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Highlight/Significance:
e Gross primary productivity (GPP) increased with deeper topsoils under cropland,
grassland, and shrubland.
e Soils under forest have thin topsoils but the highest GPP.
e Topsoil depth controls GPP through water availability, which is vital for arid regions.
e Increases in GPP resilience to climatic extremes are associated to deeper topsoils in arid

regions.
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Abstract

Understanding the controlling mechanisms of soil properties on ecosystem productivity is
essential for sustaining productivity and increasing resilience under a changing climate. Here we
investigate the control of topsoil depth (e.g., A horizons) on long-term ecosystem productivity.
We used nationwide observations (n=2,401) of topsoil depth and multiple scaled datasets of
gross primary productivity (GPP) for five ecosystems (cropland, forest, grassland, pasture,
shrubland) over 36 years (1986—2021) across the conterminous USA. The relationship between
topsoil depth and GPP is primarily associated with water availability, which is particularly
significant in arid regions under grassland, shrubland, and cropland (r=0.37, 0.32, 0.15,
respectively, p<0.0001). For every 10 cm increase in topsoil depth, the GPP increased by 114 to
128 g C m~2 yr't in arid regions (r=0.33 and 0.45, p<0.0001). Paired comparison of relatively

shallow and deep topsoils while holding other variables (climate, vegetation, parent material, soil
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type) constant showed that the positive control of topsoil depth on GPP occurred primarily in
cropland (0.73, confidence interval of 0.57-0.84) and shrubland (0.75, confidence interval of
0.40-0.94). The GPP difference between deep and shallow topsoils was small and not statistically
significant. Despite the positive control of topsoil depth on productivity in arid regions, its
contribution (coefficients: 0.09-0.33) was similar to that of heat (coefficients: 0.06—0.39) but less
than that of water (coefficients: 0.07—0.87). The resilience of ecosystem productivity to climate
extremes varied in different ecosystems and climatic regions. Deeper topsoils increased stability
and decreased the variability of GPP under climate extremes in most ecosystems, especially in
shrubland and grassland. The conservation of topsoil in arid regions and improvements of soil
depth representation and moisture-retention mechanisms are critical for carbon-sequestration
ecosystem services under a changing climate. These findings and relationships should also be

included in Earth system models.

Keywords: gross primary production, soil properties, structural equation modeling, climate

change, climate extremes
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1. Introduction

Terrestrial ecosystem productivity is essential for global food security and promoting carbon
sequestration (Lorenz and Lal, 2009; Schmidhuber and Tubiello, 2007), but productivity is under
pressure from climate change along with the increased frequency of fire, drought, floods, frost,
and decreased biodiversity (Bellard et al., 2012; Grimm et al., 2013; Isbell et al., 2015; Wu et al.,
2021; Xiao et al., 2016). Understanding different factors and mechanisms that control the
variability of ecosystem primary productivity provides a scientific basis to sustain its productivity
and increase its resilience. Soil is the main terrestrial reservoir of carbon, nutrients, and biota and
serves as the core habitat for plant growth and the thriving of global ecosystems (Blum, 2005).
Productive soils not only lead to higher crop yield (Bhardwaj et al., 2011) but also to enhanced
resilience to climate change (Qiao et al., 2022). Most studies focused on biological aspects or
were conducted in cropland. However, soil properties and mechanisms are important for all
terrestrial ecosystems.

Among these properties, soil depth is important for regulating biogeochemical and
hydrological cycles and ecosystem productivity (Shangguan et al., 2017). Soil formation from
bedrock weathering is often accompanied by deepening soil regolith and the buildup of organic
matter in the topsoil (Phillips, 2008), with formation rates controlled by climate, topography, and
organisms (Jenny, 1941). However, soils are being lost since the past century from intensified
land use change, agricultural practices, and climate extremes (Brown, 1984; Montgomery, 2007),
which poses threats to ecosystem productivity (Berhe et al., 2018; Larson et al., 1983; Quinton
et al., 2010). Deep topsoils have been related to high soil fertility and productivity. Studies have

shown that for every 10 cm of soil loss, crop productivity dropped by 4.3% due to the loss of
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nutrients and organic matter (Bakker et al., 2004). For every 2.5 cm of topsoil loss in the US, crop
yield dropped up to 10% for wheat and corn (Lyles, 1975), and liming, fertilization, manure
application, and other best management practices cannot compensate for the yield reduction
from topsoil loss (Mielke and Schepers, 1986). Most of the studies on soil erosion have focused
on cropland, but the capacity of soil depth and in particular the thickness of the A horizon to
support productivity at other ecosystems and its effectiveness in different climate zones has not
been extensively studied.

Topsoil depth, defined here as the thickness of the A horizon, is spatially variable (Francés
and Lubczynski, 2011), due to soil forming factors (e.g., climate, vegetation, topography) and
human-induced erosional and management effects (Zhang et al., 2023). The vulnerability of soil
to erosion and the relationship between soil erosion and production differs by soil type (Larson
et al., 1983). Plant productivity is also determined by many factors such as climate and varies for
different vegetation types (O'Sullivan et al., 2020) but there are limited studies on the interactive
effect of climate and soil on ecosystem productivity.

Here, we investigate the control of topsoil depth on ecosystem productivity using
nationwide observations of topsoil depth and datasets of gross primary productivity (GPP). We
aim to address the following questions: 1) Is the relationship of topsoil depth to GPP consistent
for different ecosystems (e.g., natural vs. managed ecosystems)? 2) Is this relationship affected
by different climatic conditions? 3) How strong is this relationship compared to other
environmental controlling factors on GPP? 4) To what extent is the sensitivity of ecosystem
productivity to climate change affected by topsoil depth? We hypothesize that the control of

topsoil depth on ecosystem productivity is more significant in natural than in managed
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ecosystems and in dry and cold environments. We hypothesize that deeper topsoils can increase
the resilience of ecosystem productivity under climate change and climate extremes in arid
regions. The findings of this study will advance our understanding of the role of soil in ecosystem

productivity.

2. Materials and methods

2.1. Topsoil dataset

The soil dataset was obtained from the National Cooperative Soil Survey (NCSS) Soil
Characterization Database which contains profile descriptions and analytical data for over 30,000
pedons collected across the USA (National Cooperative Soil Survey). The sampling locations were
selected to represent each mapping unit of the SSURGO map (Soil Survey Staff), and the final
dataset covered half of all the mapping units; some mapping units contained more than one
pedon. The samples of each pedon were collected by horizon and analyzed using standard
analytical methods (Schoeneberger et al., 2012). We selected pedons that: 1) have records of
longitude and latitude coordinates and are within the conterminous US (CONUS); 2) have explicit
sampling year and were sampled after 1986 at which the GPP dataset became available; 3) have
data from horizons collected from the ground surface down to at least a B horizon or a C horizon
if a B horizon does not exist, and do not have reporting, buried, D (the previous letter of indicating
rock), vesicular, or limnic horizons, or bi-sequences or formed in human-transported materials;
4) have measurements of soil organic carbon (SOC) content and texture for A horizons; 5) have

consistent land use type since 1938 belonging to cropland, forest, grassland, pasture, or
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shrubland (see below for details); 6) have continuous measurements of GPP from 1986 to 2021
(see below for details). In total 2,401 pedons (about 8% of the total) fitted these criteria.

