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Abstract

Extreme climate events are becoming more frequent, with poorly understood implica-
tions for carbon sequestration by terrestrial ecosystems. A better understanding will crit-
ically depend on accurate and precise quantification of ecosystems responses to these events.
Taking the 2019 US Midwest floods as a case study, we investigate current capabilities

for tracking regional flux anomalies with “top-down” inversion analyses that assimilate
atmospheric CO5 observations. For this analysis, we develop a regionally nested version

of the NASA Carbon Monitoring System-Flux (CMS-Flux) that allows high resolution
atmospheric transport (0.5°x0.625°) over a North America domain. Relative to a 2018
baseline, we find US Midwest growing season net carbon uptake is reduced by 11-57 TgC
(3-16%) for 2019 (inversion mean estimates across experiments). These estimates are
found to be consistent with independent “bottom-up” estimates of carbon uptake based

on vegetation remote sensing. We then investigate current limitations in tracking regional
carbon emissions and removals by ecosystems using “top-down” methods. In a set of ob-
serving system simulation experiments, we show that the ability to recover regional car-
bon flux anomalies is still limited by observational coverage gaps for both in situ and satel-
lite observations. Future space-based missions that allow for daily observational cover-

age across North America would largely mitigate these observational gaps, allowing for
improved top-down estimates of ecosystem responses to extreme climate events.

Plain Language Summary

Extreme climate events, such as floods or heatwaves, can have major impacts on
the carbon cycle. For example, widespread flooding in the US Midwest during 2019 de-
layed the planting of crops leading to reduced plant growth and carbon uptake relative
to 2018. Here, we test how well this reduction in carbon uptake can be inferred from mea-
surements of atmospheric COs. We find that these data can identify reduced net car-
bon uptake to the US Midwest during the 2019 floods, but that sparse observational cov-
erage limits our ability to quantify the anomaly in net carbon uptake.

1 Introduction

Extreme events, including heat and precipitation extremes, are becoming more fre-
quent (Shenoy et al., 2022; Q. Sun et al., 2021; Kirchmeier-Young & Zhang, 2020; Senevi-
ratne et al., 2021). These events have significant implications for carbon sequestration
in terrestrial ecosystems, often causing carbon losses in a single year equal to many years
of carbon sequestration (Ciais et al., 2005; Byrne et al., 2021). This is concerning be-
cause Nature-based Climate Solutions (NbCSs), which aim to enhance the terrestrial car-
bon sink through improved land management, have been proposed as an important tool
to mitigate CO9 emissions (Fargione et al., 2018). The increasing frequency of extreme
events may disrupt this process, creating a carbon-climate feedback where extreme-event-
driven carbon emissions reduce the effectiveness of NbCSs (Zscheischler et al., 2018; Barkhor-
darian et al., 2021). Consequently, there is an urgent need to quantify the impact of ex-
treme events on carbon uptake by ecosystems for policy programs and other climate ap-
plications.

“Top-down” methods offer an approach for estimating biosphere-atmosphere CO4
fluxes based on observations of atmospheric CO,. Typically, Bayesian inverse methods
are used to estimate optimal surface fluxes based on constraints from prior information
and atmospheric CO4 observations. Although historically data limited, these techniques
are increasingly used to quantify regional carbon cycle responses to extreme events, thanks
to expansions of in situ CO; measurements and the introduction of space-based retrievals
of column-averaged dry-air CO2 mole fractions (Xco,) from missions like the Orbiting
Carbon Observatory 2 (OCO-2) (Feldman et al., 2023; Byrne et al., 2021). Still, current
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capabilities for tracking extreme events are not well understood. This study aims to im-
prove our characterization of these capabilities and identify current limitations.

As a case study, we examine the carbon cycle anomalies from the 2019 US Mid-
west floods relative to 2018. Intense precipitation during the spring of 2019 (> 20 above
average) led to widespread flooding across the US Midwest, a region that accounts for
40% of world corn and soybean production (Yin et al., 2020). Inundation delayed crop
planting by 2-3 weeks relative to 2018 across the region, with an additional reduction
of 6.8 million hectares in the total planted area (see Fig. 1 of Yin et al. (2020)). These
factors led to a 16-day shift in the seasonal cycle of photosynthesis relative to 2018, along
with a 15% lower peak value (Yin et al., 2020). In turn, crop yields across the US Mid-
west were reduced by ~14%, and a decrease in net carbon uptake of ~0.1 PgC was in-
ferred relative to the preceding years (Yin et al., 2020; Balashov et al., 2023). The rel-
atively simple (delayed planting) and well documented carbon cycle perturbation dur-
ing this event makes it an ideal case study for studying our ability to quantify carbon
cycle perturbations using top-down and bottom-up methods. We note that, as we use
the single year of 2018 as a baseline, the NEE anomalies inferred will be due to carbon
cycle anomalies in both years.

To perform our analysis, we introduce a regionally nested version of the CMS-Flux
inversion system with high-resolution (0.5°x0.625°) atmospheric transport over North
America (see Sec. 2). This version offers advantages over the coarse-resolution (4°x5°)
global version of CMS-Flux. It reduces transport errors introduced by the coarsening of
reanalysis winds (Stanevich et al., 2020; K. Yu et al., 2018) and better represents assim-
ilated CO9 observations, resulting in improved localization of extreme-event-driven COq
flux anomalies (Sec. 7.2.2).

