

1 Climate and Vegetation Change Impacts on Future

2 Conterminous United States Water Yield

3 Henrique F. Duarte ^{a,b}, John B. Kim ^c, Ge Sun ^{b,*}, Steven McNulty ^b, and

4 Jingfeng Xiao ^{a,*}

5 ^aEarth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New
6 Hampshire, 8 College Road, Durham, NH, 03824, United States

7 ^bEastern Forest Environmental Threat Assessment Center, USDA Forest Service, 3041 E. Cornwallis Road,
8 Research Triangle Park, NC, 27709, United States

9 ^cWestern Wildland Environmental Threat Assessment Center, USDA Forest Service, 3200 SW Jefferson
10 Way, Corvallis, OR, 97331, United States

11 *Corresponding authors: Ge Sun (Ge.Sun@usda.gov) and Jingfeng Xiao (J.Xiao@unh.edu)

12 [Correspondence related to manuscript submission, review, and acceptance handled by JX]

13 Abstract

14 Watersheds' future water yield is influenced by both climate and associated vegetation dynamics. This
15 study coupled future vegetation projections from a dynamic global vegetation model (MC2) with an
16 ecohydrological model (Water Supply Stress Index, WaSSI) to predict water yield at the 8-digit Hydrologic
17 Unit Code (HUC8) watershed level for the conterminous United States (CONUS) for the 21st century. We
18 considered two contrasting warming scenarios (Representative Concentration Pathways 8.5 and 4.5) and
19 accounted for simulation uncertainty by using a large ensemble of climate model outputs. The coupled
20 model projects a decrease in water yield across much of CONUS, especially towards end-century (2080–

21 2099) under RCP 8.5 (warmer scenario), reaching up to -30% at the regional level, relative to 2008–
22 2027. Overall, the projected water yield reduction under RCP 8.5 is roughly twice as high as under RCP
23 4.5. Substantial changes in water yield for watersheds in the central and southeastern U.S. are expected
24 by mid-century (2040–2059), reaching up to -40% (RCP 4.5) and -75% (RCP 8.5) at end-century (2080–
25 2099), relative to 2008–2027. Climate change, rather than vegetation change, strongly dominates the
26 projected future changes in water yield, and contributions of climate change are typically one order of
27 magnitude higher than those of vegetation change. For a small number of watersheds, the effects of
28 vegetation change can mitigate or exacerbate the effects of climate change on water yield. Our
29 simulation results suggest widespread increase in aridity and evaporative indices and decrease in soil
30 moisture, especially under RCP 8.5. Our integrated modeling results can inform policy makers and
31 resource development plans quantitative information of future water availability.

32 **Keywords**

33 Climate change; Dynamic global vegetation model; Evapotranspiration; Water yield; HUC8; CONUS

34 **1. Introduction**

35 The water availability on Earth is rapidly changing due to climate change and human activities (Heidari et
36 al., 2021a; Song et al., 2023; Zhang et al., 2023). The water yield of a given watershed is often used as a
37 surrogate of water availability for use by ecosystems and human society. Water yield is defined as the
38 total water produced as the sum of surface flow, subsurface flow, and baseflow. The mean annual water
39 yield represents the long-term (multi-year) mean difference between precipitation (P) and
40 evapotranspiration (ET) within the watershed (G. Sun et al., 2015). Precipitation and air temperature are
41 the key climatic drivers of water yield (Duan et al., 2017). Under a warmer climate, the partitioning of
42 precipitation between streamflow (water yield) and ET is generally expected to shift towards ET (Duan

43 et al., 2017). This would further reduce water yield in watersheds projected to receive less precipitation
44 in the future and offset the increase in water yield for watersheds projected to receive more
45 precipitation. In addition to climatic factors, land cover/land use also directly impacts water yield, given
46 its effects on ET (Hu et al., 2021; Li et al., 2020; Liu et al., 2016; G. Sun et al., 2015; Zhang et al., 2024).
47 The interception of precipitation by vegetation and posterior evaporation are directly associated with its
48 leaf area index (LAI), and so are its transpiration losses (Yang et al., 2023). In addition to potential land
49 cover/land use changes projected for the future (e.g., urbanization and agricultural expansion), global
50 vegetation cover in terms of total leaf area, stomatal conductance, leaf phenology, and plant species
51 distribution is expected to respond to future climate change and increasing atmospheric CO₂ and
52 temperature (Gonzalez et al., 2010; Mekonnen and Riley, 2023; Teng et al., 2023). For instance, warmer
53 and CO₂-rich conditions may promote plant growth and lead to increased transpiration, given a higher
54 LAI and atmospheric evaporative demand (Zhang et al., 2023). At the same time, stomatal conductance
55 is generally expected to decrease in response to increasing atmospheric CO₂ (Li et al., 2023; Medlyn et
56 al., 2001), which would downregulate transpiration and contribute to reduced water stress on plants. As
57 global climate change intensifies, shifts in precipitation regimes, increased air temperature, and
58 associated changes in vegetation state and function may substantially impact water yield worldwide
59 (Yang et al., 2023). Potential future reductions in water yield compounded with projected increases in
60 water demand across water use sectors may lead to more severe, frequent, and widespread water
61 shortages, impacting ecosystems and human welfare (Brown et al., 2019; Sun et al., 2008; Warziniack et
62 al., 2022).

63 Future climate projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) indicate a
64 substantial increase in surface air temperature in CONUS by the end of the twenty-first century (2070–
65 2099), ranging from 1.3° to 3.7°C under the Representative Concentration Pathway 4.5 (RCP 4.5, a
66 moderate warming scenario in which anthropogenic greenhouse gas emissions peak at mid-century) and

67 from 3.0° to 6.1°C under RCP 8.5 (a high warming scenario in which emissions increase throughout the
68 21st century), relative to 1986–2015 (Hayhoe et al., 2018). Under RCP 8.5, over much of CONUS, annual
69 mean surface air temperature is projected to permanently depart from its historical variability range in
70 the next couple of decades (2029–2050; Kerns et al., 2016). Surface air temperature projections under
71 different warming scenarios (e.g., RCP 4.5 and 8.5) diverge substantially at mid-century, with high and
72 increasing variability among individual general circulation model (GCM) projections within each scenario
73 (Wuebbles et al., 2014). Winter and spring precipitation is projected to increase by up to 25% in the
74 northern Great Plains, the upper Midwest, and the Northeast, and decrease by up to 25% in the
75 Southwest at end-century under RCP 8.5 (2070–2099 relative to 1986–2015; Hayhoe et al., 2018). The
76 frequency of heavy precipitation events is projected to increase in all regions of CONUS, with end-
77 century increases of about 50–100% under RCP 4.5 and 100–200% under RCP 8.5 relative to historical
78 regional values (Easterling et al., 2017).

79 Several studies have investigated the impact of climate change on water yield over CONUS using
80 hydrological models and downscaled CMIP5 climate projections (e.g., Duan et al., 2017; Heidari et al.,
81 2021a, 2021b; Mahat et al., 2017; Naz et al., 2016). While the future twenty-first century projections in
82 Naz et al. (2016) and Heidari et al. (2021b; “intermediate” and “wet” GCMs) indicate an overall increase
83 in water yield in CONUS under RCP 8.5, the projections in Heidari et al. (2021a), Heidari et al. (2021b;
84 “dry” GCM), and Mahat et al. (2017) indicate an overall decrease in water yield. The spatial patterns of
85 future water yield change projected by Heidari et al. (2021a), Mahat et al. (2017), and Duan et al. (2017)
86 are in general agreement, showing a reduction in water yield across extensive parts of CONUS, especially
87 in the central U.S., with more accentuated changes under RCP 8.5 compared to RCP 4.5. These patterns
88 of change, however, contrast with those projected by Naz et al. (2016), which are generally reversed in
89 sign, showing an increase in water yield across much of CONUS under RCP 8.5, including the central U.S.
90 The variation across the cited studies is associated with different modeling approaches or simulation

91 periods. Modeling approaches have included different hydrological models such as the Variable
92 Infiltration Capacity (VIC; Cherkauer et al., 2003; Liang et al., 1996, 1994) and the Water Supply Stress
93 Index (WaSSI: Caldwell et al., 2012; Sun et al., 2011), and different GCM ensembles and GCM
94 downscaling approaches, such as dynamic and statistical downscaling methods (Bias Correction and
95 Constructed Analog, BCCA, Version 2: USBR, 2013; Multivariate Adaptive Constructed Analogs, MACA:
96 Abatzoglou and Brown, 2012; MACAv2-LIVNEH: Livneh et al., 2013). However, a common denominator
97 across these studies is the assumption of a fixed land cover throughout the twenty-first century
98 simulations, despite the fact that land cover is projected to change in response to climate change and
99 increasing atmospheric CO₂ (Gonzalez et al., 2010; Mekonnen and Riley, 2023; Teng et al., 2023).
100 Empirical studies show that vegetation matters to water balances and water availability at multiple scales
101 (Oudin et al., 2008; Zhang et al., 2001, 2017).

102 Differently from hydrological models, terrestrial biosphere models (TBMs) can account for
103 biogeochemistry and simulate the water and carbon cycles in a coupled fashion, including land cover
104 dynamics. TBMs with dynamic vegetation modeling capability, also known as dynamic global vegetation
105 models (DGVMs), allow not only the vegetation state (e.g., LAI and biomass) but also the distribution of
106 plant functional types to respond dynamically to climate and atmospheric CO₂, while in typical TBMs
107 such distribution is prescribed. The added complexity in TBMs and DGVMs, however, comes at the price
108 of being more computationally expensive to run in comparison to simpler hydrological models, hindering
109 their application at the fine spatial resolutions typically desired for hydrological studies, especially for
110 large spatial domains. The dependence on a much higher number of model parameters also makes the
111 calibration of TBMs more challenging. Therefore, a common approach for studies focused on future
112 hydrological projections is the use of relatively simpler water-centric models and the assumption of a
113 fixed land cover, as in the studies cited in the paragraph above (Duan et al., 2017; Heidari et al., 2021a,
114 2021b; Mahat et al., 2017; Naz et al., 2016). At the same time, changes in land cover are expected to

115 play a significant role in the modulation of future water yield. For instance, G. Sun et al. (2015)
116 investigated the sensitivity of water yield to hypothetical, across-the-board percent changes in LAI in
117 CONUS using the WaSSI ecohydrological model. They found an overall increase in water yield in CONUS
118 of 3%, 8%, and 13% associated with LAI decreases of 20%, 50%, and 80%, respectively, and a decrease of
119 3% associated with an LAI increase of 20%. Bridging between the use of fully-coupled, complex
120 TBMs/DGVMs and relatively simple hydrological models with prescribed vegetation – to enable
121 investigations of the impacts of future climate and vegetation change on water yield at fine spatial
122 resolution over a large spatial domain as CONUS – is yet to be explored.

123 In this paper, we present results from coupling vegetation projections from the MC2 DGVM (Bachelet et
124 al., 2001; Conklin et al., 2016) with the WaSSI hydrological model (Caldwell et al., 2012; Sun et al., 2011)
125 to project water yield at the USGS 8-digit Hydrologic Unit Code watershed scale (HUC8), comparable in
126 size to U.S. counties. Our approach represents a one-way coupling technique, i.e., coupling available
127 future projections of LAI and vegetation type from a DGVM with a hydrological model. WaSSI has been
128 extensively validated for CONUS at multiple scales (USGS 2-digit HUC, HUC2, and overall CONUS: Duan et
129 al., 2017; HUC8: Caldwell et al., 2012; USGS 12-digit HUC, HUC12: Li et al., 2020; S. Sun et al., 2015) and
130 MC2 has been tested regionally and globally for climate change studies (Golub et al., 2022; Kim et al.,
131 2018, 2017; Zhou et al., 2019). We drove WaSSI with statistically downscaled future climate projections
132 depicting RCP 4.5 and 8.5 scenarios by 16 CMIP5 GCMs (Localized Constructed Analogs, LOCA; Pierce et
133 al., 2015, 2014). We adopted available vegetation projections made with the MC2 DGVM (EPA, 2017)
134 using the same climate driver (LOCA) for integration with WaSSI. While there has been previous work
135 that present future projections of water yield for CONUS, our work is, to our knowledge, the first to
136 employ an ensemble of future vegetation projections and provide water yield projections at a relatively
137 fine scale (HUC8 watersheds). Our goal was to investigate potential future changes in climate and
138 vegetation and their impact on water balances (water yield, ET, soil moisture) in CONUS for the mid-

139 century (ca. 2050) and end-century (ca. 2090) under contrasting warming scenarios (RCP 4.5 and 8.5),
140 taking into consideration the uncertainty arising from GCMs. Our central hypothesis was that climate
141 change significantly alters water balances both directly via changes in air temperature and precipitation
142 and indirectly via climate/CO₂-induced changes in vegetation leaf area.

143 2. Methods

144 2.1. Study Area

145 We carried out our simulations for the conterminous United States (CONUS) at the HUC8 scale, covering
146 a total of 2099 watersheds with an average area of 3752 km² (Fig. 1). In Section 3, our results are
147 presented at the HUC8 scale and summarized at the HUC2 scale, i.e., for each one of the 18 USGS water
148 resources regions in CONUS (Fig. 1).

[Insert figure]

Fig. 1. USGS HUC8 watersheds (blue lines) and HUC2 water resources regions (black lines) in CONUS. Regions include 1) New England, 2) Mid-Atlantic, 3) South Atlantic-Gulf, 4) Great Lakes, 5) Ohio, 6) Tennessee, 7) Upper Mississippi, 8) Lower Mississippi, 9) Souris-Red-Rainy, 10) Missouri, 11) Arkansas-White-Red, 12) Texas-Gulf, 13) Rio Grande, 14) Upper Colorado, 15) Lower Colorado, 16) Great Basin, 17) Pacific Northwest, and 18) California. Corresponding short labels (A to R) are used in the figures in Section 3.

149

150 2.2. WaSSI Model Description

151 The Water Supply Stress Index (WaSSI) model uses a water balance approach to simulate the monthly
152 water yield, ET, and soil moisture of each HUC8 watershed in a specified domain (Caldwell et al., 2012;
153 Sun et al., 2011). The model has been well tested in the U.S. (Duan et al., 2019; Li et al., 2020) and

154 globally in Germany (Al-Qubati et al., 2023), China (Liu et al., 2013), Rwanda (Bagstad et al., 2018), and
155 recently in Nepal (Sun et al., 2023).

156 Soil hydrological processes including infiltration, storage, and drainage are simulated with an algorithm
157 based on the Sacramento Soil Moisture Accounting Model (SAC-SMA, Burnash, 1995; Burnash et al.,
158 1973). Monthly ET is initially estimated with an empirical function of potential evapotranspiration (PET),
159 LAI, and P , derived from eddy-covariance flux measurements at multiple sites (Sun et al., 2011). PET is
160 calculated based on near-surface air temperature and the daytime length defined by latitude and day of
161 the year (Hamon, 1963). The final ET estimate is constrained by the available soil moisture. Each
162 watershed is composed by up to 10 land cover types: 1) deciduous forest, 2) evergreen forest, 3) mixed
163 forest, 4) shrubland, 5) grassland, 6) barren land, 7) wetland, 8) water, 9) cropland, and 10) urban.
164 Coverage area fraction, impervious cover fraction, and mean monthly LAI values are assigned to each
165 land cover type, while all land cover types share the same watershed soil properties. WaSSI calculates all
166 water balance components for each land cover type independently, and then integrates the results at
167 the watershed level via area-weighted averaging. The model runs on a monthly time step, and is driven
168 with uniform precipitation and air temperature data for each HUC8 watershed.