We calculated the topsoil depth in each pedon by summing up the thickness of all the A
horizons. Transitional horizons (e.g., AB, AE) were not included. Topsoil SOC and texture were
weight-averaged for A horizons using horizon thickness as weights. Soil texture was determined
by pipette method for particles smaller than 2 mm and textural classes were based on the USDA
classification (Soil Survey Staff, 2014). The total carbon was determined by dry combustion
method and inorganic carbon was determined using gas chromatography with HCl addition. The
SOC content was estimated by subtracting the inorganic carbon from the total carbon (Soil Survey
Staff, 2014). We used a generalized additive model to explore the spatial-temporal variation of
topsoil depth and found that the temporal term (year) was non-significant (p>0.05, data not
shown here). This indicated that the topsoil depth was stable for the study period (1986-2021),

and we did not consider a temporal change of topsoil depth in this study.

2.2. Productivity data

Ecosystem productivity was characterized by GPP from three different datasets. Although eddy
covariance flux towers provide in-situ GPP data, these data are often location-specific and cannot
represent the productivity of our sample locations. Instead, we used raster GPP products which
were calibrated from and correlated with the flux GPP. The first GPP dataset was derived from
the Landsat satellite data with 30-m spatial resolution and 16-day temporal variation since 1986
(Robinson et al., 2018). GPP was calculated using Landsat Surface Reflectance and MOD17

algorithm (Running and Zhao, 2015). The principle of the MOD17 algorithm calculated GPP from
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a biome-specific Light Use Efficiency (LUE) and Absorbed Photosynthetically Active Radiation
(APAR), with the former optimized using eddy covariance flux tower measurements and the latter
estimated from the gridded shortwave radiation (Abatzoglou, 2013) and Landsat’s Normalized
Difference Vegetation Index — NDVI (Robinson et al., 2018). The dynamic biome information was
provided by the National Land Cover Database (NLCD) from 1992, 2001, 2006, and 2011 (Yang et
al., 2018). Smoothing and gap-filling of the Landsat’s NDVI data were conducted using a
climatology driven approach (Robinson et al., 2017). For details on this GPP product, readers can
refer to Robinson et al. (2018).

The GPP dataset from 1986 to 2021 was extracted to pedon locations using the Nearest
Neighbor method with the Google Earth Engine. As the soil profile was selected to best represent
the mapping unit, we assumed that the soil thickness of the single profile is representative within
the 30-m pixel of Landsat data. This means that the short-scale variation of soil is not considered
in this study. The annual accumulated GPP was calculated for each location and then averaged
for 35 years to obtain the temporal mean GPP. The pedons that have missing GPP data were
removed, and descriptive statistics of GPP for different ecosystems were calculated.

Given the uncertainty of the MOD17 algorithm and the Landsat data, a multi-model
comparison was conducted to minimize the effect of the uncertain GPP estimates on the
subsequent analysis. Here, we included two other GPP datasets that were generated from
different principles for comparison.

Solar-induced chlorophyll fluorescence (SIF) has been recently proposed as a better proxy
for GPP (Li et al., 2018). It measures the sunlight-induced photon emission from plant chlorophyll

in the range from 600 to 800 nm (Baker, 2008). SIF can be retrieved from satellite observations
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at certain wavelengths between 600 and 800 nm. When heat dissipation occurs at high light
levels, SIF is strongly correlated with photosynthesis (Baker, 2008) and has a better performance
than the traditionally used vegetation index (e.g., NDVI). The GOSIF GPP dataset used here (Li
and Xiao, 2019b) was derived from a global, OCO-2 based SIF product (GOSIF) (Li and Xiao, 2019a).
GOSIF consists of 0.05° and 8-day SIF estimates globally, and was based on discrete SIF
observations from the Orbiting Carbon Observatory-2 (OCO-2), meteorological reanalysis data
(PAR, air temperature, and vapor pressure deficit), and MODIS enhanced vegetation index using
a machine learning method (Li and Xiao, 2019a). GOSIF GPP is based on GOSIF and GPP-SIF
relationships. To estimate GPP from SIF, GPP-SIF relationships established using GPP data and
OCO-2 SIF at a number of eddy covariance flux sites were used (Li and Xiao, 2019b). GOSIF GPP
consists of global GPP maps with a 0.05° spatial resolution and an 8-day time step from 2000 to
2021.

FluxCom initiative provides another way to estimate GPP globally at fine spatial and
temporal resolutions. It uses an ensemble of machine learning algorithms to build relationships
between eddy covariance flux tower measured GPP and remote sensing satellite data (e.g.,
MODIS) with and without ancillary meteorological forcings (Jung et al., 2020). In this study, we
used the annual GPP from the remote sensing and meteorological data-based (RS+METEO)
FluxCom product with 0.5° spatial resolution. The GPP data was presented as daily GPP data (g C
m~2 d1) for a specific year from 1980 to 2013 and summed for annual values.

The GOSIF GPP maps (2001-2021) and FluxCom GPP maps (1986-2013) were

downloaded from https://globalecology.unh.edu/data/GOSIF.html and

https://www.fluxcom.org/, respectively, and extracted to the sampling locations using extract
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function of raster package (Hijmans et al., 2013) in R version 4.1.0 (R Core Team, 2021). The soil
profiles collected before 2001 were removed from the GOSIF GPP dataset and the soil profiles
collected after 2013 were removed from the FluxCom GPP dataset, which resulted in a total of
1,657 samples and 2,208 samples, respectively. The temporal mean GOSIF GPP and temporal
mean FluxCom GPP were calculated by averaging annual GOSIF GPP and annual FluxCom GPP for

21 years (2001-2021) and 28 years (1986—-2013), respectively.

2.3. Land use data

We used two land cover databases to ascertain that the land use of selected sample locations
was consistent over a long-term period. The USGS projected land use/land cover mosaics covered
1938 to 2021 with a 250-m spatial resolution (Sohl et al., 2016; Sohl et al., 2014). The USGS NLCD
was available for eight years: 2001, 2004, 2006, 2008, 2011, 2013, 2016, and 2019 with a 30-m
spatial resolution (Yang et al., 2018). Land use types of the sample locations were extracted for
every year and the sample locations that had experienced land use change from 1938 to 2021 or
had different land use types based on the two databases were removed from the dataset. The
final dataset included 2,401 pedons belonging to five land uses: cropland (n=699), forest (n=802),

grassland (n=324), pasture (n=273), and shrubland (n=303).

2.4. Environmental data
The environmental data used in this study include climate variables from TerraClimate, Koppen-
Geiger climate classification, topographic variables, soil orders, soil parent materials, Watershed

Boundary Dataset, and irrigation types.
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TerraClimate provides monthly climate data since 1958 with a 4.6-km spatial resolution
(Abatzoglou et al., 2018). We chose TerraClimate data instead of PRISM and Daymet datasets
because the Terraclimate data provides both monthly climate data (precipitation, minimum and
maximum temperature, solar radiation) and climatic water balance data (actual and potential
evapotranspiration). Additionally, the annual (from 1986 to 2021) and long-term averaged
climate data (precipitation, minimum and maximum temperature) were highly correlated
(Pearson correlation > 0.95) among these three climate datasets. Monthly precipitation (pr),
minimum temperature (tmmn), maximum temperature (tmmx), actual evapotranspiration (aet),
potential evapotranspiration (pet), and downward surface shortwave radiation (srad) were
downloaded for sample locations for every month from 1958 to 2021 using Google Earth Engine.
The annual sum of pr, aet, and pet, and annual mean of tmmn, tmmx, and srad were calculated
for every year and then averaged for 64 years. The Aridity Index (Al) was calculated (Equation 1),
and it represents arid and humid conditions for Al < 1 and Al > 1, respectively (Seager et al., 2018).