The first objective of this study is to evaluate how well existing atmospheric ob-
serving systems can quantify flood-induced reductions in carbon uptake during 2019 rel-
ative to 2018. We conduct four inversions that assimilate (1) in situ COy measurements
(IS), (2) OCO-2 land X0, retrievals (LNLG), (2) both insitu and OCO-2 land data (LNL-
GIS), or (4) in situ, OCO-2 land and ocean data (LNLGOGIS)(Sec. 4). Climatological
prior fluxes are employed in each experiment, allowing us to attribute posterior anoma-
lies in carbon uptake between years solely to the assimilation of atmospheric CO5 data.

We then compare these estimates with an independent ensemble of remote-sensing bottom-
up estimates and with crop-yield data to assess their overall consistency (Sec. 7.1).

The second objective of this study is to assess the impact of existing observational
coverage gaps and the potential expansion of space-based Xco, measurements on our
ability to detect extreme-event-driven anomalies in CO; fluxes. To evaluate the effect
of expanded space-based observations, we devise a hypothetical observing system that
provides daily X¢o, retrievals at 13:00 local time (similar to OCO-2). Subsequently, we
conduct observing system simulation experiments (OSSEs) for existing in situ data and
OCO-2 data as-well as the hypothetical observing system. For each OSSE, we evaluate
the effectiveness in capturing extreme-event-driven COz flux anomalies (Sec. 7.2.1). Our
aim is to gain a deeper understanding of how observational coverage impacts our abil-
ity to quantify the influence of extreme events on CO5 fluxes.

2 Nested CMS-Flux inversion system

A one-way nested version of CMS-Flux was developed in this study. Like the global
model, this system employs four-dimensional variational data assimilation (4D-Var) to
optimize scaling factors on prior land and ocean fluxes. In this section, we describe the
nested transport model (Sec. 2.1), boundary and initial conditions (Sec. 2.2), assimila-
tion window (Sec. 2.3), and state vector (Sec. 2.4).
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Figure 1. Schematic diagram of the nested CMS-Flux inversion system for North America.

2.1 Nested transport model

We establish a one-way nested inversion system covering the North America region,
spanning from 40° W to 167.5° W and 14° N to 76° N. Within this domain, model trans-
port is conducted at a spatial resolution of 0.5° x 0.625° with a five-minute timestep,
using archived MERRA-2 reanalysis data.

2.2 Boundary and initial conditions

Boundary conditions (BCs) and initial conditions (ICs) specify the atmospheric COq
mole fractions that are imposed on the nested domain. To generate these conditions, we
conduct a global 4° x 5° 4D-Var inversion that optimizes scaling factors on prior land
and ocean fluxes. These global inversions utilize the same configuration as Byrne et al.
(2020) and match the configuration of the nested inversion. For example, the nested in-
version assimilating in situ CO5 with a CASA-based prior will have boundary conditions
from a global inversion assimilating in situ COy with a CASA prior. To generate the bound-
ary conditions, the optimized global net ecosystem exchange (NEE) and ocean fields are
regrided and a 2° x 2.5° global simulation is run, wherin the BCs and ICs are saved.

2.3 Assimilation window

We use a six-week inversion window and optimize weekly mean land and ocean scal-
ing factors. The middle four weeks of the inversion window are retained as optimized fluxes,
while the first and last weeks are excluded as spin-up and spin-down periods. We con-
duct a batch of eight six-week inversions offset by four weeks, yielding continuous fluxes
from April 8th to November 18th. We run these inversions for both 2018 and 2019, re-
sulting in a total of 16 inversion runs. Figure 2 shows a schematic diagram of this set-

up.

2.4 State vector

CMS-Flux optimizes a vector of scaling factors, ¢ € RM. Surface fluxes are ob-
tained by multiplying the scaling factors with an array of control surface fluxes, f € RY.
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CMS-Flux has the flexibility to optimize scaling factors at coarser spatial and tempo-
ral resolution than the native surface flux resolution, such that M # N. In this case,
c is mapped to the dimension of f using a mask, A € RVxM:

cr=Ac. (1)
The surface fluxes, F € RY are then obtained by calculating the Hadamard product:
F = Cy of. (2)

In this study, we optimize scaling factors at coarser spatial and temporal resolu-
tion compared to the model. Spatially, a mask is applied to optimize fluxes over a 4°x
5° grid, which is truncated at the land-ocean boundary. Temporally, weekly scaling fac-
tors are optimized.

2.4.1 Optimized Land fluxes

We aim to optimize weekly-mean net ecosystem exchange (NEEps;) for land ar-
eas. However, we do this indirectly by optimizing scaling factors on prior heterotrophic
respiration (HRpyior) and subtracting prescribed prior net primary production (NPPpyior):

NEEpost =ct O HRprior - NPPprior- (3)

This choice is driven by the improved performance of this configuration during the spring
and fall when NEE is close to zero, requiring large scaling factors to adjust the NEE flux.
In contrast, HR is always positive and generally significantly larger than zero. The pos-
terior HR fluxes are not interpreted independently but combined with the prior NPP fluxes
to obtain a posterior estimate of NEE for analysis.

Prior HR fluxes are calculated by combining prior estimates of NEE and NPP. An
ensemble of three prior NEE estimates is obtained from the GOSAT+surface+TCCON
experiment of Byrne et al. (2020). These NEE estimates are themselves posterior NEE
estimates from inversions that assimilated GOSAT Xco,, surface in situ COg, and TC-
CON Xco, in a global inversion over 2010-2015. The three different NEE estimates dif-
fer based on prior fluxes used in the inversions, either CASA, SiB3 or FLUXCOM NEE.
We calulate climatological seasonal cycles for each NEE flux over the period of 2010-

2015. We refer to the GOSAT+surface+ TCCON NEE using a CASA prior as NEEgiT_casa,

such that prior HR is calculated as:
HRprior—casa = NEEgrr—casa + NPPprior (4)
Prior NPP is estimated from the bottom-up estimates of gross primary production

(GPP) (see Sec. 5). First, the 2018-2019 mean seasonal cycle of GPP is calculated across
the five estimates, then NEE is taken to be 65% of GPP, NPP i, = 0.65 - GPP.