169 For CONUS, surface input data is available at the HUC8 scale, including soil properties based on the
170 Digital General Soil Map of the United States (STATSGO2, NRCS, 2024), land and impervious cover based
171 on the 2006 National Land Cover Database (NLCD; USGS, 2011), and LAI based on 2000–2006 mean
172 monthly MODIS LAI (Zhao et al., 2005). Note that in this study we combine the land cover and LAI
173 datasets with MC2 simulations to project values for 2007–2099 (Sect. 2.4), and that we define 2008–
174 2027 as a “present-day” baseline for comparison with mid-, late-century projections of vegetation and
175 hydrology (Sect. 2.5).

176 The WaSSI model originally assumes no changes in land cover over the years. Therefore, we adapted the
177 model structure to allow for a dynamic land cover. We also applied a small modification in the code
178 regarding the ET calculation. By default, WaSSI calculates a potential actual evapotranspiration value
179 (ET^* , i.e., unconstrained by available soil moisture) as:

$$ET^* = 0.0222 PET LAI + 0.174 P + 0.502 PET + 5.31 LAI \quad (1)$$

180 For watersheds located in regions 1, 2, 4, and 5 in the northeastern U.S. (Fig. 1) with more than 20%
181 forest cover, WaSSI calculates ET^* as:

$$ET^* = 0.00169 PET P + 0.4 PET + 7.83 LAI \quad (2)$$

182 The alternate formulation (Eq. 2) is used in WaSSI as it was found to improve ET simulations in those
183 cases, when compared to annual observations of P – water yield. With our implementation of dynamic
184 land cover, WaSSI could potentially switch back and forth over time between the two ET^* formulations
185 for a given watershed in those regions. To avoid inconsistencies, we opted to remove the forest cover
186 conditional from the code, but kept the alternate ET^* formulation for regions 1, 2, 4, and 5.

187 2.3. Future Climate Projections

188 Statistically downscaled climate projections from 16 CMIP5 general circulation/Earth system models
189 under scenarios RCP 4.5 and 8.5 were used with WaSSI (Localized Constructed Analogs, LOCA: Pierce et
190 al., 2015, 2014; see Table 1). The model/scenario selection was based on the availability of
191 corresponding MC2 simulations (Section 2.4). The near-surface air temperature and precipitation data
192 from the LOCA downscaled climate dataset were aggregated from the original $\frac{1}{16}^\circ$, daily spatial-temporal
193 scale to the HUC8, monthly scale.

194

195 **Table 1.** LOCA climate datasets used as input to WaSSI (LOCA statistically downscale CMIP5 model outputs to $1/16^{\circ}$
 196 resolution for the conterminous United States; Pierce et al., 2015, 2014).

Model	Institution	Original spatial resolution ($lon \times lat$)	Reference
ACCESS1-0	Commonwealth Scientific and Industrial Research Organisation, and Bureau of Meteorology, Australia	$1.875^{\circ} \times 1.25^{\circ}$	(Bi et al., 2013)
CanESM2	Canadian Centre for Climate Modelling and Analysis	$2.8^{\circ} \times 2.8^{\circ}$	(Chylek et al., 2011)
CCSM4	National Center for Atmospheric Research, USA	$1.25^{\circ} \times 0.94^{\circ}$	(Gent et al., 2011)
CNRM-CM5	<i>Centre National de Recherches Météorologiques and Centre Européen de Recherche et de Formation Avancées en Calcul Scientifique, France</i>	$1.4^{\circ} \times 1.4^{\circ}$	(Volodine et al., 2013)
GFDL-CM3	NOAA Geophysical Fluid Dynamics Laboratory, USA	$2.5^{\circ} \times 2.0^{\circ}$	(Donner et al., 2011)
GFDL-ESM2G		$2.5^{\circ} \times 2.0^{\circ}$	(Dunne et al., 2012)
GFDL-ESM2M		$2.5^{\circ} \times 2.0^{\circ}$	(Dunne et al., 2012)
HadGEM2-ES	Met Office Hadley Centre, UK	$1.875^{\circ} \times 1.25^{\circ}$	(Bellouin et al., 2011)
INM-CM4	Institute for Numerical Mathematics, Russia	$2.0^{\circ} \times 1.5^{\circ}$	(Volodin et al., 2010)
IPSL-CM5A-LR	<i>Institut Pierre-Simon Laplace, France</i>	$3.75^{\circ} \times 1.875^{\circ}$	(Dufresne et al., 2013)
IPSL-CM5A-MR		$2.5^{\circ} \times 1.25^{\circ}$	(Dufresne et al., 2013)

MIROC5	Atmosphere and Ocean Research	$1.4^\circ \times 1.4^\circ$	(Watanabe et al., 2010)
MIROC-ESM-CHEM	Institute (The University of Tokyo),	$2.8^\circ \times 2.8^\circ$	(Watanabe et al., 2011)
MIROC-ESM	National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology	$2.8^\circ \times 2.8^\circ$	(Watanabe et al., 2011)
MRI-CGCM3	Meteorological Research Institute/ Japan Meteorological Agency	$1.1^\circ \times 1.1^\circ$	(Yukimoto et al., 2012)
NorESM1-M	Norwegian Climate Centre	$2.5^\circ \times 1.875^\circ$	(Bentsen et al., 2013)

197

198 2.4. Future Projections of Potential Vegetation with the MC2 DGVM and Integration with

199 WaSSI

200 The MC2 DGVM can project future changes in vegetation type and state (e.g., LAI, biomass) in response
201 to climate change and increasing atmospheric CO₂. The MC2 DGVM is a refactored version of the MC1
202 DGVM (Bachelet et al., 2001; Conklin et al., 2016), with no change in science but with improvements in
203 computational performance (Kim et al., 2018). MC2 consists of 3 submodels that address
204 biogeochemistry (CENTURY Soil Organic Matter Model; Parton et al., 1993), fire disturbance (MC-Fire fire
205 simulation model; Conklin et al., 2016), and biogeography (MAPSS vegetation biogeography model;
206 Neilson, 1995). A full technical description of MC2 is available in Bachelet et al. (2001) and Conklin et al.
207 (2016).208 For integration with WaSSI (Fig. 2), we obtained future projections of potential natural vegetation from
209 MC2 simulations run under the same scenarios and climate forcing described in Section 2.3 (EPA, 2017).
210 Annual outputs of vegetation type and LAI at the $\frac{1}{16}^\circ$ spatial scale were adapted for input into WaSSI.
211 First, we translated the ~50 vegetation types output by MC2 into one of the six natural vegetation types

212 defined by WaSSI (deciduous, evergreen, and mixed forests; shrubland, grassland, and barren land), and
213 then applied a natural vegetation mask based on the 2006 NLCD product (USGS, 2011) to all MC2 grid
214 cells, masking out the areas characterized by other land cover types (e.g., urban areas, croplands, and
215 artificial pasture). Second, we aggregated the MC2 results per ecoregion (level-2 ecoregions of North
216 America; EPA, 2010; Fig. 3), obtaining the area fraction for each vegetation type, related to the total
217 natural vegetation area, and the respective LAI. HUC8 polygons have fine spatial resolution in relation to
218 the $\frac{1}{16}^\circ$ grid resolution used by MC2, with some HUC8 polygons coinciding with as few as a single $\frac{1}{16}^\circ$
219 grid cell. We extracted a regional signal from MC2 output to increase our confidence in its vegetation
220 projections. Third, from the ecoregion-level results, we calculated the anomalies in vegetation area
221 fraction and LAI for years 2007–2099 relative to a 2000–2006 mean baseline. Finally, we combined the
222 default vegetation boundary conditions in WaSSI, based on 2006 NLCD and 2000–2006 mean monthly
223 MODIS LAI, with the anomalies derived from the MC2 simulations to create, for each natural vegetation
224 type, a time series of annual area fraction and monthly LAI for 2007–2099 at the HUC8 scale. We only let
225 the natural vegetation fraction of each HUC8 to be dynamic. The remaining land cover types considered
226 in WaSSI (urban, cropland, wetland, and water) were kept constant over time. A more detailed
227 description of our procedure to create the dynamic vegetation boundary conditions within WaSSI is
228 given in Appendix A.

[Insert figure]

Fig. 2. WaSSI-MC2 integration overview. High resolution (daily, $\frac{1}{16}^\circ$) future climate projections with multiple GCMs and scenarios (LOCA; Pierce et al., 2015, 2014) are used to drive the MC2 DGVM. The projected potential natural vegetation types and LAI (MC2 DGVM annual outputs) are first translated to WaSSI natural vegetation classes and integrated at the ecoregion level (Fig. 3). Then, anomalies are calculated relative to a 2000–2006 baseline. The natural vegetation type and LAI anomalies at the ecoregion level are combined with land cover

“observations” for year ~2006 at the monthly, HUC8 scale (based on 2006 NLCD and 2000–2006 MODIS data products, as originally defined in WaSSI) to project future land cover (2007–2099), which is then used as input in WaSSI. Note that only changes in natural vegetation are projected, while the other land cover classes in WaSSI are kept fixed on year~2006 values. The climatic driver for WaSSI is created by integrating precipitation and air temperature from the LOCA downscaled climate projections at the monthly, HUC8 scale. With the dynamic climate and land cover inputs, WaSSI is run to project future hydrology. In the flow chart, “Proc.” (gray diamonds) indicate data processing steps. See Section 2.4 for further details.

229

[Insert figure]

Fig. 3. Level-2 ecoregions in CONUS (EPA, 2010): **5.2** Mixed wood shield, **5.3** Atlantic highlands, **6.2** Western cordillera, **7.1** Marine west coast forest, **8.1** Mixed wood plains, **8.2** Central USA plains, **8.3** Southeastern USA plains, **8.4** Ozark/Ouachita-Appalachian forests, **8.5** Mississippi alluvial and southeast USA coastal plains, **9.2** Temperate prairies, **9.3** West-central semiarid prairies, **9.4** South central semiarid prairies, **9.5** Texas-Louisiana coastal plain, **9.6** Tamaulipas-Texas semiarid plain, **10.1** Cold deserts, **10.2** Warm deserts, **11.1** Mediterranean California, **12.1** Western Sierra Madre piedmont, **13.1** Upper Gila mountains, **15.4** Everglades.

230

231 2.5. Simulation Experiments and Data Analysis

232 To assess the combined impact of climate and vegetation change on water yield, we carried out an
233 ensemble of 16 simulations with the revised WaSSI model (Section 2.2) for each RCP scenario (4.5 and
234 8.5, totaling 32 simulations), using LOCA-downscaled climate projections from 16 GCMs (Section 2.3) and
235 the corresponding MC2-based vegetation projections (Section 2.4), covering years 2007 to 2099. To
236 assess the individual impacts of direct climate change (i.e., changes in air temperature and precipitation)

237 and climate-induced vegetation change on water yield, we ran two additional WaSSI simulation
 238 ensembles: the first with dynamic climate and *fixed vegetation* (annual area fraction and monthly LAI of
 239 each vegetation type fixed at their year 2007 values, looped throughout the simulation), and the second
 240 with *fixed climate* (monthly temperature and precipitation values for year 2007, looped throughout the
 241 simulation) and dynamic vegetation, all else the same as in main simulation ensemble.

242 We calculated future changes in water yield and in other relevant model outputs (e.g., ET, soil moisture)
 243 and inputs (e.g., air temperature, precipitation, vegetation cover fraction, LAI) for mid-century (2040–
 244 2059) and end-century (2080–2099) relative to a “present-day” (2008–2027) baseline. We disregarded
 245 the first simulation year (2007), as it was used for WaSSI spin-up. We calculated mean ensemble
 246 differences between climatological periods (i.e., mid-century – present, end-century – present) for RCP
 247 4.5 and 8.5, and determined their statistical significance via Student’s *t* test (dependent *t* test for paired
 248 samples). The calculations were done at the HUC8 and HUC2 scales (Fig. 1).

249 We also investigated hydrological changes at the regional level by using the Budyko framework (Budyko,
 250 1958). We averaged ET, PET, and precipitation at the HUC2 scale for each climatological period, then
 251 calculated an evaporative index (ET/P) and an aridity index (PET/P). We then ensemble averaged the
 252 indices for each climatological period under RCP 4.5 and 8.5. The statistical significance of the differences
 253 between climatological periods was determined via Student’s *t* test (dependent *t* test for paired
 254 samples). For each period and RCP scenario, we adjusted an overall Budyko curve in ET/P × PET/P
 255 space for CONUS based on results for all 18 HUC2s (Fig. 1). We chose a curve of the form (Fu, 1981):

$$\frac{ET}{P} = 1 + \left(\frac{PET}{P} \right) - \left(1 + \left(\frac{PET}{P} \right)^\omega \right)^{\frac{1}{\omega}} \quad (3)$$

256 where ω is an empirical parameter (adjustable) representing overall catchment properties.

257 2.6. Validation of the 2008–2027 “Present-Day” Baseline

258 For validation purposes, we compared mean annual LOCA-downscaled projections of surface air
259 temperature and precipitation for the 2008–2027 “present-day” baseline at the HUC8 level in CONUS
260 against 2008–2023 mean annual observations from PRISM (PRISM Climate Group, 2024). We also
261 compared 2008–2027 mean annual ET simulated with WaSSI against 2008–2023 mean annual
262 observations from MODIS (Running et al., 2021). Monthly PRISM and annual MODIS ET data were
263 aggregated at the HUC8 level from original spatial resolutions of 4 km and 500 m, respectively.

264 3. Results

265 3.1. Accuracy of the 2008–2027 “Present-Day” Baseline

266 Mean annual air temperature and precipitation projected for 2008–2027 under RCP 8.5 for the HUC8s in
267 CONUS (LOCA dataset) are tightly correlated ($r = 0.99$) with mean annual PRISM observations for 2008–
268 2023 (Fig. 4a,b), with small mean bias errors (MBE) of 0.48°C and -37 mm yr^{-1} , respectively, and root
269 mean square errors (RMSE) of 0.82°C and 83 mm yr^{-1} , respectively. Mean annual ET projected for 2008–
270 2027 under RCP 8.5 based on WaSSI is highly correlated ($r = 0.86$) with mean annual MODIS ET for
271 2008–2023 (Fig. 4c), with a reasonably small MBE of 25 mm yr^{-1} and RMSE of 118 mm yr^{-1} . In each
272 comparison (T , P , ET), the linear regression exhibits a slope close to 1 and an intercept close to 0 (see
273 Fig. 4). Results under RCP 4.5 are virtually identical to those presented here (not shown).

