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Abstract 13 

Watersheds’ future water yield is influenced by both climate and associated vegetation dynamics. This 14 

study coupled future vegetation projections from a dynamic global vegetation model (MC2) with an 15 

ecohydrological model (Water Supply Stress Index, WaSSI) to predict water yield at the 8-digit Hydrologic 16 

Unit Code (HUC8) watershed level for the conterminous United States (CONUS) for the 21st century. We 17 

considered two contrasting warming scenarios (Representative Concentration Pathways 8.5 and 4.5) and 18 

accounted for simulation uncertainty by using a large ensemble of climate model outputs. The coupled 19 

model projects a decrease in water yield across much of CONUS, especially towards end-century (2080–20 
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2099) under RCP 8.5 (warmer scenario), reaching up to −30% at the regional level, relative to 2008–21 

2027. Overall, the projected water yield reduction under RCP 8.5 is roughly twice as high as under RCP 22 

4.5. Substantial changes in water yield for watersheds in the central and southeastern U.S. are expected 23 

by mid-century (2040–2059), reaching up to −40% (RCP 4.5) and −75% (RCP 8.5) at end-century (2080–24 

2099), relative to 2008–2027. Climate change, rather than vegetation change, strongly dominates the 25 

projected future changes in water yield, and contributions of climate change are typically one order of 26 

magnitude higher than those of vegetation change. For a small number of watersheds, the effects of 27 

vegetation change can mitigate or exacerbate the effects of climate change on water yield. Our 28 

simulation results suggest widespread increase in aridity and evaporative indices and decrease in soil 29 

moisture, especially under RCP 8.5. Our integrated modeling results can inform policy makers and 30 

resource development plans quantitative information of future water availability. 31 

Keywords 32 
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1. Introduction 34 

The water availability on Earth is rapidly changing due to climate change and human activities (Heidari et 35 

al., 2021a; Song et al., 2023; Zhang et al., 2023). The water yield of a given watershed is often used as a 36 

surrogate of water availability for use by ecosystems and human society. Water yield is defined as the 37 

total water produced as the sum of surface flow, subsurface flow, and baseflow. The mean annual water 38 

yield represents the long-term (multi-year) mean difference between precipitation (𝑃) and 39 

evapotranspiration (ET) within the watershed (G. Sun et al., 2015). Precipitation and air temperature are 40 

the key climatic drivers of water yield (Duan et al., 2017). Under a warmer climate, the partitioning of 41 

precipitation between streamflow (water yield) and ET is generally expected to shift towards ET (Duan 42 
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et al., 2017). This would further reduce water yield in watersheds projected to receive less precipitation 43 

in the future and offset the increase in water yield for watersheds projected to receive more 44 

precipitation. In addition to climatic factors, land cover/land use also directly impacts water yield, given 45 

its effects on ET (Hu et al., 2021; Li et al., 2020; Liu et al., 2016; G. Sun et al., 2015; Zhang et al., 2024). 46 

The interception of precipitation by vegetation and posterior evaporation are directly associated with its 47 

leaf area index (LAI), and so are its transpiration losses (Yang et al., 2023). In addition to potential land 48 

cover/land use changes projected for the future (e.g., urbanization and agricultural expansion), global 49 

vegetation cover in terms of total leaf area, stomatal conductance, leaf phenology, and plant species 50 

distribution is expected to respond to future climate change and increasing atmospheric CO2 and 51 

temperature (Gonzalez et al., 2010; Mekonnen and Riley, 2023; Teng et al., 2023). For instance, warmer 52 

and CO2-rich conditions may promote plant growth and lead to increased transpiration, given a higher 53 

LAI and atmospheric evaporative demand (Zhang et al., 2023). At the same time, stomatal conductance 54 

is generally expected to decrease in response to increasing atmospheric CO2 (Li et al., 2023; Medlyn et 55 

al., 2001), which would downregulate transpiration and contribute to reduced water stress on plants. As 56 

global climate change intensifies, shifts in precipitation regimes, increased air temperature, and 57 

associated changes in vegetation state and function may substantially impact water yield worldwide 58 

(Yang et al., 2023). Potential future reductions in water yield compounded with projected increases in 59 

water demand across water use sectors may lead to more severe, frequent, and widespread water 60 

shortages, impacting ecosystems and human welfare (Brown et al., 2019; Sun et al., 2008; Warziniack et 61 

al., 2022). 62 

Future climate projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) indicate a 63 

substantial increase in surface air temperature in CONUS by the end of the twenty-first century (2070–64 

2099), ranging from 1.3° to 3.7°C under the Representative Concentration Pathway 4.5 (RCP 4.5, a 65 

moderate warming scenario in which anthropogenic greenhouse gas emissions peak at mid-century) and 66 
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from 3.0° to 6.1°C under RCP 8.5 (a high warming scenario in which emissions increase throughout the 67 

21st century), relative to 1986–2015 (Hayhoe et al., 2018). Under RCP 8.5, over much of CONUS, annual 68 

mean surface air temperature is projected to permanently depart from its historical variability range in 69 

the next couple of decades (2029–2050; Kerns et al., 2016). Surface air temperature projections under 70 

different warming scenarios (e.g., RCP 4.5 and 8.5) diverge substantially at mid-century, with high and 71 

increasing variability among individual general circulation model (GCM) projections within each scenario 72 

(Wuebbles et al., 2014). Winter and spring precipitation is projected to increase by up to 25% in the 73 

northern Great Plains, the upper Midwest, and the Northeast, and decrease by up to 25% in the 74 

Southwest at end-century under RCP 8.5 (2070–2099 relative to 1986–2015; Hayhoe et al., 2018). The 75 

frequency of heavy precipitation events is projected to increase in all regions of CONUS, with end-76 

century increases of about 50–100% under RCP 4.5 and 100–200% under RCP 8.5 relative to historical 77 

regional values (Easterling et al., 2017).  78 

Several studies have investigated the impact of climate change on water yield over CONUS using 79 

hydrological models and downscaled CMIP5 climate projections (e.g., Duan et al., 2017; Heidari et al., 80 

2021a, 2021b; Mahat et al., 2017; Naz et al., 2016). While the future twenty-first century projections in 81 

Naz et al. (2016) and Heidari et al. (2021b; “intermediate” and “wet” GCMs) indicate an overall increase 82 

in water yield in CONUS under RCP 8.5, the projections in Heidari et al. (2021a), Heidari et al. (2021b; 83 

“dry” GCM), and Mahat et al. (2017) indicate an overall decrease in water yield. The spatial patterns of 84 

future water yield change projected by Heidari et al. (2021a), Mahat et al. (2017), and Duan et al. (2017) 85 

are in general agreement, showing a reduction in water yield across extensive parts of CONUS, especially 86 

in the central U.S., with more accentuated changes under RCP 8.5 compared to RCP 4.5. These patterns 87 

of change, however, contrast with those projected by Naz et al. (2016), which are generally reversed in 88 

sign, showing an increase in water yield across much of CONUS under RCP 8.5, including the central U.S. 89 

The variation across the cited studies is associated with different modeling approaches or simulation 90 
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periods. Modeling approaches have included different hydrological models such as the Variable 91 

Infiltration Capacity (VIC; Cherkauer et al., 2003; Liang et al., 1996, 1994) and the Water Supply Stress 92 

Index (WaSSI: Caldwell et al., 2012; Sun et al., 2011), and different GCM ensembles and GCM 93 

downscaling approaches, such as dynamic and statistical downscaling methods (Bias Correction and 94 

Constructed Analog, BCCA, Version 2:  USBR, 2013; Multivariate Adaptive Constructed Analogs, MACA: 95 

Abatzoglou and Brown, 2012; MACAv2-LIVNEH: Livneh et al., 2013). However, a common denominator 96 

across these studies is the assumption of a fixed land cover throughout the twenty-first century 97 

simulations, despite the fact that land cover is projected to change in response to climate change and 98 

increasing atmospheric CO2  (Gonzalez et al., 2010; Mekonnen and Riley, 2023; Teng et al., 2023). 99 

Empirical studies show that vegetation matters to water balances and water availability at multiple scales 100 

(Oudin et al., 2008; Zhang et al., 2001, 2017). 101 

Differently from hydrological models, terrestrial biosphere models (TBMs) can account for 102 

biogeochemistry and simulate the water and carbon cycles in a coupled fashion, including land cover 103 

dynamics. TBMs with dynamic vegetation modeling capability, also known as dynamic global vegetation 104 

models (DGVMs), allow not only the vegetation state (e.g., LAI and biomass) but also the distribution of 105 

plant functional types to respond dynamically to climate and atmospheric CO2, while in typical TBMs 106 

such distribution is prescribed. The added complexity in TBMs and DGVMs, however, comes at the price 107 

of being more computationally expensive to run in comparison to simpler hydrological models, hindering 108 

their application at the fine spatial resolutions typically desired for hydrological studies, especially for 109 

large spatial domains. The dependence on a much higher number of model parameters also makes the 110 

calibration of TBMs more challenging. Therefore, a common approach for studies focused on future 111 

hydrological projections is the use of relatively simpler water-centric models and the assumption of a 112 

fixed land cover, as in the studies cited in the paragraph above (Duan et al., 2017; Heidari et al., 2021a, 113 

2021b; Mahat et al., 2017; Naz et al., 2016). At the same time, changes in land cover are expected to 114 
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play a significant role in the modulation of future water yield. For instance, G. Sun et al. (2015) 115 

investigated the sensitivity of water yield to hypothetical, across-the-board percent changes in LAI in 116 

CONUS using the WaSSI ecohydrological model. They found an overall increase in water yield in CONUS 117 

of 3%, 8%, and 13% associated with LAI decreases of 20%, 50%, and 80%, respectively, and a decrease of 118 

3% associated with an LAI increase of 20%. Bridging between the use of fully-coupled, complex 119 