Uncertainties on prior scaling factors are diagonal (only variances) and are based
on the spread among the three NEE estimates from Byrne et al. (2020). In addition, un-
certainties were inflated when differences between the NEE estimates were small, such
as during the spring/fall transition period and in areas with lower productivity (south-
western USA). Finally, these uncertainties were converted into scale factor space by di-
viding by HRpior. The prior fluxes, posterior fluxes, and associated uncertainties are pro-
vided as supporting information.

2.4.2 Optimized Ocean fluxes

Prior ocean fluxes are similarly derived from the posterior ocean flux estimates of
the GOSAT+surface+ TCCON experiment by Byrne et al. (2020), and uncertainties on
these estimates are diagonal (only variances) and reflect the range among the three ex-
periments that employ different NEE priors.
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2.4.3 Unoptimized Fluxes

In addition to the ocean, NPP, and HR fluxes, the forward simulations incorpo-
rate prescribed fossil fuel emissions, biomass burning emissions, biofuel emissions, and
diurnal NEE. Fossil Fuel emissions used here were specifically made for the v10 OCO-

2 modelling intercomparison project (MIP) (Byrne et al., 2023; Basu & Nassar, 2021).
Biomass burning emissions are derived from the Global Fire Emissions Database ver-
sion 4 (GFED4.1s) and scaled to incorporate diurnal variations in emissions (van der Werf
et al., 2017). Biofuel emissions are obtained from the CASA-GFED4-FUEL dataset. Di-
urnal variations in NEE are based on the diurnal NEE variations from the CASA and
SiB3 models, as described in Byrne et al. (2020). The SiB3 diurnal cycle is employed for
the SiB3-based and FLUXCOM-based NEE priors, while the CASA diurnal cycle is pre-
scribed for the CASA-based inversion. All of these fluxes are regridded from their na-
tive spatial resolution to 0.5°x0.625° (fossil fuel emissions were at 1.0°x1.0° degrees,
biomass burning emissions were at 0.25°x0.25° degrees, and remaining fluxes were at

4° x 5° as archived by Byrne et al. (2020)).

3 Assimilated data
3.1 In situ CO,

In situ CO2 measurements are obtained from version 8.0 of the NOAA GLOBALVIEW
plus Obspack dataset (Schuldt et al., 2022). These data are provided on the X2019 CO»
scale but were back corrected to the X2007 COx scale following Hall et al. (2021). We
apply several filters to the in situ data before assimilation. Surface in situ CO2 measure-
ments are assimilated at their respective height above the surface, with inclusion crite-
ria that the model surface elevation should differ by less than 500 m from the 15 arc-second
ETOPOL1 global elevation dataset (NOAA, 2021). Secondly, we only assimilate data with
the CT_assim flag greater than or equal to one, which indicates data that is deemed as-
similable for the NOAA CarbonTracker system. Finally, only measurements obtained
between 11:00 and 17:00 local time are assimilated (when the atmospheric boundary layer
is well mixed). The sites assimilated are: amt, bck, bmw, bra, brw, cba, cby, chl, cps,
crv, egb, esp, est, etl, fsd, inu, inx, key, kum, lef, lew, 1lb, sct, sgp, uta, wbi, wgc, wkt,
wsa. The sites with CT_assim> 1 that are not assimilated are: mbo, mex, mlo, mwo,
nwr, omp, uts, wsd. We note that some sites with CT _assim= 0 may be assimilable, but
more work is needed to characterize their suitability for assimilation. We apply the CT_MDM
“model-data-mismatch” values as uncertainties on assimilated measurements. All air-
craft data, including the ACT-America campaign data (Davis et al., 2021, 2018; Wei et
al., 2021), are withheld for validation purposes. Monthly maps of data density are shown
in Figure S1.

3.2 0CO-2 Xco,

We employ Xco, retrieved using version 10 of NASA’s Atmospheric COy Obser-
vations from Space (ACOS) full-physics retrieval algorithm (O’Dell et al., 2018). Sub-
sequently, OCO-2 "buddy” super-observations are calculated by averaging individual sound-
ings into super-observations at a spatial resolution of 0.5° x 0.5° within the same or-
bit, assigning equal weights, following the approach by Liu et al. (2017). Monthly maps
illustrating data density are shown in Figure S2.

3.3 Ideal LEO pseudo-Xco,

We generate pseudo-data for a new hypothetical space-based observing system that
provides daily X¢o, retrievals at 13:00 (1 pm) local time. This hypothetical system, re-
ferred to as the ideal LEO mission, could comprise a dense constellation of low Earth
orbit (LEO) sensors. The OSSEs are carried out following the same setup as the real data
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experiments, while the true atmospheric CO5 boundary and initial conditions are im-
plemented for the nested inversion.

For the ideal LEO mission, pseudo-observations are generated as follows: 1 pm ob-
servations within each land 0.5°x0.625° grid cell are filtered to exclude instances of low-
light conditions, cloudy conditions, and when the surface is covered by snow or ice. Frac-
tional snow cover and cloud cover data are obtained from the MERRA-2 reanalysis dataset
(Gelaro et al., 2017). Measurements are excluded for grid cells with a fractional area of
land snow cover (FRSNO) greater than 75% and total cloud area fraction (ISCCPCLD-
FRC) greater than 75% from the International Satellite Cloud Climatology Project (IS-
CCP). Additionally, observations with an atmospheric path exceeding six air-masses are
removed. We allow one super-obs within each gridcell per day. The uncertainty on the
super-obs is defined to be 0.7 ppm, roughly matching OCO-2. Monthly maps of data den-
sity for the ideal LEO mission are shown in Fig. S3.