[Insert figure]

Fig. 4. Comparison of mean annual “present-day” (2008–2027) projections under RCP 8.5 against mean annual observations (2008–2023) for each HUC8 in CONUS ($n = 2099$): a) surface air temperature (LOCA projection vs. PRISM data), b) precipitation (LOCA projection vs. PRISM data), and c) evapotranspiration (WaSSI projection vs. MODIS data). Projections correspond to ensemble averages (16 GCMs; see Table 1).

275 3.2. Change in Climate and Land Cover

276 Air temperature is projected to significantly increase across CONUS at mid-century and end-century
277 under scenarios RCP 4.5 and RCP 8.5, based on the LOCA climate projections (Fig. 5a,b, S1a,b). Under
278 RCP 4.5, the changes at the HUC2 scale relative to "present day" vary from 0.98 to 1.43 °C (mid-century)
279 and 1.62 to 2.41 °C (end-century), while under RCP 8.5, the changes are roughly twice as high: 1.47 to
280 2.09 °C (mid-century) and 3.72 to 5.28 °C (end-century).

[Insert figure]

Fig. 5. Projected changes in air temperature (**a, b**) and precipitation (**c, d**) at end-century (2080–2099) under scenarios RCP 4.5 and 8.5, respectively, at the HUC8 scale, based on the LOCA downscaled climate dataset. Absolute changes in air temperature and percent changes in precipitation are shown, relative to "present day" (2008–2027). The hatched pattern indicates insignificant changes at the 95% confidence level. HUC2s are delineated in black.

281

282 The projected precipitation changes across CONUS based on LOCA are less clear compared to the
283 projected air temperature changes, especially due to the high variability across GCMs (Fig. 5c,d, S1c,d).
284 For most regions, the projected precipitation changes at mid- and end-century under scenarios RCP 4.5
285 and 8.5 are statistically insignificant. The projected precipitation changes at end-century under scenario
286 RCP 8.5 exhibit a relatively clearer pattern, with statistically significant increases (decreases) in the order
287 of 10% at many northern (southern) HUC8s (Fig. 5d).

288 Based on MC2 simulations of potential natural vegetation and "present-day" observations, our projected
289 changes in vegetation type and LAI show similar spatial patterns under RCP 4.5 and 8.5, with more
290 pronounced changes under the latter scenario (Figs. 6 and 7; see also Figs. S2 and S3). At end-century

291 and under RCP 8.5, notable vegetation type shifts include: 1) mixed forest to deciduous forest in the
292 northern Appalachians and upper Midwest; 2) deciduous forest to mixed/evergreen forest in the
293 southern Appalachians; 3) evergreen forest to mixed forest in the Pacific northwest; 4) grassland to
294 shrubland in the intermountain west; and 5) shrubland to grassland in the Great Plains, with changes of
295 up to $\approx 0.28, 0.11, 0.46, 0.10$, and 0.06 in HUC8 coverage area fraction, respectively (Fig. 7). Also notable
296 is the projected increase in evergreen forest coverage in the southeastern coastal plains and western
297 mountain ranges (up to ≈ 0.08 in HUC8 coverage area fraction), associated with a combined coverage
298 reduction of other vegetation types. For the same period and scenario, total LAI is projected to increase
299 in the western mountain ranges, southern Great Plains, and southeastern coastal plains, and decrease in
300 parts of the intermountain west and Appalachians, with relative changes reaching up to $\approx +33\%, +10\%$,
301 $+14\%$, -10% , and -5% at the HUC8 scale, respectively (Fig. 7g). Under RCP 4.5, the projected shift in
302 vegetation type in the northern Appalachians and Pacific Northwest at end-century also stands out, but
303 is less pronounced than under RCP 8.5 (changes in HUC8 coverage area fraction of up to ≈ 0.22 (mixed
304 forest to deciduous forest) and ≈ 0.20 (evergreen forest to mixed forest), respectively; see Fig. 6). In
305 other regions, the projected shift in vegetation type is generally similar as under RCP 8.5, but displaying
306 lower magnitudes and oftentimes lack of statistical significance. The same applies to the projected
307 changes in LAI. In the western mountains and southeastern coastal plains, the projections indicate an
308 increase of up to $\approx 15\%$ and $\approx 8\%$ at the HUC8 scale, respectively, and a decrease of up to $\approx 9\%$ in the
309 Intermountain West (Fig. 6g).

310 At mid-century, under both RCP 4.5 and 8.5 scenarios, the projected changes in vegetation type and LAI
311 across CONUS are generally statistically insignificant (Figs. S2 and S3). Notable exceptions are the
312 northern Appalachians and the Pacific Northwest, which present statistically significant changes in
313 vegetation type in the same direction as described above.

[Insert figure]

Fig. 6. Projected changes in vegetation type and LAI at end-century (2080–2099) under scenario RCP 4.5 at the HUC8 scale, based on MC2 projections and “present-day” observations. Absolute changes in coverage area fraction are shown for deciduous forest (a), evergreen forest (b), mixed forest (c), shrubland (d), grassland (e), and barren land (f), relative to “present day” (2008–2027). Percent changes in total LAI are shown in panel g, relative to 2008–2027. The hatched pattern indicates insignificant changes at the 95% confidence level. HUC2s are delineated in black.

314

[Insert figure]

Fig. 7. Same as Fig. 6, but for scenario RCP 8.5.

315

316 3.3. Change in Evapotranspiration

317 Based on our WaSSI simulations, ET is projected to significantly increase across CONUS under RCP 4.5
318 and 8.5 at mid-century (Fig. S4a,b) and end-century (Fig. 8a,b), except generally for portions of the
319 Southwest and Great Plains, in which the projected changes are statistically insignificant. The projected
320 increase in ET is notably stronger in the North, Northeast, and Rocky Mountains. ET is projected to
321 significantly increase in 12 HUC2s at mid-century and end-century under both RCP 4.5 and 8.5, ranging
322 from 2(3) % to 6(7) % at mid-century and 4(8) % to 9(20) % at end-century under RCP 4.5(8.5) (Fig. 9).
323 Conversely, the projected changes for HUCs 12-Texas-Gulf, 13-Rio Grande, 15-Lower Colorado, and 18-
324 California for both periods and scenarios are statistically insignificant. In HUCs 11-Arkansas-White-Red
325 and 16-Great Basin, ET is projected to significantly increase at end-century under both scenarios.

[Insert figure]

Fig. 8. Projected changes in ET (a, b), water yield (c, d), and soil moisture (e, f) at end-century (2080–2099) under scenarios RCP 4.5 and 8.5, respectively, at the HUC8 scale, based on WaSSI output. Percent changes are shown, relative to “present day” (2008–2027). The hatched pattern indicates insignificant changes at the 95% confidence level. HUC2s are delineated in black.

326

[Insert figure]

Fig. 9. Projected changes in ET at the HUC2 scale, based on WaSSI output (see corresponding HUC2 map in Fig. 1). Average “present-day” (2008–2027), mid-century (2040–2059), and end-century (2080–2099) values under scenarios RCP 4.5 and 8.5 are shown in panels a and b, respectively. The percent differences at mid-century and end-century relative to “present day” are shown in panels c and d for scenarios RCP 4.5 and 8.5, respectively. Error bars indicate a 95% confidence interval.

327

328 3.4. Change in Water Yield

329 Water yield is projected to significantly decrease across vast areas of CONUS, especially at end-century
330 under RCP 8.5 (Figs. 8c,d and S4c,d). Virtually no significant increase is projected. Under RCP 8.5, a
331 substantial decrease in water yield is projected for HUC8s in the central and southeastern U.S. (up to
332 $-47(-75)\%$ and $-102(-207)\text{ mm year}^{-1}$ at mid-century (end-century)), while statistically insignificant
333 changes are projected for the western and northeastern U.S. Under RCP 4.5, the projected changes in
334 water yield are substantially smaller, lacking statistical significance for most of CONUS, except generally
335 for areas in the central and southeastern U.S., with HUC8 changes of up to $-38(-40)\%$ and $-74(-71)\text{ mm year}^{-1}$
336 at mid-century (end-century). Water yield is projected to significantly decrease in four HUC2s

337 at mid-century and end-century under both RCP 4.5 and 8.5 (8-Lower Mississippi, 10-Missouri, 11-
338 Arkansas-White-Red, and 13-Rio Grande), ranging from $-14(-18)\%$ to $-8(-10)\%$ and $-41(-55)$
339 mm year^{-1} to $-3(-4)\text{ mm year}^{-1}$ at mid-century and $-14(-30)\%$ to $-7(-22)\%$ and $-41(-122)\text{ mm year}^{-1}$
340 to $-3(-7)\text{ mm year}^{-1}$ at end-century under RCP 4.5(8.5) (Fig. 10). Conversely, the projected changes for
341 HUCs 1-New England, 16-Great Basin, 17-Pacific Northwest, and 18-California for both periods and
342 scenarios are statistically insignificant. In HUCs 7-Upper Mississippi and 9-Souris-Red-Rainy, water yield is
343 projected to significantly decrease at end-century under both scenarios.

[Insert figure]

Fig. 10. Same as Fig. 9, but for water yield.

344

345 3.5. Change in Soil Moisture

346 Soil moisture is projected to significantly decrease across most of CONUS at mid-century (Fig. S4e,f) and
347 end-century (Fig. 8e,f) under both RCP 4.5 and 8.5 (in our paper, unless otherwise specified, “soil
348 moisture” refers to total column soil moisture). Virtually no significant increase is projected. At end-
349 century under RCP 8.5, soil moisture is projected to significantly decrease across virtually all HUC8s. The
350 projected changes are substantial in the central and western US, reaching up to $-28(-49)\%$ and
351 $-0.14(-0.27)$ at the HUC8 scale at mid-century(end-century) under RCP 8.5, and $-24(-30)\%$ and
352 $-0.10(-0.13)$ under RCP 4.5. Soil moisture is projected to significantly decrease in 14 HUC2s at mid-
353 century and end-century under both RCP 4.5 and 8.5 (all HUC2s but 1-New England, 2-Mid-Atlantic, 4-
354 Great Lakes, and 15-Lower Colorado), ranging from $-12(-16)\%$ to $-1(-2)\%$ and $-0.05(-0.06)$ to
355 $-0.01(-0.02)$ at mid-century and $-13(-31)\%$ to $-2(-5)\%$ and $-0.06(-0.13)$ to $-0.01(-0.04)$ at end-

356 century under RCP 4.5(8.5) (Fig. 11). In HUCs 4-Great Lakes and 15-Lower Colorado, soil moisture is
357 projected to significantly decrease at end-century under both scenarios.

[Insert figure]

Fig. 11. Same as Fig. 9, but for soil moisture.

358

359 3.6. Change in Aridity and Evaporative Indices

360 Our projections indicate a significant change in Budyko space towards higher aridity and evaporative
361 indices for virtually all HUC2s at mid- and end-century under RCP 4.5 and 8.5 (Fig. 12). Changes are more
362 substantial at end-century and under RCP 8.5 (Fig. 12d). Overall, the "present-day" and projected future
363 values (origin and tip of the vectors in Fig. 12, respectively) follow a Budyko curve. The adjusted ω
364 parameter in Fu's equation (3) slightly drops from 2.59(2.58) to 2.55(2.52) at mid-century and to
365 2.52(2.43) at end-century under RCP 4.5(8.5). Interestingly, the HUC 18-California notably deviates from
366 the Budyko curve for all periods and scenarios, with relatively small ET/P for the given PET/P value. In
367 HUC 18-California, the projected changes in aridity index are statistically significant at mid- and end-
368 century under both scenarios, but the changes in evaporative index are not (except for a small change at
369 mid-century under RCP 4.5, Fig. 12a). The projected changes in evaporative index for HUCs 16-Great
370 Basin and 15-Lower Colorado at mid/end-century under RCP 4.5 are also insignificant, while the
371 projected changes in aridity index are significant (except for HUC 15-Lower Colorado at mid-century; in
372 this case the projected changes in both indices are insignificant; Figs. 12a,c).

[Insert figure]

Fig. 12. Budyko diagrams based on projections of aridity and evaporative indices at the HUC2 scale with WaSSI (see corresponding HUC2 map in Fig. 1). Panels **a** and **b** show the projected mid-century (2040–2059) changes relative to “present day” (2008–2027) under scenarios RCP 4.5 and 8.5, respectively. Panels **c** and **d** show the projected end-century (2080–2099) changes relative to “present day” (2008–2027) under scenarios RCP 4.5 and 8.5, respectively. Purple vectors indicate significant changes at the 95% confidence level in both x and y dimensions. Red vectors indicate significant changes only in the x dimension (aridity index). Black vectors indicate insignificant changes in both dimensions. The curves correspond to Fu’s equation (3) (Fu, 1981), where ω is a fitting parameter.

373

374 3.7. Drivers of Water Yield Change and the Importance of Land Cover Change

375 Our “fixed-vegetation” and “fixed-climate” sensitivity simulations indicate a much stronger impact (1
 376 order of magnitude higher) of direct climate change (i.e., changes in precipitation and air temperature)
 377 on future water yield, compared to the impact of vegetation change (Figs. 13 and S5). The projected end-
 378 century changes in water yield under RCP 8.5 with the “fixed-vegetation” simulation (Fig. 13c,d),
 379 highlighting the impact of climate change on water yield, differs little from our normal simulation with
 380 dynamic climate and dynamic vegetation (Fig. 13a,b; see also Fig. 13g,h). In the former case, significant
 381 changes vary from –75 to 47 % and –207 to 153 mm year^{–1} at the HUC8 scale, while in the latter,
 382 changes vary from –75 to 47 % and –207 to 139 mm year^{–1}. The projected changes with the “fixed-
 383 climate” simulation (Fig. 13e,f), highlighting the impact of vegetation change on water yield, are
 384 generally significant in forest areas of the Northeast, Southeast, and western mountains. The significant
 385 changes vary from –7 to 8 % and –23 to 14 mm year^{–1} at the HUC8 scale, with typically positive values in
 386 the Northeast, negative values in the Southeast, and mixed values in the western mountains. Note that
 387 the projected changes in water yield in Fig. 13e,f are inversely correlated with the projected changes in
 388 LAI (Fig. 7g). The magnitude of the ratio between significant “fixed-climate” and “fixed-vegetation”

389 absolute changes in water yield (vegetation and climate change impacts on water yield, respectively)
390 varies from 0.02 to 47 % at the HUC8 scale, with first, second, and third quartiles of 1, 3, and 9 %,
391 respectively. Under RCP 4.5, the impact of climate change on water yield was smaller than under RCP 8.5
392 (Fig. S5c,d), but so ~~was~~ the impact of vegetation change (Fig. S5e,f), resulting in similar
393 vegetation/climate change impact ratios.

