAR, air temperature, and vapor pressure deficit), and MODIS enhanced vegetation index using 165 

a machine learning method (Li and Xiao, 2019a). GOSIF GPP is based on GOSIF and GPP-SIF 166 

relationships. To estimate GPP from SIF, GPP-SIF relationships established using GPP data and 167 

OCO-2 SIF at a number of eddy covariance flux sites were used (Li and Xiao, 2019b). GOSIF GPP 168 

consists of global GPP maps with a 0.05° spatial resolution and an 8-day time step from 2000 to 169 

2021. 170 

FluxCom initiative provides another way to estimate GPP globally at fine spatial and 171 

temporal resolutions. It uses an ensemble of machine learning algorithms to build relationships 172 

between eddy covariance flux tower measured GPP and remote sensing satellite data (e.g., 173 

MODIS) with and without ancillary meteorological forcings (Jung et al., 2020). In this study, we 174 

used the annual GPP from the remote sensing and meteorological data-based (RS+METEO) 175 

FluxCom product with 0.5° spatial resolution. The GPP data was presented as daily GPP data (g C 176 

m−2 d−1) for a specific year from 1980 to 2013 and summed for annual values. 177 

The GOSIF GPP maps (2001‒2021) and FluxCom GPP maps (1986‒2013) were 178 

downloaded from https://globalecology.unh.edu/data/GOSIF.html and 179 

https://www.fluxcom.org/, respectively, and extracted to the sampling locations using extract 180 

https://globalecology.unh.edu/data/GOSIF.html
https://www.fluxcom.org/
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function of raster package (Hijmans et al., 2013) in R version 4.1.0 (R Core Team, 2021). The soil 181 

profiles collected before 2001 were removed from the GOSIF GPP dataset and the soil profiles 182 

collected after 2013 were removed from the FluxCom GPP dataset, which resulted in a total of 183 

1,657 samples and 2,208 samples, respectively. The temporal mean GOSIF GPP and temporal 184 

mean FluxCom GPP were calculated by averaging annual GOSIF GPP and annual FluxCom GPP for 185 

21 years (2001‒2021) and 28 years (1986‒2013), respectively.  186 

 187 

2.3. Land use data 188 

We used two land cover databases to ascertain that the land use of selected sample locations 189 

was consistent over a long-term period. The USGS projected land use/land cover mosaics covered 190 

1938 to 2021 with a 250-m spatial resolution  (Sohl et al., 2016; Sohl et al., 2014). The USGS NLCD 191 

was available for eight years: 2001, 2004, 2006, 2008, 2011, 2013, 2016, and 2019 with a 30-m 192 

spatial resolution (Yang et al., 2018). Land use types of the sample locations were extracted for 193 

every year and the sample locations that had experienced land use change from 1938 to 2021 or 194 

had different land use types based on the two databases were removed from the dataset. The 195 

final dataset included 2,401 pedons belonging to five land uses: cropland (n=699), forest (n=802), 196 

grassland (n=324), pasture (n=273), and shrubland (n=303). 197 

  198 

2.4. Environmental data 199 

The environmental data used in this study include climate variables from TerraClimate, Köppen-200 

Geiger climate classification, topographic variables, soil orders, soil parent materials, Watershed 201 

Boundary Dataset, and irrigation types.  202 
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TerraClimate provides monthly climate data since 1958 with a 4.6-km spatial resolution 203 

(Abatzoglou et al., 2018). We chose TerraClimate data instead of PRISM and Daymet datasets 204 

because the Terraclimate data provides both monthly climate data (precipitation, minimum and 205 

maximum temperature, solar radiation) and climatic water balance data (actual and potential 206 

evapotranspiration). Additionally, the annual (from 1986 to 2021) and long-term averaged 207 

climate data (precipitation, minimum and maximum temperature) were highly correlated 208 

(Pearson correlation > 0.95) among these three climate datasets. Monthly precipitation (pr), 209 

minimum temperature (tmmn), maximum temperature (tmmx), actual evapotranspiration (aet), 210 

potential evapotranspiration (pet), and downward surface shortwave radiation (srad) were 211 

downloaded for sample locations for every month from 1958 to 2021 using Google Earth Engine. 212 

The annual sum of pr, aet, and pet, and annual mean of tmmn, tmmx, and srad were calculated 213 

for every year and then averaged for 64 years. The Aridity Index (AI) was calculated (Equation 1), 214 

and it represents arid and humid conditions for AI < 1 and AI > 1, respectively (Seager et al., 2018). 215 

In our dataset, there were 1,461 locations in arid regions and 940 locations in humid regions. 216 

𝐴𝐼 =
𝑝𝑟

𝑝𝑒𝑡
                                                                                                                                  (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1)   217 

 218 

The global map of Köppen-Geiger climate classification was downloaded from 219 

http://www.gloh2o.org/koppen/ for present day (1980–2016) at a 0.0083° resolution (Beck et al., 220 

2018). It was derived using the method described in Peel et al. (2007) with three air temperature 221 

datasets (WorldClim V1 and V2, CHELSA V1.2) and four precipitation datasets (WorldClim V1 and 222 

V2, CHELSA V1.2, and CHPclim V1) with a 0.0083° resolution, in which the CHPclim V1.2 was 223 

downscaled from 0.05° to 0.0083° resolution using bilinear interpolation (Beck et al., 2018). The 224 

http://www.gloh2o.org/koppen/
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Köppen-Geiger classification has a hierarchy structure with five classes at the highest level: 225 

tropical (A), arid (B), temperate (C), cold (D), and polar (E). The class B precedes other classes, 226 

and A, C, D, E classes are mutually exclusive but not with B (Beck et al., 2018). The B was identified 227 

by mean annual precipitation < 10 × Pthreshold, in which Pthreshold was determined by mean annual 228 

temperature and annual precipitation pattern. The threshold to identify temperate (C) and cold 229 

(D) was 0 °C for the coldest month according to Russell (1931) and 10 °C for the warmest month. 230 

The Köppen-Geiger classification was extracted to the sample locations using extract function of 231 

raster package (Hijmans et al., 2013) in R. In our dataset, samples were classified as arid (n=564), 232 

temperate (n=748), cold (n=1,086), and polar (n=3).   233 

The elevation was extracted to sample locations from the USGS 3D Elevation Program 10-234 

meter resolution Digital Elevation Model (DEM) dataset, from which the slope was calculated 235 

using Google Earth Engine (United States Geological Survey (USGS)). Soil order for each pedon 236 

was determined by NRCS soil scientists at the time of sampling and if missing, the gSSURGO (30-237 

m resolution, https://www.nrcs.usda.gov/resources/data-and-reports/description-of-gridded-238 

soil-survey-geographic-gssurgo-database) and STATSGO (1:250,000, 239 

https://catalog.data.gov/dataset/u-s-general-soil-map-statsgo2) maps were used to determine 240 

soil orders. Soil temperature (1:7,500,000) and moisture (1:9,000,000) regimes maps were 241 

obtained from USDA-NRCS. The soil parent material was obtained from the Conservation Science 242 