TBMs/DGVMs and relatively simple hydrological models with prescribed vegetation – to enable 120 

investigations of the impacts of future climate and vegetation change on water yield at fine spatial 121 

resolution over a large spatial domain as CONUS – is yet to be explored.  122 

In this paper, we present results from coupling vegetation projections from the MC2 DGVM (Bachelet et 123 

al., 2001; Conklin et al., 2016) with the WaSSI hydrological model (Caldwell et al., 2012; Sun et al., 2011) 124 

to project water yield at the USGS 8-digit Hydrologic Unit Code watershed scale (HUC8), comparable in 125 

size to U.S. counties. Our approach represents a one-way coupling technique, i.e., coupling available 126 

future projections of LAI and vegetation type from a DGVM with a hydrological model. WaSSI has been 127 

extensively validated for CONUS at multiple scales (USGS 2-digit HUC, HUC2, and overall CONUS: Duan et 128 

al., 2017; HUC8: Caldwell et al., 2012; USGS 12-digit HUC, HUC12: Li et al., 2020; S. Sun et al., 2015) and 129 

MC2 has been tested regionally and globally for climate change studies (Golub et al., 2022; Kim et al., 130 

2018, 2017; Zhou et al., 2019). We drove WaSSI with statistically downscaled future climate projections 131 

depicting RCP 4.5 and 8.5 scenarios by 16 CMIP5 GCMs (Localized Constructed Analogs, LOCA; Pierce et 132 

al., 2015, 2014). We adopted available vegetation projections made with the MC2 DGVM (EPA, 2017) 133 

using the same climate driver (LOCA) for integration with WaSSI. While there has been previous work 134 

that present future projections of water yield for CONUS, our work is, to our knowledge, the first to 135 

employ an ensemble of future vegetation projections and provide water yield projections at a relatively 136 

fine scale (HUC8 watersheds). Our goal was to investigate potential future changes in climate and 137 

vegetation and their impact on water balances (water yield, ET, soil moisture) in CONUS for the mid-138 
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century (ca. 2050) and end-century (ca. 2090) under contrasting warming scenarios (RCP 4.5 and 8.5), 139 

taking into consideration the uncertainty arising from GCMs. Our central hypothesis was that climate 140 

change significantly alters water balances both directly via changes in air temperature and precipitation 141 

and indirectly via climate/CO2-induced changes in vegetation leaf area. 142 

2. Methods 143 

2.1. Study Area 144 

We carried out our simulations for the conterminous United States (CONUS) at the HUC8 scale, covering 145 

a total of 2099 watersheds with an average area of 3752 km2 (Fig. 1). In Section 3, our results are 146 

presented at the HUC8 scale and summarized at the HUC2 scale, i.e., for each one of the 18 USGS water 147 

resources regions in CONUS (Fig. 1). 148 

 149 

2.2. WaSSI Model Description 150 

The Water Supply Stress Index (WaSSI) model uses a water balance approach to simulate the monthly 151 

water yield, ET, and soil moisture of each HUC8 watershed in a specified domain (Caldwell et al., 2012; 152 

Sun et al., 2011). The model has been well tested in the U.S. (Duan et al., 2019; Li et al., 2020) and 153 

[Insert figure] 

Fig. 1. USGS HUC8 watersheds (blue lines) and HUC2 water resources regions (black lines) in CONUS. Regions 

include 1) New England, 2) Mid-Atlantic, 3) South Atlantic-Gulf, 4) Great Lakes, 5) Ohio, 6) Tennessee, 7) Upper 

Mississippi, 8) Lower Mississippi, 9) Souris-Red-Rainy, 10) Missouri, 11) Arkansas-White-Red, 12) Texas-Gulf, 13) 

Rio Grande, 14) Upper Colorado, 15) Lower Colorado, 16) Great Basin, 17) Pacific Northwest, and 18) California. 

Corresponding short labels (A to R) are used in the figures in Section 3. 
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globally in Germany (Al-Qubati et al., 2023), China (Liu et al., 2013), Rwanda (Bagstad et al., 2018), and 154 

recently in Nepal (Sun et al., 2023). 155 

Soil hydrological processes including infiltration, storage, and drainage are simulated with an algorithm 156 

based on the Sacramento Soil Moisture Accounting Model (SAC-SMA, Burnash, 1995; Burnash et al., 157 

1973). Monthly ET is initially estimated with an empirical function of potential evapotranspiration (PET), 158 

LAI, and 𝑃, derived from eddy-covariance flux measurements at multiple sites (Sun et al., 2011). PET is 159 

calculated based on near-surface air temperature and the daytime length defined by latitude and day of 160 

the year (Hamon, 1963). The final ET estimate is constrained by the available soil moisture. Each 161 

watershed is composed by up to 10 land cover types: 1) deciduous forest, 2) evergreen forest, 3) mixed 162 

forest, 4) shrubland, 5) grassland, 6) barren land, 7) wetland, 8) water, 9) cropland, and 10) urban. 163 

Coverage area fraction, impervious cover fraction, and mean monthly LAI values are assigned to each 164 

land cover type, while all land cover types share the same watershed soil properties. WaSSI calculates all 165 

water balance components for each land cover type independently, and then integrates the results at 166 

the watershed level via area-weighted averaging. The model runs on a monthly time step, and is driven 167 

with uniform precipitation and air temperature data for each HUC8 watershed.  168 

For CONUS, surface input data is available at the HUC8 scale, including soil properties based on the 169 

Digital General Soil Map of the United States (STATSGO2, NRCS, 2024), land and impervious cover based 170 

on the 2006 National Land Cover Database (NLCD; USGS, 2011), and LAI based on 2000–2006 mean 171 

monthly MODIS LAI (Zhao et al., 2005). Note that in this study we combine the land cover and LAI 172 

datasets with MC2 simulations to project values for 2007–2099 (Sect. 2.4), and that we define 2008–173 

2027 as a “present-day” baseline for comparison with mid-, late-century projections of vegetation and 174 

hydrology (Sect. 2.5). 175 
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The WaSSI model originally assumes no changes in land cover over the years. Therefore, we adapted the 176 

model structure to allow for a dynamic land cover. We also applied a small modification in the code 177 

regarding the ET calculation. By default, WaSSI calculates a potential actual evapotranspiration value 178 

(ET*, i.e., unconstrained by available soil moisture) as: 179 

ET* = 0.0222 PET LAI + 0.174 𝑃 + 0.502 PET + 5.31 LAI (1) 

For watersheds located in regions 1, 2, 4, and 5 in the northeastern U.S. (Fig. 1) with more than 20% 180 

forest cover, WaSSI calculates ET* as: 181 

ET* = 0.00169 PET 𝑃 + 0.4 PET + 7.83 LAI (2) 

The alternate formulation (Eq. 2) is used in WaSSI as it was found to improve ET simulations in those 182 

cases, when compared to annual observations of 𝑃 − water yield. With our implementation of dynamic 183 

land cover, WaSSI could potentially switch back and forth over time between the two ET* formulations 184 

for a given watershed in those regions. To avoid inconsistencies, we opted to remove the forest cover 185 

conditional from the code, but kept the alternate ET* formulation for regions 1, 2, 4, and 5. 186 

2.3. Future Climate Projections 187 

Statistically downscaled climate projections from 16 CMIP5 general circulation/Earth system models 188 

under scenarios RCP 4.5 and 8.5 were used with WaSSI (Localized Constructed Analogs, LOCA: Pierce et 189 

al., 2015, 2014; see Table 1). The model/scenario selection was based on the availability of 190 

corresponding MC2 simulations (Section 2.4). The near-surface air temperature and precipitation data 191 

from the LOCA downscaled climate dataset were aggregated from the original ⅟16, daily spatial-temporal 192 

scale to the HUC8, monthly scale. 193 

 194 
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Table 1. LOCA climate datasets used as input to WaSSI (LOCA statistically downscales CMIP5 model outputs to ⅟16 195 

resolution for the conterminous United States; Pierce et al., 2015, 2014). 196 

Model Institution Original spatial 

resolution (lon × lat) 

Reference 

ACCESS1-0 Commonwealth Scientific and 

Industrial Research Organisation, 

and Bureau of Meteorology, 

Australia 

1.875 × 1.25 (Bi et al., 2013) 

CanESM2 Canadian Centre for Climate 

Modelling and Analysis 

2.8 × 2.8 (Chylek et al., 2011) 

CCSM4 National Center for Atmospheric 

Research, USA 

1.25 × 0.94 (Gent et al., 2011) 

CNRM-CM5 Centre National de Recherches 

Météorologiques and Centre 

Européen de Recherche et de 

Formation Avancées en Calcul 

Scientifique, France 

1.4 × 1.4 (Voldoire et al., 2013) 

GFDL-CM3 NOAA Geophysical Fluid Dynamics 

Laboratory, USA 

2.5 × 2.0 (Donner et al., 2011) 

GFDL-ESM2G 2.5 × 2.0 (Dunne et al., 2012) 

GFDL-ESM2M 2.5 × 2.0 (Dunne et al., 2012) 

HadGEM2-ES Met Office Hadley Centre, UK 1.875 × 1.25 (Bellouin et al., 2011) 

INM-CM4 Institute for Numerical Mathematics, 

Russia 

2.0 × 1.5 (Volodin et al., 2010) 

IPSL-CM5A-LR Institut Pierre-Simon Laplace, France 3.75 × 1.875 (Dufresne et al., 2013) 

IPSL-CM5A-MR 2.5 × 1.25 (Dufresne et al., 2013) 



Manuscript submitted to the Journal of Hydrology 

11 
 

MIROC5 Atmosphere and Ocean Research 

Institute (The University of Tokyo), 

National Institute for 

Environmental Studies, and Japan 

Agency for Marine-Earth Science 

and Technology 

1.4 × 1.4 (Watanabe et al., 2010) 

MIROC-ESM-CHEM 2.8 × 2.8 (Watanabe et al., 2011) 

MIROC-ESM 2.8 × 2.8 (Watanabe et al., 2011) 

MRI-CGCM3 Meteorological Research Institute/ 

Japan Meteorological Agency 

1.1 × 1.1 (Yukimoto et al., 2012) 

NorESM1-M Norwegian Climate Centre 2.5 × 1.875 (Bentsen et al., 2013) 

