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Abstract28

Extreme climate events are becoming more frequent, with poorly understood implica-29

tions for carbon sequestration by terrestrial ecosystems. A better understanding will crit-30

ically depend on accurate and precise quantification of ecosystems responses to these events.31

Taking the 2019 US Midwest floods as a case study, we investigate current capabilities32

for tracking regional flux anomalies with “top-down” inversion analyses that assimilate33

atmospheric CO2 observations. For this analysis, we develop a regionally nested version34

of the NASA Carbon Monitoring System-Flux (CMS-Flux) that allows high resolution35

atmospheric transport (0.5�⇥0.625�) over a North America domain. Relative to a 201836

baseline, we find US Midwest growing season net carbon uptake is reduced by 11-57 TgC37

(3–16%) for 2019 (inversion mean estimates across experiments). These estimates are38

found to be consistent with independent “bottom-up” estimates of carbon uptake based39

on vegetation remote sensing. We then investigate current limitations in tracking regional40

carbon emissions and removals by ecosystems using “top-down” methods. In a set of ob-41

serving system simulation experiments, we show that the ability to recover regional car-42

bon flux anomalies is still limited by observational coverage gaps for both in situ and satel-43

lite observations. Future space-based missions that allow for daily observational cover-44

age across North America would largely mitigate these observational gaps, allowing for45

improved top-down estimates of ecosystem responses to extreme climate events.46

Plain Language Summary47

Extreme climate events, such as floods or heatwaves, can have major impacts on48

the carbon cycle. For example, widespread flooding in the US Midwest during 2019 de-49

layed the planting of crops leading to reduced plant growth and carbon uptake relative50

to 2018. Here, we test how well this reduction in carbon uptake can be inferred from mea-51

surements of atmospheric CO2. We find that these data can identify reduced net car-52

bon uptake to the US Midwest during the 2019 floods, but that sparse observational cov-53

erage limits our ability to quantify the anomaly in net carbon uptake.54

1 Introduction55

Extreme events, including heat and precipitation extremes, are becoming more fre-56

quent (Shenoy et al., 2022; Q. Sun et al., 2021; Kirchmeier-Young & Zhang, 2020; Senevi-57

ratne et al., 2021). These events have significant implications for carbon sequestration58

in terrestrial ecosystems, often causing carbon losses in a single year equal to many years59

of carbon sequestration (Ciais et al., 2005; Byrne et al., 2021). This is concerning be-60

cause Nature-based Climate Solutions (NbCSs), which aim to enhance the terrestrial car-61

bon sink through improved land management, have been proposed as an important tool62

to mitigate CO2 emissions (Fargione et al., 2018). The increasing frequency of extreme63

events may disrupt this process, creating a carbon-climate feedback where extreme-event-64

driven carbon emissions reduce the e↵ectiveness of NbCSs (Zscheischler et al., 2018; Barkhor-65

darian et al., 2021). Consequently, there is an urgent need to quantify the impact of ex-66

treme events on carbon uptake by ecosystems for policy programs and other climate ap-67

plications.68

“Top-down” methods o↵er an approach for estimating biosphere-atmosphere CO269

fluxes based on observations of atmospheric CO2. Typically, Bayesian inverse methods70

are used to estimate optimal surface fluxes based on constraints from prior information71

and atmospheric CO2 observations. Although historically data limited, these techniques72

are increasingly used to quantify regional carbon cycle responses to extreme events, thanks73

to expansions of in situ CO2 measurements and the introduction of space-based retrievals74

of column-averaged dry-air CO2 mole fractions (XCO2) from missions like the Orbiting75

Carbon Observatory 2 (OCO-2) (Feldman et al., 2023; Byrne et al., 2021). Still, current76
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capabilities for tracking extreme events are not well understood. This study aims to im-77

prove our characterization of these capabilities and identify current limitations.78

As a case study, we examine the carbon cycle anomalies from the 2019 US Mid-79

west floods relative to 2018. Intense precipitation during the spring of 2019 (> 2� above80

average) led to widespread flooding across the US Midwest, a region that accounts for81

40% of world corn and soybean production (Yin et al., 2020). Inundation delayed crop82

planting by 2–3 weeks relative to 2018 across the region, with an additional reduction83

of 6.8 million hectares in the total planted area (see Fig. 1 of Yin et al. (2020)). These84

factors led to a 16-day shift in the seasonal cycle of photosynthesis relative to 2018, along85

with a 15% lower peak value (Yin et al., 2020). In turn, crop yields across the US Mid-86

west were reduced by ⇠14%, and a decrease in net carbon uptake of ⇠0.1 PgC was in-87

ferred relative to the preceding years (Yin et al., 2020; Balashov et al., 2023). The rel-88

atively simple (delayed planting) and well documented carbon cycle perturbation dur-89

ing this event makes it an ideal case study for studying our ability to quantify carbon90

cycle perturbations using top-down and bottom-up methods. We note that, as we use91

the single year of 2018 as a baseline, the NEE anomalies inferred will be due to carbon92

cycle anomalies in both years.93

To perform our analysis, we introduce a regionally nested version of the CMS-Flux94

inversion system with high-resolution (0.5�⇥0.625�) atmospheric transport over North95

America (see Sec. 2). This version o↵ers advantages over the coarse-resolution (4�⇥5�)96

global version of CMS-Flux. It reduces transport errors introduced by the coarsening of97

reanalysis winds (Stanevich et al., 2020; K. Yu et al., 2018) and better represents assim-98

ilated CO2 observations, resulting in improved localization of extreme-event-driven CO299

flux anomalies (Sec. 7.2.2).100

The first objective of this study is to evaluate how well existing atmospheric ob-101

serving systems can quantify flood-induced reductions in carbon uptake during 2019 rel-102

ative to 2018. We conduct four inversions that assimilate (1) in situ CO2 measurements103

(IS), (2) OCO-2 land XCO2 retrievals (LNLG), (2) both insitu and OCO-2 land data (LNL-104

GIS), or (4) in situ, OCO-2 land and ocean data (LNLGOGIS)(Sec. 4). Climatological105

prior fluxes are employed in each experiment, allowing us to attribute posterior anoma-106

lies in carbon uptake between years solely to the assimilation of atmospheric CO2 data.107

We then compare these estimates with an independent ensemble of remote-sensing bottom-108

up estimates and with crop-yield data to assess their overall consistency (Sec. 7.1).109

The second objective of this study is to assess the impact of existing observational110

coverage gaps and the potential expansion of space-based XCO2 measurements on our111

ability to detect extreme-event-driven anomalies in CO2 fluxes. To evaluate the e↵ect112

of expanded space-based observations, we devise a hypothetical observing system that113

provides daily XCO2 retrievals at 13:00 local time (similar to OCO-2). Subsequently, we114

conduct observing system simulation experiments (OSSEs) for existing in situ data and115

OCO-2 data as-well as the hypothetical observing system. For each OSSE, we evaluate116

the e↵ectiveness in capturing extreme-event-driven CO2 flux anomalies (Sec. 7.2.1). Our117

aim is to gain a deeper understanding of how observational coverage impacts our abil-118

ity to quantify the influence of extreme events on CO2 fluxes.119

2 Nested CMS-Flux inversion system120

A one-way nested version of CMS-Flux was developed in this study. Like the global121

model, this system employs four-dimensional variational data assimilation (4D-Var) to122

optimize scaling factors on prior land and ocean fluxes. In this section, we describe the123

nested transport model (Sec. 2.1), boundary and initial conditions (Sec. 2.2), assimila-124

tion window (Sec. 2.3), and state vector (Sec. 2.4).125
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Figure 1. Schematic diagram of the nested CMS-Flux inversion system for North America.

