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Abstract. The generation of very narrow linewidth light sources is of great importance in modern science.
One such source is the superradiant laser, which relies on collectively interacting ultra long lived dipoles
driven by incoherent light. Here we discuss a different way of generating spectrally pure light by coherently
driving such dipoles inside an optical QED cavity. The light exiting cavity carries information about the
detuning between the driving light and the atomic transition, but is also affected by the noise originating
from all the decoherence processes that act on the combined atom-cavity system. We calculate these effects
to obtain fundamental limits for frequency estimation and stabilization across a range of values of input light
intensities and atom-light interaction strengths, estimate these limits in state-of-the-art cavity experiments
with alkaline-earth atoms and identify favorable operating conditions. We find that the achievable linewidths
are comparable to those of the superradiant laser.

Résumé. L'obtention de sources lumineuses a largeur de raie étroite revét une grande importance dans la
science moderne. Une de ces sources est le laser superradiant, qui met en jeu des dipoles a trées longue
durée de vie interagissant collectivement et forcés par un champ lumineux incohérent. Nous discutons ici
d’une autre maniére d’obtenir une source spectralement pure, par forcage cohérent de tels dipéles dans une
cavité optique QED (en régime de couplage fort). Le champ qui sort de la cavité est porteur d’informations
sur le désaccord en fréquence entre le champ de forcage et la transition atomique, mais il est également
affecté par le bruit di aux processus de décohérence a 'oeuvre dans le systtme combiné atomes-cavité.
Nous tenons compte de ces effets pour déterminer les limites fondamentales sur la mesure de la fréquence
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et sa stabilisation, en fonction des intensités lumineuses d’entrée et des amplitudes de couplage atomes-
champ, puis nous estimons ces limites dans I'état de I'art des expériences en cavité sur des atomes alcalino-
terreux et nous déterminons les régimes de fonctionnement favorables. Nous trouvons que les largeurs de
raie accessibles sont comparables a celles du laser superradiant.
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1. Introduction

Sources of coherent light with high frequency stability are crucial components of modern day
technologies. In line with these requirements, the proposal for a continuous superradiant laser
[1-9] could provide an improved active frequency reference that is largely insensitive to cavity
frequency noise, which limits modern day most stable lasers [10]. Such a device comprises an
electromagnetic mode of an optical cavity that is made to interact collectively with an ensemble
of atoms that host a long lived two-level transition (ground and excited states). The atoms are
incoherently driven by exciting the ground state to an auxiliary third level that decays quickly
onto the excited state, and this is done in a regime where the cavity linewidth is much larger
than the bare atomic linewidth. Above a critical value of the incoherent pump rate, the interplay
between the incoherent drive and the atom-light interactions synchronize the atomic array
forcing it to collectively emit coherent light with a linewidth set by the system cooperativity times
the atomic linewidth. Although the superradiant laser can open great opportunities for quantum
metrology applications, the need of a strong incoherent pump can significantly heat the atoms
making the experimental implementation of continuous superradiance in optical transitions
challenging. Up to date, superradiance has been realized in a pulsed way, in metrologically
relevant transitions [11, 12], or quasi-continuously, in transitions with broader linewidths [13].
In this article, we analyze this same system in a complementary situation, where the long lived
transition is excited directly with a laser. The light coming outside of the cavity can then be used
to estimate the detuning between the driving light and the atomic transition, possibly allowing
for frequency stabilization through a feedback scheme.

This system has been extensively analyzed in the past under the name of cooperative fluo-
rescence, with studies focusing on its steady state properties [14-16], dynamics [17, 18], bista-
bility and hysteresis [19, 20], correlation functions of the output light [21], etc; and has seen a
resurgence of interest from recent experiments [22] that probe the superradiant phase transi-
tion [14,16] in free space. There has also been previous work in frequency stabilization at large in-
put fields [23], where the atomic ensemble is strongly saturated, or in situations where the atomic
transition is affected by motion [24,25]. Here we give a comprehensive description of this system’s
ability to provide information on the frequency of the driving light across many values of input
light intensity and effective atom-light interaction. Correctly assessing this requires two pieces:
(1) the spectral response of the system to frequency fluctuations in the input light, and (2) the
noise properties of the output light, which is affected by the presence of the atoms and is in gen-
eral much noisier than that of a purely coherent light source.