In our dataset, there were 1,461 locations in arid regions and 940 locations in humid regions.

_pr
 pet

Al (Equation 1)

The global map of Koéppen-Geiger climate classification was downloaded from

http://www.gloh20.org/koppen/ for present day (1980-2016) at a 0.0083° resolution (Beck et al.,

2018). It was derived using the method described in Peel et al. (2007) with three air temperature
datasets (WorldClim V1 and V2, CHELSA V1.2) and four precipitation datasets (WorldClim V1 and
V2, CHELSA V1.2, and CHPclim V1) with a 0.0083° resolution, in which the CHPclim V1.2 was

downscaled from 0.05° to 0.0083° resolution using bilinear interpolation (Beck et al., 2018). The
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Koppen-Geiger classification has a hierarchy structure with five classes at the highest level:
tropical (A), arid (B), temperate (C), cold (D), and polar (E). The class B precedes other classes,
and A, C, D, E classes are mutually exclusive but not with B (Beck et al., 2018). The B was identified
by mean annual precipitation < 10 x Pthreshold, in Which Pthreshold Was determined by mean annual
temperature and annual precipitation pattern. The threshold to identify temperate (C) and cold
(D) was 0 °C for the coldest month according to Russell (1931) and 10 °C for the warmest month.
The Kbppen-Geiger classification was extracted to the sample locations using extract function of
raster package (Hijmans et al., 2013) in R. In our dataset, samples were classified as arid (n=564),
temperate (n=748), cold (n=1,086), and polar (n=3).

The elevation was extracted to sample locations from the USGS 3D Elevation Program 10-
meter resolution Digital Elevation Model (DEM) dataset, from which the slope was calculated
using Google Earth Engine (United States Geological Survey (USGS)). Soil order for each pedon
was determined by NRCS soil scientists at the time of sampling and if missing, the gSSURGO (30-

m resolution, https://www.nrcs.usda.gov/resources/data-and-reports/description-of-gridded-

soil-survey-geographic-gssurgo-database) and STATSGO (1:250,000,

https://catalog.data.gov/dataset/u-s-general-soil-map-statsgo2) maps were used to determine

soil orders. Soil temperature (1:7,500,000) and moisture (1:9,000,000) regimes maps were
obtained from USDA-NRCS. The soil parent material was obtained from the Conservation Science
Partners Ecologically Relevant Geomorphology map (90-m resolution) using Google Earth Engine
(Soller et al., 2009; Theobald et al., 2015). The Watershed Boundary Dataset (WBD, 1:24,000-
scale) provided hydrologic unit (HU) data with a scale of 1:24,000 (WBD). The watershed level

(HU10) was downloaded for each sample location from the Google Earth Engine. The irrigation
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types (irrigated or rainfed) of the cropland samples were extracted from the 2017 MODIS

irrigated agricultural dataset (250-m resolution) (Brown et al., 2019).

2.5. Statistical analysis

Four types of analysis were used to answer our research questions and test our hypotheses: 1)
the linear regressions and Pearson correlations were calculated to explore the topsoil depth-GPP
relationship in five ecosystems and five climatic regions; 2) paired comparison of relatively
shallow and deep soils was conducted in five ecosystems and five climatic regions by controlling
other environmental factors constant; 3) structural equation modeling (SEM) was used to
evaluate the effect of topsoil depth and other essential factors (light, heat, water, fertility) and
their relative contribution to GPP; 4) the effect of topsoil depth on the resilience of GPP was
investigated under four climatic extremes (dry, wet, hot, and cold). We used long-term averaged
GPP and climate variables for the first three analyses and annual GPP and climate variables for
the last analysis. Below are the detailed explanations.

Pearson correlation coefficients (r) were calculated between topsoil depth and temporal
mean GPP across the full dataset, for each ecosystem (cropland, forest, grassland, pasture, and
shrubland), and in each climatic region (arid and humid regions classified by Al and arid,
temperate, and cold regions classified by Koppen-Geiger classification). It was also used to
explore the relationships between temporal mean GPP and other climatic and topographic
variables. The relationships between temporal mean GPP and topsoil depth were fitted using
simple linear regression (Equation 2) for five ecosystems and five climatic regions using Im

function in R. The a represents the intercept which is the GPP when topsoil depth is zero. The b
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represents the slope which is the increase of GPP for every cm increase in topsoil depth. We
further evaluated the topsoil depth-GPP relationship for samples with depth <75 cm (n=2,384) in
five ecosystems and five climatic regions using Pearson correlation and simple linear regression,
as this covered over 99% of total samples.

y=a+ bx (Equation 2)

As the topsoil depth-GPP relationship may be confounded by many other environmental
factors (e.g., climate, topography) at a national scale, to evaluate such a relationship at a local
scale with other soil, topographic, and climatic factors remaining similar, we selected one pair of
relatively deep and shallow topsoils for each watershed to compare their GPP values. We used
watershed as the smallest spatial unit rather than other broader classifications (e.g., ecoregions),
as a watershed represents the spatial movement of water (rainfall and snowmelt) across the
landscape and is directly related to soil erosion and deposition. As such, soils within the same
watershed often have similar hydrological patterns (e.g., hydroclimatology) and the differences
in plant productivity can be easily explained by the differences in soil properties when holding
other environmental factors constant (see below). In each watershed, the deep and shallow
topsoils were not determined by absolute depth but relative depth difference between them.
The depth difference of the pair should be greater than 3 cm if they are shallow (<15 cm) or
greater than 5 cm if they are deep (>15 cm). The paired topsoils have 1) the same climate
conditions (long-term averaged precipitation and temperature), land use, soil order, soil
temperature and moisture regimes, parent material, and textural class; 2) similar SOC content,

elevation, and slope; 3) different GPP values; and 4) are within 4-km distance. If multiple pairs
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fulfilled the criteria for a watershed, the pair that has the most similar soil properties and the
largest depth difference was selected. A total of 103 pairs were selected.

For the final selected pairs from different watersheds, two cases may exist: 1) the deeper
topsoil aligns with greater mean GPP (our hypothesis), and 2) the shallower topsoil has greater
mean GPP (alternative hypothesis). Summary statistics (e.g., the proportion of pair-comparisons
where the site with deeper topsoil had greater mean GPP) were calculated for these two cases
in each ecosystem and each climatic region. The Wald test was used to calculate the 95%
confidence interval of the proportion of pair-comparisons where the site with deeper topsoil had
greater mean GPP (our hypothesis). If the confidence interval of the proportion covers 0.5, it
indicates that the proportion of our hypothesis is not statistically significant from that of the
alternative hypothesis. The Wald test was conducted using BinomCl function in DescTools
package (Signorell et al., 2023) in R. We also conducted a paired t-test to compare the mean
values of GPP between deep and shallow topsoils in a specific ecosystem using t.test function in
R. The normality of GPP difference was tested using Shapiro-Wilk test (Shapiro and Wilk, 1965)
with shapiro.test function in R.