[Insert figure]

Fig. 13. Projected changes in water yield at end-century (2080–2099) under scenario RCP 8.5 relative to “present day” (2008–2027), based on WaSSI output. Results from three distinct simulations are shown, **a,b**) considering dynamic climate and dynamic vegetation (standard simulation), **c,d**) dynamic climate and fixed vegetation, and **e,f**) fixed climate and dynamic vegetation. Absolute (**a,c,e**) and percent (**b,d,f**) changes are shown at the HUC8 scale. The hatched pattern indicates insignificant changes at the 95% confidence level. HUC2s are delineated in black. Panels **g** and **h** show the difference between the results in **a** and **c** and **b** and **d**, respectively.

394

395 4. Discussion

396 4.1. Overall Spatial-Temporal Patterns of Change

397 4.1.1. Land Cover

398 Our projected changes in land cover (Figs. 6 and 7), based on available MC2 simulations, reflect
399 projected changes in climate and wildfire occurrence and effects. Overall, our projected changes in
400 vegetation type are consistent with latitudinal and elevational shifts in vegetation distribution under a
401 warmer climate, as shown in previous studies (e.g., Gonzalez et al., 2010; Grimm et al., 2013). Our
402 projected changes in LAI are generally comparable with other simulations, but more shifted towards
403 negative values (i.e., decreases). Mahowald et al. (2016) assessed global LAI projections from 18 CMIP5

404 GCMs, 11 of which has dynamic vegetation simulation capability. Their projections generally show larger
405 LAI values across CONUS at end-century under RCP 8.5 (2081–2100 vs. 1981–2000), with absolute
406 changes ranging from about -0.15 to $1.05 \text{ m}^2 \text{ m}^{-2}$ when all 18 GCMs were considered and from 0.15 to
407 $0.75 \text{ m}^2 \text{ m}^{-2}$ when only the top 50% performing GCMs were considered (based on historical observations
408 of LAI) (Mahowald et al., 2016). For comparison, we found in our study that, under RCP 8.5, the end-
409 century absolute changes can reach up to about $0.35 \text{ m}^2 \text{ m}^{-2}$ in the Southeast and Northwest, -0.10
410 $\text{m}^2 \text{ m}^{-2}$ in the Appalachians, $0.10 \text{ m}^2 \text{ m}^{-2}$ in the Rockies, and $\pm 0.04 \text{ m}^2 \text{ m}^{-2}$ in the central U.S. (percent
411 changes shown in Fig. 7). We used a different baseline period, 2008–2027, which could partially explain
412 the smaller changes in our study. Also, the simulations analyzed by Mahowald et al. (2016) correspond to
413 fully-coupled global runs at coarse spatial scales of about 2° . We also compared, at the ecoregion level in
414 CONUS, the original MC2 LAI projections that we started with against available DGVM LAI projections
415 from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP; Reyer et al., 2019). We examined
416 global simulations from five different DGVMs at $\frac{1}{2}^\circ$ spatial resolution, each one driven by climate
417 projections from 1 to 4 CMIP5 GCMs under RCP 6.0, assuming no land use change in the future (ISIMIP
418 Protocol 2b, Experiment III; simulations under RCP 8.5 climate and CO₂ were unavailable except for one
419 DGVM, so we used the closest scenario, RCP 6.0). We found that the future LAI anomalies projected with
420 MC2 under RCP 8.5 were comparable with the ISIMIP projections. However, the ISIMIP results generally
421 indicate positive LAI trends, while the MC2 results indicate approximately neutral or negative trends for
422 most ecoregions (not shown). Different RCP scenarios, selection of GCMs, spatial resolution ($\frac{1}{16}^\circ$ in MC2
423 vs. $\frac{1}{2}^\circ$ in ISIMIP) and GCM climate downscaling could partially explain the differences in projected LAI.

424 4.1.2. Evapotranspiration

425 Our projections indicate a substantial increase in ET across much of CONUS, except generally for water-
426 limited areas in the South and Southwest (Figs. 8, 9, S4). The spatial patterns of change are generally
427 similar to those projected by Mahat et al. (2017) (2071–2090 vs. 1991–2010, RCP 4.5, 8.5) based on VIC

428 simulations with statistically downscaled climate outputs from 7 CMIP5 GCMs (BCCA product). It is
429 important to note that our results reflect the modeling approach for PET within WaSSI. Here we used
430 the default configuration in WaSSI, in which PET is calculated based on near-surface air temperature and
431 the daytime length defined by latitude and day of the year (Hamon, 1963). Duan et al. (2017) compared
432 PET projections for CONUS with Hamon's formulation and an implementation of Penman-Monteith's
433 formulation for a reference crop surface (Allen et al., 1998), and found substantially larger PET values
434 with the former towards the end of the century, noting that Hamon's PET does not account for the
435 attenuation expected with the projected increase in specific air humidity. The Penman-Monteith
436 reference crop ET takes into consideration air temperature, specific air humidity, wind speed, and net
437 radiation, being widely used and regarded as a reliable approach to estimate PET. At the same time, the
438 downside of Penman-Monteith-based formulations is the dependence on additional meteorological
439 variables, which may be unavailable or highly uncertain in future climate projections from GCMs. Here
440 we opted for the default configuration (Hamon's PET) in WaSSI given its simplicity. Note that we used
441 the LOCA downscaled climate projections to drive WaSSI, for consistency with the adopted MC2
442 vegetation projections, and that LOCA does not provide all meteorological variables necessary to
443 calculate PET via a Penman-Monteith-based approach.

444 [4.1.3. Water Yield](#)

445 Our projected changes in water yield across CONUS generally follow a similar spatial pattern to those of
446 recent studies with the WaSSI and VIC models (Duan et al., 2017; Heidari et al., 2021a; Mahat et al.,
447 2017). Our projections are remarkably similar to those in Duan et al. (2017; cf. their Fig. 5 and our Fig. 7).
448 Note that they also used WaSSI and a large GCM ensemble (20 GCMs, including 14 out of the 16 GCMs
449 we considered in our analysis). They also used scenarios RCP 4.5 and 8.5 and defined similar baseline,
450 mid-century, and end-century periods for calculating the changes in water yield. Their simulations mainly
451 differ from ours in terms of the downscaled climate dataset used (MACA vs. LOCA) and land cover

452 boundary conditions (fixed vs. dynamic land cover). Another important difference is that Duan et al.
453 (2017) modified WaSSI to calculate PET as Penman-Monteith reference crop ET (Allen et al., 1998),
454 while we used the default configuration in WaSSI (PET via Hamon, 1963). Compared to Duan et al.
455 (2017; their Figs. 5 and 6), our projected decreases in water yield (central and southeastern U.S.) are
456 generally more accentuated, while our projected increases (western and northeastern U.S.) are generally
457 more attenuated and statistically insignificant. Such systematic differences between the two studies are
458 consistent with the different approaches to PET. Duan et al. (2017) compared overall projected changes
459 in water yield for CONUS with both PET methods, and found more negative projections when using the
460 Hamon's method ($\approx -8\%$ vs. $\approx -2\%$ ensemble median for RCP 8.5/2080s – approximated from their Fig.
461 7). Additional differences between our projected water yield changes and those in Duan et al. (2017)
462 could be related to the differences in GCM selection, GCM downscaling method, and approach to land
463 cover change.

464 [4.1.4. Soil Moisture](#)

465 Our projections of total soil moisture indicate declines across much of CONUS (Figs. 8, 11, S4), which is
466 generally consistent with previous studies (e.g., Berg et al., 2017; Joo et al., 2020). For example, based on
467 output from 25 CMIP5 GCMs under RCP 8.5, Berg et al. (2017) found a decrease in surface (0–10 cm) soil
468 moisture across the entire CONUS, reaching about -14% in the Southwest at end-century (2070–2099 vs.
469 1976–2005; their Fig. 1a, top panel). When considering total soil moisture, they still found a reduction
470 across most of CONUS, especially in the Southwest and southern Great Plains, reaching up to about
471 -12% , but also increases in portions of the Midwest and Rocky Mountains reaching up to about $+6\%$
472 (their Fig. 1a, mid panel). Based on output from ISIMIP (6 global impact models, each of which was
473 driven with bias-corrected climate from 5 CMIP5 GCMs at $1/2^\circ$ spatial resolution), Joo et al. (2020)
474 projected changes in surface (0–50 cm) soil moisture of about -3% to -8% in the Southeast and -14% to
475 -19% in the South at end-century under RCP 8.5 (2080–2099 vs. 1986–2005; their Fig. 1b). They also

476 projected approximately neutral changes in the Midwest, northern Great Plains, and Northwest. In our
477 study, we project changes in total soil moisture reaching about -12% in the Southeast and -50% in the
478 Great Plains, and more neutral changes in portions of the Northwest and Rocky Mountains (2080–2099
479 vs. 2008–2027, RCP 8.5; Fig. 8f). Different from Berg et al. (2017) and Joo et al. (2020), our projections
480 indicate substantial declines in soil moisture in the northern Great Plains and stronger decreases in soil
481 moisture overall. Differences could be partially explained by the differences in GCM selection and
482 downscaling, model spatial resolution, and potential overestimation of ET in our simulations (PET via
483 Hamon's formulation, Section 4.1.2).

484 [4.1.5. Aridity and Evaporative Indices](#)

485 The Budyko diagrams in Fig. 12 summarize our projected hydroclimatic changes at the regional (HUC2)
486 and CONUS level. With few exceptions, our mid- and end-century projections under RCP 4.5 and 8.5
487 indicate consistent and significant changes towards higher aridity and increased ET (decreased water
488 yield, Q) per unit precipitation ($Q/P \approx 1 - ET/P$).

489 Equations linking the evaporative and aridity indices, including the often-used Fu's equation (3) (Fu,
490 1981), have been proposed in previous studies. In this equation, ω is an empirical parameter
491 representing overall properties of the catchment (e.g., basin slope, basin area, land cover, vegetation
492 cover, relative soil water storage, and relative infiltration capacity; Heidari et al., 2021b; Wang et al.,
493 2021). In Fig. 12, we adjusted an overall ω for all HUC2s in CONUS for "present day", mid-century, and
494 end-century under RCP 4.5 and 8.5. Except for HUC 18-California, the projections of evaporative and
495 aridity indices for each HUC2 follow the general Budyko curve for each period and scenario (Fu's
496 equation with the overall CONUS ω) reasonably closely.

497 California has a unique climate configuration in CONUS, spanning from hot desert climate in the South to
498 tundra climate in the upper elevations of the Sierra Nevada, with most land characterized by a

499 hot/warm-summer Mediterranean climate, with dry summers and wet winters (Beck et al., 2023). The
500 negative deviation of HUC 18-California from the general Budyko curve (lower than "expected" ET/P) is
501 likely associated with PET being off-phase with precipitation and a larger fraction of precipitation falling
502 as snow, as discussed in Fang et al. (2016). With precipitation shifted away from high-PET summer
503 months to low-PET winter months, the amount of precipitation that is partitioned to ET is expected to
504 be lower compared to a more typical climate in which P and PET are in phase, resulting in lower ET/P
505 for the same PET/P . Similarly, with more precipitation falling as snow, the amount of precipitation that
506 is partitioned to ET is expected to be lower compared to a more typical climate with less snowfall and
507 more rainfall, also resulting in lower ET/P for the same PET/P .

508 Our adjusted overall ω value for "present day" CONUS (2.58) is remarkably close to the overall value
509 reported by Caracciolo et al. (2018), 2.63, based on historical (1948–2003) observations from 422
510 catchments across CONUS, spreading across five climatic zones. The deviation that we found for HUC 18-
511 California is also consistent with their results, as they found a lower ω value (1.86) for the
512 Mediterranean climate catchments (most of them in California). It is worth noting that ω is sensitive to
513 the PET calculation approach; we and Caracciolo et al. (2018) used PET equations from the same family,
514 i.e., temperature-based formulations (Hamon, 1963 and Thornthwaite, 1948, respectively).

515 Our projections indicate a future decrease in the overall CONUS ω , with a more substantial change at
516 end-century under RCP 8.5 ($\omega = 2.43(-5.8\%)$; Fig. 12). This means an overall shift in precipitation
517 partitioning from ET to water yield for the same PET/P . The change in ω is consistent with the
518 projected reduction in soil moisture across CONUS, enhancing water limitation (Fig. 8). While ω is known
519 to be sensitive to changes in vegetation, and our simulations project significant changes in LAI in many
520 regions (Fig. 7), the overall projected change in LAI (CONUS) is insignificant. Our results contrast with
521 Heidari et al. (2021b). Based on VIC simulations driven with downscaled (MACA) CMIP5 climate
522 projections from three GCMs representing wet, middle, and dry scenarios under RCP 8.5, they found

523 little change in overall ω (CONUS) at end-century (2070–2099 vs. 1986–2015), with values of 2.135
524 (present), 2.162 (+1.3%, wet projection), 2.159 (+1.1%, mid projection), and 2.133 (−0.1%, dry
525 projection). Among the differences in modeling approach that could explain the contrasting results, it is
526 worth noting that Heidari et al. (2021b) calculated PET as Penman-Monteith open water ET
527 (Shuttleworth, 1993, according to the VIC model description in Liang et al., 1994), while we used a
528 temperature-based formulation (Hamon, 1963). As discussed earlier in this paper, Duan et al. (2017)
529 have shown that the Hamon PET formulation in WaSSI leads to a stronger drying in response to
530 increasing air temperature in comparison with the Penman-Monteith reference crop ET, noting that the
531 latter method can account for the attenuation associated with increasing specific air humidity. The
532 Penman-Monteith open water ET in the VIC model can do the same. An interesting point is that the
533 Penman-Monteith open water ET values are typically larger than PET values obtained from other
534 methods, as exemplified in Liang et al. (1994), who found Penman-Monteith open water ET values to be
535 on average 1.64 times larger than Hamon's PET during an intensive field campaign in central Kansas.
536 This offers an explanation for the generally lower ω values for CONUS reported by Heidari et al. (2021b),
537 compared to our values and those in Caracciolo et al. (2018). In Fu's equation, considering fixed ET and
538 P values, a larger PET value requires a lower ω value to compensate.

539 4.2. Drivers of Water Yield Change and the Importance of Land Cover Change

540 Our finding that climate change rather than land surface change dominates water yield change in CONUS
541 is consistent with the recent results reported by Song et al. (2023) for China. They used a simple
542 hydrological model (Distributed Time-Variant Gain Model - Penman-Monteith-Leuning; Song et al.,
543 2022), driven with climate and LAI data products from 1982 to 2012, to assess the relative contributions
544 from climate change (P , PET) and land surface change (LAI) to water yield change. At the national level,
545 Song et al. (2023) found that climate change made a substantially larger contribution to annual mean
546 water yield (−7.6 mm) than land surface change (−0.6 mm). Interestingly, this is one order of magnitude

547 lower than the climate change contribution, as we generally found in our study. However, unlike our
548 study, they found substantial land surface contribution in particular regions, especially water-limited
549 areas with substantial change in LAI. It is important to note that the assessment by Song et al. (2023) is
550 based on observations (data products), reflecting not only "natural" changes in land surface cover (i.e.,
551 those in response to rising atmospheric CO₂ and climate change), but also direct anthropogenic land
552 cover/land use changes, including the substantial "greening" associated with large-scale afforestation
553 programs in China (Hu et al., 2021; Liu et al., 2014, 2016). Substantial impacts of direct anthropogenic
554 changes in land cover/land use on water yield are also demonstrated in the urbanization study by Li et al.
555 (2020) for CONUS, for instance. In a different study, G. Sun et al. (2015) found an 8% increase in water
556 yield in CONUS in response to a 50% decrease in LAI, in an WaSSI sensitivity test to simulate forest
557 thinning. In our study, we only simulate the "natural" changes in land cover. It is also worth emphasizing
558 that in our framework, the projected future land cover (LAI and vegetation type) at the HUC8 level is
559 derived from present-day observations and ecoregion-level changes informed by MC2 simulations of
560 potential vegetation. This approach allows us to capture larger scale patterns of vegetation change in our
561 HUC8 projections, but not changes due to more localized climate conditions and natural disturbances.
562 This contributes to a smoother vegetation change signal at the HUC8 scale, and consequently a
563 smoother impact on local hydrology.