Our results allow us to evaluate the advantages and disadvantages (for frequency stabilization)
of operating the system in different parameter regimes. We determine the spectral purity of the
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emitted light after feedback stabilization and observe that it can be compatible with the one
generated by a superradiant laser. Our analysis also leads us to the conclusion that artificially
increasing the effective spontaneous emission rate by means of an extra depumping process may
sometimes be advantageous in terms of frequency stability.

2. Ideal Model

In this section we will analyze the interaction of an ensemble of atoms with a cavity QED mode
in the absence of single particle decoherence and in the presence of a constant laser drive [see
Fig. 1(a)]. We discuss the ideal case first because formulas are less cumbersome and the logic
behind the steps can be explained more smoothly. The inclusion of the extra decoherence in
section 3 will lead to technical complications, but the spirit behind the calculations will be the
same. The ideal case will also constitute a standard with which to compare later results.

The analysis we will pursue here consists of four parts. First, we compute the non-equilibrium
steady state of the system within the mean field approximation. Second, we calculate the linear
response to two kinds of perturbations: (i) fluctuations in the input light frequency and (ii)
quantum noise of the input light. Third, using the response of the output light to (i) we construct
an estimator that allows us to infer the frequency of the driving light, while (ii) gives us the
quantum noise in this estimator and provides a measure of its efficacy. We finalize by using (i)
within a closed feedback loop to calculate the effective linewidth of the frequency stabilized input
light source.

The system we are studying consists of an ensemble of N two-level atoms with atomic
transition w, collectively coupled to a cavity QED mode with resonance frequency w. and power
decay linewidth x [see Fig. 1 (a)]. The Hamiltonian describing this system is (in units where 7 = 1):

N N
~ w PN PR P
H:Z‘if[1+0f)+wcaTa+gzl(a0;r+aT0i), ¢))
1= 1=
where c?f’y * are Pauli matrices describing the two-level system of atom i, @ (") is an annihilation

(creation) operator describing the cavity mode and 2g is the single photon Rabi frequency. We
further add a laser drive with instantaneous phase ¢(t) [i.e. instantaneous frequency wg;(f) =
¢(1)] and flux of aizn photons per second. To account for the properties of the light outside the
cavity, we describe the evolution of the system in terms of Heisenberg-Langevin equations [26],
written in the lab frame as:

0;a=- (iwc + g) a— ig§_ +vx [aine"d’m +6ﬁin(t)
0,8 :—iwa§'+2ig§ZZi (2)
0.5, =ig(a's -as"),

where S Nz = Zﬁ.\i 1 /2 are collective spin Aoperators and & A, (1) accounts for the quantum
fluctuations of the input field. Formally, 6§ Ai, acts on the Hilbert space associated to the
continuum of modes outside the cavity and is constructed of Heisenberg operators in the infinite
past [26]. Given that the input state is coherent, it is entirely characterized by: <6ﬁin(t)> =0, and
(6 ﬁin(t)é Kfn(t’ )y = 8(¢—t'), with all other second order expectations equal to 0. The output field,
which describes the properties of the light outside of the cavity in the infinite future, can then be
calculated using the input-output relation Agy(f) = aine’®? + § A (1) — VK a.

a;c,y,z
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Figure 1. (a) Schematic of the system: the cavity is driven by coherent light (a;,) and inter-
acts with the atoms with strength g. The atoms are subject to dephasing (y4), spontaneous
emission into free space (y) and an additional depumping process [y, see panel (b)]. The
light coming out of the cavity (aoy:) is measured and this information is used to apply feed-
back on the input light source. (b) The depumping process can be engineered by means of
a rapidly decaying auxiliary third level. (c) The cavity is frequency locked to the input light
[w: = wgq(8)], whose frequency fluctuates in time. They are detuned by A; from the atomic
transition. (d) Schematic of the feedback scheme: when A = 0 the system reaches a steady
state. Small A; perturbs this condition and this is manifested in atomic observables and the
output light quadrature Yy (e) In the ideal system (without single particle decoherence),
the steady state is characterized by a perfect cancellation between the torques induced by
the input field and the self-radiated field of the atoms.

In what follows we assume that the cavity is locked to the drive [w, = wg4(?) = c[)(t)] and close
to resonance with the atomic transition [see Fig. 1(c)]. In the rotating frame of the drive/cavity,
the equations of motion take the simpler form:

d:a= —ga— 1S + V& [ + 6 Ain (D]
6[§_:iA[§_+2ig§zﬁ 3)
0,3, = ig(a*§——a§+),

where A; = (,b(t) —wg, = we(t) —w, is the atom-drive detuning, which we assume to be small.
Locking the drive to the atoms corresponds to having A; = 0, but in a real laser A; is a fluctuating
quantity. We thus need to estimate it and correct it towards 0 [see Fig. 1 (d)].