Partners Ecologically Relevant Geomorphology map (90-m resolution) using Google Earth Engine 243 

(Soller et al., 2009; Theobald et al., 2015). The Watershed Boundary Dataset (WBD, 1:24,000-244 

scale) provided hydrologic unit (HU) data with a scale of 1:24,000 (WBD). The watershed level 245 

(HU10) was downloaded for each sample location from the Google Earth Engine. The irrigation 246 

https://www.nrcs.usda.gov/resources/data-and-reports/description-of-gridded-soil-survey-geographic-gssurgo-database
https://www.nrcs.usda.gov/resources/data-and-reports/description-of-gridded-soil-survey-geographic-gssurgo-database
https://catalog.data.gov/dataset/u-s-general-soil-map-statsgo2
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types (irrigated or rainfed) of the cropland samples were extracted from the 2017 MODIS 247 

irrigated agricultural dataset (250-m resolution) (Brown et al., 2019).  248 

 249 

2.5. Statistical analysis 250 

Four types of analysis were used to answer our research questions and test our hypotheses: 1) 251 

the linear regressions and Pearson correlations were calculated to explore the topsoil depth-GPP 252 

relationship in five ecosystems and five climatic regions; 2) paired comparison of relatively 253 

shallow and deep soils was conducted in five ecosystems and five climatic regions by controlling 254 

other environmental factors constant; 3) structural equation modeling (SEM) was used to 255 

evaluate the effect of topsoil depth and other essential factors (light, heat, water, fertility) and 256 

their relative contribution to GPP; 4) the effect of topsoil depth on the resilience of GPP was 257 

investigated under four climatic extremes (dry, wet, hot, and cold). We used long-term averaged 258 

GPP and climate variables for the first three analyses and annual GPP and climate variables for 259 

the last analysis. Below are the detailed explanations. 260 

Pearson correlation coefficients (r) were calculated between topsoil depth and temporal 261 

mean GPP across the full dataset, for each ecosystem (cropland, forest, grassland, pasture, and 262 

shrubland), and in each climatic region (arid and humid regions classified by AI and arid, 263 

temperate, and cold regions classified by Köppen-Geiger classification). It was also used to 264 

explore the relationships between temporal mean GPP and other climatic and topographic 265 

variables. The relationships between temporal mean GPP and topsoil depth were fitted using 266 

simple linear regression (Equation 2) for five ecosystems and five climatic regions using lm 267 

function in R. The 𝑎 represents the intercept which is the GPP when topsoil depth is zero. The 𝑏 268 



14 
 

represents the slope which is the increase of GPP for every cm increase in topsoil depth. We 269 

further evaluated the topsoil depth-GPP relationship for samples with depth <75 cm (n=2,384) in 270 

five ecosystems and five climatic regions using Pearson correlation and simple linear regression, 271 

as this covered over 99% of total samples.  272 

𝑦 = 𝑎 + 𝑏𝑥                                                                                                                               (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2) 273 

 274 

As the topsoil depth-GPP relationship may be confounded by many other environmental 275 

factors (e.g., climate, topography) at a national scale, to evaluate such a relationship at a local 276 

scale with other soil, topographic, and climatic factors remaining similar, we selected one pair of 277 

relatively deep and shallow topsoils for each watershed to compare their GPP values. We used 278 

watershed as the smallest spatial unit rather than other broader classifications (e.g., ecoregions), 279 

as a watershed represents the spatial movement of water (rainfall and snowmelt) across the 280 

landscape and is directly related to soil erosion and deposition. As such, soils within the same 281 

watershed often have similar hydrological patterns (e.g., hydroclimatology) and the differences 282 

in plant productivity can be easily explained by the differences in soil properties when holding 283 

other environmental factors constant (see below). In each watershed, the deep and shallow 284 

topsoils were not determined by absolute depth but relative depth difference between them. 285 

The depth difference of the pair should be greater than 3 cm if they are shallow (≤15 cm) or 286 

greater than 5 cm if they are deep (>15 cm). The paired topsoils have 1) the same climate 287 

conditions (long-term averaged precipitation and temperature), land use, soil order, soil 288 

temperature and moisture regimes, parent material, and textural class; 2) similar SOC content, 289 

elevation, and slope; 3) different GPP values; and 4) are within 4-km distance. If multiple pairs 290 
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fulfilled the criteria for a watershed, the pair that has the most similar soil properties and the 291 

largest depth difference was selected. A total of 103 pairs were selected.  292 

For the final selected pairs from different watersheds, two cases may exist: 1) the deeper 293 

topsoil aligns with greater mean GPP (our hypothesis), and 2) the shallower topsoil has greater 294 

mean GPP (alternative hypothesis). Summary statistics (e.g., the proportion of pair-comparisons 295 

where the site with deeper topsoil had greater mean GPP) were calculated for these two cases 296 

in each ecosystem and each climatic region. The Wald test was used to calculate the 95% 297 

confidence interval of the proportion of pair-comparisons where the site with deeper topsoil had 298 

greater mean GPP (our hypothesis). If the confidence interval of the proportion covers 0.5, it 299 

indicates that the proportion of our hypothesis is not statistically significant from that of the 300 

alternative hypothesis. The Wald test was conducted using BinomCI function in DescTools 301 

package (Signorell et al., 2023) in R. We also conducted a paired t-test to compare the mean 302 

values of GPP between deep and shallow topsoils in a specific ecosystem using t.test function in 303 

R. The normality of GPP difference was tested using Shapiro-Wilk test (Shapiro and Wilk, 1965) 304 

with shapiro.test function in R. 305 

Since soil and environmental factors were greatly variable across watersheds, which may 306 

affect the GPP-topsoil depth relationship of the paired samples, we further developed linear 307 

mixed-effects models and multiple linear regressions using selected paired samples to account 308 

for other soil and environmental factors. In the linear mixed-effects models, we used SOC, clay 309 

content, precipitation, minimum temperature, and an interaction term of topsoil depth (both 310 

binary data – deep and shallow and numeric values were evaluated respectively) and ecosystem 311 

or climatic regions as the fixed effects to predict GPP (Equation 3). We also added the watershed 312 
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as the random effect to acknowledge the variation among watersheds. The linear mixed-effects 313 

models were developed using lmer function of the lme4 package (Bates et al., 2009) in R. The 314 

significance level of the model coefficients was calculated using lmerTest (Kuznetsova et al., 2017) 315 

and afex (Singmann et al., 2015) packages in R. 316 

𝐺𝑃𝑃 ~ 𝐷𝑒𝑝𝑡ℎ𝑏𝑖𝑛𝑎𝑟𝑦(𝑜𝑟 𝐷𝑒𝑝𝑡ℎ𝑛𝑢𝑚𝑒𝑟𝑖𝑐) ∗ 𝐸𝑐𝑜𝑠𝑦𝑠𝑡𝑒𝑚 (𝑜𝑟 𝐶𝑙𝑖𝑚𝑎𝑡𝑖𝑐 𝑟𝑒𝑔𝑖𝑜𝑛) + 𝑆𝑂𝐶 + 𝐶𝑙𝑎𝑦317 