 197 

2.4. Future Projections of Potential Vegetation with the MC2 DGVM and Integration with 198 

WaSSI 199 

The MC2 DGVM can project future changes in vegetation type and state (e.g., LAI, biomass) in response 200 

to climate change and increasing atmospheric CO2. The MC2 DGVM is a refactored version of the MC1 201 

DGVM (Bachelet et al., 2001; Conklin et al., 2016), with no change in science but with improvements in 202 

computational performance (Kim et al., 2018). MC2 consists of 3 submodels that address 203 

biogeochemistry (CENTURY Soil Organic Matter Model; Parton et al., 1993), fire disturbance (MC-Fire fire 204 

simulation model; Conklin et al., 2016), and biogeography (MAPSS vegetation biogeography model; 205 

Neilson, 1995). A full technical description of MC2 is available in Bachelet et al. (2001) and Conklin et al. 206 

(2016). 207 

For integration with WaSSI (Fig. 2), we obtained future projections of potential natural vegetation from 208 

MC2 simulations run under the same scenarios and climate forcing described in Section 2.3 (EPA, 2017). 209 

Annual outputs of vegetation type and LAI at the ⅟16 spatial scale were adapted for input into WaSSI. 210 

First, we translated the ~50 vegetation types output by MC2 into one of the six natural vegetation types 211 
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defined by WaSSI (deciduous, evergreen, and mixed forests; shrubland, grassland, and barren land), and 212 

then applied a natural vegetation mask based on the 2006 NLCD product (USGS, 2011) to all MC2 grid 213 

cells, masking out the areas characterized by other land cover types (e.g., urban areas, croplands, and 214 

artificial pasture). Second, we aggregated the MC2 results per ecoregion (level-2 ecoregions of North 215 

America; EPA, 2010; Fig. 3), obtaining the area fraction for each vegetation type, related to the total 216 

natural vegetation area, and the respective LAI. HUC8 polygons have fine spatial resolution in relation to 217 

the ⅟16 grid resolution used by MC2, with some HUC8 polygons coinciding with as few as a single ⅟16 218 

grid cell. We extracted a regional signal from MC2 output to increase our confidence in its vegetation 219 

projections. Third, from the ecoregion-level results, we calculated the anomalies in vegetation area 220 

fraction and LAI for years 2007–2099 relative to a 2000–2006 mean baseline. Finally, we combined the 221 

default vegetation boundary conditions in WaSSI, based on 2006 NLCD and 2000–2006 mean monthly 222 

MODIS LAI, with the anomalies derived from the MC2 simulations to create, for each natural vegetation 223 

type, a time series of annual area fraction and monthly LAI for 2007–2099 at the HUC8 scale. We only let 224 

the natural vegetation fraction of each HUC8 to be dynamic. The remaining land cover types considered 225 

in WaSSI (urban, cropland, wetland, and water) were kept constant over time. A more detailed 226 

description of our procedure to create the dynamic vegetation boundary conditions within WaSSI is 227 

given in Appendix A. 228 

[Insert figure] 

Fig. 2. WaSSI-MC2 integration overview. High resolution (daily, ⅟16°) future climate projections with multiple 

GCMs and scenarios (LOCA; Pierce et al., 2015, 2014) are used to drive the MC2 DGVM. The projected potential 

natural vegetation types and LAI (MC2 DGVM annual outputs) are first translated to WaSSI natural vegetation 

classes and integrated at the ecoregion level (Fig. 3). Then, anomalies are calculated relative to a 2000–2006 

baseline. The natural vegetation type and LAI anomalies at the ecoregion level are combined with land cover 
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“observations” for year ~2006 at the monthly, HUC8 scale (based on 2006 NLCD and 2000–2006 MODIS data 

products, as originally defined in WaSSI) to project future land cover (2007–2099), which is then used as input in 

WaSSI. Note that only changes in natural vegetation are projected, while the other land cover classes in WaSSI 

are kept fixed on year~2006 values. The climatic driver for WaSSI is created by integrating precipitation and air 

temperature from the LOCA downscaled climate projections at the monthly, HUC8 scale. With the dynamic 

climate and land cover inputs, WaSSI is run to project future hydrology. In the flow chart, “Proc.” (gray 

diamonds) indicate data processing steps. See Section 2.4 for further details. 

 229 

[Insert figure] 

Fig. 3. Level-2 ecoregions in CONUS (EPA, 2010): 5.2 Mixed wood shield, 5.3 Atlantic highlands, 6.2 Western 

cordillera, 7.1 Marine west coast forest, 8.1 Mixed wood plains, 8.2 Central USA plains, 8.3 Southeastern USA 

plains, 8.4 Ozark/Ouachita-Appalachian forests, 8.5 Mississippi alluvial and southeast USA coastal plains, 

9.2 Temperate prairies, 9.3 West-central semiarid prairies, 9.4 South central semiarid prairies, 9.5 Texas-

Louisiana coastal plain, 9.6 Tamaulipas-Texas semiarid plain, 10.1 Cold deserts, 10.2 Warm deserts, 

11.1 Mediterranean California, 12.1 Western Sierra Madre piedmont, 13.1 Upper Gila mountains, 

15.4 Everglades. 

 230 

2.5. Simulation Experiments and Data Analysis 231 

To assess the combined impact of climate and vegetation change on water yield, we carried out an 232 

ensemble of 16 simulations with the revised WaSSI model (Section 2.2) for each RCP scenario (4.5 and 233 

8.5, totaling 32 simulations), using LOCA-downscaled climate projections from 16 GCMs (Section 2.3) and 234 

the corresponding MC2-based vegetation projections (Section 2.4), covering years 2007 to 2099. To 235 

assess the individual impacts of direct climate change (i.e., changes in air temperature and precipitation) 236 
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and climate-induced vegetation change on water yield, we ran two additional WaSSI simulation 237 

ensembles: the first with dynamic climate and fixed vegetation (annual area fraction and monthly LAI of 238 

each vegetation type fixed at their year 2007 values, looped throughout the simulation), and the second 239 

with fixed climate (monthly temperature and precipitation values for year 2007, looped throughout the 240 

simulation) and dynamic vegetation, all else the same as in main simulation ensemble.  241 

We calculated future changes in water yield and in other relevant model outputs (e.g., ET, soil moisture) 242 

and inputs (e.g., air temperature, precipitation, vegetation cover fraction, LAI) for mid-century (2040–243 

2059) and end-century (2080–2099) relative to a “present-day” (2008–2027) baseline. We disregarded 244 

the first simulation year (2007), as it was used for WaSSI spin-up. We calculated mean ensemble 245 

differences between climatological periods (i.e., mid-century – present, end-century – present) for RCP 246 

4.5 and 8.5, and determined their statistical significance via Student’s 𝑡 test (dependent 𝑡 test for paired 247 

samples). The calculations were done at the HUC8 and HUC2 scales (Fig. 1). 248 

We also investigated hydrological changes at the regional level by using the Budyko framework (Budyko, 249 

1958). We averaged ET, PET, and precipitation at the HUC2 scale for each climatological period, then 250 

calculated an evaporative index (ET/𝑃) and an aridity index (PET/𝑃). We then ensemble averaged the 251 

indices for each climatological period under RCP 4.5 and 8.5. The statistical significance of the differences 252 

between climatological periods was determined via Student’s 𝑡 test (dependent 𝑡 test for paired 253 

samples). For each period and RCP scenario, we adjusted an overall Budyko curve in ET/𝑃 × PET/𝑃 254 

space for CONUS based on results for all 18 HUC2s (Fig. 1). We chose a curve of the form (Fu, 1981): 255 

ET

P
= 1 + (

PET

𝑃
) − (1 + (

PET

𝑃
)

ω

)

1
ω

 (3) 

where ω is an empirical parameter (adjustable) representing overall catchment properties.  256 
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2.6. Validation of the 2008–2027 “Present-Day” Baseline 257 

For validation purposes, we compared mean annual LOCA-downscaled projections of surface air 258 

temperature and precipitation for the 2008–2027 “present-day” baseline at the HUC8 level in CONUS 259 

against 2008–2023 mean annual observations from PRISM (PRISM Climate Group, 2024). We also 260 

compared 2008–2027 mean annual ET simulated with WaSSI against 2008–2023 mean annual 261 

observations from MODIS (Running et al., 2021). Monthly PRISM and annual MODIS ET data were 262 

aggregated at the HUC8 level from original spatial resolutions of 4 km and 500 m, respectively.  263 

3. Results 264 

3.1. Accuracy of the 2008–2027 “Present-Day” Baseline 265 

Mean annual air temperature and precipitation projected for 2008–2027 under RCP 8.5 for the HUC8s in 266 

CONUS (LOCA dataset) are tightly correlated (r = 0.99) with mean annual PRISM observations for 2008–267 

2023 (Fig. 4a,b), with small mean bias errors (MBE) of 0.48°C and −37 mm yr−1, respectively, and root 268 

mean square errors (RMSE) of 0.82°C and 83 mm yr−1, respectively. Mean annual ET projected for 2008–269 

2027 under RCP 8.5 based on WaSSI is highly correlated (r = 0.86) with mean annual MODIS ET for 270 

2008–2023 (Fig. 4c), with a reasonably small MBE of 25 mm yr−1 and RMSE of 118 mm yr−1. In each 271 

comparison (𝑇, 𝑃, ET), the linear regression exhibits a slope close to 1 and an intercept close to 0 (see 272 

Fig. 4). Results under RCP 4.5 are virtually identical to those presented here (not shown). 273 

 274 

[Insert figure] 

Fig. 4. Comparison of mean annual “present-day” (2008–2027) projections under RCP 8.5 against mean annual 
observations (2008–2023) for each HUC8 in CONUS (n = 2099): a) surface air temperature (LOCA projection vs. 
PRISM data), b) precipitation (LOCA projection vs. PRISM data), and c) evapotranspiration (WaSSI projection vs. 
MODIS data). Projections correspond to ensemble averages (16 GCMs; see Table 1).  
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3.2. Change in Climate and Land Cover 275 

Air temperature is projected to significantly increase across CONUS at mid-century and end-century 276 

under scenarios RCP 4.5 and RCP 8.5, based on the LOCA climate projections (Fig. 5a,b, S1a,b). Under 277 