2.1 Nested transport model126

We establish a one-way nested inversion system covering the North America region,127

spanning from 40� W to 167.5� W and 14� N to 76� N. Within this domain, model trans-128

port is conducted at a spatial resolution of 0.5� ⇥ 0.625� with a five-minute timestep,129

using archived MERRA-2 reanalysis data.130

2.2 Boundary and initial conditions131

Boundary conditions (BCs) and initial conditions (ICs) specify the atmospheric CO2132

mole fractions that are imposed on the nested domain. To generate these conditions, we133

conduct a global 4�⇥5� 4D-Var inversion that optimizes scaling factors on prior land134

and ocean fluxes. These global inversions utilize the same configuration as Byrne et al.135

(2020) and match the configuration of the nested inversion. For example, the nested in-136

version assimilating in situ CO2 with a CASA-based prior will have boundary conditions137

from a global inversion assimilating in situ CO2 with a CASA prior. To generate the bound-138

ary conditions, the optimized global net ecosystem exchange (NEE) and ocean fields are139

regrided and a 2� ⇥ 2.5� global simulation is run, wherin the BCs and ICs are saved.140

2.3 Assimilation window141

We use a six-week inversion window and optimize weekly mean land and ocean scal-142

ing factors. The middle four weeks of the inversion window are retained as optimized fluxes,143

while the first and last weeks are excluded as spin-up and spin-down periods. We con-144

duct a batch of eight six-week inversions o↵set by four weeks, yielding continuous fluxes145

from April 8th to November 18th. We run these inversions for both 2018 and 2019, re-146

sulting in a total of 16 inversion runs. Figure 2 shows a schematic diagram of this set-147

up.148

2.4 State vector149

CMS-Flux optimizes a vector of scaling factors, c 2 RM . Surface fluxes are ob-150

tained by multiplying the scaling factors with an array of control surface fluxes, f 2 RN .151
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CMS-Flux has the flexibility to optimize scaling factors at coarser spatial and tempo-152

ral resolution than the native surface flux resolution, such that M 6= N . In this case,153

c is mapped to the dimension of f using a mask, A 2 RN⇥M :154

cf = Ac. (1)

The surface fluxes, F 2 RN are then obtained by calculating the Hadamard product:155

F = cf � f . (2)

In this study, we optimize scaling factors at coarser spatial and temporal resolu-156

tion compared to the model. Spatially, a mask is applied to optimize fluxes over a 4�⇥157

5� grid, which is truncated at the land-ocean boundary. Temporally, weekly scaling fac-158

tors are optimized.159

2.4.1 Optimized Land fluxes160

We aim to optimize weekly-mean net ecosystem exchange (NEEpost) for land ar-161

eas. However, we do this indirectly by optimizing scaling factors on prior heterotrophic162

respiration (HRprior) and subtracting prescribed prior net primary production (NPPprior):163

NEEpost = cf �HRprior �NPPprior. (3)

This choice is driven by the improved performance of this configuration during the spring164

and fall when NEE is close to zero, requiring large scaling factors to adjust the NEE flux.165

In contrast, HR is always positive and generally significantly larger than zero. The pos-166

terior HR fluxes are not interpreted independently but combined with the prior NPP fluxes167

to obtain a posterior estimate of NEE for analysis.168

Prior HR fluxes are calculated by combining prior estimates of NEE and NPP. An169

ensemble of three prior NEE estimates is obtained from the GOSAT+surface+TCCON170

experiment of Byrne et al. (2020). These NEE estimates are themselves posterior NEE171

estimates from inversions that assimilated GOSAT XCO2 , surface in situ CO2, and TC-172

CON XCO2 in a global inversion over 2010–2015. The three di↵erent NEE estimates dif-173

fer based on prior fluxes used in the inversions, either CASA, SiB3 or FLUXCOM NEE.174

We calulate climatological seasonal cycles for each NEE flux over the period of 2010–175

2015. We refer to the GOSAT+surface+TCCON NEE using a CASA prior as NEEGIT�CASA,176

such that prior HR is calculated as:177

HRprior�CASA = NEEGIT�CASA +NPPprior (4)

Prior NPP is estimated from the bottom-up estimates of gross primary production178

(GPP) (see Sec. 5). First, the 2018–2019 mean seasonal cycle of GPP is calculated across179

the five estimates, then NEE is taken to be 65% of GPP, NPPprior = 0.65 ·GPP.180

Uncertainties on prior scaling factors are diagonal (only variances) and are based181

on the spread among the three NEE estimates from Byrne et al. (2020). In addition, un-182

certainties were inflated when di↵erences between the NEE estimates were small, such183

as during the spring/fall transition period and in areas with lower productivity (south-184

western USA). Finally, these uncertainties were converted into scale factor space by di-185

viding by HRprior. The prior fluxes, posterior fluxes, and associated uncertainties are pro-186

vided as supporting information.187

2.4.2 Optimized Ocean fluxes188

Prior ocean fluxes are similarly derived from the posterior ocean flux estimates of189

the GOSAT+surface+TCCON experiment by Byrne et al. (2020), and uncertainties on190

these estimates are diagonal (only variances) and reflect the range among the three ex-191

periments that employ di↵erent NEE priors.192
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2.4.3 Unoptimized Fluxes193

In addition to the ocean, NPP, and HR fluxes, the forward simulations incorpo-194

rate prescribed fossil fuel emissions, biomass burning emissions, biofuel emissions, and195

diurnal NEE. Fossil Fuel emissions used here were specifically made for the v10 OCO-196

2 modelling intercomparison project (MIP) (Byrne et al., 2023; Basu & Nassar, 2021).197

Biomass burning emissions are derived from the Global Fire Emissions Database ver-198

sion 4 (GFED4.1s) and scaled to incorporate diurnal variations in emissions (van der Werf199

et al., 2017). Biofuel emissions are obtained from the CASA-GFED4-FUEL dataset. Di-200

urnal variations in NEE are based on the diurnal NEE variations from the CASA and201