+  𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 + 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + (1|𝑊𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑)  (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3) 318 

 319 

To further test whether the increase in GPP is proportional to the increase in topsoil depth 320 

of the paired samples. We developed multiple linear regressions between the change of GPP 321 

(∆𝐺𝑃𝑃) and the change of topsoil depth (∆𝐷𝑒𝑝𝑡ℎ) (Equation 4). The absolute change (Equation 322 

5) and relative change (Equation 6) were evaluated respectively. We also added mean depth of 323 

the paired samples, SOC, clay content, precipitation, and minimum temperature as we expected 324 

these variables to have an effect. The multiple linear regressions were developed for each of the 325 

five ecosystems and five climatic regions using lm function in R. 326 

∆𝐺𝑃𝑃 (𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑜𝑟 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒) ~ ∆𝐷𝑒𝑝𝑡ℎ (𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑜𝑟 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒) + 𝐷𝑒𝑝𝑡ℎ𝑚𝑒𝑎𝑛 + 𝑆𝑂𝐶327 

+ 𝐶𝑙𝑎𝑦 + 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 + 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒                         (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4) 328 

∆𝐺𝑃𝑃𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 = 𝐺𝑃𝑃𝑑𝑒𝑒𝑝 − 𝐺𝑃𝑃𝑠ℎ𝑎𝑙𝑙𝑜𝑤;  ∆𝐷𝑒𝑝𝑡ℎ𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒329 

= 𝐷𝑒𝑝𝑡ℎ𝑑𝑒𝑒𝑝 − 𝐷𝑒𝑝𝑡ℎ𝑠ℎ𝑎𝑙𝑙𝑜𝑤                                                                    (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5) 330 

∆𝐺𝑃𝑃𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 =
𝐺𝑃𝑃𝑑𝑒𝑒𝑝 − 𝐺𝑃𝑃𝑠ℎ𝑎𝑙𝑙𝑜𝑤

𝐺𝑃𝑃𝑠ℎ𝑎𝑙𝑙𝑜𝑤
;  ∆𝐷𝑒𝑝𝑡ℎ𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒331 

=
𝐷𝑒𝑝𝑡ℎ𝑑𝑒𝑒𝑝 − 𝐷𝑒𝑝𝑡ℎ𝑠ℎ𝑎𝑙𝑙𝑜𝑤

𝐷𝑒𝑝𝑡ℎ𝑠ℎ𝑎𝑙𝑙𝑜𝑤
                                                                    (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6) 332 

 333 
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Structural equation modeling (SEM) is a multivariate regression method to examine the 334 

causal relationships between multiple variables and uses graphics to represent the complex 335 

structure (Grace, 2006). It separates the direct and indirect causes, represents partial 336 

contributions, models the latent variables and model structure (Grace, 2006), and has been used 337 

in soil ecology to solve complex casual relationships (Eisenhauer et al., 2015). We used SEMs to 338 

understand the contributions of soil and environmental variables to ecosystem productivity. In 339 

statistics, a latent variable is the one that can only be inferred from other observed variables 340 

using a mathematical model (Dodge et al., 2003). In social or natural sciences, a latent variable 341 

can be used to represent a conceptual abstract (e.g., attitude, ability) or characterize a group, 342 

and similar to observed variables, it can be used as an independent or dependent variable in 343 

models (Bollen and Hoyle, 2012).  344 

Here, we define productivity, light, heat, water, fertility, and topsoil as six latent variables, 345 

which were inferred from other observed or measured variables, including GPP, srad, tmmn and 346 

tmmx, pr and aet, SOC and clay content, and topsoil depth, respectively. In SEM, we define 347 

productivity as a function of five latent variables (i.e., light, heat, water, fertility, and topsoil), and 348 

the interactions between the five latent variables were not investigated here (Equation 7). The 349 

SEMs were fit for five ecosystems and five climatic regions using the sem function in lavaan 350 

package (Rosseel, 2012) in R. If the full model did not converge, some observed variables were 351 

dropped until the model converged.  352 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ~ 𝐿𝑖𝑔ℎ𝑡 + 𝐻𝑒𝑎𝑡 + 𝑊𝑎𝑡𝑒𝑟 + 𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑡𝑦 + 𝑇𝑜𝑝𝑠𝑜𝑖𝑙                            (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 7) 353 

 354 
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The model performance of SEMs was evaluated using Confirmatory Factor Index (CFI), 355 

Tucker Lewis Index (TLI), and Root Mean Square Error of Approximation (RMSEA). The CFI 356 

measures the percent decrease in model chi-square (corrected by degrees of freedom, 𝛿 = 𝜒2 −357 

𝑑𝑓) of the User Model compared to the Baseline Model and ranges from 0 to 1 (best fit) (Equation 358 

8). The TLI measures the percent decrease in relative chi-square (
𝜒2

𝑑𝑓
) of the User Model compared 359 

to the Baseline Model and when it is closer to 1 (rounded to 1 if it is greater than 1), the model 360 

is better (Equation 9). The RMSEA measures the absolute model fitting performance and when it 361 

is smaller, the model is better (Equation 10).  362 

𝐶𝐹𝐼 =
𝛿(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒) − 𝛿(𝑈𝑠𝑒𝑟)

𝛿(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
                                                                                      (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 8) 363 

𝑇𝐿𝐼 =

𝜒2(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
𝑑𝑓(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

−
𝜒2(𝑈𝑠𝑒𝑟)
𝑑𝑓(𝑈𝑠𝑒𝑟)

𝜒2(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
𝑑𝑓(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

− 1
                                                                                 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 9) 364 

𝑅𝑀𝑆𝐸𝐴 = √
𝛿

𝑑𝑓(𝑁 − 1)
                                                                                                    (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 10) 365 

   366 

To evaluate the contribution of topsoil depth to climate resilience of productivity, the 367 

annual accumulative GPP, accumulative precipitation, mean minimum temperature from 1986 368 

to 2021 (36 years) were used. Four climatic extremes from 1986 to 2021 were considered: dry, 369 

wet, hot, and cold. To identify the dry extreme for each location, the year which received the 370 

lowest precipitation was first identified from the 36 years and the GPP of this year was obtained. 371 