Since soil and environmental factors were greatly variable across watersheds, which may
affect the GPP-topsoil depth relationship of the paired samples, we further developed linear
mixed-effects models and multiple linear regressions using selected paired samples to account
for other soil and environmental factors. In the linear mixed-effects models, we used SOC, clay
content, precipitation, minimum temperature, and an interaction term of topsoil depth (both
binary data — deep and shallow and numeric values were evaluated respectively) and ecosystem

or climatic regions as the fixed effects to predict GPP (Equation 3). We also added the watershed
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as the random effect to acknowledge the variation among watersheds. The linear mixed-effects
models were developed using Imer function of the Ime4 package (Bates et al., 2009) in R. The
significance level of the model coefficients was calculated using ImerTest (Kuznetsova et al., 2017)
and afex (Singmann et al., 2015) packages in R.

GPP ~ Depthyingry(0or Depthpymeric) * Ecosystem (or Climatic region) + SOC + Clay

+ Precipitation + Minimum temperature + (1|Watershed) (Equation 3)

To further test whether the increase in GPP is proportional to the increase in topsoil depth
of the paired samples. We developed multiple linear regressions between the change of GPP
(AGPP) and the change of topsoil depth (ADepth) (Equation 4). The absolute change (Equation
5) and relative change (Equation 6) were evaluated respectively. We also added mean depth of
the paired samples, SOC, clay content, precipitation, and minimum temperature as we expected
these variables to have an effect. The multiple linear regressions were developed for each of the
five ecosystems and five climatic regions using Im function in R.

AGPP (absolute or relative) ~ ADepth (absolute or relative) + Deptheqn + SOC
+ Clay + Precipitation + Minimum temperature (Equation 4)
AGPPgpsorute = GPPheep — GPPspaiiow; ADepthgpsorute

= Depthgeep — Depthgpaiiow (Equation 5)

GPPdeep - GPPshallow
GPPshallow

AGPPyoigtive = ; ADepthyeiative

_ Depthdeep - Depthshallow
Depthshallow

(Equation 6)
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Structural equation modeling (SEM) is a multivariate regression method to examine the
causal relationships between multiple variables and uses graphics to represent the complex
structure (Grace, 2006). It separates the direct and indirect causes, represents partial
contributions, models the latent variables and model structure (Grace, 2006), and has been used
in soil ecology to solve complex casual relationships (Eisenhauer et al., 2015). We used SEMs to
understand the contributions of soil and environmental variables to ecosystem productivity. In
statistics, a latent variable is the one that can only be inferred from other observed variables
using a mathematical model (Dodge et al., 2003). In social or natural sciences, a latent variable
can be used to represent a conceptual abstract (e.g., attitude, ability) or characterize a group,
and similar to observed variables, it can be used as an independent or dependent variable in
models (Bollen and Hoyle, 2012).

Here, we define productivity, light, heat, water, fertility, and topsoil as six latent variables,
which were inferred from other observed or measured variables, including GPP, srad, tmmn and
tmmx, pr and aet, SOC and clay content, and topsoil depth, respectively. In SEM, we define
productivity as a function of five latent variables (i.e., light, heat, water, fertility, and topsoil), and
the interactions between the five latent variables were not investigated here (Equation 7). The
SEMs were fit for five ecosystems and five climatic regions using the sem function in lavaan
package (Rosseel, 2012) in R. If the full model did not converge, some observed variables were
dropped until the model converged.

Productivity ~ Light + Heat + Water + Fertility + Topsoil (Equation 7)
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The model performance of SEMs was evaluated using Confirmatory Factor Index (CFl),
Tucker Lewis Index (TLI), and Root Mean Square Error of Approximation (RMSEA). The CFI
measures the percent decrease in model chi-square (corrected by degrees of freedom, § = y? —

df) of the User Model compared to the Baseline Model and ranges from 0 to 1 (best fit) (Equation
2
8). The TLI measures the percent decrease in relative chi-square (Z—f) of the User Model compared

to the Baseline Model and when it is closer to 1 (rounded to 1 if it is greater than 1), the model
is better (Equation 9). The RMSEA measures the absolute model fitting performance and when it

is smaller, the model is better (Equation 10).

CFl = d(Baseline) — §(User) o
B §(Baseline) (Equation 8)

x*(Baseline)  x*(User)
_df(Baseline) df (User)

TLI 2*(Baseline) _ (Equation 9)
df (Baseline)

RMSEA = 0 Equation 10

= lIFv =D (Equation 10)

To evaluate the contribution of topsoil depth to climate resilience of productivity, the
annual accumulative GPP, accumulative precipitation, mean minimum temperature from 1986
to 2021 (36 years) were used. Four climatic extremes from 1986 to 2021 were considered: dry,
wet, hot, and cold. To identify the dry extreme for each location, the year which received the
lowest precipitation was first identified from the 36 years and the GPP of this year was obtained.
Then the percent changes in GPP and precipitation to the 36-year averaged GPP and precipitation

were calculated. Similarly, the wettest, the hottest, and the coldest years were identified for each
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location based on the highest precipitation, the highest minimum temperature, and the lowest
minimum temperature, respectively, and the percent changes of GPP, precipitation, and
minimum temperature were calculated. Potential lag effects from climate were not considered
in our study. The relationships between percent changes of GPP at four types of climate extremes
and topsoil depth were evaluated for the five climatic regions and five ecosystems. We
hypothesize that if the topsoil is deeper, ecosystem productivity is more stable and hence the
percent change of GPP is smaller (closer to zero).

To compare the percent change in GPP of shallow and deep topsoils, we calculated the
mean topsoil depth in each climatic and ecosystem region as a threshold value and then split the
data into shallow topsoils and deep topsoils. We compared the mean and variance of the percent
change in GPP of shallow and deep topsoils. The mean value represents an absolute comparison
of the percent GPP change, and we hypothesize that the mean percent change in GPP was closer
to zero (no matter positive or negative) in deeper topsoils. The variance value represents the
spread of the percent GPP change, and we hypothesize that deeper topsoils had more stable
ecosystem productivity with climate change and thus the variance is smaller than that in
shallower topsoils. The t-test and Levene’s test were used to assess the homogeneity of mean
and variance respectively in these two groups (shallow and deep topsoils) using t.test function
and leveneTest function in car package (Fox et al., 2012) in R. If the homogeneity was not rejected
in these tests, it indicates that the topsoil depth had non-significant effect on the percent change
in GPP under climate extremes.

Given the uncertainty and noises of the Landsat GPP data, we used another two datasets

(GOSIF GPP from 2001 to 2021 and FluxCom GPP from 1986 to 2013) to repeat two analyses: 1)
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the simple linear regression between temporal mean GPP and topsoil depth in five different
ecosystems and climatic regions was calculated; 2) the percent changes of GPP in four climatic
extremes (dry, wet, hot, and cold) were calculated and their relationships with topsoil depth were
evaluated for five climatic regions and five ecosystems. The t-test and Levene’s test were also
used to assess the homogeneity of mean and variance of percent GPP change for two soil depth

groups (shallow and deep) in five climatic regions and five ecosystems.