4 Top-down Experiments

We perform four different sets of experiments, listed in Table 1. The standard ex-
periment employs the nested model with climatological prior fluxes. The global exper-
iment is conducted to examine the impact of model resolution and follows an identical
set-up to the standard experiment but with fluxes regrided to 4°x5°, globally. The IAV
experiment is conducted to examine the impact of prior IAV and follows the same set-
up as the standard experiment but imposes year-specific NPP rather than the 2018-2019
mean (Text. S2).

The OSSEs are conducted to explore the impact of observational coverage in quan-
tifying carbon cycle perturbations resulting from extreme events. These OSSEs cover
the same two year period as the real data inversions. True NEE fluxes for the OSSEs
are generated by combining a climatological NEE seasonal cycle with anomalies from the
bottom-up datasets. Climatological true NEE fluxes are obtained from the CASA-GFED3
model, which undergoes downscaling from monthly to three-hourly fluxes. These fluxes
align with those described in Appendix 3 of Byrne et al. (2020). The same unoptimized
fluxes are prescribed as described in Sec. 2.4.3. Interannual variations in the true fluxes
are introduced by incorporating NEE anomalies taken to be 65% of the mean bottom-
up GPP anomalies across the five datasets (see Sec. 5). Pseudo-observations are then
generated by conducting a forward simulation using the nested model.

Table 1. Time of the Transition Between Phase 1 and Phase 2¢

Experiment ‘ model ‘ Prior ‘ obs ‘ Text section ‘ Figures
. 3,4,6,7, 54, S6,
Standard nested | clim real 7.1,7.2 S8, S9. $10, S11, $12
Global ‘ 4° x 5° ‘ clim ‘ real ‘ 7.2.2 7
1AV ‘ nested ‘

|
year ‘ real ‘ S2 ‘ S13, S14, S15
|

OSSE ‘ nested | clim ‘ pseudo ‘ 7.2.1 5, 6

Each experiment described above consists of an ensemble of inversions that assim-
ilate different data sources and employ different priors. A tree diagram illustrating the
12 individual inversions shown for the “standard” experiment are shown in Fig. 2. The
diagram shows that four sets of inversions are conducted that differ in assimilated data.
The “IS” inversions assimilate in situ COs measurements from the global network of sites
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Figure 2. Tree diagram showing the 12 inversions conducted for the standard experiment
ensemble. For a given experiment, sub-experiments that assimilate different observation using

each prior NEE are performed.

(Sec. 3.1). The “LNLG” inversions assimilate OCO-2 land data (Sec. 3.2), including nadir
and glint retrievals. The “LNLGIS” inversions assimilate both in situ and OCO-2 land
data. Lastly, the “LNLGOGIS” inversions assimilate in situ, OCO-2 land data, and OCO-
2 ocean glint retrievals. An additional “ideal LEO” sub-experiment is included for the

OSSEs to examine the impact of expanded observations (Sec. 3.3). For each of these datasets,

three inversions are performed that differ in prior NEE (Sec. 2.4.1), ocean fluxes (Sec. 2.4.2),
BCs and ICs (Sec. 2.2).

5 Remote-sensing bottom-up AGPP and ANEE estimates

We generate an ensemble of five bottom-up AGPP estimates by combining a num-

ber of remote-sensing-based GPP datasets. Four of these are obtained from existing datasets:

8 day FLUXCOM remote-sensing-based (RS) GPP (Jung et al., 2020), FluxSat Version
2 (Joiner & Yoshida, 2020), GOSIF GPP (Li & Xiao, 2019), and the NIRy-based GPP
estimates of L. He et al. (2022). All of these data are regridded from their native res-
olution to weekly temporal resolution and 0.5° x 0.625° spatial resolution.

In addition, we estimate GPP directly from TROPOMI SIF data. This followed
the same approach as Yin et al. (2020). Two GPP estimates are then calculated using
land-cover-dependent SIF-to-GPP scaling factors from Li et al. (2018) and Y. Sun et al.
(2017), which were adjusted by a factor of 0.64 to account for difference retrieval waveleg-
nths between OCO-2 and TROPOMI (740 nm vs 757 nm). These factors were then ap-
plied to gridded SIF data (0.08333° spatial and 8 day temporal resolution), while account-
ing for the fractional vegetation cover within each gridcell. The GPP estimates were then
regridded to 0.5°x0.625° spatial resolution. Any data gaps within the growing season
are then filled by linear interpolation over time, while GPP is assumed to be zero for data
gaps outside the growing season. Finally the two GPP estimates are averaged.



302 From these GPP datasets, we estimate an anomaly in NEE between 2018 and 2019
303 by assuming the NEE anomaly is equal to the NPP anomaly, which is itself related to
304 the GPP anomaly by:

ANEE = —ANPP = —0.60 x AGPP (5)

30 The factor of 0.60 is an estimate of the carbon use efficiency (CUE), and is a relatively

306 high estimate (Manzoni et al., 2018; Y. He et al., 2018), though may be representative

307 of corn (S. Yu et al., 2023; Campioli et al., 2015). We assume an error of 0.1 in CUE,

308 and perform error analysis using factors of 0.5 and 0.7. The conversion of ANPP to ANEE
309 assumes that AHR is negligible. This is likely a poor assumption, but a limitation of remote-
310 sensing estimates that are insensitive to HR variations. Previously, Yin et al. (2020) showed
311 that bottom-up ANEE estimated assuming negligible AHR could reasonably reproduce

312 observed atmospheric CO5 enhancements during the 2019 US Midwest floods relative

313 to 2018, providing some evidence that AHR variations have a secondary impact.