Then the percent changes in GPP and precipitation to the 36-year averaged GPP and precipitation 372 

were calculated. Similarly, the wettest, the hottest, and the coldest years were identified for each 373 
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location based on the highest precipitation, the highest minimum temperature, and the lowest 374 

minimum temperature, respectively, and the percent changes of GPP, precipitation, and 375 

minimum temperature were calculated. Potential lag effects from climate were not considered 376 

in our study. The relationships between percent changes of GPP at four types of climate extremes 377 

and topsoil depth were evaluated for the five climatic regions and five ecosystems. We 378 

hypothesize that if the topsoil is deeper, ecosystem productivity is more stable and hence the 379 

percent change of GPP is smaller (closer to zero).   380 

To compare the percent change in GPP of shallow and deep topsoils, we calculated the 381 

mean topsoil depth in each climatic and ecosystem region as a threshold value and then split the 382 

data into shallow topsoils and deep topsoils. We compared the mean and variance of the percent 383 

change in GPP of shallow and deep topsoils. The mean value represents an absolute comparison 384 

of the percent GPP change, and we hypothesize that the mean percent change in GPP was closer 385 

to zero (no matter positive or negative) in deeper topsoils. The variance value represents the 386 

spread of the percent GPP change, and we hypothesize that deeper topsoils had more stable 387 

ecosystem productivity with climate change and thus the variance is smaller than that in 388 

shallower topsoils. The t-test and Levene’s test were used to assess the homogeneity of mean 389 

and variance respectively in these two groups (shallow and deep topsoils) using t.test function 390 

and leveneTest function in car package (Fox et al., 2012) in R. If the homogeneity was not rejected 391 

in these tests, it indicates that the topsoil depth had non-significant effect on the percent change 392 

in GPP under climate extremes. 393 

Given the uncertainty and noises of the Landsat GPP data, we used another two datasets 394 

(GOSIF GPP from 2001 to 2021 and FluxCom GPP from 1986 to 2013) to repeat two analyses: 1) 395 
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the simple linear regression between temporal mean GPP and topsoil depth in five different 396 

ecosystems and climatic regions was calculated; 2) the percent changes of GPP in four climatic 397 

extremes (dry, wet, hot, and cold) were calculated and their relationships with topsoil depth were 398 

evaluated for five climatic regions and five ecosystems. The t-test and Levene’s test were also 399 

used to assess the homogeneity of mean and variance of percent GPP change for two soil depth 400 

groups (shallow and deep) in five climatic regions and five ecosystems. 401 

 402 

3. Results 403 

3.1. Topsoil depth and GPP in different ecosystems and climate zones 404 

On the national scale, areas with deeper topsoil were not identical to the areas with higher GPP 405 

(Fig. 1a and 1b). Deeper topsoils primarily occurred in the Midwest (Fig. 1a) under cropland 406 

(mean depth=27 cm, mean GPP=1,249 g C m−2 yr−1, Fig. 1c and 1d, Supplementary Table S1), while 407 

the highest GPP occurred in the east and along the West Coast (Fig. 1b) under forest (mean 408 

GPP=1,466 g C m−2 yr−1, Fig. 1c and 1e) with topsoils of about 15 cm (Fig. 1a and 1d). The western 409 

CONUS was dominated by shrubland and grassland (Fig. 1c) which had shallow topsoils (mean 410 

depth=14 and 18 cm, Fig. 1a and 1d) and lower GPP (mean GPP=243 and 563 g C m−2 yr−1, Fig. 1b 411 

and 1e). A weak positive correlation was observed between the GPP and topsoil depth for all 412 

data, but it varied for different ecosystems (Fig. 1f). A stronger positive correlation existed for 413 

grassland (r=0.37, p=7e−12) and shrubland (r=0.32, p=2e−8) with a weak correlation in cropland 414 

(r=0.15, p=4e−5), and no clear relationships for forest and pasture (r=−0.04 and 0.02 respectively, 415 

p>0.05).  416 
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As GPP varied significantly with climate and topography (Supplementary Figs. S1, S2, S3, 417 

and Tables S2 and S3), it confounds the effect of topsoil depth on GPP. The relationship between 418 

GPP and topsoil depth was examined for different climatic regions (Fig. 2). For the same topsoil 419 

depth, humid regions had a higher GPP (mean=1,493 g C m−2 yr−1) than arid regions (mean=827 420 

g C m−2 yr−1, Fig. 2c, Supplementary Table S4). The correlation of topsoil depth and GPP was more 421 

evident in arid regions (AI<1, p<2e−16, r=0.33), while in humid regions (AI>1), the topsoil depth 422 

was slightly negatively correlated with the GPP (p=0.005, r=0.09, Fig. 2c). For every 10 cm 423 

increase in topsoil thickness, GPP increased by 114 g C m−2 yr−1 in arid regions. As for Köppen-424 

Geiger classification, the correlation of topsoil depth and GPP was not statistically significant in 425 

the temperate and cold regions (Fig. 2d), but it was statistically significant in arid regions 426 

(p<2e−16, r=0.45). For every 10 cm increase in topsoil thickness, GPP increased by 128 g C m−2 427 

yr−1 in arid regions of the Köppen-Geiger classification. This may indicate that the correlation of 428 

topsoil depth and GPP was primarily associated with water availability instead of temperature, 429 

and it was stronger in dry regions. 430 

The samples with depth <75 cm showed similar topsoil depth-GPP relationship to that of 431 

the whole dataset (Supplementary Figs. S4 and S5). The correlations in shrubland (r=0.35 vs. 0.32) 432 

and dry regions (r=0.35 vs. 0.33 and r=0.49 vs. 0.45) were slightly stronger than that of the whole 433 

dataset. This is likely because in shallower topsoils, the changes of topsoil depth tend to be 434 

associated more with the GPP due to lack of available water and nutrients, while in deeper 435 

topsoils, such association is low. 436 

 437 
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3.2. Association of topsoil depth with GPP at a local scale 438 

The association of topsoil depth and GPP at a national scale is impacted by mixing effects of 439 

climate, vegetation type, topography, and soil type. To uncover the direct association, we 440 

conducted a paired comparison of GPP of relatively deep and shallow topsoils in different 441 

watersheds by holding other variables (climate, vegetation, parent material, soil type) constant 442 

(Fig. 3a, Supplementary Fig. S6). The paired comparison contradicted our hypothesis that deeper 443 

topsoils tend to have greater GPP (Fig. 3, Supplementary Fig. S7). The positive association of 444 

topsoil depth with GPP occurred primarily in cropland (0.73, 95% confidence interval of 0.57–445 

0.84, 29 watersheds) and shrubland (0.75, 95% confidence interval of 0.40–0.94, 6 watersheds), 446 

while in forest, grassland, and pasture, over half of the shallower topsoils had higher GPP than 447 

paired deeper topsoils (Table 1). The percent increase of GPP in deeper topsoil over paired 448 

shallower topsoil was greater in shrubland (mean=8%) followed by pasture (mean=5%, Fig. 3, 449 