3. Results

3.1. Topsoil depth and GPP in different ecosystems and climate zones

On the national scale, areas with deeper topsoil were not identical to the areas with higher GPP
(Fig. 1a and 1b). Deeper topsoils primarily occurred in the Midwest (Fig. 1a) under cropland
(mean depth=27 cm, mean GPP=1,249 g C m~2yr?, Fig. 1c and 1d, Supplementary Table S1), while
the highest GPP occurred in the east and along the West Coast (Fig. 1b) under forest (mean
GPP=1,466 g C m~2 yr %, Fig. 1c and 1e) with topsoils of about 15 cm (Fig. 1a and 1d). The western
CONUS was dominated by shrubland and grassland (Fig. 1c) which had shallow topsoils (mean
depth=14 and 18 cm, Fig. 1a and 1d) and lower GPP (mean GPP=243 and 563 g C m~2 yr™%, Fig. 1b
and 1le). A weak positive correlation was observed between the GPP and topsoil depth for all
data, but it varied for different ecosystems (Fig. 1f). A stronger positive correlation existed for
grassland (r=0.37, p=7e—12) and shrubland (r=0.32, p=2e—8) with a weak correlation in cropland
(r=0.15, p=4e-5), and no clear relationships for forest and pasture (r=—0.04 and 0.02 respectively,

p>0.05).
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As GPP varied significantly with climate and topography (Supplementary Figs. S1, S2, S3,
and Tables S2 and S3), it confounds the effect of topsoil depth on GPP. The relationship between
GPP and topsoil depth was examined for different climatic regions (Fig. 2). For the same topsoil
depth, humid regions had a higher GPP (mean=1,493 g C m~2 yr!) than arid regions (mean=827
g Cm™2yr L, Fig. 2¢c, Supplementary Table S4). The correlation of topsoil depth and GPP was more
evident in arid regions (Al<1, p<2e—16, r=0.33), while in humid regions (Al>1), the topsoil depth
was slightly negatively correlated with the GPP (p=0.005, r=0.09, Fig. 2c). For every 10 cm
increase in topsoil thickness, GPP increased by 114 g C m~2 yr™! in arid regions. As for Képpen-
Geiger classification, the correlation of topsoil depth and GPP was not statistically significant in
the temperate and cold regions (Fig. 2d), but it was statistically significant in arid regions
(p<2e-16, r=0.45). For every 10 cm increase in topsoil thickness, GPP increased by 128 g C m™2
yrlin arid regions of the Képpen-Geiger classification. This may indicate that the correlation of
topsoil depth and GPP was primarily associated with water availability instead of temperature,
and it was stronger in dry regions.

The samples with depth <75 cm showed similar topsoil depth-GPP relationship to that of
the whole dataset (Supplementary Figs. S4 and S5). The correlations in shrubland (r=0.35 vs. 0.32)
and dry regions (r=0.35 vs. 0.33 and r=0.49 vs. 0.45) were slightly stronger than that of the whole
dataset. This is likely because in shallower topsoils, the changes of topsoil depth tend to be
associated more with the GPP due to lack of available water and nutrients, while in deeper

topsoils, such association is low.
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3.2. Association of topsoil depth with GPP at a local scale
The association of topsoil depth and GPP at a national scale is impacted by mixing effects of
climate, vegetation type, topography, and soil type. To uncover the direct association, we
conducted a paired comparison of GPP of relatively deep and shallow topsoils in different
watersheds by holding other variables (climate, vegetation, parent material, soil type) constant
(Fig. 3a, Supplementary Fig. S6). The paired comparison contradicted our hypothesis that deeper
topsoils tend to have greater GPP (Fig. 3, Supplementary Fig. S7). The positive association of
topsoil depth with GPP occurred primarily in cropland (0.73, 95% confidence interval of 0.57—
0.84, 29 watersheds) and shrubland (0.75, 95% confidence interval of 0.40—0.94, 6 watersheds),
while in forest, grassland, and pasture, over half of the shallower topsoils had higher GPP than
paired deeper topsoils (Table 1). The percent increase of GPP in deeper topsoil over paired
shallower topsoil was greater in shrubland (mean=8%) followed by pasture (mean=5%, Fig. 3,
Table 1). However, the paired t-test showed that the difference of GPP in deep and shallow
topsoils was marginal and non-significant (Table 1). In the forest, the deeper topsoil was
associated with a decreased average GPP change (-1.3%). At different climatic regions, the
positive association of topsoil depth with GPP was marginal and not statistically significant, but
it was slightly higher in arid regions (0.61, 95% confidence interval of 0.48-0.72 and 0.41-0.78)
(Supplementary Table S5).

The linear mixed-effects models showed that the shallow topsoil was negatively
associated with GPP (coefficient=—0.01), and topsoil depth as a numeric variable was positively
associated with GPP (coefficient=0.0018) after accounting for the other environmental factors,

but such associations were not statistically significant (Table 2). In addition, the interaction of
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depth and forest was statistically negatively associated with GPP (coefficient=—0.01) (Table 2),
which indicates that deeper topsoil was associated with smaller GPP in forest. The association of
GPP with ecosystem types and climatic variables (precipitation and temperature) was stronger
than that with soil characteristics (Table 2). When interacted with climatic regions, the shallow
topsoil was positively associated with GPP, while depth as a numeric variable was positively
associated with GPP (Supplementary Table S6), but such associations were not statistically
significant. The precipitation was solely associated with GPP in Al classification, while both
precipitation and temperature were associated with GPP in the K6ppen-Geiger classification.
The absolute and relative changes of GPP did not show clear pattern with changes of
topsoil depth in five ecosystems and climatic regions (Supplementary Fig. S8). This was also
shown in the multiple linear regressions with non-statistically significant coefficients of ADepth
(Supplementary Fig. S9). But such coefficients were slightly positive in most ecosystems and
climatic regions except for grassland. We also observed that the absolute changes of GPP and the
coefficient of ADepth,psoiute Were small in shrubland, but their relative changes and the
coefficient of ADepth,4tive Were markedly higher (Fig. 3, Supplementary Fig. S9). This may
indicate that relative changes of topsoil depth and GPP on small absolute numbers can be more
significant than they are in shrubland. The mean depth also showed statistically significant

negative association with GPP change in forest.

3.3. Association of topsoil depth and other environmental factors with GPP
To comprehensively examine the contributions of topsoil depth (topsoil) and other soil and

environmental factors (light, heat, water, fertility) to ecosystem productivity, SEMs
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(Supplementary Fig. S10) were developed for each ecosystem (Fig. 4) and climatic region
(Supplementary Fig. S11). The statistically significant variables and their coefficients are shown
in the SEM results (Fig. 4, Supplementary Fig. S11). Consistent with our linear regressions, topsoil
depth was positively associated with the productivity in cropland, grassland, and shrubland (dry
regions, coefficients: 0.09 to 0.13), but the association was not statistically significant in soils
under forest and pasture (humid regions) (Fig. 4). Likewise, a positive association of topsoil depth
with productivity was observed in arid regions (coefficients: 0.17 and 0.33), but it was negative
in humid regions (coefficient=-0.26) (Supplementary Fig. S11). Soil fertility indicated by SOC and
clay content was positively associated with the productivity in cropland and shrubland
(coefficients=0.06), but negatively associated with the pasture and humid regions (coefficients:
-0.23 and -0.06). In pasture, the soils with higher clay content can be more easily compacted
from field traffic and form restrictive layers for root development, which may lead to lower
productivity. In humid regions, the SOC and clay content was higher towards the north
(Supplementary Fig. S2), which was slightly opposite to the increasing GPP towards the southeast.
This may indicate that other factors (e.g., climate) may play a more important role in affecting
GPP than soil fertility at this scale.

