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 35 
Abstract 36 

 37 
La Niña climate anomalies have historically been associated with significant reductions in the atmospheric CO2 growth 38 

rate. However, the 2021 La Niña exhibited a unique near-neutral impact on the CO2 growth rate. In this study, we 39 

investigate the underlying mechanisms by employing an ensemble of net CO2 fluxes constrained by CO2 observations 40 

from the Orbiting Carbon Observatory-2 in conjunction with estimates of gross primary production, and fire carbon 41 

emissions. Our analysis reveals that the close-to-normal atmospheric CO2 growth rate in 2021 was the result of the 42 

compensation between increased net carbon uptake over the tropics and reduced net carbon uptake over the northern 43 

hemisphere mid-latitudes. Specifically, we identify that the extreme drought and warm anomalies in Europe and Asia 44 

reduced the net carbon uptake and offset 72% of the increased net carbon uptake over the tropics in 2021. This study 45 

contributes to our broader understanding of how regional processes can shape the trajectory of atmospheric CO2 46 

concentration under climate change.   47 

 48 
One-sentence summary: 49 

The reduced carbon uptake in the northern hemisphere led to the near-normal CO2 growth rate in 2021.  50 

  51 
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Introduction 52 
 53 
Anthropogenic emissions from fossil fuel burning, cement production, and land use practices are primary drivers for 54 

the atmospheric CO2 increase. However, not all anthropogenic emissions remain in the atmosphere. Remarkably, land 55 

and ocean have absorbed a stable proportion of the anthropogenic emissions so far, maintaining a roughly 44% airborne 56 

fraction (AF) (1), defined as the ratio between the annual increase in atmospheric CO2 and the anthropogenic emissions 57 

(Figure 1). The AF has large year-to-year-variations, ranging from as low as approximately 20% to as high as 78% 58 

(Figure 1). This variation is mainly driven by the response of tropical land carbon fluxes to climate anomalies caused 59 

by the El Niño Southern Oscillation (ENSO) cycle (2–4). During El Niños, tropical continents are generally warmer 60 

and drier, leading to a decrease in carbon uptake from the atmosphere. This, in turn, results in a higher atmospheric 61 

CO2 growth rate and an average of 16% more carbon remaining in the atmosphere (i.e., 60% AF) than the average. 62 

Conversely, La Niña events have the opposite effect, causing an average of 9% lower AF compared to the overall 63 

average (Figure 1). Therefore, the extent to which land absorbs carbon from the atmosphere and sustains a larger carbon 64 

sink in future La Niña events has significant implications for climate change and the effectiveness of carbon-climate 65 

policies aimed at achieving Paris climate goals.  66 

 67 

In 2021, despite being in the middle of the longest La Niña event of this century (28 months) (Figure S1), the 68 

atmospheric CO2 growth rate (Table S2) was surprisingly close to historical average, instead of being lower as expected 69 

from the historical record (Figure 1). Since the inception of the modern CO2 records in 1959, the atmospheric CO2 70 

growth rate has, on average, been about 0.3 parts per million (ppm) lower than the climatological mean during La Niña 71 

events after removing the secular trend (Figure 1). For example, in 2011, the second longest La Niña event of this 72 

century, the atmospheric CO2 growth rate anomaly was notably negative at -0.5 ppm and the AF at 32%, owing to the 73 

anomalous large carbon uptake over southern hemisphere semi-arid vegetation (5). Intriguingly, the atmospheric CO2 74 

growth rate anomaly in 2021 was a mere 0.01 ppm, and the AF was 46%, even higher than the average AF. This unique 75 

occurrence contrasts sharply with the historical pattern where positive CO2 growth rate anomalies during La Niña 76 

events were extremely rare, with notably anomalies of 0.05 ppm in 1975 and 0.19 ppm in 1985.   77 

 78 

Understanding the underlying factors contributing to the near-neutral impact of 2021 La Niña can provide valuable 79 

insights into the potential response of the carbon cycle to similar La Niña events and anticipated trajectories of 80 

atmospheric CO2 concentration in the future. El Niño events, known for their significant influence on both precipitation 81 

and tropical carbon cycle, have garnered substantial interest within the scientific community (6–11). Conversely, 82 

research on La Niña events are relatively scarce (5). Unlike in 1975 and 1985, in 2021, there were unprecedented CO2 83 

observations from satellites. Previous studies have shown that the satellite observations from the Orbiting Carbon 84 

Observatory-2 (OCO-2) effectively monitored the response of regional carbon fluxes to climate interannual variations 85 

(9, 11–13).   86 

 87 

In this study, we employ an ensemble of CO2 fluxes estimated from top-down atmospheric inversions assimilating 88 

OCO-2 land observations (Table S1-S2). We also utilize two satellite-constrained gross primary production (GPP) 89 

products and a fire CO2 emission product from a top-down CO atmospheric inversion (Methods and Table S2) to 90 

explore processes that have contributed to the close-to-average atmospheric CO2 growth rate in 2021 La Niña condition. 91 

Specifically, our aim is to assess the land carbon cycle responses at various scales, ranging from hemispheric to 92 
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continental scales and then down to regions impacted by extreme climate anomalies. Additionally, we seek to quantify 93 

the role played by different vegetation types to examine whether semi-arid regions play an outsized role, as observed 94 

in the 2011 La Niña. The ensemble net CO2 fluxes over 2015-2021 were generated with a subset of models that 95 

contributed to the v10 Orbiting Carbon Observatory (OCO-2) modeling inter-comparison project (MIP) by Byrne et al. 96 

(14) and one additional model, GCASv2, which has been documented in (15, 16). The ensemble top-down inversions 97 

capture the sensitivity of flux estimates to transport models, inversion methods, and inversion setups (Methods) (Table 98 

S1). The annual net carbon fluxes, calculated as the sum of fossil fuel emissions and natural carbon fluxes over land 99 

and ocean, align closely with the annual CO2 growth rate reported by NOAA (Figure S2) (Methods).  100 