314 6 State crop yields and NPP

315 Crop yields, which represents the amount of crop biomass removed from the field
316 during harvest events, have been estimated using county-level crop yield data from the
317 US Department of Agriculture (USDA) - National Agricultural Statistics Service (NASS)
318 (USDA-NASS, 2020). The carbon content of crop yields was derived from the relation-
319 ship:
Yc = Ynass X DM x Cg, (6)

320 where Y¢ is the crop yield, in units of carbon, Ynass is the annual county-level crop yield
321 data from USDA-NASS, DM is the dry matter content for each crop, and Ct is carbon
22 content crop factor. Crop NPP (NPP,,,), representing the net carbon uptake by crops,

323 was derived from the crop yield estimates using the following equation:
1
NPPcrop = Ynass X ﬁ X (1 + RRS) x DM x Cg, (7)
324 where HI is the harvest index for each crop, i.e., the proportion of harvested material
325 (e.g., grains) in relation to total crop aboveground biomass; and RRS is the root:shoot
326 ratio for each crop. We used crop-specific factors for dry matter, root:shoot ratios, har-

307 vest indices, and carbon content following the methods in West et al. (2010, 2011) and

328 Ogle et al. (2015). Crop yields and NPP were estimated for over 20 crops, which together
320 represented >99% of total US crop production (USDA-NASS, 2020). Uncertainty in es-

330 timates were propagated through a Monte Carlo approach with 10,000 replicates and prob-

331 ability distribution functions for all input data and factors. The results are based on the
33 mean and 95% confidence intervals from the final distribution of simulated values. We
333 note that NASS only included uncertainty in crop yield data for 2020 so we assumed a
334 similar level of uncertainty in crop yields for the other years.

335 7 Results
336 7.1 2019 minus 2018 NEE anomalies

337 Figure 3a—b illustrates the difference in June-July NEE between 2019 and 2018

338 (ANEE = NEE5p19 — NEEgg15) for both the remote-sensing bottom-up (ensemble mean)
339 and top-down (LNLGOGIS) estimates. The analyses reveal a significant decrease in COx
340 uptake (positive ANEE) specifically in the US Midwest region. This pronounced pos-

341 itive ANEE signal in the US Midwest stands out compared to the rest of the continent.

342 Figure 3c presents the 5 week running mean time series of ANEE over the US Midwest.
33 Both the top-down and bottom-up estimates depict a positive ANEE signal through-
344 out Jun—Jul, with the anomaly peaking towards the end of June. However, during Aug-
35 Sep, the top-down and bottom-up estimates suggest a negative ANEE in the US Mid-
346 west. Across the rest of the continent (Figure 3d), anomalies are weaker. The top-down
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Figure 3. (a) Bottom-up and (b) top-down (LNLGOGIS) spatial patterns of June-July mean
ANEE (NEE2019 — NEE2018) at 4° x 5° spatial resolution. (¢) US Midwest and (d) rest of North
America 5-week-mean ANEE. The US Midwest is defined as the area within Illinois, Indiana,
Towa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin and is indicated by the black outline
in panels (a) and (b). The shading shows the range around the mean estimate for the inversions

using three different priors and for the five bottom-up GPP datasets.

estimate suggests a positive anomaly outside the US Midwest during August, while the

bottom-up estimate suggests no significant anomalies. The supplementary materials dis-
play the maps and timeseries for the other top-down experiments (Fig. S4) and individ-
ual bottom-up datasets (Fig. S5).

Figure 4 shows US Midwest ANEE for each of the top-down and bottom-up esti-
mates. In addition, an estimate of the anomaly in net primary production for crops (ANPP )
derived from crop yield data is shown. All estimates suggest positive ANEE over the study
period (-6-85 TgC for top-down, 15-78 TgC for bottom-up, and 36-65 TgC for yield-
based estimates). We find that June-July ANEE drives the annual anomaly with up-
take reduced by 24-76 TgC in top-down estimates and 38-131 TgC in bottom-up esti-
mates. The bottom-up estimates suggest this is moderated when integrating across the
growing season due to greater carbon uptake during Aug-Sep (-56 TgC to -15 TgC), while
the top-down estimates are less consistent during Aug-Sep, ranging from -37 TgC to 34 TgC.
Figure S6 demonstrates that the bottom-up and top-down ANEE generally show sim-
ilar June-July ANEE across the contiguous United States (CONUS) Climate Assessment
Regions. In particular, we find that all estimates obtain negative ANEE across the South-
ern Great Plains (-22 to -46 TgC), resulting from the 2018 drought (Turner et al., 2021).

These findings suggest that both in situ and OCO-2 data provide adequate obser-
vational coverage to detect the June-July ANEE signal resulting from the 2019 US Mid-
west floods relative to 2018. However, some differences are also evident. The experiments
disagree in the sign of Aug-Sep ANEE. The IS experiment shows negative Aug-Sep ANEE
that partially compensates for the positive June-July ANEE. Conversely, the LNLG ex-
periment gives positive Aug—Sep ANEE but the smallest June—July ANEE. There are
some spatial differences as-well, for example, the IS experiment suggests larger positive
ANEE in western Canada and negative ANEE in the southeast during Jun-Jul than the
other experiments (Fig. S4). The LNLGIS and LNLGOGIS experiments yield quite sim-
ilar results. The relative accuracy of these different estimates is challenging to evaluate,
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Figure 4. Top-down ANEE, bottom-up ANEE, and yield-based ANPP for crops (ANPP0p)
over the US Midwest. ANEE is calculated for (a) the entire inversion period (April 8th — Nov
18th), (b) June-July and (c¢) Aug-Sep. The top-down estimates show the mean and range ob-
tained using three different priors. Uncertainty bars for the top-down estimates show the range
using three priors, while the uncertainties on the bottom-up show the range of using carbon use
efficiencies of 0.5-0.7.
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and all experiments exhibit good agreement with independent aircraft COs measurements
during 2018 and 2019 (Text S1, Fig. S7-S12). The disparities between experiments may
arise from differences in observational coverage and this hypothesis is examined in Sec. 7.2.1.