Water (pr and aet) played the most important role in enhancing productivity in all the
ecosystems with coefficients ranging from 0.07 to 0.87, except for temperate regions where
water was abundant due to high precipitation and was distributed uniformly in this region
(Supplementary Fig. S2). Heat (tmmn and tmmx) was positively associated with the productivity
in forest, shrubland, and cold regions (coefficients: 0.06 to 0.36). This is probably because the

main limiting factor for forests (located mostly in mountainous and humid regions) is
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temperature. The shrubland occurred in cold and high-elevation regions (Supplementary Fig. S3),
so increasing temperature promoted plant productivity. Light (srad) was negatively associated
with the productivity in the forest, shrubland, arid, temperate, and cold regions (coefficients:
-0.32 to -0.15), which may be associated with drought and heat stress in arid and semi-arid
regions. But light was positively associated with it in humid regions (coefficient=0.11), because

humid regions are often radiation-limited, and an increase in light will increase annual GPP.

3.4. Effect of topsoil depth on climate resilience of ecosystem productivity

The control of topsoil depth on the resilience of GPP was investigated under four climatic
extremes in five climatic regions and five ecosystems. The distribution of ecosystems was strongly
dependent on the climatic regions, in which grassland and shrubland dominated the arid regions,
while forest and pasture mainly occurred in humid regions (Fig. 5). In dry years, the precipitation
was 20-80% lower than the average, and it was more severe in arid regions (Supplementary Fig.
S12). Accordingly, the GPP dropped in most locations, especially in the grassland and shrubland
(Fig. 5). In wet years, precipitation was 20-100% higher (Supplementary Fig. S12), and GPP
increased (Fig. 5). The changes of GPP due to climatic extremes were relatively small in forest
and pasture (relative changes within -50% to 50%) (Fig. 5). As shown in grassland and shrubland
in arid regions, the percent change of GPP was closer to zero and the productivity was more
stable when the topsoil was deeper. On the contrary, when the topsoil was shallower, the GPP
change was substantial. (Fig. 5). In some cases (e.g., pasture in humid regions), the percent
change of GPP was evenly distributed with topsoil depth, which may indicate that topsoil did not

affect the GPP change in climatic extremes in these regions.
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Levene’s test for deep and shallow topsoils was non-significant in most cases and thus did
not strongly support the hypothesis that deeper topsoils had significantly smaller changes in GPP
(Supplementary Figs. S13). It was likely due to that threshold values were selected from mean
topsoil depth (ranging from 13 to 37 cm) and may not be able to reflect the deep topsoil cases
(>40 cm). The deeper topsoils had a significantly smaller variance of the percent GPP change than
shallower topsoils in cropland in arid years (Supplementary Fig. S13) and contributed to more
stable productivity in dry extremes. However, the variance was significantly larger in deeper
topsoils in forest in wet years and pasture in humid regions in wet years (Supplementary Fig. S13).
This may suggest that forest with deeper topsoils promoted hydraulic redistribution within the
deep vadose zone and fractured rocks leading to increased variation of GPP and its behavior
under climate extremes (Montaldo and Oren, 2022). In some cases, the variance difference
between shallow and deep topsoils was substantial (e.g., soils of pasture in arid regions,
Supplementary Fig. S13), but Levene’s test was non-significant, which was likely affected by a
small sample size. Additionally, although the percent change decreased with topsoil depth in
shrubland in arid regions (Fig. 5), the deeper topsoils had a larger variance than shallower topsoils
(Supplementary Fig. S13), which was likely affected by a few extreme samples at 30-cm topsoil
depths (Fig. 5).

When using Képpen-Geiger classification, a similar pattern was observed in dry and wet
extremes (Supplementary Figs. S14, S15, S16). The percent changes of GPP decreased with
deeper topsoils in cropland in cold regions, forest in temperate regions, and shrubland in arid
regions, while such a pattern was less evident in grassland and pasture, and cropland in arid and

temperate regions (Supplementary Fig. S15). As to the hot and cold extremes, the temperature

26



548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

increased in hot years and decreased in cold years, which was more severe in arid and cold
regions (Supplementary Fig. S17). Similar to that in moisture extremes, the percent changes of
GPP decreased with deeper topsoils in cropland in cold regions, forest in temperate and cold
regions, grassland and shrubland in arid regions, but it was less evident in pasture
(Supplementary Fig. S18). Similarly, Levene’s test was non-significant in most cases
(Supplementary Fig. S19). In cropland in arid regions, the coefficients were evenly distributed
with topsoil depth (Supplementary Fig. S15 and S18), which was likely due to extensive irrigation,
so that cropland water stress may be alleviated and showed no difference from rainfed fields in

terms of their relationship with topsoil depth (Supplementary Fig. S20).

3.5. Assessment using GOSIF and FluxCom GPP

The same analysis was conducted using the GOSIF and FluxCom GPP (Supplementary Figs. S21—
S38). The GOSIF and FluxCom GPP showed similar spatial distribution to the Landsat GPP
(Supplementary Figs. S21 and S30), but the GPP of pasture was significantly higher in these two
datasets than that of Landsat GPP. The relationships between GPP and topsoil depth across
climatic regions remained largely the same in GOSIF and FluxCom GPP datasets, except that the
GOSIF and FluxCom GPP decreased significantly with topsoil depth in cold regions
(Supplementary Figs. S22 and S31). The percent change of GPP under climatic extremes was also
evaluated using GOSIF and FluxCom GPP. For GOSIF GPP, similarly, in dry years, it decreased,
while in wet years, it increased; such a change was stronger in arid regions than in humid regions
(Supplementary Figs. S24). The percent change of GPP decreased with topsoil depth in many

ecosystems, especially grassland and shrubland (Supplementary Figs. S24 and S27). However, for
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FluxCom GPP, it decreased in dry years and increased in wet years in nearly all the locations. It
was right-triangled with topsoil depth and the percent change of GPP was closer to zero with
increasing topsoil depth, particularly when it was deeper than 40 cm (Supplementary Figs. S33
and S35). Under temperature extremes, the percent changes of GPP can be both positive and

negative and decrease with topsoil depth in grassland and shrubland (Supplementary Fig. S37).