SiB3 models, as described in Byrne et al. (2020). The SiB3 diurnal cycle is employed for202

the SiB3-based and FLUXCOM-based NEE priors, while the CASA diurnal cycle is pre-203

scribed for the CASA-based inversion. All of these fluxes are regridded from their na-204

tive spatial resolution to 0.5�⇥0.625� (fossil fuel emissions were at 1.0�⇥1.0� degrees,205

biomass burning emissions were at 0.25�⇥0.25� degrees, and remaining fluxes were at206

4� ⇥ 5� as archived by Byrne et al. (2020)).207

3 Assimilated data208

3.1 In situ CO2209

In situ CO2 measurements are obtained from version 8.0 of the NOAA GLOBALVIEW210

plus Obspack dataset (Schuldt et al., 2022). These data are provided on the X2019 CO2211

scale but were back corrected to the X2007 CO2 scale following Hall et al. (2021). We212

apply several filters to the in situ data before assimilation. Surface in situ CO2 measure-213

ments are assimilated at their respective height above the surface, with inclusion crite-214

ria that the model surface elevation should di↵er by less than 500 m from the 15 arc-second215

ETOPO1 global elevation dataset (NOAA, 2021). Secondly, we only assimilate data with216

the CT assim flag greater than or equal to one, which indicates data that is deemed as-217

similable for the NOAA CarbonTracker system. Finally, only measurements obtained218

between 11:00 and 17:00 local time are assimilated (when the atmospheric boundary layer219

is well mixed). The sites assimilated are: amt, bck, bmw, bra, brw, cba, cby, chl, cps,220

crv, egb, esp, est, etl, fsd, inu, inx, key, kum, lef, lew, llb, sct, sgp, uta, wbi, wgc, wkt,221

wsa. The sites with CT assim� 1 that are not assimilated are: mbo, mex, mlo, mwo,222

nwr, omp, uts, wsd. We note that some sites with CT assim= 0 may be assimilable, but223

more work is needed to characterize their suitability for assimilation. We apply the CT MDM224

“model-data-mismatch” values as uncertainties on assimilated measurements. All air-225

craft data, including the ACT-America campaign data (Davis et al., 2021, 2018; Wei et226

al., 2021), are withheld for validation purposes. Monthly maps of data density are shown227

in Figure S1.228

3.2 OCO-2 XCO2229

We employ XCO2 retrieved using version 10 of NASA’s Atmospheric CO2 Obser-230

vations from Space (ACOS) full-physics retrieval algorithm (O’Dell et al., 2018). Sub-231

sequently, OCO-2 ”buddy” super-observations are calculated by averaging individual sound-232

ings into super-observations at a spatial resolution of 0.5� ⇥ 0.5� within the same or-233

bit, assigning equal weights, following the approach by Liu et al. (2017). Monthly maps234

illustrating data density are shown in Figure S2.235

3.3 Ideal LEO pseudo-XCO2236

We generate pseudo-data for a new hypothetical space-based observing system that237

provides daily XCO2 retrievals at 13:00 (1 pm) local time. This hypothetical system, re-238

ferred to as the ideal LEO mission, could comprise a dense constellation of low Earth239

orbit (LEO) sensors. The OSSEs are carried out following the same setup as the real data240
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experiments, while the true atmospheric CO2 boundary and initial conditions are im-241

plemented for the nested inversion.242

For the ideal LEO mission, pseudo-observations are generated as follows: 1 pm ob-243

servations within each land 0.5�⇥0.625� grid cell are filtered to exclude instances of low-244

light conditions, cloudy conditions, and when the surface is covered by snow or ice. Frac-245

tional snow cover and cloud cover data are obtained from the MERRA-2 reanalysis dataset246

(Gelaro et al., 2017). Measurements are excluded for grid cells with a fractional area of247

land snow cover (FRSNO) greater than 75% and total cloud area fraction (ISCCPCLD-248

FRC) greater than 75% from the International Satellite Cloud Climatology Project (IS-249

CCP). Additionally, observations with an atmospheric path exceeding six air-masses are250

removed. We allow one super-obs within each gridcell per day. The uncertainty on the251

super-obs is defined to be 0.7 ppm, roughly matching OCO-2. Monthly maps of data den-252

sity for the ideal LEO mission are shown in Fig. S3.253

4 Top-down Experiments254

We perform four di↵erent sets of experiments, listed in Table 1. The standard ex-255

periment employs the nested model with climatological prior fluxes. The global exper-256

iment is conducted to examine the impact of model resolution and follows an identical257

set-up to the standard experiment but with fluxes regrided to 4�⇥5�, globally. The IAV258

experiment is conducted to examine the impact of prior IAV and follows the same set-259

up as the standard experiment but imposes year-specific NPP rather than the 2018–2019260

mean (Text. S2).261

The OSSEs are conducted to explore the impact of observational coverage in quan-262

tifying carbon cycle perturbations resulting from extreme events. These OSSEs cover263

the same two year period as the real data inversions. True NEE fluxes for the OSSEs264

are generated by combining a climatological NEE seasonal cycle with anomalies from the265

bottom-up datasets. Climatological true NEE fluxes are obtained from the CASA-GFED3266

model, which undergoes downscaling from monthly to three-hourly fluxes. These fluxes267

align with those described in Appendix 3 of Byrne et al. (2020). The same unoptimized268

fluxes are prescribed as described in Sec. 2.4.3. Interannual variations in the true fluxes269

are introduced by incorporating NEE anomalies taken to be 65% of the mean bottom-270

up GPP anomalies across the five datasets (see Sec. 5). Pseudo-observations are then271

generated by conducting a forward simulation using the nested model.272

Table 1. Time of the Transition Between Phase 1 and Phase 2
a

Experiment model Prior obs Text section Figures

Standard nested clim real 7.1, 7.2
3, 4, 6, 7, S4, S6,

S8, S9, S10, S11, S12

Global 4� ⇥ 5� clim real 7.2.2 7

IAV nested year real S2 S13, S14, S15

OSSE nested clim pseudo 7.2.1 5, 6

Each experiment described above consists of an ensemble of inversions that assim-273

ilate di↵erent data sources and employ di↵erent priors. A tree diagram illustrating the274

12 individual inversions shown for the “standard” experiment are shown in Fig. 2. The275

diagram shows that four sets of inversions are conducted that di↵er in assimilated data.276

The “IS” inversions assimilate in situ CO2 measurements from the global network of sites277
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Figure 2. Tree diagram showing the 12 inversions conducted for the standard experiment

ensemble. For a given experiment, sub-experiments that assimilate di↵erent observation using

each prior NEE are performed.