564 Our results contrast with those in Zhou et al. (2023). Based on CMIP6 output, including fully-coupled
565 simulations with 16 GCMs and CO₂ sensitivity simulations with 7 GCMs, Zhou et al. (2023) found that the
566 projected future changes in global water yield are mainly attributed to land surface change (73–81%),
567 not climate change (19–27%). They found strong contributions from climate change at the regional level,
568 but cancellation of positive and negative values leads to a relatively small overall (global) contribution to
569 water yield change. Even so, the reported effect of land surface change on water yield change is
570 substantially larger than in our study. It is important to note that the "land effect" in Zhou et al. (2023)

571 encompasses not only the effect of change in land cover in response to climate change and rising
572 atmospheric CO₂, but also the effect of change in stomatal conductance (land use change was not
573 simulated). In our study, the "land effect" that we investigate is simply the impact of vegetation change
574 (i.e., changes in LAI in response to climate change and increasing CO₂) on water yield change. To reduce
575 the large uncertainty of the positive or negative effects of CO₂ and vapor pressure deficit on ET, WaSSI
576 estimates ET with an empirical formulation, without an explicit representation of stomatal conductance
577 and disregarding the regulation of stomatal conductance by atmospheric CO₂. The absence of
578 representation of the CO₂ effect on stomatal conductance is commonplace in water-centric model
579 applications (e.g., Duan et al., 2017; Heidari et al., 2021a, 2021b; Song et al., 2023; Sun et al., 2016).
580 Currently, the prevailing school of thought is that CO₂ fertilization reduces stomatal conductance (Li et
581 al., 2023; Medlyn et al., 2001). In this sense, our projected future ET and water yield in CONUS could be
582 potentially over- and underestimated, respectively, and our estimate of land contribution to water yield
583 change could be underestimated by the lack of representation of the CO₂ effect on stomatal
584 conductance. However, the impact of CO₂ fertilization on stomatal conductance is not a settled topic,
585 with recent experimental studies challenging the prevailing idea of a widespread reduction in stomatal
586 conductance with rising atmospheric CO₂ (Guerrieri et al., 2019; Mathias and Thomas, 2021). The results
587 by Zhou et al. (2023) indicate a substantial contribution (54%) from direct physiological effects (changes
588 in vegetation cover and stomatal conductance in response to rising atmospheric CO₂) on global water
589 yield change. These results reflect the structure of the considered CMIP6 GCMs, which despite
590 substantial differences, generally follow the prevailing school of thought regarding the effects of CO₂
591 fertilization. As new studies based on long-term experiments become available, the modeling
592 community will have valuable information to confirm or revisit the representation of CO₂ fertilization
593 within GCMs.

594 4.3. Limitations and Recommendations for Future Studies

595 Our modeling approach has some limitations. First, WaSSI simulates ET with an empirical formulation,
596 without an explicit representation of stomatal conductance and disregarding its regulation by
597 atmospheric CO₂ (common-place in water-centric model applications). Second, WaSSI simulates ET
598 based on PET that is estimated with a temperature-based formulation (Hamon, 1963), which is unable
599 to account for the projected increases in specific air humidity. Our projected increase in ET and decrease
600 in water yield in CONUS could be overestimated due to these limitations. Also, our estimate of
601 vegetation contribution to water yield change could be underestimated by the lack of representation of
602 the CO₂ effect on stomatal conductance. It is important to point out that, while the simplicity of WaSSI
603 and other water-centric models imposes some limitations, it also allows for less computationally
604 expensive simulations, easier calibration, and implementation at finer spatio-temporal resolutions in
605 comparison with mechanistic Terrestrial Biosphere Models. These models are much more
606 computationally expensive to run and involve many parameters that oftentimes cannot be constrained
607 by available observations and therefore can lead to substantial uncertainties in model simulations (Ma et
608 al., 2022).

609 In future work, we recommend the use of a Penman-Monteith-based formulation for PET (and adapted
610 ET equation for the chosen PET reference) within WaSSI if all required climate forcing data are available,
611 as in Duan et al. (2017). Future work could explore ways to implement an empirical regulation factor in
612 WaSSI's ET formulation to reflect stomatal response to atmospheric CO₂, although this regulation is a
613 complex process depending on many biophysical and environmental factors that would be challenging to
614 represent within a simple water-centric model. Future work could also test alternative projections of LAI
615 and vegetation type within our proposed WaSSI-DGVM framework. The MC2 projections considered
616 here indicate approximately neutral or negative LAI trends for most ecoregions in the twenty-first
617 century, which could possibly indicate an overestimation of wildfire frequency and intensity by MC2.

618 However, our results suggest that even modest adjustments in projected LAI are unlikely to change our
619 finding that climate change dominates the projected changes in water yield. It is important to mention
620 that here we focus on "natural" land cover change in response to changing climate and atmospheric CO₂,
621 not anthropogenic land cover/land use change. The latter can exert a substantial impact on water yield.
622 Future studies incorporating projections of anthropogenic changes in land cover/land use would be
623 important contributions.

624 Finally, it is important to note that our study focused on classic future climate projections from CMIP5.
625 More recent projections from CMIP6 for CONUS indicate a generally larger increase in surface air
626 temperature at end-century (2°–6°C and 4°–8°C under the Shared Socioeconomic Pathways (SSPs) 2-4.5
627 and 5-8.5, respectively; 2075–2099 relative to 1970–1999; Fan et al., 2020) compared to CMIP5 (1.3°–
628 3.7°C and 3.0°–6.1°C under RCPs 4.5 and 8.5, respectively; 2070–2099 relative to 1986–2015; Hayhoe et
629 al., 2018). Projected changes in annual precipitation under SSP 2-4.5 (5-8.5) have a similar overall spatial
630 pattern in CONUS compared to RCP 4.5 (8.5), but tend to be shifted towards positive values (i.e., larger
631 increases and smaller decreases in precipitation; Du et al., 2022). Climate extreme indicators such as the
632 annual peak of daily maximum temperature and the number of heavy precipitation days are generally
633 more accentuated in SSP 2-4.5 and 5-8.5 than in RCP 4.5 and 8.5 at end-century in CONUS (Chen et al.,
634 2020). While the warmer conditions predicted by the CMIP6 GCMs would contribute to increased ET
635 and decreased water yield, the wetter conditions would contribute to increased water yield. Future work
636 exploring the impact of the new CMIP6 climate projections on vegetation dynamics and hydrology with
637 the WaSSI-MC2 framework would be an important advance.

638 **5. Conclusions**

639 This study integrated an eco-hydrological model (WaSSI) with a large ensemble of climate (LOCA) and
640 vegetation (MC2 DGVM) projections under scenarios RCP 4.5 and 8.5 to investigate potential future

641 impacts of both climate and vegetation change on water yield. To our knowledge, this is the first work to
642 employ an ensemble of future vegetation projections and provide water yield projections for CONUS at a
643 relatively fine scale (HUC8).

644 We project a decrease in water yield across much of CONUS, especially towards the end of the twenty-
645 first century (2080–2099) under RCP 8.5. Overall, our projected water yield reduction under RCP 8.5 is
646 roughly twice as high as under RCP 4.5. We project substantial changes in water yield for watersheds in
647 the central and southeastern U.S. already by mid-century (2040–2059). We conclude that climate change
648 (air temperature, precipitation), rather than vegetation change (LAI), strongly dominates the projected
649 changes in water yield. For some watersheds, the effects of vegetation change can be relevant,
650 mitigating or exacerbating the effects of climate change. Our future projections indicate widespread
651 increase in aridity (PET/P) and evaporative (ET/P) indices and widespread decrease in soil moisture
652 under both RCP scenarios, but especially under RCP 8.5.

653 Our integrated modeling results can inform policy makers and resource development plans quantitative
654 information of future water availability under contrasting scenarios. We point out regions under higher
655 risk of future water shortages that may affect water supply to both human and ecosystems. Future land
656 management should pay more attention to the basins identified as having declining water supply and soil
657 moisture that may be prone to wildfires and insect outbreaks. Conversely, our projections can be used to
658 quantify the substantial benefits of climate change mitigation (scenario RCP 4.5 vs. 8.5) to the U.S. water
659 supply.

660 Funding

661 This study was funded by the USDA Southeast Climate Hub and Forest Service Southern Research Station
662 under Joint Venture Agreement 21-JV-11330180-049. J.X. was also supported by the National Science
663 Foundation (Macrosystems Biology and NEON-Enabled Science Program: DEB-2017870).

664 CRediT Authorship Contribution Statement

665 **Henrique F. Duarte:** Conceptualization, Methodology, Software, Formal Analysis, Investigation, Data
666 Curation, Writing - Original Draft, Visualization. **John B. Kim:** Conceptualization, Methodology, Resources,
667 Writing - Review & Editing. **Ge Sun:** Conceptualization, Methodology, Resources, Writing - Review &
668 Editing, Project Administration, Funding Acquisition. **Steven McNulty:** Conceptualization, Methodology,
669 Writing - Review & Editing, Project Administration, Funding Acquisition. **Jingfeng Xiao:**
670 Conceptualization, Methodology, Writing - Review & Editing, Project Administration, Funding Acquisition.

671 Declaration of Competing Interest

672 The authors declare that they have no known competing financial interests or personal relationships that
673 could have appeared to influence the work reported in this paper.

674 Data Availability

675 The downscaled CMIP5 climate projections (LOCA) are available in Pierce (2024). The MC2 DGVM model
676 code is available in USDA FS (2022). The MC2 projections of potential vegetation (vegetation type and
677 LAI), our WaSSI projections of water yield, ET, and soil moisture, and the adapted WaSSI model code
678 used in our investigation can be accessed from the URLs in Kim (2024), Duarte et al. (2024), and Duarte
679 (2024), respectively (datasets temporarily archived on <http://data.globalecology.unh.edu/> for reviewing
680 purposes only; we will seek permanent archival in the USDA Forest Service Research Data Archive
681 <https://www.fs.usda.gov/rds/archive/> after the paper is accepted, and will update the references with
682 their corresponding DOIs).

683 **Appendix A. Dynamic Vegetation Boundary Conditions within WaSSI**

684 We started with MC2 simulations of potential natural vegetation across CONUS, with annual outputs
 685 (1950–2005 and 2006–2099 under scenarios RCP 4.5 and 8.5) of vegetation type and corresponding LAI
 686 at the $\frac{1}{16}^\circ$ spatial scale. We considered an ensemble of MC2 simulations, driven by statistically
 687 downscaled climate simulations from 16 GCMs (LOCA; Pierce et al., 2015, 2014; see Table 1).

688 We calculated LAI as the sum of the MC2 output variables MAX_GRASS_LAI and MAX_TREE_LAI and
 689 translated the original vegetation types (up to 50) to one of the six natural vegetation types in WaSSI
 690 (deciduous forest, evergreen forest, mixed forest, shrubland, grassland, and barren), following the
 691 crosswalk presented in Table A.1.

692 We used the 2006 NLCD data product (USGS, 2011) to create a mask of natural vegetation areas for the
 693 MC2 output, masking out areas characterized by other land cover types (e.g., developed areas,
 694 croplands, and artificial pasture). To create the mask, we aggregated the original 30-m spatial resolution
 695 NLCD data at the $\frac{1}{16}^\circ$ spatial scale (MC2 output grid), using the mode as the representative value.

696 Next, we aggregated the masked MC2 output at the ecoregion level (level-2 ecoregions of North
 697 America, EPA, 2010; Fig. 3). We calculated the area fraction (f_{MC2}) of vegetation type v (6 possible
 698 natural vegetation types) within ecoregion e (20 possible ecoregions) for year y (1950–2099) as

$$f_{MC2(y,e,v)} = \frac{A_{y,e,v}}{\sum_{j=1}^6 A_{y,e,j}} \quad (A.1)$$

699 where $A_{y,e,v}$ is the total area of vegetation type v within the ecoregion e for year y . The denominator of
 700 Eq. A.1 represents the total natural vegetation area within the ecoregion, in which j is an auxiliary index.
 701 We also calculated the overall LAI (LAI_{MC2}) of vegetation type v for ecoregion e and year y as

$$\text{LAI}_{\text{MC2}(y,e,v)} = \frac{\sum_{i=1}^n (\text{lai}_{y,e,v,i} \ a_{y,e,v,i})}{\sum_{i=1}^n a_{y,e,v,i}} \quad (\text{A.2})$$

702 where $\text{lai}_{y,e,v,i}$ and $a_{y,e,v,i}$ are the LAI and area of individual (i) grid cells of vegetation type v within
703 ecoregion e for year y , respectively, and n is the number of grid cells.

704 For each vegetation type v and ecoregion e , we defined baselines of area fraction (\hat{f}_{MC2}) and LAI
705 ($\widehat{\text{LAI}}_{\text{MC2}}$) as

$$\hat{f}_{\text{MC2}(e,v)} = \frac{1}{y_{\text{fin}} - y_{\text{ini}} + 1} \sum_{y=y_{\text{ini}}}^{y_{\text{fin}}} f_{\text{MC2}(y,e,v)} \quad (\text{A.3})$$

$$\widehat{\text{LAI}}_{\text{MC2}(e,v)} = \frac{1}{y_{\text{fin}} - y_{\text{ini}} + 1} \sum_{y=y_{\text{ini}}}^{y_{\text{fin}}} \text{LAI}_{\text{MC2}(y,e,v)} \quad (\text{A.4})$$

706 where $[y_{\text{ini}}:y_{\text{fin}}]$ is the chosen period of reference, here taken as [2000: 2006].
707 For each vegetation type v , ecoregion e , and year y (2007–2099), we calculated the area fraction and LAI
708 deviations from baseline (Δf_{MC2} and $\Delta \text{LAI}_{\text{MC2}}$, respectively) as

$$\Delta f_{\text{MC2}(y,e,v)} = f_{\text{MC2}(y,e,v)} - \hat{f}_{\text{MC2}(e,v)} \quad (\text{A.5})$$

$$\Delta \text{LAI}_{\text{MC2}(y,e,v)} = \frac{\text{LAI}_{\text{MC2}(y,e,v)} - \widehat{\text{LAI}}_{\text{MC2}(e,v)}}{\widehat{\text{LAI}}_{\text{MC2}(e,v)}} \quad (\text{A.6})$$

709 These deviations were combined with “present-day observations” (data products) to create projections
710 of land cover type and LAI to drive WaSSI.