 101 
Figure 1. The atmospheric CO2 growth rate and airborne fraction (AF) are generally lower during La Niña, 102 
while the growth rate in 2021 is close to average despite being in the middle of the longest La Niña in this century. 103 
(A) Airborne fraction (bars) and annual mean Oceanic Nino Index (ONI) (Oct-Sep) (unit: °C) between 1959-2021 104 
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(line). Grey bars: 1959-2020; orange: 2021; cyan: average AF during La Niña events; magenta: average AF during El 105 
Niño events; black: average over 1959-2021; (B) CO2 growth rate anomaly (black) (unit: ppm) and annual mean 106 
Oceanic Nino Index (ONI) (Oct-Sep) (unit: °C) between 1959-2021. (C) annual ONI index vs. CO2 growth rate anomaly 107 
between 1959-2021 without 1991 and 1992, when Pinatubo volcano eruption had a dominant impact (17). ONI is 108 
defined as sea surface temperature (SST) anomalies over Niño 3.4 region (5°N-5°S, 170°W-120°W). El Niño years are 109 
those with annual mean ONI greater than 0.5°C, and La Niña years are those with annual mean ONI lower than -0.5°C. 110 
Note that the annual mean ONI is the mean over Oct-Sep to account for possible lagged response of land climate 111 
anomalies to SST anomalies (18), while the annual CO2 growth rate for a given year is the CO2 difference between the 112 
end of December and the start of January of that year based on global marine surface data 113 
(https://gml.noaa.gov/ccgg/trends/gl_gr.html).   114 
 115 
Results  116 
Responses of hemispheric land carbon fluxes to 2021 La Niña 117 

We calculated annual carbon flux anomalies relative to the mean over 2015 – 2021 for each year. Over these seven 118 

years, the land net biosphere exchange (NBE) (i.e., including all land-atmosphere CO2 fluxes except fossil fuel 119 

emissions) dominated the year-to-year variations of total natural (land and ocean) carbon fluxes (Figure 2A), consistent 120 

with the long-established understanding that the NBE has stronger interannual variations than the ocean net carbon 121 

fluxes (19–22). In 2021, the NBE anomaly was -0.22±0.15 GtC, with negative numbers indicating more net carbon 122 

uptake from the atmosphere. Despite 2021 being the strongest La Niña among these seven years (Figure 1) (23, 24), 123 

the magnitude of net land carbon uptake from the atmosphere was smaller than that in 2017 and 2018 (Figure 2), which 124 

were weak La Niña during part of the year and had -0.74±0.14 GtC and  -0.59±0.15 GtC NBE anomalies, respectively.  125 

 126 

Breaking down the land into tropics and extra-tropics, we find that the tropical land absorbed 0.79±0.23 GtC more 127 

carbon from the atmosphere in 2021, the largest carbon sink during these seven years, consistent with the notion that a 128 

larger carbon sink exists over the tropical land during La Niña years (3). Here the tropical land is defined as the land 129 

area within 22°S and 22°N. This increased net carbon uptake in 2021 had a similar magnitude as the anomalous carbon 130 

release from the tropical continents during the 2015-2016 El Niño, indicating the strong impact of climate interannual 131 

variations due to the ENSO cycle on tropical land carbon fluxes.  132 

 133 

However, the extra-tropical land absorbed 0.57±0.30 GtC less carbon from the atmosphere in 2021 (Figure 2B), 134 

offsetting 72% of the increased carbon sink over the tropics. Consequently, land carbon sink only slightly increased in 135 

2021 leading to a nominal CO2 growth rate. The compensating carbon flux anomalies between the tropics and extra-136 

tropics in 2021 were consistently estimated among all the inversions, and almost all the models indicate that the extra-137 

tropics had the weakest carbon sink in 2021 (Figure S3). Note that the atmospheric CO2 growth rate anomaly was 138 

calculated relative to the mean over 1959-2021 after removing the temporal trend, while the flux anomalies were 139 

calculated relative to the mean over 2015-2021, so the total flux anomaly in Figure 2 does not equal to the growth rate 140 

anomaly in Figure 1.  141 

 142 

Previous studies suggest that the CO2 flux distributions between the tropics and extra-tropics are affected by the errors 143 

in model-simulated CO2 vertical profiles caused by vertical transport errors (25, 26). While the flux anomalies are 144 

found to be less sensitive to absolute errors in CO2 vertical profiles, they could be influenced by the time-varying errors 145 

in CO2 vertical gradient. To assess the robustness of the flux anomaly contrast between the tropics and extra-tropics, 146 

we quantified CO2 vertical gradient errors across three regions – North America, Southeast Asia, and East Asia, where 147 

a stable amount of aircraft observations is available, and examined how the CO2 vertical gradient errors vary by years 148 
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(Methods, Figures S4-S7). Remarkably, we found that the errors in CO2 vertical gradient are relatively constant in each 149 

region over the period that we examined, although the absolute CO2 vertical gradient errors differing by regions. For 150 

example, over southeast Asia, the CO2 vertical gradient errors are 0.2 ± 0.3 ppm, 0.2 ± 0.3 ppm, and 0.4 ± 0.2 ppm in 151 

2015, 2016, and 2017, respectively. This suggests that the impact of vertical transport errors on the flux distributions 152 

between the tropics and extra-tropics is consistent year-to-year, supporting the robustness of the flux anomaly contrast 153 

between the tropics and extra-tropics. The persistent nature of transport errors was also demonstrated in (27). 154 

 155 
 156 
Figure 2 The reduced net carbon uptake over the extra-tropical land offsets 72% of the increased net carbon 157 
uptake over the tropical land, causing the close-to-average atmospheric CO2 growth rate in 2021, despite being 158 
in the middle of the longest La Niña in this century. (A) annual combined land and ocean (dark green), land (light 159 
green), and ocean (blue) net carbon flux anomalies estimated by the ensemble top-down atmospheric inversion models 160 
(unit: GtC/year). (B) the annual net biosphere exchange (NBE) anomalies over tropical land (pink) and the extra-161 
tropical land (yellow) (unit: GtC/year) from 2015-2021. Positive values indicate less carbon uptake from the 162 
atmosphere and vice versa. The sum of the NBE anomalies over the tropical land and the extra-tropical land in Panel 163 
(B) is equal to the total land NBE anomaly plotted in Panel (A). The background colors in these two panels are the 164 
annual ONI index, with red indicating positive sea surface temperature anomalies while blue to gray color indicating 165 
negative SST anomalies. Same as in Figure 1, the annual ONI is defined as mean SST anomalies between October and 166 
September in Niño 3.4 region. The uncertainty bars in the figures represent the standard deviations among the ensemble 167 
top-down atmospheric inversion models.  168 
 169 
To further understand the causes for the reduced net carbon uptake over the extra-tropical land, we divided the extra-170 

tropical land into three latitude bands: the Northern Hemisphere (NH) mid-latitudes (23°N-50°N), the NH high latitudes 171 