(Sec. 3.1). The “LNLG” inversions assimilate OCO-2 land data (Sec. 3.2), including nadir278

and glint retrievals. The “LNLGIS” inversions assimilate both in situ and OCO-2 land279

data. Lastly, the “LNLGOGIS” inversions assimilate in situ, OCO-2 land data, and OCO-280

2 ocean glint retrievals. An additional “ideal LEO” sub-experiment is included for the281

OSSEs to examine the impact of expanded observations (Sec. 3.3). For each of these datasets,282

three inversions are performed that di↵er in prior NEE (Sec. 2.4.1), ocean fluxes (Sec. 2.4.2),283

BCs and ICs (Sec. 2.2).284

5 Remote-sensing bottom-up �GPP and �NEE estimates285

We generate an ensemble of five bottom-up �GPP estimates by combining a num-286

ber of remote-sensing-based GPP datasets. Four of these are obtained from existing datasets:287

8 day FLUXCOM remote-sensing-based (RS) GPP (Jung et al., 2020), FluxSat Version288

2 (Joiner & Yoshida, 2020), GOSIF GPP (Li & Xiao, 2019), and the NIRV-based GPP289

estimates of L. He et al. (2022). All of these data are regridded from their native res-290

olution to weekly temporal resolution and 0.5� ⇥ 0.625� spatial resolution.291

In addition, we estimate GPP directly from TROPOMI SIF data. This followed292

the same approach as Yin et al. (2020). Two GPP estimates are then calculated using293

land-cover-dependent SIF-to-GPP scaling factors from Li et al. (2018) and Y. Sun et al.294

(2017), which were adjusted by a factor of 0.64 to account for di↵erence retrieval waveleg-295

nths between OCO-2 and TROPOMI (740 nm vs 757 nm). These factors were then ap-296

plied to gridded SIF data (0.08333� spatial and 8 day temporal resolution), while account-297

ing for the fractional vegetation cover within each gridcell. The GPP estimates were then298

regridded to 0.5�⇥0.625� spatial resolution. Any data gaps within the growing season299

are then filled by linear interpolation over time, while GPP is assumed to be zero for data300

gaps outside the growing season. Finally the two GPP estimates are averaged.301
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From these GPP datasets, we estimate an anomaly in NEE between 2018 and 2019302

by assuming the NEE anomaly is equal to the NPP anomaly, which is itself related to303

the GPP anomaly by:304

�NEE = ��NPP = �0.60⇥ �GPP (5)

The factor of 0.60 is an estimate of the carbon use e�ciency (CUE), and is a relatively305

high estimate (Manzoni et al., 2018; Y. He et al., 2018), though may be representative306

of corn (S. Yu et al., 2023; Campioli et al., 2015). We assume an error of ±0.1 in CUE,307

and perform error analysis using factors of 0.5 and 0.7. The conversion of �NPP to �NEE308

assumes that �HR is negligible. This is likely a poor assumption, but a limitation of remote-309

sensing estimates that are insensitive to HR variations. Previously, Yin et al. (2020) showed310

that bottom-up �NEE estimated assuming negligible �HR could reasonably reproduce311

observed atmospheric CO2 enhancements during the 2019 US Midwest floods relative312

to 2018, providing some evidence that �HR variations have a secondary impact.313

6 State crop yields and NPP314

Crop yields, which represents the amount of crop biomass removed from the field315

during harvest events, have been estimated using county-level crop yield data from the316

US Department of Agriculture (USDA) - National Agricultural Statistics Service (NASS)317

(USDA-NASS, 2020). The carbon content of crop yields was derived from the relation-318

ship:319

YC = YNASS ⇥DM⇥ Cf , (6)

where YC is the crop yield, in units of carbon, YNASS is the annual county-level crop yield320

data from USDA-NASS, DM is the dry matter content for each crop, and Cf is carbon321

content crop factor. Crop NPP (NPPcrop), representing the net carbon uptake by crops,322

was derived from the crop yield estimates using the following equation:323

NPPcrop = YNASS ⇥ 1

HI
⇥ (1 + RRS)⇥DM⇥ Cf , (7)

where HI is the harvest index for each crop, i.e., the proportion of harvested material324

(e.g., grains) in relation to total crop aboveground biomass; and RRS is the root:shoot325

ratio for each crop. We used crop-specific factors for dry matter, root:shoot ratios, har-326

vest indices, and carbon content following the methods in West et al. (2010, 2011) and327

Ogle et al. (2015). Crop yields and NPP were estimated for over 20 crops, which together328

represented >99% of total US crop production (USDA-NASS, 2020). Uncertainty in es-329

timates were propagated through a Monte Carlo approach with 10,000 replicates and prob-330

ability distribution functions for all input data and factors. The results are based on the331

mean and 95% confidence intervals from the final distribution of simulated values. We332

note that NASS only included uncertainty in crop yield data for 2020 so we assumed a333

similar level of uncertainty in crop yields for the other years.334

7 Results335

7.1 2019 minus 2018 NEE anomalies336

Figure 3a–b illustrates the di↵erence in June-July NEE between 2019 and 2018337

(�NEE = NEE2019 �NEE2018) for both the remote-sensing bottom-up (ensemble mean)338

and top-down (LNLGOGIS) estimates. The analyses reveal a significant decrease in CO2339

uptake (positive �NEE) specifically in the US Midwest region. This pronounced pos-340

itive �NEE signal in the US Midwest stands out compared to the rest of the continent.341

Figure 3c presents the 5 week running mean time series of �NEE over the US Midwest.342

Both the top-down and bottom-up estimates depict a positive �NEE signal through-343

out Jun–Jul, with the anomaly peaking towards the end of June. However, during Aug-344

Sep, the top-down and bottom-up estimates suggest a negative �NEE in the US Mid-345

west. Across the rest of the continent (Figure 3d), anomalies are weaker. The top-down346
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Figure 3. (a) Bottom-up and (b) top-down (LNLGOGIS) spatial patterns of June–July mean

�NEE (NEE2019 �NEE2018) at 4
� ⇥ 5

�
spatial resolution. (c) US Midwest and (d) rest of North

America 5-week-mean �NEE. The US Midwest is defined as the area within Illinois, Indiana,

Iowa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin and is indicated by the black outline

in panels (a) and (b). The shading shows the range around the mean estimate for the inversions

using three di↵erent priors and for the five bottom-up GPP datasets.