4. Discussion
4.1. Environmental controls on topsoil depth—productivity relationship
While earlier work showed positive control of topsoil depth on crop productivity, we found that
these relationships varied in different ecosystems and climatic regions. By analyzing the
nationwide dataset, we found that the control of topsoil depth on plant productivity was only
statistically significant in drier areas, and it was not statistically significant in wetter areas. In drier
regions, GPP decreased with a decreasing soil water content, but it did not change in wetter areas
(Fu et al., 2022). Therefore, when plants are under water stress, deeper topsoils aligned with
higher water storage can positively contribute to plant productivity. In our dataset, humid regions
were distributed in the eastern CONUS and West Coast, where deeper topsoils occurred under
cropland and pasture and had lower GPP than shallower soils under forest (Fig. 1), and therefore
a negative association of topsoil depth with productivity was observed in humid regions (Fig. 2).
The control of topsoil depth on productivity was not statistically significant in temperate
regions, but it was negatively associated with the GPP in cold regions when using GOSIF and
FluxCom GPP (Supplementary Fig. S22 and S31), which contradicts our hypothesis. It was

assumed that deeper topsoils with generally more SOC have a higher thermal buffering capacity
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(Werner et al., 2020), which might be vital in cold regions to sustain plant productivity. However,
in our study, cold regions were distributed mainly in the northeastern US, Midwest, and the
Rocky Mountains with predominantly forest and cropland (Fig. 1), where forest had a higher GPP
but shallower topsoils than cropland. Therefore, a negative relationship of topsoil depth and
productivity was observed in cold regions. In temperate regions without cold stress, the
relationship between topsoil depth and ecosystem productivity was not statistically significant.

The topsoil depth-GPP relationship differed for natural (e.g., forest, grassland, shrubland)
and managed (e.g., cropland, pasture) ecosystems. Previous studies and topsoil removal
experiments have focused mostly on cropland and demonstrated the negative effects of topsoil
reduction on crop production (Zhang et al., 2021). Our results showed a clear positive association
of topsoil depth with GPP in cropland, but such a relationship was not as strong as in grassland
or shrubland. Grassland and shrubland root systems are often within 2-m depth compared to
trees and thus more affected by topsoil properties. Moreover, grassland and shrubland were
distributed mainly in drier regions (Supplementary Fig. S3), where topsoil depth was more
strongly associated with ecosystem productivity. Under cropland and pasture, fertilization and
irrigation may mask the effect of soil nutrients and water limitation due to deeper topsoils.

It is noteworthy that soils under forest generally had shallow topsoils (mean thickness=15
cm) but the highest GPP. There was no relation between topsoil depth and forest productivity
(Fig. 1). This is likely due to sufficient water and nutrient supply in the forest ecosystem and its
unique root architecture and functionality. Precipitation and topsoil SOC were high under the
forest (Supplementary Fig. S3), and hence productivity was not restricted by water or nutrient

supply. Moreover, woody forest roots include primary roots going deep into the soil and fine
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roots spreading laterally (Danjon et al., 2013). Trees can use bedrock water for transpiration apart
from soil water, which mainly occurred in western and southern US (e.g., California and Texas,
dry regions) and the Appalachian Mountains (high elevation and slope, shallow soils) (McCormick
et al., 2021). In California, over 50% of aboveground biomass production in woody forest can be
attributed to bedrock water (McCormick et al., 2021). Therefore, in these cases, topsoil depth
would have little influence on forest GPP.

The paired comparison showed that the topsoil depth-GPP relationship was stronger in
shrubland, while in cropland, most deeper topsoils had greater GPP, although the GPP increase
was small. The GPP difference between deep and shallow topsoils and the GPP-topsoil depth
relationship of the paired samples were not statistically significant across ecosystems and
climatic regions. The change of GPP was generally positively related to change of topsoil depth,
but such a relationship was not statistically significant. The ecosystem type and climatic regions
were more related to GPP of the paired samples. One drawback of the paired comparison was
that the topsoil depth and GPP data had different sample support (i.e., the length, area, or
volume associated with a measurement (Goovaerts, 2014)). The topsoil depth was measured on
point-based sampling locations, while the GPP was obtained from raster images with 30-m spatial
resolution. Soil thickness has a large local-scale variation, and therefore the point-based
measurements may not be able to represent its averaged depth in the 30-m raster pixel and may
increase the randomness of the comparison at local scales, which can partially explain the
negative relationship of GPP and topsoil depth at some watersheds. Additionally, other factors
(e.g., ecosystem types and climatic factors) were more related with GPP, which may affect the

GPP-topsoil depth relationship of the paired samples in different watersheds.

30



636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

Although topsoil depth was positively associated with the GPP in cropland, grassland,
shrubland, and arid regions (Fig. 4, Supplementary Fig. S11), its association (coefficients: 0.09—
0.33) was smaller than that of water (coefficients: 0.07-0.87) and similar to that of heat
(coefficients: 0.06—0.39). The association of topsoil depth with plant productivity was higher in
arid regions. For example, in arid regions of the KOppen-Geiger classification, the coefficient of
topsoil depth to productivity (0.33) reached 60% of the coefficient of water (0.55). Our study also
found a stronger correlation between GPP and precipitation (r=0.8) than that between GPP and
topsoil depth (r=—0.04-0.37 for five ecosystems). Despite the weaker relationship, the topsoil

depth played an important role in storing water and maintaining plant productivity in arid regions.

4.2. Topsoil depth and climate resilience

Our results showed that topsoil depth not only was associated with increased long-term averaged
GPP (i.e., ecosystem productivity) in some ecosystems (cropland, grassland, shrubland) and in
dry regions, but it was also associated with increased resilience of ecosystem productivity to
climatic variation and extremes. In arid regions, the changes in GPP under climatic extremes were
more severe, while in humid regions, the GPP was more stable with smaller changes under
climatic extremes. The changes in GPP were smaller in forest and pasture (wetter regions) than
that in cropland, grassland, and shrubland (drier regions). These indicate that the GPP was less
stable and more easily affected by climatic extremes in drier regions. However, in arid regions
(especially shrubland and grassland), as topsoil was deeper, the percent change of GPP was closer
to zero and the productivity was more stable. This indicates that topsoil was associated with

increased climate resilience of plant productivity especially in arid regions.
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Deeper topsoils aligned with higher SOC content and water storage capacity tend to
increase buffering capacity to climate change and extremes and maintain ecosystem productivity.
Similarly, a recent study showed that high-quality soils reduced crop yield variability and its
sensitivity to climate change by over 15% (Qiao et al., 2022). Other studies have shown that
biodiversity also enhanced the resilience of ecosystem productivity to climate extremes (Isbell et
al., 2015) and defined it as insurance effects which included both a buffering effect and a
performance-enhancing effect (Yachi and Loreau, 1999). Accordingly, deeper topsoils tend to

increase both productivity and their buffering capacity to climate change.

4.3. Implications, limitations, and prospects
Understanding the control of topsoil depth on ecosystem productivity is important for crop
production, erosion control, wasteland reclamation, ecosystem restoration, and maintaining
ecosystem resilience. In this study, a comprehensive analysis was conducted to study the
interrelationships between topsoil depth and ecosystem productivity in various ecosystems and
different climatic conditions and results showed that such relationship was stronger in drier
regions and grassland and shrubland. Deeper topsoil was also associated with improved
resilience of ecosystem productivity to climatic extremes in these regions. The results can
improve our understanding of the control of topsoil depth to ecosystem functioning and lead to
a better representation of the role of soil in earth system modeling and climate modeling. It also
provides evidence for natural resources management under climate change.