(50°N-90°N), and the Southern Hemisphere (SH) mid-to-high latitudes (23°S-60°S). We calculated net carbon flux and 172 

its component flux anomalies over forest, semi-arid region, and grassland/cropland (Figure S8). We find that the net 173 

carbon uptake over the NH mid latitudes reduced by 0.53±0.24 GtC in 2021, dominating the total net carbon uptake 174 
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reduction over the extra-tropics (0.57±0.30 GtC) (Figure 3 and Figure S10). While over the SH mid-to-high latitudes, 175 

the net carbon uptake increased by 0.09±0.04 GtC in the crop/grassland, and the net carbon uptake decreased by 0.15 176 

±0.06 GtC over the NH high latitudes (Figure 3 and Figure S10), driven by the increased forest fire carbon emissions 177 

over Siberia forest (28). Since the magnitude of the net carbon flux anomalies over the SH mid-to-high latitudes and 178 

the NH high latitudes are much smaller, in the next two sections, we will focus on regional contributions and causes of 179 

net carbon flux anomalies over the tropics and the NH mid-latitudes.  180 

 181 
Figure 3 The reduction of net carbon uptake over the NH mid-latitudes has dominant contribution to the 182 
reduction of net carbon uptake over the extra-tropics. Forest over the tropics has a larger contribution to the 183 
tropical NBE anomalies than semi-arid region or grassland/cropland while almost all NBE anomalies occur over 184 
grassland/cropland over the extra-tropics. Annual net biosphere exchange (NBE), gross primary production (GPP), 185 
total ecosystem respiration (TER), and fire emission anomalies in 2021 over forest, semi-arid region, and crop 186 
land/grassland (the land cover type is based on MODIS IGBP 2020 land cover classification) in the tropics (A), the NH 187 
mid latitudes (B), the NH high latitudes (C), and the SH mid-to-high latitudes (D) (unit: GtC/year). The inserted plots 188 
on each panel indicate the regions each panel illustrates. A negative ∆"#$ corresponds to an increased net carbon 189 
uptake from the atmosphere, while a positive ∆%&& indicates increased productivity. Conversely, positive ∆'$( and 190 
∆)*+, values suggest more carbon released to the atmosphere.  191 
 192 
Regional contributions and causes of the increased net carbon uptake over the tropics in 2021 193 

Over the tropics, Asia and south America had comparable increases in net carbon uptake, with -0.30 ± 0.13 GtC and -194 

0.28 ± 0.15 GtC NBE anomalies, respectively (Figure 4). Tropical Africa exhibited a slightly lower increase, with -195 

0.24 ± 0.13 GtC NBE anomaly. Of the -0.30 ± 0.13 GtC NBE anomalies occurred in tropical Asia, -0.07 ± 0.05 came 196 

from the tropical part of Australia, and the NBE anomaly over the rest of Australia was -0.07 ± 0.04 GtC. Thus, the 197 

NBE anomaly in Australia was -0.14 ± 0.06 GtC, weaker than the NBE anomalies over any of the tropical continents. 198 

  199 

Nearly all NBE anomalies in tropical South America concentrated within the forested area, whereas semi-arid regions 200 

and grassland/cropland were the majority contributor to the net carbon flux anomalies over the tropical Africa and Asia 201 

(Figure 3). Only 10% of NBE anomalies over tropical Africa originated from forests, while approximately a quarter of 202 

the NBE anomalies in tropical Asia were observed in forested regions. In total, the forested regions contributed 203 

approximately 46% to the tropical NBE anomalies (Figure 3), while semi-arid and grassland/cropland regions 204 

contributed 25% and 30%, respectively.  205 

(A) (B)

(C) (D)
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 206 

However, the magnitude of GPP anomalies over the semi-arid region and grassland/cropland was approximately three 207 

times of that over the forest region (1.37 ± 0.20 GtC vs. 0.44 ± 0.24 GtC) in the tropics (Figure 3). Most of the increase 208 

in GPP over the semi–arid region and grassland/cropland was released into the atmosphere through an increase in total 209 

ecosystem respiration (TER) (Figures 3 and 4) (Method), especially over grassland/cropland. This is likely due to the 210 

much shorter turnover time of carbon pools in these vegetation types (29).  211 

 212 

The increase in net carbon uptake across the three tropical regions was primarily driven by increased photosynthesis, 213 

corresponding to wetter conditions throughout the year in tropical South America and Asia (Figure S9-S12). However, 214 

tropical Africa experienced lower annual mean precipitation in 2021 compared to the mean over 2015-2021 (Figure 215 

S9-Figure S10). Despite this, the total water storage anomaly (TWS), indicating total soil water availability, was above 216 

average across most of tropical Africa throughout the year (Figure S11 and S13), potentially contributing to the 217 

observed increase in GPP over the region. Notably, Madani et al. (30) similarly noted that higher-than-average 218 

groundwater storage offsets the impact of precipitation deficit on GPP over African tropical forest. They found that 219 

GPP anomalies exhibit higher correlation with TWS anomalies than with precipitation anomalies over tropical Africa. 220 

This is likely  due to deeper rooting zone water storage capacity and deeper rooting depth (31, 32)  221 

 222 

The most substantial increase in GPP and net carbon uptake in the tropics were observed during the first half of the 223 

year and the last two months (Figure 5), coinciding with stronger La Niña and higher precipitation (Figure S1 and 224 

Figure S11-S12). Among all these regions, the precipitation increase in tropical South America was the most 225 

widespread and significant (Figure S9-S10). The anomalies in fire carbon emissions amounted to only 0.07 GtC across 226 

the entire tropics. 227 

 228 

 229 

 230 
 231 
Figure 4 Tropical South America and Asia have comparable magnitudes of NBE anomalies. In tropical South 232 
America, forests predominantly contribute to these anomalies, whereas in tropical Africa and Asia, semi-arid 233 
regions and  grassland/cropland play a dominant role. The overall reduction in net carbon uptake in extra 234 
tropical land regions, shown as positive NBE anomalies, is mainly driven by Europe and Asia. Annual 235 
anomalies of net biosphere exchange (NBE), gross primary production (GPP), total ecosystem respiration (TER), and 236 

(F)

(A)

(G)

(D)

(B) (C)

(E)

LNLG
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fire in 2021 over mid latitudes North America (A), Eurasia (B), East Asia (C), tropical Asia (D), the mid-latitude 237 
Australia (G), tropical Africa (F), and tropical South America (E) (clockwise). (unit: GtC/year).  238 
 239 

 240 
Figure 5 Independent monthly GPP anomaly and NBE anomaly show anti-correlation in all four latitude 241 
bands. (A), (B), (C), and (D): Monthly NBE (black) and GPP (blue) anomalies over the tropics, NH mid latitudes, 242 
NH high latitudes, and SH mid-to-high latitudes respectively (unit: GtC/month).  243 

 244 

Regional contributions and causes of the deceased net carbon uptake over the NH mid-latitudes in 2021  245 