estimate suggests a positive anomaly outside the US Midwest during August, while the347

bottom-up estimate suggests no significant anomalies. The supplementary materials dis-348

play the maps and timeseries for the other top-down experiments (Fig. S4) and individ-349

ual bottom-up datasets (Fig. S5).350

Figure 4 shows US Midwest �NEE for each of the top-down and bottom-up esti-351

mates. In addition, an estimate of the anomaly in net primary production for crops (�NPPcrop)352

derived from crop yield data is shown. All estimates suggest positive �NEE over the study353

period (-6–85 TgC for top-down, 15–78 TgC for bottom-up, and 36–65 TgC for yield-354

based estimates). We find that June-July �NEE drives the annual anomaly with up-355

take reduced by 24–76 TgC in top-down estimates and 38–131 TgC in bottom-up esti-356

mates. The bottom-up estimates suggest this is moderated when integrating across the357

growing season due to greater carbon uptake during Aug-Sep (-56 TgC to -15 TgC), while358

the top-down estimates are less consistent during Aug-Sep, ranging from -37 TgC to 34 TgC.359

Figure S6 demonstrates that the bottom-up and top-down �NEE generally show sim-360

ilar June-July �NEE across the contiguous United States (CONUS) Climate Assessment361

Regions. In particular, we find that all estimates obtain negative �NEE across the South-362

ern Great Plains (-22 to -46 TgC), resulting from the 2018 drought (Turner et al., 2021).363

364

These findings suggest that both in situ and OCO-2 data provide adequate obser-365

vational coverage to detect the June-July �NEE signal resulting from the 2019 US Mid-366

west floods relative to 2018. However, some di↵erences are also evident. The experiments367

disagree in the sign of Aug-Sep �NEE. The IS experiment shows negative Aug-Sep �NEE368

that partially compensates for the positive June–July �NEE. Conversely, the LNLG ex-369

periment gives positive Aug–Sep �NEE but the smallest June–July �NEE. There are370

some spatial di↵erences as-well, for example, the IS experiment suggests larger positive371

�NEE in western Canada and negative �NEE in the southeast during Jun-Jul than the372

other experiments (Fig. S4). The LNLGIS and LNLGOGIS experiments yield quite sim-373

ilar results. The relative accuracy of these di↵erent estimates is challenging to evaluate,374
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Figure 4. Top-down �NEE, bottom-up �NEE, and yield-based �NPP for crops (�NPPcrop)

over the US Midwest. �NEE is calculated for (a) the entire inversion period (April 8th – Nov

18th), (b) June-July and (c) Aug-Sep. The top-down estimates show the mean and range ob-

tained using three di↵erent priors. Uncertainty bars for the top-down estimates show the range

using three priors, while the uncertainties on the bottom-up show the range of using carbon use

e�ciencies of 0.5–0.7.
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and all experiments exhibit good agreement with independent aircraft CO2 measurements375

during 2018 and 2019 (Text S1, Fig. S7-S12). The disparities between experiments may376

arise from di↵erences in observational coverage and this hypothesis is examined in Sec. 7.2.1.377

The bottom-up estimates show some notable di↵erences in the magnitude of �NEE378

over the US Midwest and the spatial structure of �NEE outside the US Midwest (Fig. S5).379

FLUXCOM consistently displays the weakest �NEE signal, and has been previously shown380

to underestimate interannual variations in NEE and GPP (Jung et al., 2020). Outside381

the US Midwest, the NIRV-based estimate shows negative values across the western half382

of North America, which are not observed in any other estimates, while the TROPOMI-383

based estimate indicates positive �NEE across a large portion of eastern Canada. Con-384

sequently, the net June–July �NEE signal outside the US Midwest varies across datasets,385

ranging from -218 TgC to 187 TgC.386

7.2 Sensitivity experiments387

7.2.1 Impact of observational coverage388

Although both the in situ network and OCO-2 were able to identify a positive US389

Midwest �NEE signal, we found substantial di↵erences between the top-down exper-390

iments. Here, we perform OSSEs to investigate whether gaps in observational coverage391

could explain these di↵erences. Further, we test whether increased observational cover-392

age (in an ideal LEO constellation) would substantially improve top-down estimates of393

extreme-event-driven carbon cycle perturbations.394

Figure 5 shows the true and posterior �NEE for the OSSEs. All OSSEs recover395

positive �NEE to the US Midwest, consistent with the real data experiments. However,396

June-July US Midwest �NEE is underestimated by 43% for IS, 75% for LNLG, 48% for397

LNLGOGIS and 15% for the ideal LEO constellation. In addition, the inversions tend398

to introduce a positive June–July �NEE outside the US Midwest that is not present in399

the truth. Over June-July, the true continental-scale �NEE is 89 TgC, while the mean400

inversion estimates are 163 TgC (error of +74 TgC) for IS, 93 TgC (error of +4 TgC)401

for LNLG, 68 TgC (error of -21 TgC) for LNLGOGIS, and 93 TgC (error of +4 TgC)402

for ideal LEO. A similar large continental-scale positive June–July �NEE was found for403

the real data IS experiment (Fig. S4ci). One possible explanation is that the limited spa-404

tial coverage of the in situ (Fig. S1) data may limit the ability to capture aggregate continental-405

scale budgets using a one-way nested system.406

Overall, the LNLG OSSE shows the worst performance at isolating the US Mid-407

west �NEE. We suggest that this could be related to interannual variations in the ob-408

servational coverage. Figure 6a shows that the number of LNLG weekly samplings over409

the US Midwest can be quite variable from year to year. In particular, there are only410

16 super-obs in the US Midwest during the three week period of June 11, 2019 to July411

2 2019. This coincides with near zero �NEE for both the real data LNLG inversion and412

OSSE (Fig. 6b), and the period with the largest error in �NEE for the OSSE (Fig. 6c).413

These results suggest that data gaps in OCO-2, particularly di↵erences in observational414

coverage between years, limit our ability to estimate inter-annual variations in NEE at415

high spatio-temporal resolution.416

The increased sampling from combining the datasets (LNLGOGIS) appears to mod-417

erately improve performance, particularly in isolating June–July �NEE to the US Mid-418

west (relative to LNLG) and better capturing the continental-scale �NEE (relative to419

IS). However, the ideal LEO constellation results in much improved performance in both420

space and time. The ideal LEO constellation reduces June-July RMSE across 4�⇥ 5�421

regions by 34–51% and the 5-week-mean �NEE US Midwest RMSE by 55–73%. This422

comparison suggests that top-down estimates of extreme-event-driven perturbations to423
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Figure 5. �NEE estimates for the OSSEs. Panel (ai) shows the true June-July �NEE maps,

while panels (aii)–(av) show the OSSE posterior June-July �NEE maps and RMSE across grid-

cells (gCm
�2

d
�1

). The net US Midwest Jun-Jul �NEE (PgC) is shown for each OSSE in panel

(bi), and the timeseries of 5-week-mean �NEE is shown for each experiment in panels (bii)–

(bv), with RMSE across weeks (gCm
�2

d
�1

). The same quantities are show for the rest of North

America in panels (ci)–(cv).