2.1. Mean field analysis

The mean field equations of motion are obtained by replacing the operators (@, 5,3, Aoy by
c-numbers (a, J, Z, &ou) and omitting 5 Aj, (£) in Eq. (3). The only stable steady state solution at
A; = 0 occurs below a drive threshold, a;, < afn = gN/(2v/x), and is characterized by:

iN . N
a=0 ]=—?sm9 Z=—ECOSQ (4)
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Figure 2. (a) Response of the system (17 quadrature of output light) to a static atom-drive
detuning (Ag) for fixed ai = afn/ V2. (b) Representative spectral density of frequency
fluctuations after feedback stabilization. (c) Representative response of the system to
frequency fluctuations. (d) Steady state atomic inversion Z/N as a function of input light
intensity in the presence of single particle decoherence for three different values of effective
cooperativity NCer = 4,10,100 (red, blue and purple, respectively). Solid lines are stable
solutions while dashed lines are unstable. Regions of bistability are shaded.

where sinf = aj,/ afn. Physically, at nonzero inversion (Z) the atoms radiate a field into the cavity
that precisely cancels the field generated by the input light. This leads to zero intracavity photons
(e = 0) and a collective Bloch vector pointing at an angle (9) on the southern hemisphere, as
shown in Fig. 1 (e). Using the input-output relation, we find that @, = @iy, i.e. all the light is
reflected.

Above the threshold af there are no stable steady state solutions and mean field theory
predicts persistent dynamical oscillations. The relaxation towards the steady state is caused by
quantum-fluctuation-induced diffusion between classical trajectories, and leads, at very long
times, to a very highly mixed steady state with exactly zero Z [14]. This quantity is continuous
but non-analytic at the threshold point, reminiscent of second order phase transitions, though
notions of symmetry-breaking are related to other observables instead [27,28].

2.2. Fluctuations

We now linearize Eq. (3) with respect to the mean field steady state solution. The equations are
more easily written in terms of fluctuations of the 1ntracav1ty field quadratures X =(@+ahie,

=(@-ah/en, of input field quadratures 8 Xin = (6 Ain +5A )/2 5Ym = ((5Am —(‘)‘AJr )/(21) and
of spin fluctuations perpendicular to the mean field Bloch Vector Syand S, =S y cos@ +3S,sin#.
This results in the followmg sets of decoupled linear equations:

P Sy (0 gNcosf NAtsmH 5 S, _ 0 gN Sl 0 5)
ny) (-g -5 \/_6Ym "\X) " \-gcos@ -5 \/_(SXln
The direction parallel to the mean field Bloch vector, S| = S, cosf — § ysin#, is only sensitive to

fluctuations at second order due to the curvature of the Bloch sphere [0S = 1/2 — (52 + §2 7)/N].
From the linearized equations and the input-output relation we can obtain expressions for the
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Fourier modes of the output field, defined as Agut(@) = S el@t A () dt, with similar definitions
for A(w), 6 Ain (w), d(w) and S. x,,z(w). Omitting transient effects!:

(gNsin6y/x/2) o) (iw+A4)(iw+A2)
(iw-2s)(iw=22) (iw-As)(iw=22)

where 1. = (k/4) + \/ (x/4)2 - gzN cosf. The output light quadrature f’out has two contributions:
one proportional to A(w) = f el®wt A;dt (signal) and another one proportional to 6 ?in(w) (noise).

The real parts of 1. are the decay constants of the system. The smallest one determines how
long it takes the system to relax to the steady state. When ai, — afn (@ — m/2), this timescale
increases without bounds, rendering the steady state condition harder to achieve. In the limit
that g\/ﬁ < k, relevant for narrow linewidth transitions, these constants become 1, = x/2
and A_ = 2g?Ncos@/x (thus A, > A_). The combination g?/x appears often and is typically
rewritten as 4g2/x = Cy, where y is the natural linewidth of the transition and C = 4g?/(xYy) is the
cooperativity, which depends only on cavity geometry.

Equations (6) relate the fluctuations of quantum observables in the steady state to the fluctu-
ations of the input field (6Xin, Yin). For example, fluctuations of Y out define Sy, (@), the noise
spectral density of the output light, according to:

Y out(®) = — 6Yin(), (6)

- - 218y, (@) 6 (w+ o'
(67 qut(@)8Y o (@) = = " ( ) : @
Using (6 YVin(@)8Yin (@) =276 + 0 /4 and (5 Yin (@) = 0, it follows that Sy, (@) =1, which is
the value associated to shot noise. A similar result holds for Sx_, (w), which indicates that the
output light is in a coherent state [29].