Different from the tropics, over the NH mid-latitudes, the reduction in net carbon uptake (i.e., positive NBE anomalies) 246 

primarily occurred over grassland/cropland in Eurasia and East Asia (Figure 4). The total net carbon uptake over North 247 

America (NA) remained close to normal, primarily due to the compensating effect between the increased net carbon 248 

uptake in the east and reduced net carbon uptake in the west (Figure S9). In contrast to the tropics, the decrease in net 249 

carbon uptake over the NH mid-latitudes was driven by an increase in TER instead of a decrease in GPP (Figures 3 and 250 

4), particularly over East Asia.  251 

 252 

The reduction in net carbon uptake over Eurasia was predominantly observed in regions that experienced extreme 253 

climate anomalies in 2021, especially in central Asia (Figure 6). Averaged over April to June, the temperature 254 

anomalies reached up to 3°C above normal, while precipitation decreased by as much as 60-80% in central Asia (Figure 255 

6). These extreme conditions resulted in reduced productivity and increase in ecosystem respiration (Figure 6). The 256 

GPP decreased by over 80% during April to  June in a substantial area of central Asia (Figure 6). On an annual total, 257 

the net carbon uptake decreased by 0.39 ±0.12 GtC between 35°E-85°E and 30°N-50°N, accounting for more than half 258 

of the total NBE anomalies over the NH mid latitudes. Approximately half of the NBE anomalies in this region can be 259 

attributed to a reduction in GPP (-0.20 ±0.12 GtC), while the other half results from an increase in TER (0.19±0.17GtC). 260 

The contribution of fire emissions to the reduced net carbon uptake in this region is negligible.  261 

 262 

In East Asia, annual GPP increased by 0.52 ±0.07, but the increase in TER was even larger, with a 0.77 ±0.15 anomaly. 263 

Consequently, net carbon uptake decreased by 0.25 ±0.12 GtC. The most significant reduction in net carbon uptake 264 

occurred during spring to early summer (Figure 7 and Figure S12), predominantly over central and northern China 265 
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(Figure 7). This corresponds to high temperature anomalies and reduced precipitation (Figure 7). During the summer, 266 

despite increased productivity in most of East Asia, the net carbon uptake decreased (Figure S12). This implies an 267 

increase in ecosystem respiration, possibly due to much warmer temperatures across the region and drier condition over 268 

southern China (Figure 7, Figure S9 and S13).  269 

 270 

In addition to the ENSO cycle, various teleconnections, including Indian Ocean Dipole (IOD), North Atlantic 271 

Oscillation (NAO), and Arctic Oscillation (AO), have caused carbon flux anomalies over mid latitudes (34–36). 272 

However, in 2021, these teleconnections were observed to be within normal ranges (Figure S14), suggesting that the 273 

mid-latitude carbon flux anomalies in 2021 were not influenced by these teleconnections. 274 

 275 
Figure 6 The extreme drought and warm climate anomalies cause the large reduction of gross primary 276 
production and increase of ecosystem respiration over central Asia, both of which contributes to the reduction 277 
of net carbon uptake over the region. (A) Regional mask for central Asia (purple) relative to Eurasia regional mask 278 
(grey).  (B) Percentage precipitation anomalies between April- June, 2021 (unit: %) relative the mean over 2015-279 
2021; (C) temperature anomalies between April-June; (D) percentage change of GPP anomalies between April-June 280 
(unit: %); (E) NBE anomalies during April-June (unit: tera grams of carbon (TgC)); (F) monthly anomalies of net 281 
biosphere exchange (NBE), gross primary production (GPP), and total ecosystem respiration (TER) over the region 282 
(unit: GtC/month); (G) annual anomalies of NBE, GPP, and TER (unit: GtC/year).  283 
 284 

△NBE, △GPP, △TER 

(A)

(C)(B)

(D) (E)

(F) (G)
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 285 
Figure 7 The warm temperature anomalies caused the increase in ecosystem respiration over east Asia, 286 
outpacing the GPP increase. (A) Regional mask for east Asia (grey).  (B) Percentage precipitation anomalies 287 
between May-July, 2021 (unit: %) relative the mean over 2015-2021; (C) temperature anomalies between May-July; 288 
(D) percentage change of GPP anomalies between May-July (unit: %); (E) NBE anomalies during May-July (unit: 289 
tera grams of carbon (TgC)); (F) monthly anomalies of net biosphere exchange (NBE), gross primary production 290 
(GPP), and total ecosystem respiration (TER) over the region (unit: GtC/month); (G) annual anomalies of NBE, GPP, 291 
and TER (unit: GtC/year).  292 
 293 
 294 
The impact of fossil fuel emission uncertainties on flux anomaly estimation over East Asia  295 

Our results reveal a decrease in net carbon uptake in East Asia for the year 2021 despite increases in GPP. We posit 296 

that the higher-than-normal temperatures during spring and later in the year contribute to the elevated terrestrial 297 

biosphere respiration, ultimately leading to a reduction in net carbon uptake across the region.  298 

 299 

However, it is crucial to acknowledge that this conclusion relies on the accuracy of fossil fuel emission anomalies used 300 

in the top-down inversions. We calculate NBE anomalies by subtracting fossil fuel emission anomalies from the total 301 

flux anomalies, assuming the accuracy of the former. This assumption is grounded in the observation that the relative 302 

uncertainties in fossil fuel emission inventories are smaller compared to natural carbon fluxes (19). Nonetheless, it is 303 

important to note that the relative uncertainties of fossil fuel emissions can be considerably much larger on regional 304 

scales (37, 38) and this uncertainty may be reflected in the NBE estimates.  305 

 306 
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Given East Asia’s significant magnitude of fossil fuel emissions, totaling 3.5 GtC in 2021 based on ODIAC fossil fuel 307 

emission inventory (Figure S15), and the substantial uncertainties in emission trends, NBE estimates for this region 308 

may exhibit heightened vulnerability to uncertainties in fossil fuel emissions. To assess the potential impact of 309 

uncertainties in fossil fuel emissions on the calculation of NBE anomalies in East Asia, we compared the fossil fuel 310 

emissions used in our study with those from the GridFED fossil fuel emission inventory, as reported in GCP 2022 (19). 311 

In our investigation, all eight inversion models utilized the same fossil fuel emission data from ODIAC (refer to 312 

Methods and Table S1). The annual totals for both 2020 and 2021 were derived from near-real-time fossil fuel emission 313 

data from Carbon Monitor, and the spatial distribution was based on ODIAC.  314 

 315 

Our findings indicate that the fossil fuel emission anomaly in 2021, relative to the mean between 2015 and 2021, is 316 