711 WaSSI considers a total of 10 land cover types, which includes the 6 natural vegetation types discussed
712 earlier (deciduous forest, evergreen forest, mixed forest, shrubland, grassland, and barren) in addition to
713 urban, cropland, wetland, and water types. WaSSI provides input datasets for CONUS describing the area

714 fraction of each land cover type c within HUC8s (h), $\hat{f}_{\text{OBS}(h,c)}$, and the associated monthly (m) LAI,
 715 $\widehat{\text{LAI}}_{\text{OBS}(m,h,c)}$. These default input datasets were built based on the 2006 NLCD (USGS, 2011) and 2000–
 716 2006 mean monthly MODIS LAI (Zhao et al., 2005). We combined \hat{f}_{OBS} with Δf_{MC2} to project the area
 717 fraction of vegetation type v within HUC8 h for year y , $f_{\text{WaSSI}(y,h,v)}$, as

$$f_{\text{WaSSI}(y,h,v)} = \frac{X_{y,h,v}}{\sum_{k=1}^6 X_{y,h,k}} \sum_{j=1}^6 \hat{f}_{\text{OBS}(h,j)} \quad (\text{A.7})$$

718 where X is the unnormalized area fraction of vegetation type v relative to the total natural vegetation
 719 area within HUC8 h projected for year y

$$X_{y,h,v} = \frac{\hat{f}_{\text{OBS}(h,v)}}{\sum_{j=1}^6 \hat{f}_{\text{OBS}(h,j)}} + \Delta f_{\text{MC2}(y,e(h),v)} \quad (\text{A.8})$$

720 In Eqs. A.7 and A.8, j and k are auxiliary indices, with summations defined across the six natural
 721 vegetation types ($v[1:6]$, which corresponds to $c[1:6]$ in our notation). X values are truncated to [0: 1].
 722 Note that X is normalized in Eq. A.7 to enforce that $\sum_{j=1}^6 f_{\text{WaSSI}(y,h,j)}$ is equal to $\sum_{j=1}^6 \hat{f}_{\text{OBS}(h,j)}$, i.e., the
 723 natural vegetation area fraction of the HUC8 h based on “present-day observations”, which remains
 724 constant in our projections as we do not simulate land use change (urban, cropland, wetland, and water
 725 fractions are constant in time). Note also that in Eq. A.8, the index $e(h)$ denotes the ecoregion e
 726 associated with the HUC8 h . Finally, we combined $\widehat{\text{LAI}}_{\text{OBS}}$ with $\Delta \text{LAI}_{\text{MC2}}$ to project the monthly (m) LAI
 727 for vegetation type v in HUC8 h for year y , $\text{LAI}_{\text{WaSSI}(y,m,h,v)}$, as

$$\text{LAI}_{\text{WaSSI}(y,m,h,v)} = \widehat{\text{LAI}}_{\text{OBS}(m,h,v)} (1 + \Delta \text{LAI}_{\text{MC2}(y,e(h),v)}) \quad (\text{A.9})$$

728 For the instances in which $\Delta \text{LAI}_{\text{MC2}}$ was undefined, we assumed it to be zero. For the instances in which
 729 $\widehat{\text{LAI}}_{\text{OBS}}$ was undefined, we used a monthly (m) area-weighted averaged observed LAI for vegetation type

730 v within the ecoregion encompassing HUC8 h . If still undefined, we expanded the averaging domain to
 731 the entire CONUS.

732

733 **Table A.1.** Crosswalk between MC2 and WaSSI natural vegetation types.

v (MC2)	Description	v (WaSSI)	Desc. ^a
0	UNKNOWNveg	-	UN
1	COLD_BARRENveg	6	BA
2	TUNDRAveg	6	BA
3	TAIGA_TUNDRAveg	2	ET
4	BOREAL_NEEDLELEAF_FORESTveg	2	ET
5	BOREAL_WOODLANDveg	2	ET
6	SUBALPINE_FORESTveg	2	ET
7	MARITIME_EN_FORESTveg	2	ET
8	MESIC_TEMPERATE_NEEDLELEAF_FORESTveg	2	ET
9	TEMPERATE_DB_FORESTveg	1	DT
10	COOL_MIXED_FORESTveg	3	MT
11	TEMPERATE_WARM_MIXED_FORESTveg	3	MT
12	TEMPERATE_EN_WOODLANDveg	2	ET
13	TEMPERATE_DB_WOODLANDveg	1	DT
14	TEMPERATE_COOL_MIXED_WOODLANDveg	3	MT
15	TEMPERATE_WARM_MIXED_WOODLANDveg	3	MT
16	C3SHRUBveg	4	SH
17	C3GRASSveg	5	GR
18	TEMPERATE_DESERTveg	6	BA

19	SUBTROPICAL_EN_FORESTveg	2	ET
20	SUBTROPICAL_DB_FORESTveg	1	DT
21	WARM_EB_FORESTveg	2	ET
22	SUBTROPICAL_MIXED_FORESTveg	3	MT
23	SUBTROPICAL_EN_WOODLANDveg	2	ET
24	SUBTROPICAL_DB_WOODLANDveg	1	DT
25	SUBTROPICAL_EB_WOODLANDveg	2	ET
26	SUBTROPICAL_MIXED_WOODLANDveg	3	MT
27	C4SHRUBveg	4	SH
28	C4GRASSveg	5	GR
29	SUBTROPICAL_DESERTveg	6	BA
30	TROPICAL_EB_FORESTveg	2	ET
31	TROPICAL_DECIDUOUS_WOODLANDveg	1	DT
32	TROPICAL_SAVANNAveg	5	GR
35	TROPICAL_DESERTveg	6	BA
36	MOIST_TEMPERATE_NEEDLELEAF_FORESTveg	2	ET
38	SUBALPINE_MEADOWveg	5	GR
39	WATERveg	-	UN
40	NATURAL_BARRENveg	6	BA
49	DRY_TEMPERATE_NEEDLELEAF_FORESTveg	2	ET
50	XERIC_NEEDLELEAF_WOODLANDveg	2	ET

^a Deciduous forest (DT), evergreen forest (ET), mixed forest (MT), shrubland (SH), grassland (GR), barren (BA), undefined (UN)

735 **Appendix B. Supplementary Material**

736 Figures S1 to S4 are included in the Supplement S1 [Supplement-S1.docx]

737 **References**

738 Abatzoglou, J.T., Brown, T.J., 2012. A comparison of statistical downscaling methods suited for
739 wildfire applications. *International Journal of Climatology* 32, 772–780.
740 <https://doi.org/10.1002/joc.2312>

741 Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. *Crop evapotranspiration - Guidelines for*
742 *computing crop water requirements - FAO irrigation and drainage paper 56*. FAO, Rome, Italy.

743 Al-Qubati, A., Zhang, L., Pyarali, K., 2023. Climatic drought impacts on key ecosystem services of a
744 low mountain region in Germany. *Environ Monit Assess* 195, 800.
745 <https://doi.org/10.1007/s10661-023-11397-1>

746 Bachelet, D., Lenihan, J.M., Daly, C., Neilson, R.P., Ojima, D.S., Parton, W.J., 2001. MC1: a dynamic
747 vegetation model for estimating the distribution of vegetation and associated carbon,
748 nutrients, and water — technical documentation. Version 1.0. Gen. Tech. Rep. PNW-GTR-508.
749 U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland,
750 USA.

751 Bagstad, K.J., Cohen, E., Ancona, Z.H., McNulty, S.G., Sun, G., 2018. The sensitivity of ecosystem
752 service models to choices of input data and spatial resolution. *Applied Geography* 93, 25–36.
753 <https://doi.org/10.1016/j.apgeog.2018.02.005>

754 Beck, H.E., McVicar, T.R., Vergopolan, N., Berg, A., Lutsko, N.J., Dufour, A., Zeng, Z., Jiang, X., van
755 Dijk, A.I.J.M., Miralles, D.G., 2023. High-resolution (1 km) Köppen-Geiger maps for 1901–2099
756 based on constrained CMIP6 projections. *Sci Data* 10, 724. <https://doi.org/10.1038/s41597-023-02549-6>

758 Bellouin, N., Collins, W.J., Culverwell, I.D., Halloran, P.R., Hardiman, S.C., Hinton, T.J., Jones, C.D.,
759 McDonald, R.E., McLaren, A.J., O'Connor, F.M., Roberts, M.J., Rodriguez, J.M., Woodward, S.,
760 Best, M.J., Brooks, M.E., Brown, A.R., Butchart, N., Dearden, C., Derbyshire, S.H., Dharssi, I.,
761 Doutriaux-Boucher, M., Edwards, J.M., Falloon, P.D., Gedney, N., Gray, L.J., Hewitt, H.T.,
762 Hobson, M., Huddleston, M.R., Hughes, J., Ineson, S., Ingram, W.J., James, P.M., Johns, T.C.,
763 Johnson, C.E., Jones, A., Jones, C.P., Joshi, M.M., Keen, A.B., Liddicoat, S., Lock, A.P., Maidens,
764 A. V., Manners, J.C., Milton, S.F., Rae, J.G.L., Ridley, J.K., Sellar, A., Senior, C.A., Totterdell, I.J.,
765 Verhoef, A., Vidale, P.L., Wiltshire, A., 2011. The HadGEM2 family of Met Office Unified Model
766 climate configurations. *Geosci Model Dev* 4, 723–757. <https://doi.org/10.5194/gmd-4-723-2011>

768 Bentsen, M., Bethke, I., Debernard, J.B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt,
769 C., Seierstad, I.A., Hoose, C., Kristjánsson, J.E., 2013. The Norwegian Earth System Model,

770 NorESM1-M – Part 1: Description and basic evaluation of the physical climate. Geosci Model
771 Dev 6, 687–720. <https://doi.org/10.5194/gmd-6-687-2013>

772 Berg, A., Sheffield, J., Milly, P.C.D., 2017. Divergent surface and total soil moisture projections under
773 global warming. *Geophys Res Lett* 44, 236–244. <https://doi.org/10.1002/2016GL071921>

774 Bi, D., Dix, M., Marsland, S., O’Farrell, S., Rashid, H., Uotila, P., Hirst, A., Kowalczyk, E., Golebiewski,
775 M., Sullivan, A., Yan, H., Hannah, N., Franklin, C., Sun, Z., Vohralík, P., Watterson, I., Zhou, X.,
776 Fiedler, R., Collier, M., Ma, Y., Noonan, J., Stevens, L., Uhe, P., Zhu, H., Griffies, S., Hill, R.,
777 Harris, C., Puri, K., 2013. The ACCESS coupled model: description, control climate and
778 evaluation. *Australian Meteorological and Oceanographic Journal* 63, 41–64.
779 <https://doi.org/10.22499/2.6301.004>

780 Brown, T.C., Mahat, V., Ramirez, J.A., 2019. Adaptation to Future Water Shortages in the United
781 States Caused by Population Growth and Climate Change. *Earths Future* 7, 219–234.
782 <https://doi.org/10.1029/2018EF001091>

783 Budyko, M.I., 1958. The heat balance of the Earth’s surface (translation by N.A. Stepanova). U.S.
784 Department of Commerce/ Weather Bureau, Washington, USA.

785 Burnash, R.J.C., 1995. The NWS river forecast system - catchment modeling, in: Singh, V.P. (Ed.),
786 Computer Models of Watershed Hydrology. Water Resources Publications, Littleton, CO, USA,
787 pp. 311–366.

788 Burnash, R.J.C., Ferral, R.L., McGuire, R.A., 1973. A generalized streamflow simulation system -
789 Conceptual modeling for digital computers. U.S. National Weather Service and California
790 Department of Water Resources, Sacramento, USA.

791 Caldwell, P. V., Sun, G., McNulty, S.G., Cohen, E.C., Moore Myers, J.A., 2012. Impacts of impervious
792 cover, water withdrawals, and climate change on river flows in the conterminous US. *Hydrol
793 Earth Syst Sci* 16, 2839–2857. <https://doi.org/10.5194/hess-16-2839-2012>

794 Caracciolo, D., Pumo, D., Viola, F., 2018. Budyko’s Based Method for Annual Runoff Characterization
795 across Different Climatic Areas: an Application to United States. *Water Resources
796 Management* 32, 3189–3202. <https://doi.org/10.1007/s11269-018-1984-7>

797 Chen, H., Sun, J., Lin, W., Xu, H., 2020. Comparison of CMIP6 and CMIP5 models in simulating climate
798 extremes. *Sci Bull (Beijing)* 65, 1415–1418. <https://doi.org/10.1016/j.scib.2020.05.015>

799 Cherkauer, K.A., Bowling, L.C., Lettenmaier, D.P., 2003. Variable infiltration capacity cold land
800 process model updates. *Glob Planet Change* 38, 151–159. [https://doi.org/10.1016/S0921-8181\(03\)00025-0](https://doi.org/10.1016/S0921-
801 8181(03)00025-0)

802 Chylek, P., Li, J., Dubey, M.K., Wang, M., Lesins, G., 2011. Observed and model simulated 20th
803 century Arctic temperature variability: Canadian Earth System Model CanESM2. *Atmospheric
804 Chemistry and Physics Discussions* 11, 22893–22907. [https://doi.org/10.5194/acpd-11-22893-2011](https://doi.org/10.5194/acpd-11-22893-
805 2011)

806 Conklin, D.R., Lenihan, J.M., Bachelet, D., Neilson, R.P., Kim, J.B., 2016. MCFire model technical
807 description. Gen. Tech. Rep. PNW-GTR-926. U.S. Department of Agriculture, Forest Service,
808 Pacific Northwest Research Station, Portland, USA.