carbon uptake remain observationally-limited and that expanded space-based observ-424

ing systems will improve these estimates.425

7.2.2 Comparison between nested and global inversions426

The nested CMS-Flux inversion system in this study o↵ers both advantages and427

disadvantages compared to a global CMS-Flux inversion system. One major advantage428

is the ability to run transport at a higher resolution (0.5�⇥0.625�) compared to the global429

system (4�⇥5�). This higher resolution enables tracer transport to be closer to the par-430

ent model, as spatial averaging of meteorological fields can average out eddy transport,431

particularly a↵ecting vertical motions (Stanevich et al., 2020). Additionally, a higher res-432

olution model grid reduces representativeness errors, allowing better representation of433

fine-scale features that influence observations, such as topography. The primary disad-434

vantage of the one-way nested system used in this study is the assumption of perfect bound-435

ary conditions and the inability to assimilate atmospheric CO2 observations outside the436

nested domain. In a global inversion, fluxes over North America would impact measure-437

ments downwind, providing a powerful constraint on large-scale fluxes, including the net438

North American flux (Liu et al., 2015). A bias in flux at the continental scale would af-439

fect CO2 fields across the entire Northern Hemisphere. Since the nested inversion lacks440

this constraint, significant errors in continental-scale fluxes may go undetected. Further-441

more, biases in the imposed boundary CO2 fields can propagate into optimized fluxes.442

In order to assess the performance of the one-way nested inversion, we compare the443

obtained �NEE with the global version of CMS-Flux using the same inversion config-444

uration, whenever possible. Figure 7 presents the results for both the global and nested445

–13–



manuscript submitted to JGR: Atmospheres

Figure 6. Weekly timeseries of (top) number of OCO-2 super-obs in the US Midwest for

2018 and 2019. (middle) Weekly �NEE in the US Midwest for the truth, OCO-2 OSSE and real

OCO-2 LNLG experiment. (bottom) Di↵erence between posterior and true �NEE for the OCO-2

OSSE. The shading shows the range around the mean estimate for the inversions using three

di↵erent priors.

Figure 7. Comparison of the global 4
� ⇥ 5

�
and nested inversion results. Maps of June–July

�NEE from the LNLGOGIS experiment are shown for (a) the global 4
� ⇥ 5

�
inversion and (b)

the nested inversion. Weekly �NEE in the US Midwest after applying a 5-week running mean

are also show for (c) the US Midwest and (d) rest of North America.
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versions of CMS-Flux. It is observed that the nested version of CMS-Flux e↵ectively iso-446

lates �NEE to the US Midwest region during June–July. In contrast, the global model447

exhibits spatially broader positive �NEE across the US Midwest and Great Plains, re-448

sulting in a significantly reduced �NEE estimate for the US Midwest during June–July.449

The spatial pattern of �NEE for the nested model aligns more closely with the bottom-450

up estimate, suggesting that this system better captures the overall event (although the451

true �NEE is not known). This indicates that, considering the observational coverage452

provided by LNLGOGIS, the benefits of reduced transport and representativeness er-453

rors in the nested model outweigh the detrimental impact of a limited domain.454

We note that achieving good performance with nested version of CMS-Flux was455

challenging, and required a number of trial-and-error inversions. This included varying456

the size of the state vector spatially (0.5�⇥0.625� versus 4�⇥5� grid) and temporally457

(weekly, bi-weekly, monthly intervals). It also involved adjusting the prior constraints458

(optimizing HR rather than NEE, adjusting prior uncertainties). We suggest that these459

challenges are due to greater regularization requirements for the nested model in com-460

parison to the global model. The sensitivities of observations to surface fluxes are lim-461

ited to 1–2 weeks by the one-way nesting, such that large-scale constraints are imposed462

by the boundary conditions (Feng, Lauvaux, Davis, et al., 2019; Feng, Lauvaux, Keller,463

et al., 2019). Thus, the flux signal in the domain is generally much smaller than for the464

global model, where downwind observations provide important information for upwind465

continental-scale regions (Liu et al., 2015). We suggest that imposing an error correla-466

tion length between state-vector elements may be an e↵ective approach for regulariza-467

tion in a nested inversion context (see Sec. 8.1), however, this is beyond the scope of our468

current study.469

8 Discussion and Conclusions470

Both top-down and bottom-up approaches capture a flood-induced reduction in net471

carbon uptake during the 2019 US Midwest floods relative to 2018. The top-down ap-472

proach gave mean estimates of 11 TgC (IS), 39 TgC (LNLG), 57 TgC (LNLGIS), 42 TgC473

(LNLGOGIS) for US Midwest growing season �NEE. Meanwhile, the bottom-up datasets474

gave a mean estimate of 39 TgC (range: 15–78 TgC). These magnitudes are significant475

compared to anthropogenic emissions, amounting to as much as 28% of the US Midwest’s476

annual fossil fuel emissions (300 TgCyr�1 for 2019, U.S. Energy Information Adminis-477

tration (2023)). In addition, this anomaly is comparable to the year-to-year variations478

in fossil fuel emissions (SD: 25 TgCyr�1), even including the reduction of regional emis-479

sions by 36 TgCyr�1 due to COVID-19 lockdowns in 2020.480

In the context of more frequent heat and precipitation extremes (Seneviratne et481

al., 2021), accurate estimates of the carbon cycle responses will be critical for monitor-482

ing carbon budgets and evaluating carbon-climate feedbacks. The results of this study483

show that both top-down and bottom-up approaches demonstrate skill in capturing �NEE484

relative to 2018 resulting from the 2019 Midwest floods, however a number of deficien-485

cies were also identified. In the following sub-sections, we highlight current challenges486

and opportunities in quantifying carbon cycle extremes.487

8.1 Top-down488

Observational gaps in atmospheric CO2 observations are identified as a key lim-489

itation in applying top-down methods to quantify extreme-event-driven �NEE, consis-490

tent with recent studies of the European carbon budget (W. He et al., 2023; Munassar491

et al., 2022; Monteil et al., 2020; Thompson et al., 2020). Through a series of OSSE ex-492

periments, it was demonstrated that gaps in both the in situ network and OCO-2 sam-493

pling impact the accuracy of �NEE estimates. While assimilating these two datasets con-494

currently partially mitigates the issue, fully resolving the problem requires expanded ob-495

–15–



manuscript submitted to JGR: Atmospheres

servations. Coverage similar to the ideal LEO observing system could be developed by496

combining multiple individual satellites, and motivates future studies that assimilate XCO2497

retrievals from multiple space-based observing systems concurrently (e.g., GOSAT, OCO-498

2, and OCO-3). In addition, e↵orts should be made to ensure consistency in XCO2 re-499

trievals between existing and planned missions (e.g., CO2M, GOSAT-GW). Expanding500

the in situ network would also likely enhance the ability to capture regional flux anoma-501

lies more e↵ectively, however, this was not specifically explored.502

Although current observing gaps are found to be a major limitation, there may be503

approaches to better regularize the inverse problem and reduce the impact of these gaps.504