0.17 GtC for both inventories over East Asia (Figure S15), consistent with each other, albeit with a mean difference of 317 

0.1 GtC. Even at the monthly time scale, the fossil fuel emissions agree on the magnitude of anomalies, though they 318 

differ in their seasonality (Figure S16).  Furthermore, the magnitude of monthly fossil fuel emission anomalies is much 319 

smaller than that of NBE anomalies (Figure S17). It is noteworthy that NBE anomalies are only responsive to fossil 320 

fuel emission anomalies, rather than being influenced by the absolute values of fossil fuel emissions. This is attributed 321 

to the removal of annual/monthly mean fluxes during the calculation of annual/monthly flux anomalies.  322 

 323 

Assuming a 20% uncertainty in fossil fuel emission anomalies over East Asia, implying a range from 0.13 to 0.21 GtC 324 

for fossil emission anomalies, we propagated this uncertainty into the calculation of NBE anomalies. Consequently, 325 

the NBE anomalies over East Asia integrated over all vegetation types were determined to be 0.25 ±0.13 GtC, 326 

reaffirming their robustness.  327 

 328 
Discussion  329 
 330 
Comparisons to the response of terrestrial biosphere carbon cycle to the 2011 La Niña event  331 

Our results reveal a substantial increase in the net carbon sink over tropical land in 2021, marking the most significant 332 

tropical carbon sink observed between 2015 and 2021. Conversely, the SH NBE anomaly is only -0.08±0.04GtC. 333 

Notably, the tropical forest contributes approximately 50% while the semi-arid region contributes 20-30% to the overall 334 

increased tropical and SH net carbon uptake anomalies. These results stand in stark contrast to what happens during 335 

2011 La Niña, as highlighted by Poulter et al. (5). During 2011, NBE anomalies were primarily driven by increased net 336 

carbon uptake in semi-arid regions across the southern hemisphere, with Australia itself accounting for 60% of net 337 

carbon flux anomalies (18, 19). In contrast to the 2011 La Niña, only about 25% of the increased tropical net carbon 338 

uptake occurs over Australia in 2021 (Figures 3 and 4). This difference could be attributed to lower precipitation and 339 

higher temperature over Australia in 2021 compared to 2011. Relative to 2011, the precipitation over Australia was 340 

32% lower and temperature was higher than 1.3°C (Figure S12).  341 

 342 

Furthermore, in 2021, while the tropical GPP increase over semi-arid regions and grassland/cropland is significantly 343 

larger than that over forests, a substantial portion of the increased carbon accumulation resulting from photosynthesis 344 

is released back to the atmosphere through increased respiration, likely due to an increased carbon pool from increased 345 

GPP and favorable climate conditions.  346 

  347 
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The determination of whether forests or semi-arid regions serve as the primary drivers of net carbon flux interannual 348 

variability holds crucial implications for carbon-climate projections (16). This is because studies have shown that the 349 

response of carbon cycle to interannual climate variations are indicative of how carbon storage will respond to future 350 

climate change (39, 40).  Thus, whether tropical forests or semi-arid regions have larger sensitivity to climate 351 

interannual variations would imply the vulnerability of their carbon storage to future climate change. The stark contrast 352 

of the response of tropical and SH land carbon cycle to the 2011 and 2021 La Niña events indicates that a long-term 353 

global CO2 observation record that captures multiple ENSO cycles is essential to understand whether tropical forests 354 

or semi-arid regions exert primary influence on the net carbon flux interannual variability and the vulnerability of their 355 

carbon storage to future climate change. 356 

 357 

Implications  358 

The close-to-normal atmospheric CO2 growth rate in 2021 was the result of the compensation between increased net 359 

carbon uptake over the tropics and reduced net carbon uptake over the NH mid-latitudes. Specifically, the extreme 360 

drought and warm anomalies over Europe and Asia reduced the net carbon uptake and offset 72% of the increased net 361 

carbon uptake over the tropics from the impact of the 2021 La Niña. By comparison, the atmospheric CO2 growth rate 362 

was close to average in only two other La Niña events, 1975 and 1985 (Figure 1). During those two events, the 363 

precipitation anomaly over central Asia (30N-50N, 30E-85E) was -15.6% and -16.7% during April-July in 1975 and 364 

1985 respectively, while the precipitation anomaly was -22.6% in 2021 (Figure S19 – S20). In 1985, the precipitation 365 

reduction was more than 50% over part of the central Asia, comparable to the precipitation anomaly in 2021 (Figure 366 

S18). We speculate that the close-to-normal CO2 growth rate in these two years may also have been caused by the 367 

opposite net carbon flux anomalies between the tropics and extra-tropics.   368 

 369 

The frequency of extreme La Niña events is projected to become more frequent in the future (41). At the same time, 370 

CMIP6 models predict that the annual and early summer precipitation over central Asia is positively correlated with 371 

the ONI, suggesting reductions of precipitation during extreme La Niña years over central Asia (Figure S21). 372 

Furthermore, positive vapor pressure deficit (VPD) anomalies especially during early summer are projected by CMIP6 373 

models during La Nin.a years. With the simultaneously increase of global temperature and predicted drying trend in 374 

western US (IPCC AR6), our results imply that the regional compensation of flux anomalies between tropics and extra-375 

tropics may become more frequent in future extreme La Niña events. The pivotal question of whether the CO2 airborne 376 

fraction during La Niña events will remain lower than the average AF holds substantial implications for the trajectory 377 

of atmospheric CO2 levels in the future. This underscores the critical importance to continue monitoring the natural 378 

carbon cycle at regional scales to inform and support effective carbon-climate policies.  379 

 380 

Materials and Methods 381 
1. Top-down atmospheric CO2 flux inversions with OCO-2 V10 MIP extension  382 

In this study, the top-down fluxes were generated with eight inversion models that are a subset of the models 383 

participating in the v10 OCO-2 MIP described in Byrne et al. (14) plus GCAS v2 model that were documented in (15, 384 

16). These inversions were extended to the end of 2021. They used a combination of four transport models, three types 385 

of inversion algorithms, and two sources of meteorology fields (Table S1). All the inversions used the same fossil fuel 386 

emissions and assimilated the same set of OCO-2 V10 retrievals (Table S2). Since the number of surface flask 387 

observations was drastically different in 2021 at the time of this study (May 2022) due to data latency, which may 388 
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impact the interannual variability analysis, we used the inversion results that assimilated OCO-2 V10 land retrievals 389 

only for the entire period (Jan 2015-Dec 2021) in the main text. The original fossil fuel emission has 1° x 1° resolution. 390 