However, limitations exist in the analysis and results interpretation. First, our analysis was

based on existing observational data from long-term soil surveys, and we did not conduct any
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controlled experiments or explicitly select sampling locations based on edaphic, ecological, and
climatic factors. The results and interpretation cannot completely eliminate multiple effects from
other soil and environmental factors and solely investigate the effects of topsoil depth. Second,
the large short-scale variation of topsoil depth and mismatch of the dimensions between soil
data (point-based measurements) and GPP data (30-m resolution) may increase the randomness
of the results at local scales. Third, this study investigated only the one-way effects of topsoil
depth on ecosystem productivity and its resilience to climate extremes. Higher ecosystem
productivity and low disturbance rates over the long run also contributed to greater SOC
accumulation in forests and deeper topsoils in grassland. But this is a relatively slow process,
especially in terms of the annual variation of GPP and its interaction with annual climate.

Soil variables are increasingly used in earth system modeling with the increasing
availability, accessibility, and accuracy of national and global soil maps (Chaney et al., 2019;
Poggio et al., 2021). A constant value has been used to represent soil depth in many cases in the
past, but recently more global products have been available for soil depth (Pelletier et al., 2016;
Shangguan et al., 2017). Topsoil depth is an important variable, as it reflects the carbon-rich and
most microbially active layer of the soil and directly affects nutrient availability and ecosystem
productivity. However, there is currently no available large-scale map of topsoil depth, which
would be important for understanding biogeochemical cycling and earth system modeling.
Future work is needed for creating national and global maps of topsoil depth. In addition, soil
carbon stabilization and enhancement are considered as an important nature-based climate
solution. Other soil factors (e.g., soil depth, bulk density) which are essential parameters to

calculate SOC stock and directly related to soil erosion and compaction have been under-studied.
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Similarly, the role of other soil physical, chemical, and biological properties on ecosystem

functioning under climate change should be further investigated.

5. Conclusions

The relationship between topsoil depth and plant productivity (GPP) was investigated for
different ecosystems and climatic regions using a nationwide dataset across the CONUS. A weak
positive correlation was observed between the GPP and topsoil depth in soils under grassland
and shrubland. The control of topsoil depth on GPP was primarily associated with water
availability, which was more significant in arid regions. Forest productivity was less associated
with topsoil depth due to its higher SOC content, high precipitation, and deeper root architecture
and functionality. However, the pairing of deep and shallow topsoils showed a small but non-
statistically significant relationship between GPP and topsoil depth. The lack of a significant
relationship may be due to different sample support of soil and GPP data (i.e., point-based and
raster data), or the effects of other soil and environmental factors across watersheds. Moreover,
the association of GPP with topsoil depth was smaller than that with water and similar to that
with heat. The topsoil depth was also related to increased stability of ecosystem productivity to
climate change in arid regions and shrubland and grassland. We conclude that topsoil depth
affects ecosystem productivity and its stability and resilience to climate extremes in dry regions.

Such relationship does not exist in humid regions.
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Fig. 1. Topsoil depth and gross primary productivity (GPP) across the conterminous US (CONUS)
and in five ecosystems. a. Topsoil depth measurements across the CONUS. b. Landsat GPP dataset
across the CONUS. c. The distribution of sampled locations in five ecosystems. d. The distribution
of topsoil depth across five ecosystems. Numbers in parentheses indicate the sample size for
each ecosystem. e. The distribution of Landsat GPP across five ecosystems. The black dots in d
and e indicate the mean values in each ecosystem. The black lines in d and e indicate the mean
values across all the ecosystems. f. The relationship between GPP and topsoil depth for the five
ecosystems. The Pearson correlations between GPP and topsoil depth are 0.15, -0.04, 0.37, 0.02,
0.32 for cropland, forest, grassland, pasture, and shrubland, respectively. Shadows indicate the

95% confidence intervals.

Fig. 2. The relationships between gross primary productivity (GPP) and topsoil depth in different

climatic regions. a. Distribution of sample locations in arid and humid regions which were
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distinguished by Aridity Index (Al). b. Distribution of sample locations in three climatic regions
(arid, cold, temperate) based on the Koppen-Geiger climate classification. ¢, d. The linear
relationships between GPP and topsoil depth in different climatic regions. The Pearson
correlations between GPP and topsoil depth are 0.33 and -0.09 for arid and humid regions
classified by Al, and 0.45, -0.02, and -0.06 for arid, cold, and temperate regions of Kbppen-Geiger

climate classification.

Fig. 3. Paired comparison of gross primary productivity (GPP) for 103 watersheds. a. In each
watershed, one pair of relatively deep (orange dots) and shallow (blue dots) topsoils were
selected to compare their GPP values. The deep and shallow topsoils were not determined by
absolute depth but relative depth difference between them. The depth difference of the pair
should be greater than 3 cm if they are shallower (<15 cm) or greater than 5 cm if they are deeper
(>15 cm). The paired topsoils have 1) the same climate conditions, ecosystem type, soil order,
soil temperature and moisture regimes, parent material, and soil textural class; 2) similar organic
carbon content, elevation, and slope; 3) different GPP values; and 4) are within 4-km distance.
Each pair is connected by a gray line, in which the line width indicates the depth difference of the
pair. If an orange dot is on top of a blue dot, it indicates the deeper topsoil aligns with greater
GPP; otherwise, a shallower topsoil aligns with greater GPP. The pairs from different watersheds
in each ecosystem were ranked from left to right in the x-axis by their mean annual precipitation.
b. The distribution of absolute change of GPP between deep and shallow topsoils in each
watershed. c. The distribution of relative change of GPP between deep and shallow topsoils in

each watershed. The colors of the dots in b and c indicate five ecosystems, while the sizes of the
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dots indicate the GPP difference between deep and shallow topsoils. The two maps in b and ¢
represent the two scenarios: 1) the deeper topsoil aligns with greater GPP (GPP differences are

positive); 2) a shallower topsoil aligns with greater GPP (GPP differences are negative).

Fig. 4. Structural equation models (SEMs) for predicting productivity from several latent variables
in different ecosystems. The blue solid lines indicate positive contributions from latent variables
to productivity with coefficients provided next to the line. The red solid lines indicate negative
contributions from latent variables to productivity with coefficients provided next to the line.
Only the statistically significant coefficients are provided in the figure. The conceptual structure
of the SEMs is shown in Supplementary Fig. S10. CFl: Comparative Fit Index; TLI: Tucker-Lewis

Index; RMSEA: Root Mean Square Error of Approximation.

Fig. 5. The relationships between percent change in GPP of a dry year (minimum precipitation)
and a wet year (maximum precipitation) from 1986 to 2021 and topsoil depth in two climatic
regions (arid and humid) and five ecosystems. Dashed horizontal lines indicate no change of GPP
in specific conditions (y=0). Dashed vertical lines indicate the mean topsoil depth in each region,
which were used as threshold values to separate shallow and deep topsoils in Supplementary Fig.

S13.

Table 1. Summary statistics of the paired comparison of GPP in different watersheds of five

ecosystems in Fig. 3.
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Table 2. Unstandardized coefficients of fixed and random effect variables in the linear mixed-
effect models with paired data. Topsoil depth was used as a binary variable (deep and shallow)

and a numeric variable respectively in two models and interacted with ecosystem.
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