In particular, applying o↵-diagonal co-variances in the prior error covariance matrix could505

be employed to adjust fluxes where observations are missing (Chen et al., 2023). Apply-506

ing spatial co-variances will likely be especially important for in situ inversions, while507

applying temporal co-variances may be most useful for OCO-2 XCO2 inversions. Of course,508

such an approach will only improve flux estimates if spatial and temporal co-variances509

are truly present, such that this approach will be limited by a correlation length scale.510

In addition, imposing realistic prior IAV could also be a fruitful approach, as has been511

done in previous studies evaluating the 2019 US Midwest floods (Yin et al., 2020; Bal-512

ashov et al., 2023). However, high-confidence is needed in imposed prior IAV, as inac-513

curate prior IAV can significantly degrade posterior IAV estimates (Byrne et al., 2019).514

Text S2 and Figs. S13-15 show that imposing bottom-up IAV in the prior results in larger515

posterior �NEE anomalies during the Midwest Floods for all experiments. This is con-516

sistent with the �NEE anomalies being underestimated when using climatological pri-517

ors, as was found in the OSSEs.518

Finally, this study investigated the utility of a one-way nested version of CMS-Flux519

with 0.5�⇥0.625� spatial resolution relative to the global model at 4�⇥5� degree spa-520

tial resolution. We note that developing a nested inversion system involved considerable521

e↵ort in tuning the state vector structure, assimilation window, and prior constraints.522

Nevertheless, we found that the nested model better allocated flood-induced �NEE to523

the US Midwest, suggesting that the improved model transport and observation repre-524

sentation of the nested model improved the overall performance relative to the global525

model, consistent with several recent studies (Monteil et al., 2020; Hu et al., 2019). How-526

ever, the nested model has some disadvantages, especially the inability to assimilate down-527

wind observations outside the model domain that may limit the utility of the nested model528

in other applications. Transport uncertainty and boundary condition errors may lead to529

significant challenges for nested inversions (Munassar et al., 2023; Kim et al., 2021; Chen530

et al., 2019; Lauvaux et al., 2012), but were not obvious in our analyses. We note that531

high-resolution models will be needed to take advantage of upcoming wide-swath sam-532

pling missions, such as CO2M (⇠250 km swath) or GOSAT-GW (⇠400 km swath).533

8.2 Bottom-up534

Remote-sensing-based bottom-up estimates of �NEE provided a consistent picture535

of reduced net uptake during the 2019 Midwest floods relative to 2018 but di↵ered sig-536

nificantly in magnitude. The primary source of this variability stems from translating537

space-based reflectance or SIF observations to GPP, leading to a range in �GPP between538

datasets of 120% of the mean. Indeed, estimating the magnitude of GPP from remote539

sensing datasets is challenging due to satellite signals that could be influenced by fac-540

tors such as cloud coverage and soil background, in addition to calibration that is pre-541

dominantly relying on benchmarks provided by eddy covariance sites. We encourage re-542

search into approaches that can reduce uncertainties on large-scale GPP magnitudes, pos-543

sibly through top-down constraints from Carbonyl Sulphide.544

Additional uncertainties were introduced in estimating �NEE from �GPP. Due545

to the inherent limitations of remote sensing, which can track GPP but not the total ecosys-546
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tem respiration (the sum of heterotrophic and autotrophic respiration), certain assump-547

tions must be made. First, to estimate autotrophic respiration, we assumed that �GPP548

and �NPP can be related through a constant carbon use e�ciency (CUE) of 0.60 with549

an uncertainty of range 20% (0.5–0.7), which encompasses most literature estimates. How-550

ever, in reality the CUR parameter varies across vegetation type, age, and management551

practices (Campioli et al., 2015; DeLucia et al., 2007; Manzoni et al., 2018; Y. He et al.,552

2018; S. Yu et al., 2023). Second, we assumed that the influence of �HR on the �NEE553

was negligible. The secondary impact of �HR is supported by Yin et al. (2020), who were554

able to reasonably reproduce observed atmospheric CO2 enhancements during the 2019555

US Midwest floods while neglecting �HR variations. Still, it is important to note that556

HR is sensitive to variations in temperature and moisture. Terrestrial biosphere mod-557

els could serve as potential tools for estimating �HR (e.g., Balashov et al. (2023)) as re-558

mote sensing does not adequately capture variations in HR, which is significantly influ-559

enced by the availability of labile carbon. However, the accuracy of these model-driven560

estimates remains challenging to verify.561

9 Open Research562

Once accepted for publication, the prior and posterior fluxes, TROPOMI-based GPP,563

and NIRV-based GPP will be archived with a DOI. During the review processes the data564

are available by contacting Brendan Byrne. The atmospheric CO2 inversion analyses per-565

formed in this study used the CMS-Flux model, which is based on the GEOS-Chem Ad-566

joint model that can be accessed from the GEOS-Chem Wiki (https://wiki.seas.harvard.edu/geos-567

chem). OCO-2 XCO2 Lite files can be downloaded from the GES DISC (https://disc.gsfc.nasa.gov).568

In Situ CO2 measurements (Schuldt et al., 2022) can be downloaded from https://gml.noaa.gov/ccgg/obspack/.569

GFED biomass burning emissions (van der Werf et al., 2017) were downloaded from https://globalfiredata.org/.570

Fossil fuel emissions (Basu & Nassar, 2021) were downloaded from https://doi.org/10.5281/zenodo.4776925.571

MERRA-2 reanalysis data (Gelaro et al., 2017) was downloaded from https://disc.gsfc.nasa.gov/.572

TROPOMI SIF data are accessed online at https://data.caltech.edu/records/1347 (DOI:573

10.22002/D1.1347). FluxSat Version 2 (Joiner & Yoshida, 2021) were downloaded from574

the ORNL DAAC (https://daac.ornl.gov). GOSIF GPP (Li & Xiao, 2019) were down-575

loaded from http://data.globalecology.unh.edu/. FLUXCOM GPP (Jung et al., 2020)576

was downloaded from the aata portal of the Max Planck Institute for Biogeochemistry577

(https://www.bgc-jena.mpg.de/geodb/projects/Home.php).578

Acknowledgments579

The research carried out at the Jet Propulsion Laboratory, California Institute of Tech-580

nology, was under a contract with the National Aeronautics and Space Administration.581