The data between 2015-2019 was from the official ODIAC website (https://odiac.org/data-product.html), while the 391 

fossil fuel emissions for 2020 and 2021 is scaled ODIAC emission using the country totals published by Carbon 392 

Monitor (42). Both air-sea exchange and net biosphere exchange were optimized in these models, but the prior 393 

assumptions for these fluxes could be different (Table S1). Table S2 lists all the assimilated observations and their 394 

sources.  395 

 396 

The spatial resolution of these eight models is different, but all the posterior fluxes from these inversions were regridded 397 

to 1° x 1° resolution before analysis. The global annual net carbon fluxes calculated as the sum of fossil fuel emissions 398 

and natural carbon fluxes over land and ocean are consistent with the NOAA annual CO2 growth based on marine 399 

surface network (Figure S2). The NOAA annual CO2 growth in parts per million (ppm) was converted to gigaton carbon 400 

per year (GtC/year) using the conversion factor 2.124 GtC/ppm (43). We assumed 0.2 GtC/year uncertainty for the 401 

observed annual CO2 growth (19).   402 

 403 

We calculated the mean across the ensembles as the best estimate and the standard deviation as the uncertainty. The 404 

uncertainties of top-down NBE estimation come from the uncertainties in atmospheric transport models, observations, 405 

assumed prior natural carbon fluxes, and fossil fuel emissions. Even though we only have eight ensemble members, 406 

these top-down inversion models used a variety of transport models, inversion methodologies, and prior natural carbon 407 

fluxes (Table S1). Thus, using ensemble standard deviations as NBE uncertainty enables us to capture the uncertainties 408 

in these aspects.  However, since all these models used the same set of observations and fossil fuel emissions, the 409 

uncertainties in these aspects are not fully captured in the ensemble spread. As discussed in the section: "The impact of 410 

fossil fuel emission uncertainties on flux anomaly estimation over East Asia”, the NBE anomalies analyzed in this study 411 

are more sensitive to changes of fossil fuel emissions, which are consistent among different fossil fuel mission products. 412 

The standard deviation among the ensemble inversions can still capture the uncertainties in observations, since the 413 

inversions assumed uncertainties (around 1-3 ppm) in these observations (14) even though all inversion models used 414 

the same set of observations. Note that the uncertainties estimated as the ensemble spread is different from uncertainties 415 

from individual models, which only include uncertainties in observations and prior fluxes and can significantly differ 416 

among each individual model (14).  417 

 418 

We evaluated the posterior atmospheric CO2 concentrations against observed CO2 vertical profiles from ACT-America 419 

(44–47) campaign and CONTRAIL (48) included in (47) (Figures S4-S7), since previous research suggests that the 420 

partition of carbon fluxes over the tropics and extra-tropics is sensitive to errors in CO2 vertical gradient. As we focus 421 

on the flux anomalies, the results are not sensitive to the absolute errors in CO2 vertical gradient but are sensitive to 422 

time-varying errors. We chose measurements from these two aircraft measurements because of their consistent 423 

observation coverage. CONTRAIL has observations over all the months over 2015-2017 and ACT-America has 424 

observations between 2016 and 2019. Because of data latency, there is no CONTRAIL insitu profiles publicly available 425 

for 2019-2021 at the time of this study and ACT-America field campaigns ended in 2019. The flask observations 426 

collected by the National Institute for Space Research (INPE) over tropical South America might have higher 427 

measurement errors due to water vapor contamination, so we did not include those observations in the comparison. 428 
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Despite the errors in vertical CO2 gradient in each region, the errors are relatively constant from year-to-year, which 429 

indicates that the contrast of flux anomalies between tropics and extra-tropics are robust.    430 

 431 

2. GPP estimates 432 

We used two gross primary production (GPP) products in this study: FluxSAT and GOSIF (20, 21) (Table S2). Both 433 

datasets were generated with machine learning approaches. FluxSAT was derived with neural networks that upscaled 434 

GPP from selected FLUXNET 2015 eddy covariance tower sites to a gridded global GPP with the input of Nadir 435 

Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectances (NBAR) product from the MODIS 436 

instruments on the NASA Terra and Aqua satellites (48). The FluxSAT provides global gridded daily estimates of GPP 437 

and uncertainties at 0.05-degree resolution.  438 

 439 

GOSIF GPP was generated with the global, OCO-2 based SIF product (GOSIF) and linear relationship between SIF 440 

and GPP to map GPP globally at 0.05-degree resolution (49). GOSIF GPP product accounts for uncertainties of GPP 441 

estimates using eight SIF-GPP relationships with different forms. The GOSIF SIF product was generated with a 442 

machine learning approach that upscales OCO-2 SIF to a global product at 0.05-degree resolution with data from 443 

MODIS and meteorological reanalysis.  444 

 445 

We regridded both products to 1° x 1° resolution and used the mean as the best estimate. We estimate uncertainties 446 

with a bootstrapping approach by randomly generating 1000 samples based on the difference between these two 447 

products.  448 

 449 

3. Fire and total ecosystem respiration 450 

The monthly fire CO2 emissions were documented (50), and estimated with a top-down atmospheric inversion 451 

assimilating CO observations from Measurements of Pollution in the Troposphere (MOPITT). (50) does not include 452 

uncertainties, and we assumed a 20% uncertainty in the fire CO2 emission anomalies. The total ecosystem respiration 453 

(TER) was calculated as follows: 454 

TER=NBE+GPP–FIRE  455 

The uncertainties for TER were calculated as: 456 

(!"#$ = (%&"$ + ('(($ + ()*#"$   457 

where (!"#, (%&" , ('((, ()*#" are uncertainties for TER, NBE, GPP, and fire respectively. Any fire-related land use 458 

land cover change (LULCC) anomalies were included in fire emissions, which is the largest component in the 459 

interannual variability of LULCC (51).  Non-fire related LULCC anomalies were included in other carbon flux 460 

components.   461 

 462 

Since TER was calculated as the residual among NBE, GPP, and FIRE, we indirectly validated TER by validating 463 

NBE, GPP, and fire emissions. The GPP products have been validated against FLUXNET observations (49, 50). We 464 

validated NBE through comparison against aircraft observations. The fire emission data was used in Zheng et al. (28). 465 

 466 

 467 
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 871 

 872 
 873 
Fig. S1. Monthly ONI index between Jan 2000- Jan 2023 (unit: °C). It is defined as monthly running mean sea 874 
surface temperature (SST) anomalies in the Niño 3.4 region (5oN-5oS, 120o-170oW). When ONI index is lower than -875 
0.5°C, it is defined as La Niña, and it is El Niño when ONI index is higher than 0.5°C. 2021 is in the middle of the 876 
longest La Niña in this century. 877 
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 880 
 881 