Table 1). However, the paired t-test showed that the difference of GPP in deep and shallow 450 

topsoils was marginal and non-significant (Table 1). In the forest, the deeper topsoil was 451 

associated with a decreased average GPP change (−1.3%). At different climatic regions, the 452 

positive association of topsoil depth with GPP was marginal and not statistically significant, but 453 

it was slightly higher in arid regions (0.61, 95% confidence interval of 0.48–0.72 and 0.41–0.78) 454 

(Supplementary Table S5). 455 

The linear mixed-effects models showed that the shallow topsoil was negatively 456 

associated with GPP (coefficient=−0.01), and topsoil depth as a numeric variable was positively 457 

associated with GPP (coefficient=0.0018) after accounting for the other environmental factors, 458 

but such associations were not statistically significant (Table 2). In addition, the interaction of 459 
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depth and forest was statistically negatively associated with GPP (coefficient=−0.01) (Table 2), 460 

which indicates that deeper topsoil was associated with smaller GPP in forest. The association of 461 

GPP with ecosystem types and climatic variables (precipitation and temperature) was stronger 462 

than that with soil characteristics (Table 2). When interacted with climatic regions, the shallow 463 

topsoil was positively associated with GPP, while depth as a numeric variable was positively 464 

associated with GPP (Supplementary Table S6), but such associations were not statistically 465 

significant. The precipitation was solely associated with GPP in AI classification, while both 466 

precipitation and temperature were associated with GPP in the Köppen-Geiger classification. 467 

The absolute and relative changes of GPP did not show clear pattern with changes of 468 

topsoil depth in five ecosystems and climatic regions (Supplementary Fig. S8). This was also 469 

shown in the multiple linear regressions with non-statistically significant coefficients of ∆𝐷𝑒𝑝𝑡ℎ 470 

(Supplementary Fig. S9). But such coefficients were slightly positive in most ecosystems and 471 

climatic regions except for grassland. We also observed that the absolute changes of GPP and the 472 

coefficient of ∆𝐷𝑒𝑝𝑡ℎ𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒  were small in shrubland, but their relative changes and the 473 

coefficient of ∆𝐷𝑒𝑝𝑡ℎ𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒  were markedly higher (Fig. 3, Supplementary Fig. S9). This may 474 

indicate that relative changes of topsoil depth and GPP on small absolute numbers can be more 475 

significant than they are in shrubland. The mean depth also showed statistically significant 476 

negative association with GPP change in forest. 477 

 478 

3.3. Association of topsoil depth and other environmental factors with GPP 479 

To comprehensively examine the contributions of topsoil depth (topsoil) and other soil and 480 

environmental factors (light, heat, water, fertility) to ecosystem productivity, SEMs 481 
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(Supplementary Fig. S10) were developed for each ecosystem (Fig. 4) and climatic region 482 

(Supplementary Fig. S11). The statistically significant variables and their coefficients are shown 483 

in the SEM results (Fig. 4, Supplementary Fig. S11). Consistent with our linear regressions, topsoil 484 

depth was positively associated with the productivity in cropland, grassland, and shrubland (dry 485 

regions, coefficients: 0.09 to 0.13), but the association was not statistically significant in soils 486 

under forest and pasture (humid regions) (Fig. 4). Likewise, a positive association of topsoil depth 487 

with productivity was observed in arid regions (coefficients: 0.17 and 0.33), but it was negative 488 

in humid regions (coefficient=−0.26) (Supplementary Fig. S11). Soil fertility indicated by SOC and 489 

clay content was positively associated with the productivity in cropland and shrubland 490 

(coefficients=0.06), but negatively associated with the pasture and humid regions (coefficients: 491 

−0.23 and −0.06). In pasture, the soils with higher clay content can be more easily compacted 492 

from field traffic and form restrictive layers for root development, which may lead to lower 493 

productivity. In humid regions, the SOC and clay content was higher towards the north 494 

(Supplementary Fig. S2), which was slightly opposite to the increasing GPP towards the southeast. 495 

This may indicate that other factors (e.g., climate) may play a more important role in affecting 496 

GPP than soil fertility at this scale.   497 

Water (pr and aet) played the most important role in enhancing productivity in all the 498 

ecosystems with coefficients ranging from 0.07 to 0.87, except for temperate regions where 499 

water was abundant due to high precipitation and was distributed uniformly in this region 500 

(Supplementary Fig. S2). Heat (tmmn and tmmx) was positively associated with the productivity 501 

in forest, shrubland, and cold regions (coefficients: 0.06 to 0.36). This is probably because the 502 

main limiting factor for forests (located mostly in mountainous and humid regions) is 503 
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temperature. The shrubland occurred in cold and high-elevation regions (Supplementary Fig. S3), 504 

so increasing temperature promoted plant productivity. Light (srad) was negatively associated 505 

with the productivity in the forest, shrubland, arid, temperate, and cold regions (coefficients: 506 

−0.32 to −0.15), which may be associated with drought and heat stress in arid and semi-arid 507 

regions. But light was positively associated with it in humid regions (coefficient=0.11), because 508 

humid regions are often radiation-limited, and an increase in light will increase annual GPP.  509 

 510 

3.4. Effect of topsoil depth on climate resilience of ecosystem productivity 511 

The control of topsoil depth on the resilience of GPP was investigated under four climatic 512 

extremes in five climatic regions and five ecosystems. The distribution of ecosystems was strongly 513 

dependent on the climatic regions, in which grassland and shrubland dominated the arid regions, 514 

while forest and pasture mainly occurred in humid regions (Fig. 5). In dry years, the precipitation 515 

was 20–80% lower than the average, and it was more severe in arid regions (Supplementary Fig. 516 

S12). Accordingly, the GPP dropped in most locations, especially in the grassland and shrubland 517 

(Fig. 5). In wet years, precipitation was 20–100% higher (Supplementary Fig. S12), and GPP 518 

increased (Fig. 5). The changes of GPP due to climatic extremes were relatively small in forest 519 

and pasture (relative changes within −50% to 50%) (Fig. 5). As shown in grassland and shrubland 520 

in arid regions, the percent change of GPP was closer to zero and the productivity was more 521 

stable when the topsoil was deeper. On the contrary, when the topsoil was shallower, the GPP 522 

change was substantial. (Fig. 5). In some cases (e.g., pasture in humid regions), the percent 523 

change of GPP was evenly distributed with topsoil depth, which may indicate that topsoil did not 524 

affect the GPP change in climatic extremes in these regions. 525 
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Levene’s test for deep and shallow topsoils was non-significant in most cases and thus did 526 

not strongly support the hypothesis that deeper topsoils had significantly smaller changes in GPP 527 

(Supplementary Figs. S13). It was likely due to that threshold values were selected from mean 528 

topsoil depth (ranging from 13 to 37 cm) and may not be able to reflect the deep topsoil cases 529 