RCP 4.5, the changes at the HUC2 scale relative to “present day” vary from 0.98 to 1.43 °C (mid-century) 278 

and 1.62 to 2.41 °C (end-century), while under RCP 8.5, the changes are roughly twice as high: 1.47 to 279 

2.09 °C (mid-century) and 3.72 to 5.28 °C (end-century). 280 

 281 

The projected precipitation changes across CONUS based on LOCA are less clear compared to the 282 

projected air temperature changes, especially due to the high variability across GCMs (Fig. 5c,d, S1c,d). 283 

For most regions, the projected precipitation changes at mid- and end-century under scenarios RCP 4.5 284 

and 8.5 are statistically insignificant. The projected precipitation changes at end-century under scenario 285 

RCP 8.5 exhibit a relatively clearer pattern, with statistically significant increases (decreases) in the order 286 

of 10% at many northern (southern) HUC8s (Fig. 5d). 287 

Based on MC2 simulations of potential natural vegetation and "present-day" observations, our projected 288 

changes in vegetation type and LAI show similar spatial patterns under RCP 4.5 and 8.5, with more 289 

pronounced changes under the latter scenario (Figs. 6 and 7; see also Figs. S2 and S3). At end-century 290 

[Insert figure] 

Fig. 5. Projected changes in air temperature (a, b) and precipitation (c, d) at end-century (2080–2099) under 

scenarios RCP 4.5 and 8.5, respectively, at the HUC8 scale, based on the LOCA downscaled climate dataset. 

Absolute changes in air temperature and percent changes in precipitation are shown, relative to “present day” 

(2008–2027). The hatched pattern indicates insignificant changes at the 95% confidence level. HUC2s are 

delineated in black. 
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and under RCP 8.5, notable vegetation type shifts include: 1) mixed forest to deciduous forest in the 291 

northern Appalachians and upper Midwest; 2) deciduous forest to mixed/evergreen forest in the 292 

southern Appalachians; 3) evergreen forest to mixed forest in the Pacific northwest; 4) grassland to 293 

shrubland in the intermountain west; and 5) shrubland to grassland in the Great Plains, with changes of 294 

up to ≈ 0.28, 0.11, 0.46, 0.10, and 0.06 in HUC8 coverage area fraction, respectively (Fig. 7). Also notable 295 

is the projected increase in evergreen forest coverage in the southeastern coastal plains and western 296 

mountain ranges (up to ≈ 0.08 in HUC8 coverage area fraction), associated with a combined coverage 297 

reduction of other vegetation types. For the same period and scenario, total LAI is projected to increase 298 

in the western mountain ranges, southern Great Plains, and southeastern coastal plains, and decrease in 299 

parts of the intermountain west and Appalachians, with relative changes reaching up to ≈ +33%, +10%, 300 

+14%, −10%, and −5% at the HUC8 scale, respectively (Fig. 7g). Under RCP 4.5, the projected shift in 301 

vegetation type in the northern Appalachians and Pacific Northwest at end-century also stands out, but 302 

is less pronounced than under RCP 8.5 (changes in HUC8 coverage area fraction of up to ≈ 0.22 (mixed 303 

forest to deciduous forest) and ≈ 0.20 (evergreen forest to mixed forest), respectively; see Fig. 6). In 304 

other regions, the projected shift in vegetation type is generally similar as under RCP 8.5, but displaying 305 

lower magnitudes and oftentimes lack of statistical significance. The same applies to the projected 306 

changes in LAI. In the western mountains and southeastern coastal plains, the projections indicate an 307 

increase of up to ≈ 15% and ≈ 8% at the HUC8 scale, respectively, and a decrease of up to ≈ 9% in the 308 

Intermountain West (Fig. 6g).  309 

At mid-century, under both RCP 4.5 and 8.5 scenarios, the projected changes in vegetation type and LAI 310 

across CONUS are generally statistically insignificant (Figs. S2 and S3). Notable exceptions are the 311 

northern Appalachians and the Pacific Northwest, which present statistically significant changes in 312 

vegetation type in the same direction as described above. 313 
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[Insert figure] 

Fig. 6. Projected changes in vegetation type and LAI at end-century (2080–2099) under scenario RCP 4.5 at the 

HUC8 scale, based on MC2 projections and “present-day” observations. Absolute changes in coverage area 

fraction are shown for deciduous forest (a), evergreen forest (b), mixed forest (c), shrubland (d), grassland (e), 

and barren land (f), relative to “present day” (2008–2027). Percent changes in total LAI are shown in panel g, 

relative to 2008–2027. The hatched pattern indicates insignificant changes at the 95% confidence level. HUC2s 

are delineated in black. 

 314 

[Insert figure] 

Fig. 7. Same as Fig. 6, but for scenario RCP 8.5.  

 315 

3.3. Change in Evapotranspiration 316 

Based on our WaSSI simulations, ET is projected to significantly increase across CONUS under RCP 4.5 317 

and 8.5 at mid-century (Fig. S4a,b) and end-century (Fig. 8a,b), except generally for portions of the 318 

Southwest and Great Plains, in which the projected changes are statistically insignificant.  The projected 319 

increase in ET is notably stronger in the North, Northeast, and Rocky Mountains. ET is projected to 320 

significantly increase in 12 HUC2s at mid-century and end-century under both RCP 4.5 and 8.5, ranging 321 

from 2(3) % to 6(7) % at mid-century and 4(8) % to 9(20) % at end-century under RCP 4.5(8.5) (Fig. 9). 322 

Conversely, the projected changes for HUCs 12-Texas-Gulf, 13-Rio Grande, 15-Lower Colorado, and 18-323 

California for both periods and scenarios are statistically insignificant. In HUCs 11-Arkansas-White-Red 324 

and 16-Great Basin, ET is projected to significantly increase at end-century under both scenarios. 325 
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 326 

 327 

3.4. Change in Water Yield 328 

Water yield is projected to significantly decrease across vast areas of CONUS, especially at end-century 329 

under RCP 8.5 (Figs. 8c,d and S4c,d). Virtually no significant increase is projected. Under RCP 8.5, a 330 

substantial decrease in water yield is projected for HUC8s in the central and southeastern U.S. (up to 331 

−47(−75) % and −102(−207) mm year−1 at mid-century (end-century)), while statistically insignificant 332 

changes are projected for the western and northeastern U.S. Under RCP 4.5, the projected changes in 333 

water yield are substantially smaller, lacking statistical significance for most of CONUS, except generally 334 

for areas in the central and southeastern U.S., with HUC8 changes of up to −38(−40) % and −74(−71) 335 

mm year−1 at mid-century (end-century). Water yield is projected to significantly decrease in four HUC2s 336 

[Insert figure] 

Fig. 8. Projected changes in ET (a, b), water yield (c, d), and soil moisture (e, f) at end-century (2080–2099) 

under scenarios RCP 4.5 and 8.5, respectively, at the HUC8 scale, based on WaSSI output. Percent changes are 

shown, relative to “present day” (2008–2027). The hatched pattern indicates insignificant changes at the 95% 

confidence level. HUC2s are delineated in black. 

[Insert figure] 

Fig. 9. Projected changes in ET at the HUC2 scale, based on WaSSI output (see corresponding HUC2 map in Fig. 

1). Average “present-day” (2008–2027), mid-century (2040–2059), and end-century (2080–2099) values under 

scenarios RCP 4.5 and 8.5 are shown in panels a and b, respectively. The percent differences at mid-century and 

end-century relative to “present day” are shown in panels c and d for scenarios RCP 4.5 and 8.5, respectively. 

Error bars indicate a 95% confidence interval. 
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at mid-century and end-century under both RCP 4.5 and 8.5 (8-Lower Mississippi, 10-Missouri, 11-337 

Arkansas-White-Red, and 13-Rio Grande), ranging from −14(−18) % to −8(−10) % and −41(−55) 338 

mm year−1 to −3(−4) mm year−1 at mid-century and −14(−30) % to −7(−22) % and −41(−122) mm year−1 339 

to −3(−7) mm year−1 at end-century under RCP 4.5(8.5) (Fig. 10). Conversely, the projected changes for 340 

HUCs 1-New England, 16-Great Basin, 17-Pacific Northwest, and 18-California for both periods and 341 

scenarios are statistically insignificant. In HUCs 7-Upper Mississippi and 9-Souris-Red-Rainy, water yield is 342 

projected to significantly decrease at end-century under both scenarios. 343 

 344 

3.5. Change in Soil Moisture 345 

Soil moisture is projected to significantly decrease across most of CONUS at mid-century (Fig. S4e,f) and 346 

end-century (Fig. 8e,f) under both RCP 4.5 and 8.5 (in our paper, unless otherwise specified, “soil 347 

moisture” refers to total column soil moisture). Virtually no significant increase is projected. At end-348 

century under RCP 8.5, soil moisture is projected to significantly decrease across virtually all HUC8s. The 349 

projected changes are substantial in the central and western US, reaching up to −28(−49) % and 350 

−0.14(−0.27) at the HUC8 scale at mid-century(end-century) under RCP 8.5, and −24(−30) % and 351 

−0.10(−0.13) under RCP 4.5. Soil moisture is projected to significantly decrease in 14 HUC2s at mid-352 

century and end-century under both RCP 4.5 and 8.5 (all HUC2s but 1-New England, 2-Mid-Atlantic, 4-353 

Great Lakes, and 15-Lower Colorado), ranging from −12(−16) % to −1(−2) % and −0.05(−0.06) to 354 

−0.01(−0.02) at mid-century and −13(−31) % to −2(−5) % and −0.06(−0.13) to −0.01(−0.04) at end-355 

[Insert figure] 

Fig. 10. Same as Fig. 9, but for water yield. 
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century under RCP 4.5(8.5) (Fig. 11). In HUCs 4-Great Lakes and 15-Lower Colorado, soil moisture is 356 

projected to significantly decrease at end-century under both scenarios. 357 

 358 

3.6. Change in Aridity and Evaporative Indices 359 

Our projections indicate a significant change in Budyko space towards higher aridity and evaporative 360 

indices for virtually all HUC2s at mid- and end-century under RCP 4.5 and 8.5 (Fig. 12). Changes are more 361 

substantial at end-century and under RCP 8.5 (Fig. 12d). Overall, the "present-day" and projected future 362 

values (origin and tip of the vectors in Fig. 12, respectively) follow a Budyko curve. The adjusted ω 363 

parameter in Fu's equation (3) slightly drops from 2.59(2.58) to 2.55(2.52) at mid-century and to 364 

2.52(2.43) at end-century under RCP 4.5(8.5). Interestingly, the HUC 18-California notably deviates from 365 

the Budyko curve for all periods and scenarios, with relatively small ET/𝑃 for the given PET/𝑃 value. In 366 

HUC 18-California, the projected changes in aridity index are statistically significant at mid- and end-367 

century under both scenarios, but the changes in evaporative index are not (except for a small change at 368 

mid-century under RCP 4.5, Fig. 12a). The projected changes in evaporative index for HUCs 16-Great 369 

Basin and 15-Lower Colorado at mid/end-century under RCP 4.5 are also insignificant, while the 370 

projected changes in aridity index are significant (except for HUC 15-Lower Colorado at mid-century; in 371 

this case the projected changes in both indices are insignificant; Figs. 12a,c). 372 

[Insert figure] 

Fig. 11. Same as Fig. 9, but for soil moisture. 