809 Donner, L.J., Wyman, B.L., Hemler, R.S., Horowitz, L.W., Ming, Y., Zhao, M., Golaz, J.-C., Ginoux, P.,
810 Lin, S.-J., Schwarzkopf, M.D., Austin, J., Alaka, G., Cooke, W.F., Delworth, T.L., Freidenreich,
811 S.M., Gordon, C.T., Griffies, S.M., Held, I.M., Hurlin, W.J., Klein, S.A., Knutson, T.R.,
812 Langenhorst, A.R., Lee, H.-C., Lin, Y., Magi, B.I., Malyshev, S.L., Milly, P.C.D., Naik, V., Nath, M.J.,
813 Pincus, R., Poshay, J.J., Ramaswamy, V., Seman, C.J., Shevliakova, E., Sirutis, J.J., Stern, W.F.,
814 Stouffer, R.J., Wilson, R.J., Winton, M., Wittenberg, A.T., Zeng, F., 2011. The Dynamical Core,
815 Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric
816 Component AM3 of the GFDL Global Coupled Model CM3. *J Clim* 24, 3484–3519.
817 <https://doi.org/10.1175/2011JCLI3955.1>

818 Du, Y., Wang, Dagang, Zhu, J., Wang, Dayang, Qi, X., Cai, J., 2022. Comprehensive assessment of CMIP5
819 and CMIP6 models in simulating and projecting precipitation over the global land. *International*
820 *Journal of Climatology* 42, 6859–6875. <https://doi.org/10.1002/joc.7616>

821 Duan, K., Caldwell, P. V., Sun, G., McNulty, S.G., Zhang, Y., Shuster, E., Liu, B., Bolstad, P. V., 2019.
822 Understanding the role of regional water connectivity in mitigating climate change impacts on
823 surface water supply stress in the United States. *J Hydrol (Amst)* 570, 80–95.
824 <https://doi.org/10.1016/j.jhydrol.2019.01.011>

825 Duan, K., Sun, G., McNulty, S.G., Caldwell, P. V., Cohen, E.C., Sun, S., Aldridge, H.D., Zhou, D., Zhang,
826 L., Zhang, Y., 2017. Future shift of the relative roles of precipitation and temperature in
827 controlling annual runoff in the conterminous United States. *Hydrol Earth Syst Sci* 21, 5517–
828 5529. <https://doi.org/10.5194/hess-21-5517-2017>

829 Duarte, H.F., 2024. WaSSI model with added support for dynamic land cover input data [dataset]
830 [WWW Document]. URL
831 http://data.globalecology.unh.edu/data/Projections_CONUS/WaSSI_code/ (accessed 2.19.24).

832 Duarte, H.F., Kim, J.B., Sun, G., McNulty, S., Xiao, J., 2024. Surface hydrology projections for CONUS
833 with WaSSI [dataset] [WWW Document]. URL
834 http://data.globalecology.unh.edu/data/Projections_CONUS/WaSSI_outputs/ (accessed
835 2.19.24).

836 Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., Bekki, S.,
837 Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy,
838 F., Codron, F., Cozic, A., Cugnet, D., de Noblet, N., Duvel, J.-P., Ethé, C., Fairhead, L., Fichefet, T.,
839 Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L., Guilyardi, E., Hauglustaine, D., Hourdin,
840 F., Idelkadi, A., Ghattas, J., Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec,
841 A., Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z.X., Lloyd, J., Lott, F., Madec, G., Mancip, M.,
842 Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio, C.,
843 Schulz, M., Swingedouw, D., Szopa, S., Talandier, C., Terray, P., Viovy, N., Vuichard, N., 2013.
844 Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5.
845 *Clim Dyn* 40, 2123–2165. <https://doi.org/10.1007/s00382-012-1636-1>

846 Dunne, J.P., John, J.G., Adcroft, A.J., Griffies, S.M., Hallberg, R.W., Shevliakova, E., Stouffer, R.J.,
847 Cooke, W., Dunne, K.A., Harrison, M.J., Krasting, J.P., Malyshov, S.L., Milly, P.C.D., Phillipps, P.J.,
848 Sentman, L.T., Samuels, B.L., Spelman, M.J., Winton, M., Wittenberg, A.T., Zadeh, N., 2012.
849 GFDL's ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical
850 Formulation and Baseline Simulation Characteristics. *J Clim* 25, 6646–6665.
851 <https://doi.org/10.1175/JCLI-D-11-00560.1>

852 Easterling, D.R., Kunkel, K.E., Arnold, J.R., Knutson, T., LeGrande, A.N., Leung, L.R., Vose, R.S.,
853 Waliser, D.E., Wehner, M.F., 2017. Precipitation change in the United States, in: Wuebbles, D.,
854 Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K. (Eds.), *Climate Science*
855 *Special Report: Fourth National Climate Assessment, Volume I. U.S. Global Change Research*
856 *Program*, Washington, DC, USA, pp. 207–230.
857 <https://doi.org/https://doi.org/10.7930/J0H993CC>

858 EPA, 2017. Multi-model framework for quantitative sectoral impacts analysis: a technical report for
859 the Fourth National Climate Assessment (EPA 430-R-17-001). U.S. Environmental Protection
860 Agency.

861 EPA, 2010. Ecoregions: Level II ecoregions of North America, NA_CEC_Eco_Level2 (vector digital
862 data) [dataset]. U.S. EPA Office of Research and Development (ORD) - National Health and
863 Environmental Effects Research Laboratory (NHEERL), Corvallis, USA.

864 Fan, X., Duan, Q., Shen, C., Wu, Y., Xing, C., 2020. Global surface air temperatures in CMIP6: historical
865 performance and future changes. *Environmental Research Letters* 15, 104056.
866 <https://doi.org/10.1088/1748-9326/abb051>

867 Fang, K., Shen, C., Fisher, J.B., Niu, J., 2016. Improving Budyko curve-based estimates of long-term
868 water partitioning using hydrologic signatures from GRACE. *Water Resour Res* 52, 5537–5554.
869 <https://doi.org/10.1002/2016WR018748>

870 Fu, B., 1981. On the calculation of the evaporation from land surface. *Scientia Atmospherica Sinica*
871 5, 23–31. <https://doi.org/10.3878/j.issn.1006-9895.1981.01.03>

872 Gent, P.R., Danabasoglu, G., Donner, L.J., Holland, M.M., Hunke, E.C., Jayne, S.R., Lawrence, D.M.,
873 Neale, R.B., Rasch, P.J., Vertenstein, M., Worley, P.H., Yang, Z.-L., Zhang, M., 2011. The
874 Community Climate System Model Version 4. *J Clim* 24, 4973–4991.
875 <https://doi.org/10.1175/2011JCLI4083.1>

876 Golub, A., Sohngen, B., Cai, Y., Kim, J., Hertel, T., 2022. Costs of forest carbon sequestration in the
877 presence of climate change impacts. *Environmental Research Letters* 17, 104011.
878 <https://doi.org/10.1088/1748-9326/ac8ec5>

879 Gonzalez, P., Neilson, R.P., Lenihan, J.M., Drapek, R.J., 2010. Global patterns in the vulnerability of
880 ecosystems to vegetation shifts due to climate change. *Global Ecology and Biogeography* 19,
881 755–768. <https://doi.org/10.1111/j.1466-8238.2010.00558.x>

882 Grimm, N.B., Chapin, F.S., Bierwagen, B., Gonzalez, P., Groffman, P.M., Luo, Y., Melton, F.,
883 Nadelhoffer, K., Pairis, A., Raymond, P.A., Schimel, J., Williamson, C.E., 2013. The impacts of

884 climate change on ecosystem structure and function. *Front Ecol Environ* 11, 474–482.
885 <https://doi.org/10.1890/120282>

886 Guerrieri, R., Belmecheri, S., Ollinger, S. V., Asbjornsen, H., Jennings, K., Xiao, J., Stocker, B.D.,
887 Martin, M., Hollinger, D.Y., Bracho-Garrillo, R., Clark, K., Dore, S., Kolb, T., Munger, J.W., Novick,
888 K., Richardson, A.D., 2019. Disentangling the role of photosynthesis and stomatal conductance
889 on rising forest water-use efficiency. *Proceedings of the National Academy of Sciences* 116,
890 16909–16914. <https://doi.org/10.1073/pnas.1905912116>

891 Hamon, W.R., 1963. Computation of direct runoff amounts from storm rainfall. *International*
892 *Association of Scientific Hydrology* 63, 52–62.

893 Hayhoe, K., Wuebbles, D., Easterling, D.R., Fahey, D.W., Doherty, S., Kossin, J., Sweet, W., Vose, R.,
894 Wehner, M., 2018. Our changing climate, in: Reidmiller, D.R., Avery, C.W., Easterling, D.R.,
895 Kunkel, K.E., Lewis, K.L.M., Maycock, T.K., Stewart, B.C. (Eds.), *Impacts, Risks, and Adaptation*
896 *in the United States: Fourth National Climate Assessment, Volume II*. U.S. Global Change
897 *Research Program*, Washington, DC, USA, pp. 72–144.
898 <https://doi.org/https://doi.org/10.7930/NCA4.2018.CH2>

899 Heidari, H., Arabi, M., Warziniack, T., 2021a. Vulnerability to Water Shortage Under Current and
900 Future Water Supply-Demand Conditions Across U.S. River Basins. *Earths Future* 9.
901 <https://doi.org/10.1029/2021EF002278>

902 Heidari, H., Warziniack, T., Brown, T.C., Arabi, M., 2021b. Impacts of Climate Change on
903 Hydroclimatic Conditions of U.S. National Forests and Grasslands. *Forests* 12, 139.
904 <https://doi.org/10.3390/f12020139>

905 Hu, J., Wu, Y., Wang, L., Sun, P., Zhao, F., Jin, Z., Wang, Y., Qiu, L., Lian, Y., 2021. Impacts of land-use
906 conversions on the water cycle in a typical watershed in the southern Chinese Loess Plateau. *J*
907 *Hydrol (Amst)* 593, 125741. <https://doi.org/10.1016/j.jhydrol.2020.125741>

908 Joo, J., Jeong, S., Zheng, C., Park, C.-E., Park, H., Kim, H., 2020. Emergence of significant soil
909 moisture depletion in the near future. *Environmental Research Letters* 15, 124048.
910 <https://doi.org/10.1088/1748-9326/abc6d2>

911 Kerns, B.K., Kim, J.B., Kline, J.D., Day, M.A., 2016. US exposure to multiple landscape stressors and
912 climate change. *Reg Environ Change* 16, 2129–2140. <https://doi.org/10.1007/s10113-016-0934-2>

913 Kim, J.B., 2024. Potential natural vegetation projections for CONUS with the MC2 DGVM [dataset]
914 [WWW Document]. URL
915 http://data.globalecology.unh.edu/data/Projections_CONUS/MC2_outputs/ (accessed
916 2.19.24).

917

918 Kim, J.B., Kerns, B.K., Drapek, R.J., Pitts, G.S., Halofsky, J.E., 2018. Simulating vegetation response to
919 climate change in the Blue Mountains with MC2 dynamic global vegetation model. *Clim Serv*
920 10, 20–32. <https://doi.org/10.1016/j.climser.2018.04.001>

921 Kim, J.B., Monier, E., Sohngen, B., Pitts, G.S., Drapek, R., McFarland, J., Ohrel, S., Cole, J., 2017.
922 Assessing climate change impacts, benefits of mitigation, and uncertainties on major global
923 forest regions under multiple socioeconomic and emissions scenarios. *Environmental*
924 *Research Letters* 12, 045001. <https://doi.org/10.1088/1748-9326/aa63fc>

925 Li, C., Sun, G., Caldwell, P. V., Cohen, E., Fang, Y., Zhang, Y., Oudin, L., Sanchez, G.M., Meentemeyer,
926 R.K., 2020. Impacts of urbanization on watershed water balances across the conterminous
927 United States. *Water Resour Res* 56, 1–19. <https://doi.org/10.1029/2019WR026574>

928 Li, F., Xiao, J., Chen, J., Ballantyne, A., Jin, K., Li, B., Abraha, M., John, R., 2023. Global water use
929 efficiency saturation due to increased vapor pressure deficit. *Science (1979)* 381, 672–677.
930 <https://doi.org/10.1126/science.adf5041>

931 Liang, X., Lettenmaier, D.P., Wood, E.F., Burges, S.J., 1994. A simple hydrologically based model of
932 land surface water and energy fluxes for general circulation models. *Journal of Geophysical*
933 *Research: Atmospheres* 99, 14415–14428. <https://doi.org/10.1029/94JD00483>

934 Liang, X., Wood, E.F., Lettenmaier, D.P., 1996. Surface soil moisture parameterization of the VIC-2L
935 model: Evaluation and modification. *Glob Planet Change* 13, 195–206.
936 [https://doi.org/10.1016/0921-8181\(95\)00046-1](https://doi.org/10.1016/0921-8181(95)00046-1)

937 Liu, D., Chen, Y., Cai, W., Dong, W., Xiao, J., Chen, J., Zhang, H., Xia, J., Yuan, W., 2014. The
938 contribution of China's Grain to Green Program to carbon sequestration. *Landsc Ecol* 29,
939 1675–1688. <https://doi.org/10.1007/s10980-014-0081-4>

940 Liu, N., Sun, P.-S., Liu, S.-R., Sun, G., 2013. Coupling simulation of water-carbon processes for
941 catchment—calibration and validation of the WaSSI-C model. *Chinese Journal of Plant Ecology*
942 37, 492–502. <https://doi.org/10.3724/SP.J.1258.2013.00051>

943 Liu, Y., Xiao, J., Ju, W., Xu, K., Zhou, Y., Zhao, Y., 2016. Recent trends in vegetation greenness in China
944 significantly altered annual evapotranspiration and water yield. *Environmental Research*
945 *Letters* 11, 094010. <https://doi.org/10.1088/1748-9326/11/9/094010>

946 Livneh, B., Rosenberg, E.A., Lin, C., Nijssen, B., Mishra, V., Andreadis, K.M., Maurer, E.P.,
947 Lettenmaier, D.P., 2013. A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and
948 States for the Conterminous United States: Update and Extensions. *J Clim* 26, 9384–9392.
949 <https://doi.org/10.1175/JCLI-D-12-00508.1>

950 Ma, R., Xiao, J., Liang, S., Ma, H., He, T., Guo, D., Liu, X., Lu, H., 2022. Pixel-level parameter
951 optimization of a terrestrial biosphere model for improving estimation of carbon fluxes with
952 an efficient model–data fusion method and satellite-derived LAI and GPP data. *Geosci Model*
953 *Dev* 15, 6637–6657. <https://doi.org/10.5194/gmd-15-6637-2022>

954 Mahat, V., Ramírez, J.A., Brown, T.C., 2017. Twenty-First-Century Climate in CMIP5 Simulations:
955 Implications for Snow and Water Yield across the Contiguous United States. *J Hydrometeorol*
956 18, 2079–2099. <https://doi.org/10.1175/JHM-D-16-0098.1>

957 Mahowald, N., Lo, F., Zheng, Y., Harrison, L., Funk, C., Lombardozzi, D., Goodale, C., 2016.
958 Projections of leaf area index in earth system models. *Earth System Dynamics* 7, 211–229.
959 <https://doi.org/10.5194/esd-7-211-2016>

960 Mathias, J.M., Thomas, R.B., 2021. Global tree intrinsic water use efficiency is enhanced by
961 increased atmospheric CO₂ and modulated by climate and plant functional types.
962 *Proceedings of the National Academy of Sciences* 118.
963 <https://doi.org/10.1073/pnas.2014286118>

964 Medlyn, B.E., Barton, C.V.M., Broadmeadow, M.S.J., Ceulemans, R., De Angelis, P., Forstreuter, M.,
965 Freeman, M., Jackson, S.B., Kellomäki, S., Laitat, E., Rey, A., Roberntz, P., Sigurdsson, B.D.,
966 Strassemeyer, J., Wang, K., Curtis, P.S., Jarvis, P.G., 2001. Stomatal conductance of forest
967 species after long-term exposure to elevated CO₂ concentration: a synthesis. *New Phytologist*
968 149, 247–264. <https://doi.org/10.1046/j.1469-8137.2001.00028.x>

969 Mekonnen, Z.A., Riley, W.J., 2023. Climate Change Will Increase Biomass Proportion of Global
970 Forest Carbon Stocks Under an SSP5–8.5 Climate Trajectory. *Geophys Res Lett* 50.
971 <https://doi.org/10.1029/2023GL104612>

972 Naz, B.S., Kao, S.-C., Ashfaq, M., Rastogi, D., Mei, R., Bowling, L.C., 2016. Regional hydrologic
973 response to climate change in the conterminous United States using high-resolution
974 hydroclimate simulations. *Glob Planet Change* 143, 100–117.
975 <https://doi.org/10.1016/j.gloplacha.2016.06.003>

976 Neilson, R.P., 1995. A Model for Predicting Continental-Scale Vegetation Distribution and Water
977 Balance. *Ecological Applications* 5, 362–385. <https://doi.org/10.2307/1942028>

978 NRCS, 2024. The Digital General Soil Map of the United States (STATSGO2), Natural Resources
979 Conservation Service, United States Department of Agriculture [dataset] [WWW Document].
980 URL <https://www.nrcs.usda.gov/resources/data-and-reports/description-of-statsgo2-database>
981 (accessed 2.3.24).