(>40 cm). The deeper topsoils had a significantly smaller variance of the percent GPP change than 530 

shallower topsoils in cropland in arid years (Supplementary Fig. S13) and contributed to more 531 

stable productivity in dry extremes. However, the variance was significantly larger in deeper 532 

topsoils in forest in wet years and pasture in humid regions in wet years (Supplementary Fig. S13). 533 

This may suggest that forest with deeper topsoils promoted hydraulic redistribution within the 534 

deep vadose zone and fractured rocks leading to increased variation of GPP and its behavior 535 

under climate extremes (Montaldo and Oren, 2022). In some cases, the variance difference 536 

between shallow and deep topsoils was substantial (e.g., soils of pasture in arid regions, 537 

Supplementary Fig. S13), but Levene’s test was non-significant, which was likely affected by a 538 

small sample size. Additionally, although the percent change decreased with topsoil depth in 539 

shrubland in arid regions (Fig. 5), the deeper topsoils had a larger variance than shallower topsoils 540 

(Supplementary Fig. S13), which was likely affected by a few extreme samples at 30-cm topsoil 541 

depths (Fig. 5).  542 

When using Köppen-Geiger classification, a similar pattern was observed in dry and wet 543 

extremes (Supplementary Figs. S14, S15, S16). The percent changes of GPP decreased with 544 

deeper topsoils in cropland in cold regions, forest in temperate regions, and shrubland in arid 545 

regions, while such a pattern was less evident in grassland and pasture, and cropland in arid and 546 

temperate regions (Supplementary Fig. S15). As to the hot and cold extremes, the temperature 547 
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increased in hot years and decreased in cold years, which was more severe in arid and cold 548 

regions (Supplementary Fig. S17). Similar to that in moisture extremes, the percent changes of 549 

GPP decreased with deeper topsoils in cropland in cold regions, forest in temperate and cold 550 

regions, grassland and shrubland in arid regions, but it was less evident in pasture 551 

(Supplementary Fig. S18). Similarly, Levene’s test was non-significant in most cases 552 

(Supplementary Fig. S19). In cropland in arid regions, the coefficients were evenly distributed 553 

with topsoil depth (Supplementary Fig. S15 and S18), which was likely due to extensive irrigation, 554 

so that cropland water stress may be alleviated and showed no difference from rainfed fields in 555 

terms of their relationship with topsoil depth (Supplementary Fig. S20). 556 

 557 

3.5. Assessment using GOSIF and FluxCom GPP 558 

The same analysis was conducted using the GOSIF and FluxCom GPP (Supplementary Figs. S21–559 

S38). The GOSIF and FluxCom GPP showed similar spatial distribution to the Landsat GPP 560 

(Supplementary Figs. S21 and S30), but the GPP of pasture was significantly higher in these two 561 

datasets than that of Landsat GPP. The relationships between GPP and topsoil depth across 562 

climatic regions remained largely the same in GOSIF and FluxCom GPP datasets, except that the 563 

GOSIF and FluxCom GPP decreased significantly with topsoil depth in cold regions 564 

(Supplementary Figs. S22 and S31). The percent change of GPP under climatic extremes was also 565 

evaluated using GOSIF and FluxCom GPP. For GOSIF GPP, similarly, in dry years, it decreased, 566 

while in wet years, it increased; such a change was stronger in arid regions than in humid regions 567 

(Supplementary Figs. S24). The percent change of GPP decreased with topsoil depth in many 568 

ecosystems, especially grassland and shrubland (Supplementary Figs. S24 and S27). However, for 569 



28 
 

FluxCom GPP, it decreased in dry years and increased in wet years in nearly all the locations. It 570 

was right-triangled with topsoil depth and the percent change of GPP was closer to zero with 571 

increasing topsoil depth, particularly when it was deeper than 40 cm (Supplementary Figs. S33 572 

and S35). Under temperature extremes, the percent changes of GPP can be both positive and 573 

negative and decrease with topsoil depth in grassland and shrubland (Supplementary Fig. S37). 574 

 575 

4. Discussion 576 

4.1. Environmental controls on topsoil depth–productivity relationship 577 

While earlier work showed positive control of topsoil depth on crop productivity, we found that 578 

these relationships varied in different ecosystems and climatic regions. By analyzing the 579 

nationwide dataset, we found that the control of topsoil depth on plant productivity was only 580 

statistically significant in drier areas, and it was not statistically significant in wetter areas. In drier 581 

regions, GPP decreased with a decreasing soil water content, but it did not change in wetter areas 582 

(Fu et al., 2022). Therefore, when plants are under water stress, deeper topsoils aligned with 583 

higher water storage can positively contribute to plant productivity. In our dataset, humid regions 584 

were distributed in the eastern CONUS and West Coast, where deeper topsoils occurred under 585 

cropland and pasture and had lower GPP than shallower soils under forest (Fig. 1), and therefore 586 

a negative association of topsoil depth with productivity was observed in humid regions (Fig. 2).  587 

The control of topsoil depth on productivity was not statistically significant in temperate 588 

regions, but it was negatively associated with the GPP in cold regions when using GOSIF and 589 

FluxCom GPP (Supplementary Fig. S22 and S31), which contradicts our hypothesis. It was 590 

assumed that deeper topsoils with generally more SOC have a higher thermal buffering capacity 591 
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(Werner et al., 2020), which might be vital in cold regions to sustain plant productivity. However, 592 

in our study, cold regions were distributed mainly in the northeastern US, Midwest, and the 593 

Rocky Mountains with predominantly forest and cropland (Fig. 1), where forest had a higher GPP 594 

but shallower topsoils than cropland. Therefore, a negative relationship of topsoil depth and 595 

productivity was observed in cold regions. In temperate regions without cold stress, the 596 

relationship between topsoil depth and ecosystem productivity was not statistically significant.  597 

The topsoil depth-GPP relationship differed for natural (e.g., forest, grassland, shrubland) 598 

and managed (e.g., cropland, pasture) ecosystems. Previous studies and topsoil removal 599 

experiments have focused mostly on cropland and demonstrated the negative effects of topsoil 600 

reduction on crop production (Zhang et al., 2021). Our results showed a clear positive association 601 

of topsoil depth with GPP in cropland, but such a relationship was not as strong as in grassland 602 

or shrubland. Grassland and shrubland root systems are often within 2-m depth compared to 603 

trees and thus more affected by topsoil properties. Moreover, grassland and shrubland were 604 

distributed mainly in drier regions (Supplementary Fig. S3), where topsoil depth was more 605 

strongly associated with ecosystem productivity. Under cropland and pasture, fertilization and 606 

irrigation may mask the effect of soil nutrients and water limitation due to deeper topsoils.  607 

It is noteworthy that soils under forest generally had shallow topsoils (mean thickness=15 608 

cm) but the highest GPP. There was no  relation between topsoil depth and forest productivity 609 