Funding for the research was from the NASA CMS (grant nos. 80NSSC21K1060, 80NM0018F0583)582

and OCO science team (grant np. 80NM0018F0583) programs. Resources supporting583

this work were provided by the NASA High-End Computing (HEC) program through584

the NASA Advanced Supercomputing (NAS) Division at Ames Research Center.585

References586

Balashov, N. V., Ott, L. E., Weir, B., Basu, S., Davis, K. J., Miles, N. L., . . . Stauf-587

fer, R. M. (2023). Flood impacts on net ecosystem exchange in the midwestern588

and southern united states in 2019. Journal of Geophysical Research: Atmo-589

spheres, 128 (18), e2022JD037697. doi: 10.1029/2022JD037697590

Barkhordarian, A., Bowman, K. W., Cressie, N., Jewell, J., & Liu, J. (2021). Emer-591

gent constraints on tropical atmospheric aridity—carbon feedbacks and the592

future of carbon sequestration. Environmental Research Letters, 16 (11),593

114008.594

Basu, S., & Nassar, R. (2021, January). Fossil Fuel CO2 Emissions for the595

–17–



manuscript submitted to JGR: Atmospheres

OCO-2 Model Intercomparison Project (MIP). Zenodo. Retrieved from596

https://doi.org/10.5281/zenodo.4776925 (Previous versions available597

from (2018): https://g mao.gsfc.nasa.gov/gmaoftp/sourish/ODIAC/2018/distr598

ib/, (2017): ftp://aftp.cmdl.noaa.gov/data/ccgg/OD IAC/2017/distrib/,599

(2016): ftp://aftp.cmdl.noaa.go v/data/ccgg/ODIAC/2016/distrib/,600

(2015a): ftp://af tp.cmdl.noaa.gov/data/ccgg/ODIAC/2015a/distrib/) doi:601

10.5281/zenodo.4776925602

Byrne, B., Baker, D. F., Basu, S., Bertolacci, M., Bowman, K. W., Carroll, D., . . .603

Zeng, N. (2023). National CO2 budgets (2015–2020) inferred from atmospheric604

CO2 observations in support of the global stocktake. Earth System Science605

Data, 15 (2), 963–1004. Retrieved from https://essd.copernicus.org/606

articles/15/963/2023/ doi: 10.5194/essd-15-963-2023607

Byrne, B., Jones, D. B. A., Strong, K., Polavarapu, S. M., Harper, A. B., Baker,608

D. F., & Maksyutov, S. (2019). On what scales can gosat flux inversions609

constrain anomalies in terrestrial ecosystems? Atmos. Chem. Phys., 19 (20),610

13017–13035. Retrieved from https://www.atmos-chem-phys.net/19/13017/611

2019/ doi: 10.5194/acp-19-13017-2019612

Byrne, B., Liu, J., Lee, M., Baker, I. T., Bowman, K. W., Deutscher, N. M., . . .613

Wunch, D. (2020). Improved constraints on northern extratropical CO2614

fluxes obtained by combining surface-based and space-based atmospheric CO2615

measurements. Journal ofGeophysical Research: Atmospheres, 125 . doi:616

10.1029/2019JD032029617

Byrne, B., Liu, J., Lee, M., Yin, Y., Bowman, K. W., Miyazaki, K., . . . Paton-618

Walsh, C. (2021). The carbon cycle of southeast Australia during 2019–2020:619

Drought, fires, and subsequent recovery. AGU Advances , 2 (4), e2021AV000469.620

doi: 10.1029/2021AV000469621

Campioli, M., Vicca, S., Luyssaert, S., Bilcke, J., Ceschia, E., Chapin III, F. S., . . .622

others (2015). Biomass production e�ciency controlled by management in623

temperate and boreal ecosystems. Nature geoscience, 8 (11), 843–846.624

Chen, H. W., Zhang, F., Lauvaux, T., Davis, K. J., Feng, S., Butler, M. P., & Alley,625

R. B. (2019). Characterization of regional-scale co2 transport uncertainties626

in an ensemble with flow-dependent transport errors. Geophysical Research627

Letters, 46 (7), 4049–4058.628

Chen, H. W., Zhang, F., Lauvaux, T., Scholze, M., Davis, K. J., & Alley, R. B.629

(2023). Regional co2 inversion through ensemble-based simultaneous state and630

parameter estimation: TRACE framework and controlled experiments. Journal631

of Advances in Modeling Earth Systems , 15 (3), e2022MS003208.632

Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., . . . others633

(2005). Europe-wide reduction in primary productivity caused by the heat and634

drought in 2003. Nature, 437 (7058), 529–533. doi: https://doi.org/10.1038/635

nature03972636

Davis, K. J., Browell, E. V., Feng, S., Lauvaux, T., Obland, M. D., Pal, S., . . . oth-637

ers (2021). The atmospheric carbon and transport (act)-america mission.638

Bulletin of the American Meteorological Society , 102 (9), E1714–E1734.639

Davis, K. J., Obland, M., Lin, B., Lauvaux, T., O’Dell, C., Meadows, B., . . . Pauly,640

R. (2018). ACT-America: L3 merged in situ atmospheric trace gases and641

flask data, eastern usa. ORNL Distributed Active Archive Center. Retrieved642

from https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds id=1593 doi:643

10.3334/ORNLDAAC/1593644

DeLucia, E., Drake, J. E., Thomas, R. B., & Gonzalez-Meler, M. (2007). Forest645

carbon use e�ciency: is respiration a constant fraction of gross primary pro-646

duction? Glob. Change Biol., 13 (6), 1157–1167.647

Fargione, J. E., Bassett, S., Boucher, T., Bridgham, S. D., Conant, R. T., Cook-648

Patton, S. C., . . . others (2018). Natural climate solutions for the United649

States. Science Advances , 4 (11), eaat1869.650

–18–



manuscript submitted to JGR: Atmospheres

Feldman, A. F., Zhang, Z., Yoshida, Y., Chatterjee, A., & Poulter, B. (2023).651

Using Orbiting Carbon Observatory-2 (OCO-2) column CO2 retrievals652

to rapidly detect and estimate biospheric surface carbon flux anoma-653

lies. Atmospheric Chemistry and Physics, 23 (2), 1545–1563. Retrieved654

from https://acp.copernicus.org/articles/23/1545/2023/ doi:655

10.5194/acp-23-1545-2023656

Feng, S., Lauvaux, T., Davis, K. J., Keller, K., Zhou, Y., Williams, C., . . . Baker,657

I. (2019). Seasonal characteristics of model uncertainties from biogenic fluxes,658

transport, and large-scale boundary inflow in atmospheric co2 simulations659

over north america. J. Geophys. Res.-Atmos., 124 (24), 14325–14346. doi:660

10.1029/2019JD031165661

Feng, S., Lauvaux, T., Keller, K., Davis, K. J., Rayner, P., Oda, T., & Gurney,662

K. R. (2019). A road map for improving the treatment of uncertainties in663

high-resolution regional carbon flux inverse estimates. Geophysical Research664

Letters, 46 (22), 13461–13469. doi: 10.1029/2019JD031165665
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