[Insert figure] 
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 373 

3.7. Drivers of Water Yield Change and the Importance of Land Cover Change 374 

Our "fixed-vegetation" and "fixed-climate" sensitivity simulations indicate a much stronger impact (1 375 

order of magnitude higher) of direct climate change (i.e., changes in precipitation and air temperature) 376 

on future water yield, compared to the impact of vegetation change (Figs. 13 and S5). The projected end-377 

century changes in water yield under RCP 8.5 with the "fixed-vegetation" simulation (Fig.13c,d), 378 

highlighting the impact of climate change on water yield, differs little from our normal simulation with 379 

dynamic climate and dynamic vegetation (Fig. 13a,b; see also Fig. 13g,h). In the former case, significant 380 

changes vary from −75 to 47 % and −207 to 153 mm year−1 at the HUC8 scale, while in the latter, 381 

changes vary from −75 to 47 % and −207 to 139 mm year−1. The projected changes with the "fixed-382 

climate" simulation (Fig. 13e,f), highlighting the impact of vegetation change on water yield, are 383 

generally significant in forest areas of the Northeast, Southeast, and western mountains. The significant 384 

changes vary from −7 to 8 % and −23 to 14 mm year−1 at the HUC8 scale, with typically positive values in 385 

the Northeast, negative values in the Southeast, and mixed values in the western mountains. Note that 386 

the projected changes in water yield in Fig. 13e,f are inversely correlated with the projected changes in 387 

LAI (Fig. 7g). The magnitude of the ratio between significant “fixed-climate” and “fixed-vegetation” 388 

Fig. 12. Budyko diagrams based on projections of aridity and evaporative indices at the HUC2 scale with WaSSI 

(see corresponding HUC2 map in Fig. 1). Panels a and b show the projected mid-century (2040–2059) changes 

relative to “present day” (2008–2027) under scenarios RCP 4.5 and 8.5, respectively. Panels c and d show the 

projected end-century (2080–2099) changes relative to “present day” (2008–2027) under scenarios RCP 4.5 and 

8.5, respectively. Purple vectors indicate significant changes at the 95% confidence level in both 𝑥 and 𝑦 

dimensions. Red vectors indicate significant changes only in the 𝑥 dimension (aridity index). Black vectors 

indicate insignificant changes in both dimensions. The curves correspond to Fu’s equation (3) (Fu, 1981), where 

𝜔 is a fitting parameter.  
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absolute changes in water yield (vegetation and climate change impacts on water yield, respectively) 389 

varies from 0.02 to 47 % at the HUC8 scale, with first, second, and third quartiles of 1, 3, and 9 %, 390 

respectively. Under RCP 4.5, the impact of climate change on water yield was smaller than under RCP 8.5 391 

(Fig. S5c,d), but so was the impact of vegetation change (Fig. S5e,f), resulting in similar 392 

vegetation/climate change impact ratios. 393 

 394 

4. Discussion 395 

4.1. Overall Spatial-Temporal Patterns of Change 396 

4.1.1. Land Cover 397 

Our projected changes in land cover (Figs. 6 and 7), based on available MC2 simulations, reflect 398 

projected changes in climate and wildfire occurrence and effects. Overall, our projected changes in 399 

vegetation type are consistent with latitudinal and elevational shifts in vegetation distribution under a 400 

warmer climate, as shown in previous studies (e.g., Gonzalez et al., 2010; Grimm et al., 2013). Our 401 

projected changes in LAI are generally comparable with other simulations, but more shifted towards 402 

negative values (i.e., decreases). Mahowald et al. (2016) assessed global LAI projections from 18 CMIP5 403 

[Insert figure] 

Fig. 13. Projected changes in water yield at end-century (2080–2099) under scenario RCP 8.5 relative to “present 

day” (2008–2027), based on WaSSI output. Results from three distinct simulations are shown, a,b) considering 

dynamic climate and dynamic vegetation (standard simulation), c,d) dynamic climate and fixed vegetation, and 

e,f) fixed climate and dynamic vegetation. Absolute (a,c,e) and percent (b,d,f) changes are shown at the HUC8 

scale. The hatched pattern indicates insignificant changes at the 95% confidence level. HUC2s are delineated in 

black. Panels g and h show the difference between the results in a and c and b and d, respectively. 



Manuscript submitted to the Journal of Hydrology 

24 
 

GCMs, 11 of which has dynamic vegetation simulation capability. Their projections generally show larger 404 

LAI values across CONUS at end-century under RCP 8.5 (2081–2100 vs. 1981–2000), with absolute 405 

changes ranging from about −0.15 to 1.05 m2 m−2 when all 18 GCMs were considered and from 0.15 to 406 

0.75 m2 m−2 when only the top 50% performing GCMs were considered (based on historical observations 407 

of LAI) (Mahowald et al., 2016). For comparison, we found in our study that, under RCP 8.5, the end-408 

century absolute changes can reach up to about 0.35 m2 m−2 in the Southeast and Northwest, −0.10 409 

m2 m−2 in the Appalachians, 0.10 m2 m−2 in the Rockies, and ±0.04 m2 m−2 in the central U.S. (percent 410 

changes shown in Fig. 7). We used a different baseline period, 2008–2027, which could partially explain 411 

the smaller changes in our study. Also, the simulations analyzed by Mahowald et al. (2016) correspond to 412 

fully-coupled global runs at coarse spatial scales of about 2°. We also compared, at the ecoregion level in 413 

CONUS, the original MC2 LAI projections that we started with against available DGVM LAI projections 414 

from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP; Reyer et al., 2019). We examined 415 

global simulations from five different DGVMs at ½° spatial resolution, each one driven by climate 416 

projections from 1 to 4 CMIP5 GCMs under RCP 6.0, assuming no land use change in the future (ISIMIP 417 

Protocol 2b, Experiment III; simulations under RCP 8.5 climate and CO2 were unavailable except for one 418 

DGVM, so we used the closest scenario, RCP 6.0). We found that the future LAI anomalies projected with 419 

MC2 under RCP 8.5 were comparable with the ISIMIP projections. However, the ISIMIP results generally 420 

indicate positive LAI trends, while the MC2 results indicate approximately neutral or negative trends for 421 

most ecoregions (not shown). Different RCP scenarios, selection of GCMs, spatial resolution (⅟16° in MC2 422 

vs. ½° in ISIMIP) and GCM climate downscaling could partially explain the differences in projected LAI. 423 

4.1.2. Evapotranspiration 424 

Our projections indicate a substantial increase in ET across much of CONUS, except generally for water-425 

limited areas in the South and Southwest (Figs. 8, 9, S4). The spatial patterns of change are generally 426 

similar to those projected by Mahat et al. (2017) (2071-2090 vs. 1991-2010, RCP 4.5, 8.5) based on VIC 427 
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simulations with statistically downscaled climate outputs from 7 CMIP5 GCMs (BCCA product).  It is 428 

important to note that our results reflect the modeling approach for PET within WaSSI. Here we used 429 

the default configuration in WaSSI, in which PET is calculated based on near-surface air temperature and 430 

the daytime length defined by latitude and day of the year (Hamon, 1963). Duan et al. (2017) compared 431 

PET projections for CONUS with Hamon’s formulation and an implementation of Penman-Monteith’s 432 

formulation for a reference crop surface (Allen et al., 1998), and found substantially larger PET values 433 

with the former towards the end of the century, noting that Hamon’s PET does not account for the 434 

attenuation expected with the projected increase in specific air humidity. The Penman-Monteith 435 

reference crop ET takes into consideration air temperature, specific air humidity, wind speed, and net 436 

radiation, being widely used and regarded as a reliable approach to estimate PET. At the same time, the 437 

downside of Penman-Monteith-based formulations is the dependence on additional meteorological 438 

variables, which may be unavailable or highly uncertain in future climate projections from GCMs. Here 439 

we opted for the default configuration (Hamon’s PET) in WaSSI given its simplicity. Note that we used 440 

the LOCA downscaled climate projections to drive WaSSI, for consistency with the adopted MC2 441 

vegetation projections, and that LOCA does not provide all meteorological variables necessary to 442 

calculate PET via a Penman-Monteith-based approach. 443 

4.1.3. Water Yield 444 

Our projected changes in water yield across CONUS generally follow a similar spatial pattern to those of 445 

recent studies with the WaSSI and VIC models (Duan et al., 2017; Heidari et al., 2021a; Mahat et al., 446 

2017). Our projections are remarkably similar to those in Duan et al. (2017; cf. their Fig. 5 and our Fig. 7). 447 