 882 
Figure S2 Comparison between NOAA global CO2 growth rate and the annual net carbon flux based on the ensemble 883 
OCO-2 inversions. The annual net carbon fluxes were calculated as the sum of fossil fuel emissions and natural carbon 884 
fluxes over land and ocean, which represent the total changes of atmospheric CO2 estimated by inversion models. The 885 
NOAA global CO2 growth rate was converted to gigaton carbon per year using the conversion factor of 2.124GtC/ppm 886 
(43). We assumed 0.2 GtC/year uncertainty for the observed NOAA annual CO2 growth following (19), while the 887 
ensemble model spread was used as the uncertainty for the inversion results.    888 
 889 
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 891 
Figure S3 The annual net biosphere exchange (NBE) anomalies over the tropics and extra-tropics estimated by the eight 892 
inversion models, which are JHU, Baker, CAMS, TM5-4DVar, AMES, COLA, CMS-Flux, and GCAS. The color 893 
represents years.  Unit: GtC/year.  894 
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 896 

 897 
Figure S4 Spatial distributions of the number of aircraft atmospheric CO2 observations from 1 km to 7 km over mid-898 
latitude North America (a), East Asia (b), and Southeast Asia (c) for the period 2015-2019. The aircraft observations 899 
are from the Atmospheric Carbon and Transport (ACT) – America and Comprehensive Observation Network for 900 
TRace gases by AIrLiner (CONTRAIL) projects (47). (d-f) Mean atmospheric CO2 differences with a 0.5 km interval 901 
between observations and OCO-2 MIP models over each region for the same period. Black line and shaded area 902 
denote ensemble mean and one inter-model standard deviation range. (g-i) Vertical gradients of mean observation-903 
model differences of atmospheric CO2 for altitude ranges of 1-3 km and 3-6 km above ground. 904 
 905 
 906 
 907 
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 909 
Figure S5 Same as Figure S4 but for aircraft atmospheric CO2 observations over East Asia for 2015, 2016, and 2017.  910 
 911 
 912 
  913 
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 914 
Figure S6 Same as Figure S4 but for aircraft atmospheric CO2 observations over Southeast Asia for 2015, 2016, and 915 
2017.  916 
  917 
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 918 
Figure S7 Same as Figure S4 but for aircraft atmospheric CO2 observations over mid-latitude North America for the 919 
periods 2016-2017 and 2018-2019.  920 
 921 
  922 
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 923 
 924 

 925 
Fig. S8 Land cover classification based on MODIS IGBP 2020 data. Green: forest; yellow: semi-arid region; and red: 926 
grassland and cropland. Forest type includes evergreen needleleaf forest, evergreen broadleaf forest, deciduous 927 
needleleaf forest, deciduous broadleaf forest and mixed forest. Semiarid region includes grid points dominated by 928 
closed shrublands, open shrublands, woody savannas, and savannas.  929 
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 932 
Fig. S9 Spatial distributions of annual climate and carbon flux anomalies. Top left. Percentage of annual precipitation 933 
anomalies (unit: %); top right annual temperature anomalies (unit: °C); bottom left: percentage of GPP anomalies 934 
(unit: %); bottom right: annual anomalies of net biosphere exchange (unit: tera grams of carbon; TgC).  935 
 936 
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 938 
Figure S10 Regional normalized climate anomalies. Normalized annual anomalies of vapor pressure deficit (VPD) 939 
(yellow), surface temperature (Ts) (red), precipitation (green), and total water storage anomalies (brown) over mid 940 
latitudes of North America (NA) (A), Eurasia (B), East Asia (C), tropical Asia (D), rest of Australia (G), tropical Africa 941 
(F), and tropical South America  (E) (clockwise). The normalized anomalies are defined as the ratio between annual 942 
anomalies in 2021 and standard deviation of annual anomalies over 2015-2021. For TWS, the standard deviation was 943 
calculated over 2015-2016 and 2019-2021 due to missing data in 2017 and 2018.  944 
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 946 
Figure S11 Regional monthly climate anomalies in 2021. Monthly anomalies of temperature (red, unit: °C) and  947 
precipitation (blue, unit: mm/day) over mid latitudes of North America (NA), Eurasia, East Asia, tropical Asia, the rest 948 
of Australia, tropical Africa, and tropical South America (clockwise). The shaded area represents monthly variations 949 
of regional mean temperature or precipitation between 2015-2021.  950 
  951 
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 952 
Figure S12 Regional monthly carbon flux anomalies in 2021. Monthly anomalies of GPP (blue, unit: GtC/month) and 953 
NBE (black, unit: GtC/month) over mid latitudes of North America (NA), Eurasia, East Asia, tropical Asia, the rest of 954 
Australia, tropical Africa, and tropical South America (clockwise).  955 
 956 
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 960 

 961 
Figure S13 Temperature (top row), precipitation (second row), total water storage deficit (third row), NBE (fourth 962 
row), GPP (fifth row), and TER (sixth row) anomalies over Feb-April (left column), May-July (middle column), and 963 
Oct-Dec (right column) in 2021.  964 
 965 
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 966 
 967 

Figure S14 Top panel: annual mean Indian Ocean Dipole (IOD) Index vs. CO2 growth rate anomaly between 1959-968 
2021 without 1991 and 1992, when Pinatubo volcano eruption had a dominant impact. The Indian Ocean Dipole index 969 
data was downloaded from https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/. Middle panel: annual mean North 970 
Atlantic Oscillation (NAO) Index vs. CO2 growth rate anomaly between 1959-2021 without 1991 and 1992. The NAO 971 
index data was downloaded from https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml. Bottom 972 
panel: annual mean Arctic Oscillation (AO) Index vs. CO2 growth rate anomaly between 1959-2021 without 1991 and 973 
1992. The AO index data was downloaded from 974 
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml.  975 
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 977 
 978 
Figure S15 The ODIAC fossil fuel emissions used in this study and the GFED fossil fuel emissions from global 979 
carbon budget 2022 (GCB-GFED) have the similar changes during 2015-2021, though the mean difference is about 980 
0.1 GtC/year. Top panel:  global fossil fuel emission estimates from ODIAC (black) and GCB-GFED (blue); bottom 981 
panel: total fossil fuel emissions over East Asia. Unit: GtC/year.  982 
 983 
  984 