The bottom-up estimates show some notable differences in the magnitude of ANEE
over the US Midwest and the spatial structure of ANEE outside the US Midwest (Fig. S5).
FLUXCOM consistently displays the weakest ANEE signal, and has been previously shown
to underestimate interannual variations in NEE and GPP (Jung et al., 2020). Outside
the US Midwest, the NIRy-based estimate shows negative values across the western half
of North America, which are not observed in any other estimates, while the TROPOMI-
based estimate indicates positive ANEE across a large portion of eastern Canada. Con-
sequently, the net June-July ANEE signal outside the US Midwest varies across datasets,
ranging from -218 TgC to 187 TgC.

7.2 Sensitivity experiments
7.2.1 Impact of observational coverage

Although both the in situ network and OCO-2 were able to identify a positive US
Midwest ANEE signal, we found substantial differences between the top-down exper-
iments. Here, we perform OSSEs to investigate whether gaps in observational coverage
could explain these differences. Further, we test whether increased observational cover-
age (in an ideal LEO constellation) would substantially improve top-down estimates of
extreme-event-driven carbon cycle perturbations.

Figure 5 shows the true and posterior ANEE for the OSSEs. All OSSEs recover
positive ANEE to the US Midwest, consistent with the real data experiments. However,
June-July US Midwest ANEE is underestimated by 43% for IS, 75% for LNLG, 48% for
LNLGOGIS and 15% for the ideal LEO constellation. In addition, the inversions tend
to introduce a positive June-July ANEE outside the US Midwest that is not present in
the truth. Over June-July, the true continental-scale ANEE is 89 TgC, while the mean
inversion estimates are 163 TgC (error of +74 TgC) for IS, 93 TgC (error of +4 TgC)
for LNLG, 68 TgC (error of -21 TgC) for LNLGOGIS, and 93 TgC (error of +4 TgC)
for ideal LEO. A similar large continental-scale positive June—July ANEE was found for
the real data IS experiment (Fig. S4ci). One possible explanation is that the limited spa-
tial coverage of the in situ (Fig. S1) data may limit the ability to capture aggregate continental-
scale budgets using a one-way nested system.

Overall, the LNLG OSSE shows the worst performance at isolating the US Mid-
west ANEE. We suggest that this could be related to interannual variations in the ob-
servational coverage. Figure 6a shows that the number of LNLG weekly samplings over
the US Midwest can be quite variable from year to year. In particular, there are only
16 super-obs in the US Midwest during the three week period of June 11, 2019 to July
2 2019. This coincides with near zero ANEE for both the real data LNLG inversion and
OSSE (Fig. 6b), and the period with the largest error in ANEE for the OSSE (Fig. 6c¢).
These results suggest that data gaps in OCO-2, particularly differences in observational
coverage between years, limit our ability to estimate inter-annual variations in NEE at
high spatio-temporal resolution.

The increased sampling from combining the datasets (LNLGOGIS) appears to mod-
erately improve performance, particularly in isolating June-July ANEE to the US Mid-
west (relative to LNLG) and better capturing the continental-scale ANEE (relative to
IS). However, the ideal LEO constellation results in much improved performance in both
space and time. The ideal LEO constellation reduces June-July RMSE across 4° x 5°
regions by 34-51% and the 5-week-mean ANEE US Midwest RMSE by 55-73%. This
comparison suggests that top-down estimates of extreme-event-driven perturbations to
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Figure 5. ANEE estimates for the OSSEs. Panel (ai) shows the true June-July ANEE maps,
while panels (aii)—(av) show the OSSE posterior June-July ANEE maps and RMSE across grid-
cells (gCm~2d™"). The net US Midwest Jun-Jul ANEE (PgC) is shown for each OSSE in panel
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carbon uptake remain observationally-limited and that expanded space-based observ-
ing systems will improve these estimates.

7.2.2 Comparison between nested and global inversions

The nested CMS-Flux inversion system in this study offers both advantages and
disadvantages compared to a global CMS-Flux inversion system. One major advantage
is the ability to run transport at a higher resolution (0.5°x0.625°) compared to the global
system (4°x5°). This higher resolution enables tracer transport to be closer to the par-
ent model, as spatial averaging of meteorological fields can average out eddy transport,
particularly affecting vertical motions (Stanevich et al., 2020). Additionally, a higher res-
olution model grid reduces representativeness errors, allowing better representation of
fine-scale features that influence observations, such as topography. The primary disad-
vantage of the one-way nested system used in this study is the assumption of perfect bound-
ary conditions and the inability to assimilate atmospheric COy observations outside the
nested domain. In a global inversion, fluxes over North America would impact measure-
ments downwind, providing a powerful constraint on large-scale fluxes, including the net
North American flux (Liu et al., 2015). A bias in flux at the continental scale would af-
fect CO; fields across the entire Northern Hemisphere. Since the nested inversion lacks
this constraint, significant errors in continental-scale fluxes may go undetected. Further-
more, biases in the imposed boundary COs fields can propagate into optimized fluxes.