Note that they also used WaSSI and a large GCM ensemble (20 GCMs, including 14 out of the 16 GCMs 448 

we considered in our analysis). They also used scenarios RCP 4.5 and 8.5 and defined similar baseline, 449 

mid-century, and end-century periods for calculating the changes in water yield. Their simulations mainly 450 

differ from ours in terms of the downscaled climate dataset used (MACA vs. LOCA) and land cover 451 
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boundary conditions (fixed vs. dynamic land cover). Another important difference is that Duan et al. 452 

(2017) modified WaSSI to calculate PET as Penman-Monteith reference crop ET (Allen et al., 1998), 453 

while we used the default configuration in WaSSI (PET via Hamon, 1963). Compared to Duan et al. 454 

(2017; their Figs. 5 and 6), our projected decreases in water yield (central and southeastern U.S.) are 455 

generally more accentuated, while our projected increases (western and northeastern U.S.) are generally 456 

more attenuated and statistically insignificant. Such systematic differences between the two studies are 457 

consistent with the different approaches to PET. Duan et al. (2017) compared overall projected changes 458 

in water yield for CONUS with both PET methods, and found more negative projections when using the 459 

Hamon’s method ( −8% vs. −2% ensemble median for RCP 8.5/2080s – approximated from their Fig. 460 

7). Additional differences between our projected water yield changes and those in Duan et al. (2017) 461 

could be related to the differences in GCM selection, GCM downscaling method, and approach to land 462 

cover change.  463 

4.1.4. Soil Moisture 464 

Our projections of total soil moisture indicate declines across much of CONUS (Figs. 8, 11, S4), which is 465 

generally consistent with previous studies (e.g., Berg et al., 2017; Joo et al., 2020). For example, based on 466 

output from 25 CMIP5 GCMs under RCP 8.5, Berg et al. (2017) found a decrease in surface (0–10 cm) soil 467 

moisture across the entire CONUS, reaching about −14% in the Southwest at end-century (2070–2099 vs. 468 

1976–2005; their Fig. 1a, top panel). When considering total soil moisture, they still found a reduction 469 

across most of CONUS, especially in the Southwest and southern Great Plains, reaching up to about 470 

−12%, but also increases in portions of the Midwest and Rocky Mountains reaching up to about +6% 471 

(their Fig. 1a, mid panel). Based on output from ISIMIP (6 global impact models, each of which was 472 

driven with bias-corrected climate from 5 CMIP5 GCMs at ½ spatial resolution), Joo et al. (2020) 473 

projected changes in surface (0–50 cm) soil moisture of about −3% to −8% in the Southeast and −14% to 474 

−19% in the South at end-century under RCP 8.5 (2080–2099 vs. 1986–2005; their Fig. 1b). They also 475 
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projected approximately neutral changes in the Midwest, northern Great Plains, and Northwest. In our 476 

study, we project changes in total soil moisture reaching about −12% in the Southeast and −50% in the 477 

Great Plains, and more neutral changes in portions of the Northwest and Rocky Mountains (2080–2099 478 

vs. 2008–2027, RCP 8.5; Fig. 8f). Different from Berg et al. (2017) and Joo et al. (2020), our projections 479 

indicate substantial declines in soil moisture in the northern Great Plains and stronger decreases in soil 480 

moisture overall. Differences could be partially explained by the differences in GCM selection and 481 

downscaling, model spatial resolution, and potential overestimation of ET in our simulations (PET via 482 

Hamon's formulation, Section 4.1.2). 483 

4.1.5. Aridity and Evaporative Indices 484 

The Budyko diagrams in Fig. 12 summarize our projected hydroclimatic changes at the regional (HUC2) 485 

and CONUS level. With few exceptions, our mid- and end-century projections under RCP 4.5 and 8.5 486 

indicate consistent and significant changes towards higher aridity and increased ET (decreased water 487 

yield, 𝑄) per unit precipitation (𝑄/𝑃 ≈ 1 − ET/𝑃).  488 

Equations linking the evaporative and aridity indices, including the often-used Fu's equation (3) (Fu, 489 

1981), have been proposed in previous studies. In this equation, ω is an empirical parameter 490 

representing overall properties of the catchment (e.g., basin slope, basin area, land cover, vegetation 491 

cover, relative soil water storage, and relative infiltration capacity; Heidari et al., 2021b; Wang et al., 492 

2021). In Fig. 12, we adjusted an overall ω for all HUC2s in CONUS for "present day", mid-century, and 493 

end-century under RCP 4.5 and 8.5. Except for HUC 18-California, the projections of evaporative and 494 

aridity indices for each HUC2 follow the general Budyko curve for each period and scenario (Fu's 495 

equation with the overall CONUS ω) reasonably closely.  496 

California has a unique climate configuration in CONUS, spanning from hot desert climate in the South to 497 

tundra climate in the upper elevations of the Sierra Nevada, with most land characterized by a 498 
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hot/warm-summer Mediterranean climate, with dry summers and wet winters (Beck et al., 2023). The 499 

negative deviation of HUC 18-California from the general Budyko curve (lower than "expected" ET/𝑃) is 500 

likely associated with PET being off-phase with precipitation and a larger fraction of precipitation falling 501 

as snow, as discussed in Fang et al. (2016). With precipitation shifted away from high-PET summer 502 

months to low-PET winter months, the amount of precipitation that is partitioned to ET is expected to 503 

be lower compared to a more typical climate in which 𝑃 and PET are in phase, resulting in lower ET/𝑃 504 

for the same PET/𝑃. Similarly, with more precipitation falling as snow, the amount of precipitation that 505 

is partitioned to ET is expected to be lower compared to a more typical climate with less snowfall and 506 

more rainfall, also resulting in lower ET/𝑃 for the same PET/𝑃. 507 

Our adjusted overall ω value for "present day" CONUS (2.58) is remarkably close to the overall value 508 

reported by Caracciolo et al. (2018), 2.63, based on historical (1948–2003) observations from 422 509 

catchments across CONUS, spreading across five climatic zones. The deviation that we found for HUC 18-510 

California is also consistent with their results, as they found a lower ω value (1.86) for the 511 

Mediterranean climate catchments (most of them in California). It is worth noting that ω is sensitive to 512 

the PET calculation approach; we and Caracciolo et al. (2018) used PET equations from the same family, 513 

i.e., temperature-based formulations (Hamon, 1963 and Thornthwaite, 1948, respectively). 514 

Our projections indicate a future decrease in the overall CONUS ω, with a more substantial change at 515 

end-century under RCP 8.5 (ω = 2.43(−5.8%); Fig. 12). This means an overall shift in precipitation 516 

partitioning from ET to water yield for the same PET/𝑃. The change in ω is consistent with the 517 

projected reduction in soil moisture across CONUS, enhancing water limitation (Fig. 8). While ω is known 518 

to be sensitive to changes in vegetation, and our simulations project significant changes in LAI in many 519 

regions (Fig. 7), the overall projected change in LAI (CONUS) is insignificant. Our results contrast with 520 

Heidari et al. (2021b). Based on VIC simulations driven with downscaled (MACA) CMIP5 climate 521 

projections from three GCMs representing wet, middle, and dry scenarios under RCP 8.5, they found 522 
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little change in overall ω (CONUS) at end-century (2070–2099 vs. 1986–2015), with values of 2.135 523 

(present), 2.162 (+1.3%, wet projection), 2.159 (+1.1%, mid projection), and 2.133 (−0.1%, dry 524 

projection). Among the differences in modeling approach that could explain the contrasting results, it is 525 

worth noting that Heidari et al. (2021b) calculated PET as Penman-Monteith open water ET 526 

(Shuttleworth, 1993, according to the VIC model description in Liang et al., 1994), while we used a 527 

temperature-based formulation (Hamon, 1963). As discussed earlier in this paper, Duan et al. (2017) 528 

have shown that the Hamon PET formulation in WaSSI leads to a stronger drying in response to 529 

increasing air temperature in comparison with the Penman-Monteith reference crop ET, noting that the 530 

latter method can account for the attenuation associated with increasing specific air humidity. The 531 

Penman-Monteith open water ET in the VIC model can do the same. An interesting point is that the 532 

Penman-Monteith open water ET values are typically larger than PET values obtained from other 533 

methods, as exemplified in Liang et al. (1994), who found Penman-Monteith open water ET values to be 534 

on average 1.64 times larger than Hamon’s PET during an intensive field campaign in central Kansas. 535 

This offers an explanation for the generally lower ω values for CONUS reported by Heidari et al. (2021b), 536 

compared to our values and those in Caracciolo et al. (2018). In Fu’s equation, considering fixed ET and 537 

𝑃 values, a larger PET value requires a lower ω value to compensate. 538 

4.2. Drivers of Water Yield Change and the Importance of Land Cover Change 539 

Our finding that climate change rather than land surface change dominates water yield change in CONUS 540 

is consistent with the recent results reported by Song et al. (2023) for China. They used a simple 541 

hydrological model (Distributed Time-Variant Gain Model - Penman-Monteith-Leuning; Song et al., 542 

2022), driven with climate and LAI data products from 1982 to 2012, to assess the relative contributions 543 

from climate change (𝑃, PET) and land surface change (LAI) to water yield change. At the national level, 544 

Song et al. (2023) found that climate change made a substantially larger contribution to annual mean 545 

water yield (−7.6 mm) than land surface change (−0.6 mm). Interestingly, this is one order of magnitude 546 
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lower than the climate change contribution, as we generally found in our study. However, unlike our 547 

study, they found substantial land surface contribution in particular regions, especially water-limited 548 

areas with substantial change in LAI. It is important to note that the assessment by Song et al. (2023) is 549 

based on observations (data products), reflecting not only "natural" changes in land surface cover (i.e., 550 

those in response to rising atmospheric CO2 and climate change), but also direct anthropogenic land 551 

cover/land use changes, including the substantial "greening" associated with large-scale afforestation 552 

programs in China (Hu et al., 2021; Liu et al., 2014, 2016). Substantial impacts of direct anthropogenic 553 

changes in land cover/land use on water yield are also demonstrated in the urbanization study by Li et al. 554 