982 Oudin, L., Andréassian, V., Lerat, J., Michel, C., 2008. Has land cover a significant impact on mean
983 annual streamflow? An international assessment using 1508 catchments. *J Hydrol (Amst)* 357,
984 303–316. <https://doi.org/10.1016/j.jhydrol.2008.05.021>

985 Parton, W.J., Scurlock, J.M.O., Ojima, D.S., Gilmanov, T.G., Scholes, R.J., Schimel, D.S., Kirchner, T.,
986 Menaut, J., Seastedt, T., Garcia Moya, E., Kamnalrut, A., Kinyamario, J.I., 1993. Observations
987 and modeling of biomass and soil organic matter dynamics for the grassland biome
988 worldwide. *Global Biogeochem Cycles* 7, 785–809. <https://doi.org/10.1029/93GB02042>

989 Pierce, D.W., 2024. LOCA Statistical Downscaling (Localized Constructed Analogs) - Statistically
990 downscaled CMIP5 and CMIP6 climate projections for North America [dataset] [WWW
991 Document]. URL <https://loca.ucsd.edu/> (accessed 1.15.24).

992 Pierce, D.W., Cayan, D.R., Maurer, E.P., Abatzoglou, J.T., Hegewisch, K.C., 2015. Improved Bias
993 Correction Techniques for Hydrological Simulations of Climate Change. *J Hydrometeorol* 16,
994 2421–2442. <https://doi.org/10.1175/JHM-D-14-0236.1>

995 Pierce, D.W., Cayan, D.R., Thrasher, B.L., 2014. Statistical Downscaling Using Localized Constructed
 996 Analogs (LOCA). *J Hydrometeorol* 15, 2558–2585. <https://doi.org/10.1175/JHM-D-14-0082.1>

997 PRISM Climate Group, 2024. PRISM Gridded Climate Data, PRISM Climate Group, Oregon State University
 998 [dataset] [WWW Document]. URL <https://prism.oregonstate.edu> (accessed 4.24.24).

999 Reyer, C., Chang, J., Chen, M., Forrest, M., François, L., Henrot, A.-J., Hickler, T., Ito, A., Nishina, K.,
 1000 Ostberg, S., Schaphoff, S., Seneviratne, S.I., Shi, H., Steinkamp, J., Thiery, W., Tian, H., Zhao, F.,
 1001 Büchner, M., Ciais, P., 2019. ISIMIP2b Simulation Data from Biomes Sector, GFZ Data Services
 1002 [dataset] [WWW Document]. <https://doi.org/10.5880/PIK.2019.012>

1003 Running, S., Mu, Q., Zhao, M., Moreno, A., 2021. MODIS/Terra Net Evapotranspiration Gap-Filled Yearly
 1004 L4 Global 500m SIN Grid V061 [dataset]. NASA EOSDIS Land Processes Distributed Active Archive
 1005 Center. <https://doi.org/10.5067/MODIS/MOD16A3GF.061>

1006 Shuttleworth, W.J., 1993. Evaporation, in: Maidment, D.R. (Ed.), *Handbook of Hydrology*. McGraw-
 1007 Hill, Inc., New York, USA, pp. 4.1-4.53.

1008 Song, Z., Xia, J., Wang, G., She, D., Hu, C., Hong, S., 2022. Regionalization of hydrological model
 1009 parameters using gradient boosting machine. *Hydrol Earth Syst Sci* 26, 505–524.
 1010 <https://doi.org/10.5194/hess-26-505-2022>

1011 Song, Z., Xia, J., Wang, G., She, D., Hu, C., Piao, S., 2023. Climate change rather than vegetation
 1012 greening dominates runoff change in China. *J Hydrol (Amst)* 129519.
 1013 <https://doi.org/10.1016/j.jhydrol.2023.129519>

1014 Sun, G., Caldwell, P., Noormets, A., McNulty, S.G., Cohen, E., Moore Myers, J., Domec, J.-C.,
 1015 Treasure, E., Mu, Q., Xiao, J., John, R., Chen, J., 2011. Upscaling key ecosystem functions
 1016 across the conterminous United States by a water-centric ecosystem model. *J Geophys Res*
 1017 116, G00J05. <https://doi.org/10.1029/2010JG001573>

1018 Sun, G., Caldwell, P. V., McNulty, S.G., 2015. Modelling the potential role of forest thinning in
 1019 maintaining water supplies under a changing climate across the conterminous United States.
 1020 *Hydrol Process* 29, 5016–5030. <https://doi.org/10.1002/hyp.10469>

1021 Sun, G., Liu, N., Cao, R., Jin, K., Hao, L., Song, C., 2023. Modeling forest-water interactions at
 1022 multiple scales in Nepal, in: Sun, G., Bruijnzeel, L.A., Zhang, J., Tiwari, K.R., Hao, L. (Eds.),
 1023 *Proceedings of the International Symposium on Forests-Water-Livelihood Nexus in the Lesser*
 1024 *Himalaya*. Institute of Forestry, Tribhuvan University, Pokhara, Nepal, pp. 48–49.

1025 Sun, G., McNulty, S.G., Moore Myers, J.A., Cohen, E.C., 2008. Impacts of Multiple Stresses on Water
 1026 Demand and Supply Across the Southeastern United States. *JAWRA Journal of the American*
 1027 *Water Resources Association* 44, 1441–1457. <https://doi.org/10.1111/j.1752-1688.2008.00250.x>

1029 Sun, S., Sun, G., Caldwell, P., McNulty, S.G., Cohen, E., Xiao, J., Zhang, Y., 2015. Drought impacts on
 1030 ecosystem functions of the U.S. National Forests and Grasslands: Part I evaluation of a water
 1031 and carbon balance model. *For Ecol Manage* 353, 260–268.
 1032 <https://doi.org/10.1016/j.foreco.2015.03.054>

1033 Sun, S., Sun, G., Cohen, E., McNulty, S.G., Caldwell, P. V., Duan, K., Zhang, Y., 2016. Projecting water
1034 yield and ecosystem productivity across the United States by linking an ecohydrological model
1035 to WRF dynamically downscaled climate data. *Hydrol Earth Syst Sci* 20, 935–952.
1036 <https://doi.org/10.5194/HESS-20-935-2016>

1037 Teng, H., Chen, S., Hu, B., Shi, Z., 2023. Future changes and driving factors of global peak vegetation
1038 growth based on CMIP6 simulations. *Ecol Inform* 75, 102031.
1039 <https://doi.org/10.1016/j.ecolinf.2023.102031>

1040 Thorntwaite, C.W., 1948. An Approach toward a Rational Classification of Climate. *Geogr Rev* 38,
1041 55–94. <https://doi.org/10.2307/210739>

1042 USBR, 2013. Downscaled CMIP3 and CMIP5 climate projections: Release of downscaled CMIP5
1043 climate projections, comparison with preceding information, and summary of user needs. U.S.
1044 Department of the Interior, Bureau of Reclamation, Technical Service Center, Denver, USA.

1045 USDA FS, 2022. MC2 Dynamic Global Vegetation Model, v2.124 [dataset] [WWW Document].
1046 <https://doi.org/10.5281/zenodo.7470678>

1047 USGS, 2011. National Land Cover Database (NLCD) 2006 land cover conterminous United States,
1048 U.S. Geological Survey data release [dataset] [WWW Document].
1049 <https://doi.org/10.5066/P9HBR9V3>

1050 Voldoire, A., Sanchez-Gomez, E., Salas y Mélia, D., Decharme, B., Cassou, C., Sénési, S., Valcke, S.,
1051 Beau, I., Alias, A., Chevallier, M., Déqué, M., Deshayes, J., Douville, H., Fernandez, E., Madec,
1052 G., Maisonnave, E., Moine, M.-P., Planton, S., Saint-Martin, D., Szopa, S., Tyteca, S., Alkama, R.,
1053 Belamari, S., Braun, A., Coquart, L., Chauvin, F., 2013. The CNRM-CM5.1 global climate model:
1054 description and basic evaluation. *Clim Dyn* 40, 2091–2121. <https://doi.org/10.1007/s00382-011-1259-y>

1055 Volodin, E.M., Dianskii, N.A., Gusev, A. V., 2010. Simulating present-day climate with the INMCM4.0
1056 coupled model of the atmospheric and oceanic general circulations. *Izvestiya, Atmospheric
1057 and Oceanic Physics* 46, 414–431. <https://doi.org/10.1134/S000143381004002X>

1059 Wang, H., Lv, X., Zhang, M., 2021. Sensitivity and attribution analysis based on the Budyko
1060 hypothesis for streamflow change in the Baiyangdian catchment, China. *Ecol Indic* 121,
1061 107221. <https://doi.org/10.1016/j.ecolind.2020.107221>

1062 Warziniack, T., Arabi, M., Brown, T.C., Froemke, P., Ghosh, R., Rasmussen, S., Swartzentruber, R.,
1063 2022. Projections of Freshwater Use in the United States Under Climate Change. *Earths Future*
1064 10. <https://doi.org/10.1029/2021EF002222>

1065 Watanabe, M., Suzuki, T., O’ishi, R., Komuro, Y., Watanabe, S., Emori, S., Takemura, T., Chikira, M.,
1066 Ogura, T., Sekiguchi, M., Takata, K., Yamazaki, D., Yokohata, T., Nozawa, T., Hasumi, H., Tatebe,
1067 H., Kimoto, M., 2010. Improved Climate Simulation by MIROC5: Mean States, Variability, and
1068 Climate Sensitivity. *J Clim* 23, 6312–6335. <https://doi.org/10.1175/2010JCLI3679.1>

1069 Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H.,
1070 Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., Kawamiya, M., 2011.

1071 MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. *Geosci*
1072 *Model Dev* 4, 845–872. <https://doi.org/10.5194/gmd-4-845-2011>

1073 Wuebbles, D., Meehl, G., Hayhoe, K., Karl, T.R., Kunkel, K., Santer, B., Wehner, M., Colle, B., Fischer,
1074 E.M., Fu, R., Goodman, A., Janssen, E., Kharin, V., Lee, H., Li, W., Long, L.N., Olsen, S.C., Pan, Z.,
1075 Seth, A., Sheffield, J., Sun, L., 2014. CMIP5 Climate Model Analyses: Climate Extremes in the
1076 United States. *Bull Am Meteorol Soc* 95, 571–583. <https://doi.org/10.1175/BAMS-D-12-00172.1>

1078 Yang, Y., Roderick, M.L., Guo, H., Miralles, D.G., Zhang, L., Fatichi, S., Luo, X., Zhang, Y., McVicar, T.R.,
1079 Tu, Z., Keenan, T.F., Fisher, J.B., Gan, R., Zhang, X., Piao, S., Zhang, B., Yang, D., 2023.
1080 *Evapotranspiration on a greening Earth. Nat Rev Earth Environ* 4, 626–641.
1081 <https://doi.org/10.1038/s43017-023-00464-3>

1082 Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara, M., Tanaka, T.Y., Shindo, E.,
1083 Tsujino, H., Deushi, M., Mizuta, R., Yabu, S., Obata, A., Nakano, H., Koshiro, T., Ose, T., Kitoh,
1084 A., 2012. A New Global Climate Model of the Meteorological Research Institute: MRI-CGCM3
1085 —Model Description and Basic Performance—. *Journal of the Meteorological Society of*
1086 *Japan. Ser. II* 90A, 23–64. <https://doi.org/10.2151/jmsj.2012-A02>

1087 Zhang, G., Wu, Y., Li, H., Yin, X., Chervan, A., Liu, S., Qiu, L., Zhao, F., Sun, P., Wang, W., Jin, Z., 2024.
1088 *Assessment framework of water conservation based on analytical modeling of*
1089 *ecohydrological processes. J Hydrol (Amst)* 630, 130646.
1090 <https://doi.org/10.1016/j.jhydrol.2024.130646>

1091 Zhang, L., Dawes, W.R., Walker, G.R., 2001. Response of mean annual evapotranspiration to vegetation
1092 changes at catchment scale. *Water Resour Res* 37, 701–708.
1093 <https://doi.org/10.1029/2000WR900325>

1094 Zhang, M., Liu, N., Harper, R., Li, Q., Liu, K., Wei, X., Ning, D., Hou, Y., Liu, S., 2017. A global review on
1095 hydrological responses to forest change across multiple spatial scales: Importance of scale, climate,
1096 forest type and hydrological regime. *J Hydrol (Amst)* 546, 44–59.
1097 <https://doi.org/10.1016/j.jhydrol.2016.12.040>

1098 Zhang, Y., Li, C., Chiew, F.H.S., Post, D.A., Zhang, X., Ma, N., Tian, J., Kong, D., Leung, L.R., Yu, Q., Shi,
1099 J., Liu, C., 2023. Southern Hemisphere dominates recent decline in global water availability.
1100 *Science (1979)* 382, 579–584. <https://doi.org/10.1126/science.adh0716>

1101 Zhao, M., Heinsch, F.A., Nemani, R.R., Running, S.W., 2005. Improvements of the MODIS terrestrial
1102 gross and net primary production global data set. *Remote Sens Environ* 95, 164–176.
1103 <https://doi.org/10.1016/j.rse.2004.12.011>

1104 Zhou, D., Hao, L., Kim, J.B., Liu, P., Pan, C., Liu, Y., Sun, G., 2019. Potential impacts of climate change
1105 on vegetation dynamics and ecosystem function in a mountain watershed on the Qinghai-
1106 Tibet Plateau. *Clim Change* 156, 31–50. <https://doi.org/10.1007/s10584-019-02524-4>

1107 Zhou, S., Yu, B., Lintner, B.R., Findell, K.L., Zhang, Y., 2023. Projected increase in global runoff
1108 dominated by land surface changes. *Nat Clim Chang.* <https://doi.org/10.1038/s41558-023-01659-8>

1110

1111