In order to assess the performance of the one-way nested inversion, we compare the
obtained ANEE with the global version of CMS-Flux using the same inversion config-
uration, whenever possible. Figure 7 presents the results for both the global and nested
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Figure 6. Weekly timeseries of (top) number of OCO-2 super-obs in the US Midwest for

2018 and 2019. (middle) Weekly ANEE in the US Midwest for the truth, OCO-2 OSSE and real
OCO-2 LNLG experiment. (bottom) Difference between posterior and true ANEE for the OCO-2
OSSE. The shading shows the range around the mean estimate for the inversions using three
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Figure 7. Comparison of the global 4° x 5° and nested inversion results. Maps of June—July
ANEE from the LNLGOGIS experiment are shown for (a) the global 4° x 5° inversion and (b)
the nested inversion. Weekly ANEE in the US Midwest after applying a 5-week running mean
are also show for (c) the US Midwest and (d) rest of North America.
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versions of CMS-Flux. It is observed that the nested version of CMS-Flux effectively iso-
lates ANEE to the US Midwest region during June—July. In contrast, the global model
exhibits spatially broader positive ANEE across the US Midwest and Great Plains, re-
sulting in a significantly reduced ANEE estimate for the US Midwest during June—July.
The spatial pattern of ANEE for the nested model aligns more closely with the bottom-
up estimate, suggesting that this system better captures the overall event (although the
true ANEE is not known). This indicates that, considering the observational coverage
provided by LNLGOGIS, the benefits of reduced transport and representativeness er-
rors in the nested model outweigh the detrimental impact of a limited domain.

We note that achieving good performance with nested version of CMS-Flux was
challenging, and required a number of trial-and-error inversions. This included varying
the size of the state vector spatially (0.5°x0.625° versus 4° x5° grid) and temporally
(weekly, bi-weekly, monthly intervals). It also involved adjusting the prior constraints
(optimizing HR rather than NEE, adjusting prior uncertainties). We suggest that these
challenges are due to greater regularization requirements for the nested model in com-
parison to the global model. The sensitivities of observations to surface fluxes are lim-
ited to 1-2 weeks by the one-way nesting, such that large-scale constraints are imposed
by the boundary conditions (Feng, Lauvaux, Davis, et al., 2019; Feng, Lauvaux, Keller,
et al., 2019). Thus, the flux signal in the domain is generally much smaller than for the
global model, where downwind observations provide important information for upwind
continental-scale regions (Liu et al., 2015). We suggest that imposing an error correla-
tion length between state-vector elements may be an effective approach for regulariza-
tion in a nested inversion context (see Sec. 8.1), however, this is beyond the scope of our
current study.

8 Discussion and Conclusions

Both top-down and bottom-up approaches capture a flood-induced reduction in net
carbon uptake during the 2019 US Midwest floods relative to 2018. The top-down ap-
proach gave mean estimates of 11 TgC (IS), 39 TgC (LNLG), 57 TgC (LNLGIS), 42 TgC
(LNLGOGIS) for US Midwest growing season ANEE. Meanwhile, the bottom-up datasets
gave a mean estimate of 39 TgC (range: 15-78 TgC). These magnitudes are significant
compared to anthropogenic emissions, amounting to as much as 28% of the US Midwest’s
annual fossil fuel emissions (300 TgCyr~! for 2019, U.S. Energy Information Adminis-
tration (2023)). In addition, this anomaly is comparable to the year-to-year variations
in fossil fuel emissions (SD: 25 TgCyr~!), even including the reduction of regional emis-
sions by 36 TgCyr~! due to COVID-19 lockdowns in 2020.

In the context of more frequent heat and precipitation extremes (Seneviratne et
al., 2021), accurate estimates of the carbon cycle responses will be critical for monitor-
ing carbon budgets and evaluating carbon-climate feedbacks. The results of this study
show that both top-down and bottom-up approaches demonstrate skill in capturing ANEE
relative to 2018 resulting from the 2019 Midwest floods, however a number of deficien-
cies were also identified. In the following sub-sections, we highlight current challenges
and opportunities in quantifying carbon cycle extremes.

8.1 Top-down

Observational gaps in atmospheric CO5 observations are identified as a key lim-
itation in applying top-down methods to quantify extreme-event-driven ANEE, consis-
tent with recent studies of the European carbon budget (W. He et al., 2023; Munassar
et al., 2022; Monteil et al., 2020; Thompson et al., 2020). Through a series of OSSE ex-
periments, it was demonstrated that gaps in both the in situ network and OCO-2 sam-
pling impact the accuracy of ANEE estimates. While assimilating these two datasets con-
currently partially mitigates the issue, fully resolving the problem requires expanded ob-
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servations. Coverage similar to the ideal LEO observing system could be developed by
combining multiple individual satellites, and motivates future studies that assimilate Xco,
retrievals from multiple space-based observing systems concurrently (e.g., GOSAT, OCO-
2, and OCO-3). In addition, efforts should be made to ensure consistency in Xco, re-
trievals between existing and planned missions (e.g., CO2M, GOSAT-GW). Expanding
the in situ network would also likely enhance the ability to capture regional flux anoma-
lies more effectively, however, this was not specifically explored.

Although current observing gaps are found to be a major limitation, there may be
approaches to better regularize the inverse problem and reduce the impact of these gaps.
In particular, applying off-diagonal co-variances in the prior error covariance matrix could
be employed to adjust fluxes where observations are missing (Chen et al., 2023). Apply-
ing spatial co-variances will likely be especially important for in situ inversions, while
applying temporal co-variances may be most useful for OCO-2 X¢o, inversions. Of course,
such an approach will only improve flux estimates if spatial and temporal co-variances
are truly present, such that this approach will be limited by a correlation length scale.