(2020) for CONUS, for instance. In a different study, G. Sun et al. (2015) found an 8% increase in water 555 

yield in CONUS in response to a 50% decrease in LAI, in an WaSSI sensitivity test to simulate forest 556 

thinning. In our study, we only simulate the "natural" changes in land cover. It is also worth emphasizing 557 

that in our framework, the projected future land cover (LAI and vegetation type) at the HUC8 level is 558 

derived from present-day observations and ecoregion-level changes informed by MC2 simulations of 559 

potential vegetation. This approach allows us to capture larger scale patterns of vegetation change in our 560 

HUC8 projections, but not changes due to more localized climate conditions and natural disturbances. 561 

This contributes to a smoother vegetation change signal at the HUC8 scale, and consequently a 562 

smoother impact on local hydrology. 563 

Our results contrast with those in Zhou et al. (2023). Based on CMIP6 output, including fully-coupled 564 

simulations with 16 GCMs and CO2 sensitivity simulations with 7 GCMs, Zhou et al. (2023) found that the 565 

projected future changes in global water yield are mainly attributed to land surface change (73–81%), 566 

not climate change (19–27%). They found strong contributions from climate change at the regional level, 567 

but cancellation of positive and negative values leads to a relatively small overall (global) contribution to 568 

water yield change. Even so, the reported effect of land surface change on water yield change is 569 

substantially larger than in our study.  It is important to note that the "land effect" in Zhou et al. (2023) 570 
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encompasses not only the effect of change in land cover in response to climate change and rising 571 

atmospheric CO2, but also the effect of change in stomatal conductance (land use change was not 572 

simulated). In our study, the "land effect" that we investigate is simply the impact of vegetation change 573 

(i.e., changes in LAI in response to climate change and increasing CO2) on water yield change. To reduce 574 

the large uncertainty of the positive or negative effects of CO2 and vapor pressure deficit on ET, WaSSI 575 

estimates ET with an empirical formulation, without an explicit representation of stomatal conductance 576 

and disregarding the regulation of stomatal conductance by atmospheric CO2. The absence of 577 

representation of the CO2 effect on stomatal conductance is commonplace in water-centric model 578 

applications (e.g., Duan et al., 2017; Heidari et al., 2021a, 2021b; Song et al., 2023; Sun et al., 2016). 579 

Currently, the prevailing school of thought is that CO2 fertilization reduces stomatal conductance (Li et 580 

al., 2023; Medlyn et al., 2001). In this sense, our projected future ET and water yield in CONUS could be 581 

potentially over- and underestimated, respectively, and our estimate of land contribution to water yield 582 

change could be underestimated by the lack of representation of the CO2 effect on stomatal 583 

conductance. However, the impact of CO2 fertilization on stomatal conductance is not a settled topic, 584 

with recent experimental studies challenging the prevailing idea of a widespread reduction in stomatal 585 

conductance with rising atmospheric CO2 (Guerrieri et al., 2019; Mathias and Thomas, 2021). The results 586 

by Zhou et al. (2023) indicate a substantial contribution (54%) from direct physiological effects (changes 587 

in vegetation cover and stomatal conductance in response to rising atmospheric CO2) on global water 588 

yield change. These results reflect the structure of the considered CMIP6 GCMs, which despite 589 

substantial differences, generally follow the prevailing school of thought regarding the effects of CO2 590 

fertilization. As new studies based on long-term experiments become available, the modeling 591 

community will have valuable information to confirm or revisit the representation of CO2 fertilization 592 

within GCMs. 593 
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4.3. Limitations and Recommendations for Future Studies 594 

Our modeling approach has some limitations. First, WaSSI simulates ET with an empirical formulation, 595 

without an explicit representation of stomatal conductance and disregarding its regulation by 596 

atmospheric CO2 (common-place in water-centric model applications). Second, WaSSI simulates ET 597 

based on PET that is estimated with a temperature-based formulation (Hamon, 1963), which is unable 598 

to account for the projected increases in specific air humidity. Our projected increase in ET and decrease 599 

in water yield in CONUS could be overestimated due to these limitations. Also, our estimate of 600 

vegetation contribution to water yield change could be underestimated by the lack of representation of 601 

the CO2 effect on stomatal conductance. It is important to point out that, while the simplicity of WaSSI 602 

and other water-centric models imposes some limitations, it also allows for less computationally 603 

expensive simulations, easier calibration, and implementation at finer spatio-temporal resolutions in 604 

comparison with mechanistic Terrestrial Biosphere Models. These models are much more 605 

computationally expensive to run and involve many parameters that oftentimes cannot be constrained 606 

by available observations and therefore can lead to substantial uncertainties in model simulations (Ma et 607 

al., 2022). 608 

In future work, we recommend the use of a Penman-Monteith-based formulation for PET (and adapted 609 

ET equation for the chosen PET reference) within WaSSI if all required climate forcing data are available, 610 

as in Duan et al. (2017). Future work could explore ways to implement an empirical regulation factor in 611 

WaSSI's ET formulation to reflect stomatal response to atmospheric CO2, although this regulation is a 612 

complex process depending on many biophysical and environmental factors that would be challenging to 613 

represent within a simple water-centric model. Future work could also test alternative projections of LAI 614 

and vegetation type within our proposed WaSSI-DGVM framework. The MC2 projections considered 615 

here indicate approximately neutral or negative LAI trends for most ecoregions in the twenty-first 616 

century, which could possibly indicate an overestimation of wildfire frequency and intensity by MC2. 617 
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However, our results suggest that even modest adjustments in projected LAI are unlikely to change our 618 

finding that climate change dominates the projected changes in water yield. It is important to mention 619 

that here we focus on "natural" land cover change in response to changing climate and atmospheric CO2, 620 

not anthropogenic land cover/land use change. The latter can exert a substantial impact on water yield. 621 

Future studies incorporating projections of anthropogenic changes in land cover/land use would be 622 

important contributions. 623 

Finally, it is important to note that our study focused on classic future climate projections from CMIP5. 624 

More recent projections from CMIP6 for CONUS indicate a generally larger increase in surface air 625 

temperature at end-century (2°–6°C and 4°–8°C under the Shared Socioeconomic Pathways (SSPs) 2-4.5 626 

and 5-8.5, respectively; 2075–2099 relative to 1970–1999; Fan et al., 2020) compared to CMIP5 (1.3°–627 

3.7°C and 3.0°–6.1°C under RCPs 4.5 and 8.5, respectively; 2070–2099 relative to 1986–2015; Hayhoe et 628 

al., 2018). Projected changes in annual precipitation under SSP 2-4.5 (5-8.5) have a similar overall spatial 629 

pattern in CONUS compared to RCP 4.5 (8.5), but tend to be shifted towards positive values (i.e., larger 630 

increases and smaller decreases in precipitation; Du et al., 2022). Climate extreme indicators such as the 631 

annual peak of daily maximum temperature and the number of heavy precipitation days are generally 632 

more accentuated in SSP 2-4.5 and 5-8.5 than in RCP 4.5 and 8.5 at end-century in CONUS (Chen et al., 633 

2020). While the warmer conditions predicted by the CMIP6 GCMs would contribute to increased ET 634 

and decreased water yield, the wetter conditions would contribute to increased water yield. Future work 635 

exploring the impact of the new CMIP6 climate projections on vegetation dynamics and hydrology with 636 

the WaSSI-MC2 framework would be an important advance. 637 

5. Conclusions 638 

This study integrated an eco-hydrological model (WaSSI) with a large ensemble of climate (LOCA) and 639 

vegetation (MC2 DGVM) projections under scenarios RCP 4.5 and 8.5 to investigate potential future 640 
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impacts of both climate and vegetation change on water yield. To our knowledge, this is the first work to 641 

employ an ensemble of future vegetation projections and provide water yield projections for CONUS at a 642 

relatively fine scale (HUC8). 643 

We project a decrease in water yield across much of CONUS, especially towards the end of the twenty-644 

first century (2080–2099) under RCP 8.5. Overall, our projected water yield reduction under RCP 8.5 is 645 

roughly twice as high as under RCP 4.5. We project substantial changes in water yield for watersheds in 646 

the central and southeastern U.S. already by mid-century (2040–2059). We conclude that climate change 647 

(air temperature, precipitation), rather than vegetation change (LAI), strongly dominates the projected 648 

changes in water yield. For some watersheds, the effects of vegetation change can be relevant, 649 

mitigating or exacerbating the effects of climate change. Our future projections indicate widespread 650 

increase in aridity (PET/𝑃) and evaporative (ET/𝑃) indices and widespread decrease in soil moisture 651 

under both RCP scenarios, but especially under RCP 8.5.  652 

Our integrated modeling results can inform policy makers and resource development plans quantitative 653 

information of future water availability under contrasting scenarios. We point out regions under higher 654 

risk of future water shortages that may affect water supply to both human and ecosystems. Future land 655 

management should pay more attention to the basins identified as having declining water supply and soil 656 

moisture that may be prone to wildfires and insect outbreaks. Conversely, our projections can be used to 657 

quantify the substantial benefits of climate change mitigation (scenario RCP 4.5 vs. 8.5) to the U.S. water 658 

supply.  659 
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Appendix A. Dynamic Vegetation Boundary Conditions within WaSSI 683 

We started with MC2 simulations of potential natural vegetation across CONUS, with annual outputs 684 

(1950–2005 and 2006–2099 under scenarios RCP 4.5 and 8.5) of vegetation type and corresponding LAI 685 

at the ⅟16 spatial scale. We considered an ensemble of MC2 simulations, driven by statistically 686 

downscaled climate simulations from 16 GCMs (LOCA; Pierce et al., 2015, 2014; see Table 1). 687 

We calculated LAI as the sum of the MC2 output variables MAX_GRASS_LAI and MAX_TREE_LAI and 688 

translated the original vegetation types (up to 50) to one of the six natural vegetation types in WaSSI 689 

(deciduous forest, evergreen forest, mixed forest, shrubland, grassland, and barren), following the 690 

crosswalk presented in Table A.1. 691 

We used the 2006 NLCD data product (USGS, 2011) to create a mask of natural vegetation areas for the 692 

MC2 output, masking out areas characterized by other land cover types (e.g., developed areas, 693 

croplands, and artificial pasture). To create the mask, we aggregated the original 30-m spatial resolution 694 