2015 2016 2017 2018 2019 2020 2021
year

9.2

9.4

9.6

9.8

10

10.2

G
tC
/y
ea
r

global total fossil fuel emissions
ODIAC
GCB-GFED

2015 2016 2017 2018 2019 2020 2021
year

3.1

3.2

3.3

3.4

3.5

3.6

G
tC
/y
ea
r

Total fossil fuel emissions over East Asia
ODIAC
GCB-GFED



Science Advances                                                                                                                                                          Page 40 of 47 
 

 985 

 986 
Figure S16 The ODIAC fossil fuel emissions used in this study and the GFED fossil fuel emissions from global 987 
carbon budget 2022 (GCB-GFED) have the similar monthly anomalies in both global scale and over East Asia, 988 
though these two fossil fuel emissions have different seasonal cycle. (A) Monthly global fossil fuel emission 989 
estimates from ODIAC (black) and GCB-GFED (blue) and (B) their anomalies. (C) Monthly fossil fuel emissions 990 
over East Asia and (D) their anomalies. Unit: GtC/month.  991 
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 994 
Figure S17 The contrast between monthly NBE anomalies and monthly fossil fuel emission anomalies. (A) Monthly 995 
fossil fuel emission anomalies from ODIAC (black) and GCB-GFED (blue), and NBE anomalies (magenta) over the 996 
globe and (B) over East Asia. Unit: GtC/month.  997 
  998 
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 999 

 1000 
 1001 
Figure S18 Left panel: annual mean relative precipitation differences between 2021 and 2011 (unit: %). The 1002 
precipitation differences are normalized by the annual mean precipitation between 2015-2021. Right panel: annual 1003 
mean temperature differences between 2021 and 2011 (unit: °C).  1004 
  1005 
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 1006 

 1007 
Figure S19 Precipitation and temperature anomalies in 1975. The anomalies were calculated with respect to the mean 1008 
between 1972 and 1978. Top panels: annual precipitation and temperature anomalies (unit: °C); Middle panel: 1009 
precipitation and temperature anomalies between Jan-March 1975; Bottom panel: precipitation and temperature 1010 
anomalies between April-July 1975. 1011 
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 1012 
Figure S20 Precipitation and temperature anomalies in 1985. The anomalies were calculated with respect to the mean 1013 
between 1982 and 1988. Top panels: annual precipitation and temperature anomalies (unit: °C); Middle panel: 1014 
precipitation and temperature anomalies between January and March 1985; Bottom panel: precipitation and 1015 
temperature anomalies between April and July 1985. 1016 
 1017 
  1018 
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 1019 
Figure S21 (left) Annual precipitation anomalies over the Central Asian Region (30°E-85°E, 30°N-50°N) versus annual 1020 
mean Oceanic Nin.o Index (ONI) for the nine available CMIP6 models which have r1i1p1 versions (described further 1021 
in the text). (Right) Same as the left panel, except April through June precipitation anomalies. Each dot in each plot 1022 
represents a seasonal or annual precipitation anomaly for each of the individual model years from 2016-2100. To 1023 
compute the ONI, any possible long-term trend is linearly removed for each model first; analogously this is how 1024 
precipitation anomalies are computed. The linear correlation coefficients and best-fit lines are shown in each panel.  1025 
The Coupled Model Intercomparison Project Phase Six (CMIP6) models used for this analysis are only those which 1026 
contain r1i1p1 versions, in which “r” refers to the realization (ensemble member), “i” initialization method, and “p” 1027 
the physics. We utilize nine CMIP6 models (IPSL, CNRM, MPI, NCAR, MRI, CCCMA, MIROC, GFDL, and CAM5). 1028 
For an overview of the configuration and experimental design of CMIP6, please see (53).   1029 
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Table S1.  Summary of the ensemble of top-down atmospheric inversion models.  1034 

Model 
Name 

Transpo
rt 

Model 

Resolutio
n 

Inversion 
Method 

Meteorol
ogy 

Prior 
terrestrial 

biosphere flux 

Prior air-sea 
flux Contact 

NOAA-
Baker PCTM 4° x 5° 4D-Var MERRA2 

CASA-GFED3 Landschutzer 
v4.4 D. Baker 

CAMS LMDZ 1.9°x3.75° 4D-Var ERA-5 
ORCHIDEE CMEMS F. 

Chevallier 

John 
Hopkins 

GEOS-
Chem 4° x 5° Geostastica

l /4D-Var 
MERRA-

2 
CASA-

GFED4.1s 
Takahashi 

S. Miller 

TM5-
4Dvar TM5 2°x3° 4D-Var ERA-5 

SiB-CASA CT2019 
S. Basu 

AMES GEOS-
Chem 4° x 5° 4D-Var MERRA-

2 

CASA-
GFED4.1s 

CT2019 S. 
Philip/M. 
Johnson 

COLA GEOS-
Chem 4°x5° EnKF MERRA-

2 

VEGAS Rodenbeck202
1 

N. 
Zeng/Z. 

Liu 

CMS-Flux GEOS-
Chem 4°x5° 4D-Var Merra-2 

CADAMOM MOM6 
J. Liu 

GCASv2 MOZAR
T-4 2.8°x2.8° EnKF ERA-5 

BEPS CT2017 
F. Jiang 

 1035 
 1036 
 1037 
 1038 
 1039 
 1040 
 1041 
 1042 
 1043 
 1044 
 1045 
 1046 
 1047 
 1048 
 1049 
 1050 
 1051 
 1052 
 1053 
 1054 
 1055 
 1056 
 1057 
 1058 
 1059 
 1060 
 1061 
 1062 
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 1063 
Table S2. List of datasets used in the study.  1064 

OCO-2 10sec 

averages 

ftp.cira.colostate.edu:/ftp/BAKER/OCO2_b10c_10sec_GOOD_r7.nc4 

Atmospheric CO2 

growth rate 

https://gml.noaa.gov/ccgg/trends/gl_gr.html 

Fossil fuel 

emissions 

https://zenodo.org/record/8325420 

GOSIF https://globalecology.unh.edu/data/GOSIF.html 

FluxSAT https://daac.ornl.gov/VEGETATION/guides/FluxSat_GPP_FPAR.html#datadescraccess 

Nino 3.4 index https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php 

GPCP precipitation https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-

monthly/access/ 

Fire CO2 emissions https://doi.org/10.6084/m9.figshare.21770624.v1 

2-m Temperature 

and 2-m dew point 

temperature  

ERA-5 reanalysis https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-

land-monthly-means?tab=overview 

OCO-2 v10 MIP 

extension  

https://gml.noaa.gov/ccgg/OCO2_v10mip/download.php 

ACT-America https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1593 

CONTRAIL https://www.nies.go.jp/doi/10.17595/20180208.001-e.html 

 1065 
 1066 