In addition, imposing realistic prior IAV could also be a fruitful approach, as has been
done in previous studies evaluating the 2019 US Midwest floods (Yin et al., 2020; Bal-
ashov et al., 2023). However, high-confidence is needed in imposed prior IAV, as inac-
curate prior IAV can significantly degrade posterior TAV estimates (Byrne et al., 2019).
Text S2 and Figs. S13-15 show that imposing bottom-up IAV in the prior results in larger
posterior ANEE anomalies during the Midwest Floods for all experiments. This is con-
sistent with the ANEE anomalies being underestimated when using climatological pri-
ors, as was found in the OSSEs.

Finally, this study investigated the utility of a one-way nested version of CMS-Flux
with 0.5°x0.625° spatial resolution relative to the global model at 4°x5° degree spa-
tial resolution. We note that developing a nested inversion system involved considerable
effort in tuning the state vector structure, assimilation window, and prior constraints.
Nevertheless, we found that the nested model better allocated flood-induced ANEE to
the US Midwest, suggesting that the improved model transport and observation repre-
sentation of the nested model improved the overall performance relative to the global
model, consistent with several recent studies (Monteil et al., 2020; Hu et al., 2019). How-
ever, the nested model has some disadvantages, especially the inability to assimilate down-
wind observations outside the model domain that may limit the utility of the nested model
in other applications. Transport uncertainty and boundary condition errors may lead to
significant challenges for nested inversions (Munassar et al., 2023; Kim et al., 2021; Chen
et al., 2019; Lauvaux et al., 2012), but were not obvious in our analyses. We note that
high-resolution models will be needed to take advantage of upcoming wide-swath sam-
pling missions, such as CO2M (~250 km swath) or GOSAT-GW (~400 km swath).

8.2 Bottom-up

Remote-sensing-based bottom-up estimates of ANEE provided a consistent picture
of reduced net uptake during the 2019 Midwest floods relative to 2018 but differed sig-
nificantly in magnitude. The primary source of this variability stems from translating
space-based reflectance or SIF observations to GPP, leading to a range in AGPP between
datasets of 120% of the mean. Indeed, estimating the magnitude of GPP from remote
sensing datasets is challenging due to satellite signals that could be influenced by fac-
tors such as cloud coverage and soil background, in addition to calibration that is pre-
dominantly relying on benchmarks provided by eddy covariance sites. We encourage re-
search into approaches that can reduce uncertainties on large-scale GPP magnitudes, pos-
sibly through top-down constraints from Carbonyl Sulphide.

Additional uncertainties were introduced in estimating ANEE from AGPP. Due
to the inherent limitations of remote sensing, which can track GPP but not the total ecosys-
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tem respiration (the sum of heterotrophic and autotrophic respiration), certain assump-
tions must be made. First, to estimate autotrophic respiration, we assumed that AGPP
and ANPP can be related through a constant carbon use efficiency (CUE) of 0.60 with

an uncertainty of range 20% (0.5-0.7), which encompasses most literature estimates. How-
ever, in reality the CUR parameter varies across vegetation type, age, and management
practices (Campioli et al., 2015; DeLucia et al., 2007; Manzoni et al., 2018; Y. He et al.,
2018; S. Yu et al., 2023). Second, we assumed that the influence of AHR on the ANEE
was negligible. The secondary impact of AHR is supported by Yin et al. (2020), who were
able to reasonably reproduce observed atmospheric CO5 enhancements during the 2019
US Midwest floods while neglecting AHR variations. Still, it is important to note that
HR is sensitive to variations in temperature and moisture. Terrestrial biosphere mod-

els could serve as potential tools for estimating AHR (e.g., Balashov et al. (2023)) as re-
mote sensing does not adequately capture variations in HR, which is significantly influ-
enced by the availability of labile carbon. However, the accuracy of these model-driven
estimates remains challenging to verify.

9 Open Research

Once accepted for publication, the prior and posterior fluxes, TROPOMI-based GPP,
and NIRy-based GPP will be archived with a DOI. During the review processes the data
are available by contacting Brendan Byrne. The atmospheric CO5 inversion analyses per-
formed in this study used the CMS-Flux model, which is based on the GEOS-Chem Ad-
joint model that can be accessed from the GEOS-Chem Wiki (https://wiki.seas.harvard.edu/geos-
chem). OCO-2 X0, Lite files can be downloaded from the GES DISC (https://disc.gsfc.nasa.gov).

In Situ CO2 measurements (Schuldt et al., 2022) can be downloaded from https://gml.noaa.gov/ccgg/obspack/.
GFED biomass burning emissions (van der Werf et al., 2017) were downloaded from https://globalfiredata.org/.
Fossil fuel emissions (Basu & Nassar, 2021) were downloaded from https://doi.org/10.5281 /zenodo.4776925.

MERRA-2 reanalysis data (Gelaro et al., 2017) was downloaded from https://disc.gsfc.nasa.gov/.
TROPOMI SIF data are accessed online at https://data.caltech.edu/records/1347 (DOI:
10.22002/D1.1347). FluxSat Version 2 (Joiner & Yoshida, 2021) were downloaded from

the ORNL DAAC (https://daac.ornl.gov). GOSIF GPP (Li & Xiao, 2019) were down-

loaded from http://data.globalecology.unh.edu/. FLUXCOM GPP (Jung et al., 2020)

was downloaded from the aata portal of the Max Planck Institute for Biogeochemistry
(https://www.bgc-jena.mpg.de/geodb/projects/Home.php).
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