NLCD data at the ⅟16 spatial scale (MC2 output grid), using the mode as the representative value. 695 

Next, we aggregated the masked MC2 output at the ecoregion level (level-2 ecoregions of North 696 

America, EPA, 2010; Fig. 3). We calculated the area fraction (fMC2) of vegetation type 𝑣 (6 possible 697 

natural vegetation types) within ecoregion 𝑒 (20 possible ecoregions) for year 𝑦 (1950–2099) as 698 

𝑓MC2(𝑦,𝑒,𝑣) =
𝐴𝑦,𝑒,𝑣

∑ 𝐴𝑦,𝑒,𝑗
6
𝑗=1

 (A.1) 

where 𝐴𝑦,𝑒,𝑣 is the total area of vegetation type 𝑣 within the ecoregion 𝑒 for year 𝑦. The denominator of 699 

Eq. A.1 represents the total natural vegetation area within the ecoregion, in which 𝑗 is an auxiliary index. 700 

We also calculated the overall LAI (LAIMC2) of vegetation type 𝑣 for ecoregion 𝑒 and year 𝑦 as 701 
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LAIMC2(𝑦,𝑒,𝑣) =
∑ (lai𝑦,𝑒,𝑣,𝑖 𝑎𝑦,𝑒,𝑣,𝑖)𝑛

𝑖=1

∑ 𝑎𝑦,𝑒,𝑣,𝑖
𝑛
𝑖=1

 (A.2) 

where lai𝑦,𝑒,𝑣,𝑖 and 𝑎𝑦,𝑒,𝑣,𝑖 are the LAI and area of individual (𝑖) grid cells of vegetation type 𝑣 within 702 

ecoregion 𝑒 for year 𝑦, respectively, and 𝑛 is the number of grid cells.  703 

For each vegetation type 𝑣 and ecoregion 𝑒, we defined baselines of area fraction (𝑓MC2) and LAI 704 

(LAÎMC2) as 705 

𝑓MC2(𝑒,𝑣) =
1

𝑦fin − 𝑦ini + 1
∑ 𝑓MC2(𝑦,𝑒,𝑣)

𝑦fin

𝑦=𝑦ini

 (A.3) 

LAÎMC2(𝑒,𝑣) =
1

𝑦fin − 𝑦ini + 1
∑ LAIMC2(𝑦,𝑒,𝑣)

𝑦fin

𝑦=𝑦ini

 (A.4) 

where [𝑦ini: 𝑦fin] is the chosen period of reference, here taken as [2000: 2006].  706 

For each vegetation type 𝑣, ecoregion 𝑒, and year 𝑦 (2007–2099), we calculated the area fraction and LAI 707 

deviations from baseline (Δ𝑓MC2 and ΔLAIMC2, respectively) as 708 

𝛥𝑓MC2(𝑦,𝑒,𝑣) = 𝑓MC2(𝑦,𝑒,𝑣)– 𝑓MC2(𝑒,𝑣) (A.5) 

𝛥LAIMC2(𝑦,𝑒,𝑣) =
LAIMC2(𝑦,𝑒,𝑣)– LAÎMC2(𝑒,𝑣)

LAÎMC2(𝑒,𝑣)

 (A.6) 

These deviations were combined with “present-day observations” (data products) to create projections 709 

of land cover type and LAI to drive WaSSI. 710 

WaSSI considers a total of 10 land cover types, which includes the 6 natural vegetation types discussed 711 

earlier (deciduous forest, evergreen forest, mixed forest, shrubland, grassland, and barren) in addition to 712 

urban, cropland, wetland, and water types. WaSSI provides input datasets for CONUS describing the area 713 
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fraction of each land cover type 𝑐 within HUC8s (ℎ), 𝑓OBS(ℎ,𝑐), and the associated monthly (𝑚) LAI, 714 

LAÎOBS(𝑚,ℎ,𝑐). These default input datasets were built based on the 2006 NLCD (USGS, 2011) and 2000–715 

2006 mean monthly MODIS LAI (Zhao et al., 2005). We combined 𝑓OBS with Δ𝑓MC2 to project the area 716 

fraction of vegetation type 𝑣 within HUC8 ℎ for year 𝑦, 𝑓WaSSI(𝑦,ℎ,𝑣), as 717 

𝑓WaSSI(𝑦,ℎ,𝑣) =
𝑋𝑦,ℎ,𝑣

∑ 𝑋𝑦,ℎ,𝑘
6
𝑘=1

∑ 𝑓OBS(ℎ,𝑗)

6

𝑗=1

 (A.7) 

where 𝑋 is the unnormalized area fraction of vegetation type 𝑣 relative to the total natural vegetation 718 

area within HUC8 ℎ projected for year 𝑦 719 

𝑋𝑦,ℎ,𝑣 =
𝑓OBS(ℎ,𝑣)

∑ 𝑓OBS(ℎ,𝑗)
6
𝑗=1

+ 𝛥𝑓MC2(𝑦,𝑒(ℎ),𝑣) (A.8) 

In Eqs. A.7 and A.8, 𝑗 and 𝑘 are auxiliary indices, with summations defined across the six natural 720 

vegetation types (𝑣[1: 6], which corresponds to 𝑐[1: 6] in our notation). 𝑋 values are truncated to [0: 1]. 721 

Note that 𝑋 is normalized in Eq. A.7 to enforce that ∑ 𝑓WaSSI(𝑦,ℎ,𝑗)
6
𝑗=1  is equal to ∑ 𝑓OBS(ℎ,𝑗)

6
𝑗=1 , i.e., the 722 

natural vegetation area fraction of the HUC8 ℎ based on “present-day observations”, which remains 723 

constant in our projections as we do not simulate land use change (urban, cropland, wetland, and water 724 

fractions are constant in time). Note also that in Eq. A.8, the index 𝑒(ℎ) denotes the ecoregion 𝑒 725 

associated with the HUC8 ℎ. Finally, we combined LAÎOBS with ΔLAIMC2 to project the monthly (𝑚) LAI 726 

for vegetation type 𝑣 in HUC8 ℎ for year 𝑦, LAIWaSSI(𝑦,𝑚,ℎ,𝑣), as 727 

LAIWaSSI(𝑦,𝑚,ℎ,𝑣) = LAÎOBS(𝑚,ℎ,𝑣)(1 + 𝛥LAIMC2(𝑦,𝑒(ℎ),𝑣)) (A.9) 

For the instances in which ΔLAIMC2 was undefined, we assumed it to be zero. For the instances in which 728 

LAÎOBS was undefined, we used a monthly (𝑚) area-weighted averaged observed LAI for vegetation type 729 
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𝑣 within the ecoregion encompassing HUC8 ℎ. If still undefined, we expanded the averaging domain to 730 

the entire CONUS. 731 

 732 

Table A.1. Crosswalk between MC2 and WaSSI natural vegetation types. 733 

v 

(MC2) 

Description v 

(WaSSI) 

Desc.a 

 0  UNKNOWNveg                                                                   -     UN  

 1  COLD_BARRENveg                                                              6     BA  

 2  TUNDRAveg                                                                    6     BA  

 3  TAIGA_TUNDRAveg                                                             2     ET  

 4  BOREAL_NEEDLELEAF_FORESTveg                                                2     ET  

 5  BOREAL_WOODLANDveg                                                          2     ET  

 6  SUBALPINE_FORESTveg                                                         2     ET  

 7  MARITIME_EN_FORESTveg                                                      2     ET  

 8  MESIC_TEMPERATE_NEEDLELEAF_FORESTveg                                      2     ET  

 9  TEMPERATE_DB_FORESTveg                                                     1     DT  

10  COOL_MIXED_FORESTveg 3     MT  

11  TEMPERATE_WARM_MIXED_FORESTveg  3     MT  

12  TEMPERATE_EN_WOODLANDveg                                                   2     ET  

13  TEMPERATE_DB_WOODLANDveg                                                   1     DT  

14  TEMPERATE_COOL_MIXED_WOODLANDveg                                          3     MT  

15  TEMPERATE_WARM_MIXED_WOODLANDveg                                          3     MT  

16  C3SHRUBveg                                                                   4     SH  

17  C3GRASSveg                                                                   5     GR  

18  TEMPERATE_DESERTveg                                                         6     BA  
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19  SUBTROPICAL_EN_FORESTveg                                                   2     ET  

20  SUBTROPICAL_DB_FORESTveg                                                   1     DT  

21  WARM_EB_FORESTveg                                                          2     ET  

22  SUBTROPICAL_MIXED_FORESTveg                                                3     MT  

23  SUBTROPICAL_EN_WOODLANDveg                                                 2     ET  

24  SUBTROPICAL_DB_WOODLANDveg                                                 1     DT  

25  SUBTROPICAL_EB_WOODLANDveg                                                 2     ET  

26  SUBTROPICAL_MIXED_WOODLANDveg                                              3     MT  

27  C4SHRUBveg                                                                   4     SH  

28  C4GRASSveg                                                                   5     GR  

29  SUBTROPICAL_DESERTveg                                                       6     BA  

30  TROPICAL_EB_FORESTveg                                                      2     ET  

31  TROPICAL_DECIDUOUS_WOODLANDveg                                             1     DT  

32  TROPICAL_SAVANNAveg                                                         5     GR  

35  TROPICAL_DESERTveg                                                          6     BA  

36  MOIST_TEMPERATE_NEEDLELEAF_FORESTveg                                      2     ET  

38  SUBALPINE_MEADOWveg                                                         5     GR  

39  WATERveg                                                                     -     UN  

40  NATURAL_BARRENveg                                                           6     BA  

49  DRY_TEMPERATE_NEEDLELEAF_FORESTveg          2     ET  

50  XERIC_NEEDLELEAF_WOODLANDveg  2     ET 

a Deciduous forest (DT), evergreen forest (ET), mixed forest (MT), shrubland (SH), grassland (GR), 

barren (BA), undefined (UN) 
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Appendix B. Supplementary Material 735 

Figures S1 to S4 are included in the Supplement S1 [Supplement-S1.docx] 736 
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