(Fig. 1). This is likely due to sufficient water and nutrient supply in the forest ecosystem and its 610 

unique root architecture and functionality. Precipitation and topsoil SOC were high under the 611 

forest (Supplementary Fig. S3), and hence productivity was not restricted by water or nutrient 612 

supply. Moreover, woody forest roots include primary roots going deep into the soil and fine 613 
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roots spreading laterally (Danjon et al., 2013). Trees can use bedrock water for transpiration apart 614 

from soil water, which mainly occurred in western and southern US (e.g., California and Texas, 615 

dry regions) and the Appalachian Mountains (high elevation and slope, shallow soils) (McCormick 616 

et al., 2021). In California, over 50% of aboveground biomass production in woody forest can be 617 

attributed to bedrock water (McCormick et al., 2021). Therefore, in these cases, topsoil depth 618 

would have little influence on forest GPP.  619 

The paired comparison showed that the topsoil depth-GPP relationship was stronger in 620 

shrubland, while in cropland, most deeper topsoils had greater GPP, although the GPP increase 621 

was small. The GPP difference between deep and shallow topsoils and the GPP-topsoil depth 622 

relationship of the paired samples were not statistically significant across ecosystems and 623 

climatic regions. The change of GPP was generally positively related to change of topsoil depth, 624 

but such a relationship was not statistically significant. The ecosystem type and climatic regions 625 

were more related to GPP of the paired samples. One drawback of the paired comparison was 626 

that the topsoil depth and GPP data had different sample support (i.e., the length, area, or 627 

volume associated with a measurement (Goovaerts, 2014)). The topsoil depth was measured on 628 

point-based sampling locations, while the GPP was obtained from raster images with 30-m spatial 629 

resolution. Soil thickness has a large local-scale variation, and therefore the point-based 630 

measurements may not be able to represent its averaged depth in the 30-m raster pixel and may 631 

increase the randomness of the comparison at local scales, which can partially explain the 632 

negative relationship of GPP and topsoil depth at some watersheds. Additionally, other factors 633 

(e.g., ecosystem types and climatic factors) were more related with GPP, which may affect the 634 

GPP-topsoil depth relationship of the paired samples in different watersheds.   635 
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Although topsoil depth was positively associated with the GPP in cropland, grassland, 636 

shrubland, and arid regions (Fig. 4, Supplementary Fig. S11), its association (coefficients: 0.09–637 

0.33) was smaller than that of water (coefficients: 0.07–0.87) and similar to that of heat 638 

(coefficients: 0.06–0.39). The association of topsoil depth with plant productivity was higher in 639 

arid regions. For example, in arid regions of the Köppen-Geiger classification, the coefficient of 640 

topsoil depth to productivity (0.33) reached 60% of the coefficient of water (0.55). Our study also 641 

found a stronger correlation between GPP and precipitation (r=0.8) than that between GPP and 642 

topsoil depth (r=−0.04–0.37 for five ecosystems). Despite the weaker relationship, the topsoil 643 

depth played an important role in storing water and maintaining plant productivity in arid regions.  644 

 645 

4.2. Topsoil depth and climate resilience 646 

Our results showed that topsoil depth not only was associated with increased long-term averaged 647 

GPP (i.e., ecosystem productivity) in some ecosystems (cropland, grassland, shrubland) and in 648 

dry regions, but it was also associated with increased resilience of ecosystem productivity to 649 

climatic variation and extremes. In arid regions, the changes in GPP under climatic extremes were 650 

more severe, while in humid regions, the GPP was more stable with smaller changes under 651 

climatic extremes. The changes in GPP were smaller in forest and pasture (wetter regions) than 652 

that in cropland, grassland, and shrubland (drier regions). These indicate that the GPP was less 653 

stable and more easily affected by climatic extremes in drier regions. However, in arid regions 654 

(especially shrubland and grassland), as topsoil was deeper, the percent change of GPP was closer 655 

to zero and the productivity was more stable. This indicates that topsoil was associated with 656 

increased climate resilience of plant productivity especially in arid regions. 657 
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Deeper topsoils aligned with higher SOC content and water storage capacity tend to 658 

increase buffering capacity to climate change and extremes and maintain ecosystem productivity. 659 

Similarly, a recent study showed that high-quality soils reduced crop yield variability and its 660 

sensitivity to climate change by over 15% (Qiao et al., 2022). Other studies have shown that 661 

biodiversity also enhanced the resilience of ecosystem productivity to climate extremes (Isbell et 662 

al., 2015) and defined it as insurance effects which included both a buffering effect and a 663 

performance-enhancing effect (Yachi and Loreau, 1999). Accordingly, deeper topsoils tend to 664 

increase both productivity and their buffering capacity to climate change. 665 

 666 

4.3. Implications, limitations, and prospects  667 

Understanding the control of topsoil depth on ecosystem productivity is important for crop 668 

production, erosion control, wasteland reclamation, ecosystem restoration, and maintaining 669 

ecosystem resilience. In this study, a comprehensive analysis was conducted to study the 670 

interrelationships between topsoil depth and ecosystem productivity in various ecosystems and 671 

different climatic conditions and results showed that such relationship was stronger in drier 672 

regions and grassland and shrubland. Deeper topsoil was also associated with improved 673 

resilience of ecosystem productivity to climatic extremes in these regions. The results can 674 

improve our understanding of the control of topsoil depth to ecosystem functioning and lead to 675 

a better representation of the role of soil in earth system modeling and climate modeling. It also 676 

provides evidence for natural resources management under climate change.  677 

However, limitations exist in the analysis and results interpretation. First, our analysis was 678 

based on existing observational data from long-term soil surveys, and we did not conduct any 679 
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controlled experiments or explicitly select sampling locations based on edaphic, ecological, and 680 

climatic factors. The results and interpretation cannot completely eliminate multiple effects from 681 

other soil and environmental factors and solely investigate the effects of topsoil depth. Second, 682 

the large short-scale variation of topsoil depth and mismatch of the dimensions between soil 683 

data (point-based measurements) and GPP data (30-m resolution) may increase the randomness 684 

of the results at local scales. Third, this study investigated only the one-way effects of topsoil 685 

depth on ecosystem productivity and its resilience to climate extremes. Higher ecosystem 686 

productivity and low disturbance rates over the long run also contributed to greater SOC 687 

accumulation in forests and deeper topsoils in grassland. But this is a relatively slow process, 688 

especially in terms of the annual variation of GPP and its interaction with annual climate.  689 

Soil variables are increasingly used in earth system modeling with the increasing 690 

availability, accessibility, and accuracy of national and global soil maps (Chaney et al., 2019; 691 

Poggio et al., 2021). A constant value has been used to represent soil depth in many cases in the 692 

past, but recently more global products have been available for soil depth (Pelletier et al., 2016; 693 

Shangguan et al., 2017). Topsoil depth is an important variable, as it reflects the carbon-rich and 694 

most microbially active layer of the soil and directly affects nutrient availability and ecosystem 695 

productivity. However, there is currently no available large-scale map of topsoil depth, which 696 

would be important for understanding biogeochemical cycling and earth system modeling. 697 

Future work is needed for creating national and global maps of topsoil depth. In addition, soil 698 

carbon stabilization and enhancement are considered as an important nature-based climate 699 

solution. Other soil factors (e.g., soil depth, bulk density) which are essential parameters to 700 

calculate SOC stock and directly related to soil erosion and compaction have been under-studied. 701 
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Similarly, the role of other soil physical, chemical, and biological properties on ecosystem 702 

functioning under climate change should be further investigated.   703 

 704 

5. Conclusions 705 

The relationship between topsoil depth and plant productivity (GPP) was investigated for 706 

different ecosystems and climatic regions using a nationwide dataset across the CONUS. A weak 707 

positive correlation was observed between the GPP and topsoil depth in soils under grassland 708 

and shrubland. The control of topsoil depth on GPP was primarily associated with water 709 

availability, which was more significant in arid regions. Forest productivity was less associated 710 

with topsoil depth due to its higher SOC content, high precipitation, and deeper root architecture 711 

and functionality. However, the pairing of deep and shallow topsoils showed a small but non-712 

statistically significant relationship between GPP and topsoil depth. The lack of a significant 713 

relationship may be due to different sample support of soil and GPP data (i.e., point-based and 714 

raster data), or the effects of other soil and environmental factors across watersheds. Moreover, 715 

the association of GPP with topsoil depth was smaller than that with water and similar to that 716 

with heat. The topsoil depth was also related to increased stability of ecosystem productivity to 717 

climate change in arid regions and shrubland and grassland. We conclude that topsoil depth 718 

affects ecosystem productivity and its stability and resilience to climate extremes in dry regions. 719 

Such relationship does not exist in humid regions.  720 

 721 
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 946 

Fig. 1. Topsoil depth and gross primary productivity (GPP) across the conterminous US (CONUS) 947 

and in five ecosystems. a. Topsoil depth measurements across the CONUS. b. Landsat GPP dataset 948 

across the CONUS. c. The distribution of sampled locations in five ecosystems. d. The distribution 949 

of topsoil depth across five ecosystems. Numbers in parentheses indicate the sample size for 950 

each ecosystem. e. The distribution of Landsat GPP across five ecosystems. The black dots in d 951 

and e indicate the mean values in each ecosystem. The black lines in d and e indicate the mean 952 

values across all the ecosystems. f. The relationship between GPP and topsoil depth for the five 953 

ecosystems. The Pearson correlations between GPP and topsoil depth are 0.15, −0.04, 0.37, 0.02, 954 

0.32 for cropland, forest, grassland, pasture, and shrubland, respectively. Shadows indicate the 955 

95% confidence intervals. 956 

 957 

Fig. 2. The relationships between gross primary productivity (GPP) and topsoil depth in different 958 

climatic regions. a. Distribution of sample locations in arid and humid regions which were 959 
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distinguished by Aridity Index (AI). b. Distribution of sample locations in three climatic regions 960 

(arid, cold, temperate) based on the Köppen-Geiger climate classification. c, d. The linear 961 

relationships between GPP and topsoil depth in different climatic regions. The Pearson 962 

correlations between GPP and topsoil depth are 0.33 and −0.09 for arid and humid regions 963 

classified by AI, and 0.45, −0.02, and −0.06 for arid, cold, and temperate regions of Köppen-Geiger 964 

climate classification.   965 

 966 

Fig. 3. Paired comparison of gross primary productivity (GPP) for 103 watersheds. a. In each 967 

watershed, one pair of relatively deep (orange dots) and shallow (blue dots) topsoils were 968 

selected to compare their GPP values. The deep and shallow topsoils were not determined by 969 

absolute depth but relative depth difference between them. The depth difference of the pair 970 

should be greater than 3 cm if they are shallower (<15 cm) or greater than 5 cm if they are deeper 971 

(>15 cm). The paired topsoils have 1) the same climate conditions, ecosystem type, soil order, 972 

soil temperature and moisture regimes, parent material, and soil textural class; 2) similar organic 973 

carbon content, elevation, and slope; 3) different GPP values; and 4) are within 4-km distance. 974 

Each pair is connected by a gray line, in which the line width indicates the depth difference of the 975 

pair. If an orange dot is on top of a blue dot, it indicates the deeper topsoil aligns with greater 976 

GPP; otherwise, a shallower topsoil aligns with greater GPP. The pairs from different watersheds 977 

in each ecosystem were ranked from left to right in the x-axis by their mean annual precipitation. 978 

b. The distribution of absolute change of GPP between deep and shallow topsoils in each 979 

watershed. c. The distribution of relative change of GPP between deep and shallow topsoils in 980 

each watershed. The colors of the dots in b and c indicate five ecosystems, while the sizes of the 981 
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dots indicate the GPP difference between deep and shallow topsoils. The two maps in b and c 982 

represent the two scenarios: 1) the deeper topsoil aligns with greater GPP (GPP differences are 983 

positive); 2) a shallower topsoil aligns with greater GPP (GPP differences are negative). 984 

 985 

Fig. 4. Structural equation models (SEMs) for predicting productivity from several latent variables 986 

in different ecosystems. The blue solid lines indicate positive contributions from latent variables 987 

to productivity with coefficients provided next to the line. The red solid lines indicate negative 988 

contributions from latent variables to productivity with coefficients provided next to the line. 989 

Only the statistically significant coefficients are provided in the figure. The conceptual structure 990 

of the SEMs is shown in Supplementary Fig. S10. CFI: Comparative Fit Index; TLI: Tucker-Lewis 991 

Index; RMSEA: Root Mean Square Error of Approximation.    992 

 993 

Fig. 5. The relationships between percent change in GPP of a dry year (minimum precipitation) 994 

and a wet year (maximum precipitation) from 1986 to 2021 and topsoil depth in two climatic 995 

regions (arid and humid) and five ecosystems. Dashed horizontal lines indicate no change of GPP 996 

in specific conditions (y=0). Dashed vertical lines indicate the mean topsoil depth in each region, 997 

which were used as threshold values to separate shallow and deep topsoils in Supplementary Fig. 998 

S13. 999 

 1000 

Table 1. Summary statistics of the paired comparison of GPP in different watersheds of five 1001 

ecosystems in Fig. 3. 1002 

 1003 
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Table 2. Unstandardized coefficients of fixed and random effect variables in the linear mixed-1004 

effect models with paired data. Topsoil depth was used as a binary variable (deep and shallow) 1005 

and a numeric variable respectively in two models and interacted with ecosystem.  1006 

 1007 