2.3. Frequency estimation

A glance at Eq. (6) indicates that the steady state output light quadrature Y 4 carries information
about the drive detuning A;. This suggests that this system can be used as a passive frequency
reference, similar in spirit to Ramsey spectroscopy, where an observable carrying information
about A; is measured after an operation time 7. In the presence of a static detuning A; = Ap
[A(w) = 21Apd ()], the most straightforward observable that serves as an estimator of Ay is
constructed from the average of Y out OVer time. Within the linear regime:
Ao
2gcotl/x
This linear relation is valid for Ay < NCy [condition obtained by solving the mean field equations
for finite static A; = Ay, see Fig. 2(a)], beyond which a typical dispersive response is observed.
A real measurement of Ve over a finite time is subject to quantum noise coming from the
fluctuations of the output light, which are related to ?in (w) in Eq. (6). The estimator variance
after an integration time T is calculated using Eq. (6):

- 1 T -
YestE?fO Yout(t)dt_’<yest>: 8)

S > N 2 S¥. (0) 1
<6Y§st> = <(Yest_ <Yest>) > = T = E; 9

and from this we can compute the sensitivity:
(6Y2,)  g%(coth)? _ Cy(coth)?

SN2 = L
(6A0 <YeSt>) KT 4T

(10)

1 The expression for the output signal ¥ out(w) is seemingly missing an independent contribution coming from atomic
projection noise, but this is an incorrect assertion. Atomic projection noise in the steady state is entirely determined by
dynamical noise (6 Aj,), a fact that is further established by computing the steady state value of Sy (w) and noting that the
correct variance of Sy (in agreement with [14-16]) is recovered using correlation functions of & Ain.
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As an example, consider the 1§, =3P, transition in 87Sr (1, = 698 nm) after one second integra-
tion time and operating at 6 = 45°. Using the cavity parameters in [13, 30], this corresponds to
a relative frequency resolution of §A¢/w, ~ 10~'7. Experimentally, such a measurement of Yout
is achieved by means of a homodyne detection setup where the input light field acts as the local
oscillator.

2.4. Stabilization via feedback

The light coming outside of the cavity can be used within a closed feedback loop to provide
automatic frequency stabilization. As shown in the previous section, we can estimate the
detuning between the laser drive and the atomic transition, and we can then use this information
to correct the frequency of the laser drive. However, the output light is a fluctuating quantity and
hence the feedback process introduces noise into the corrected frequency. The objective in this
section is to estimate the size of this noise, following the discussion in Ref. [31].

We begin with the expression for the output quadrature ¥ o (w) given in Eq. (6):

. _ (gNsinovx/2) (iw+A:)(iw+A2)
Tl = G 0= T o= (iw-1)

J [

6V in(w), (11)

R(w) N(w)

where R(w) is the response of the signal Y out(@) to the perturbation A(w), and N(w) describes the
quantum fluctuations of ¥4y (w). Note also that we are now writing A(w) as an operator because
we are considering the steady state of the feedback process, where the input A already includes
the effects of quantum noise.

We assume the feedback signal is obtained from the output light using a linear filter §(w),
which gives us a second equation &eed(w) = B(w) ?Out(w). Finally, we have a third relation
connecting the bare detuning in the absence of feedback [Ap,re (w)] to the corrected detuning:
Alw) = Apare (@) — Efeed(w). From these three equations we can obtain a direct relation between
A(w) and Apgre (@):

R0 = —— M@ - —L 2 R(w) x ——-— Apgre) - Nw)
1+R)PBw " 1+Rw)pw) Rw)p@) " Rw)’

where in the last equality we have assumed |5(w)R(w)| > 1 for the frequencies of interest (i.e.
below the unity gain frequency of the feedback loop). If the original laser drive is already noisy,
then Ap,re (W) becomes stochastic. However, the feedback process suppresses this noise by the

large factor R(w) B(w), while at the same time introducing the extra noise 6 Aw) = —N(w)/R(w):
(iw+A:)(io+A2) -

(12)

SA(w) = Nvesingiz @ (13)
with second order average:
A ~ 0> +22)(w? + 22
(6A()6A ")) =276 (w+ o) ( gzN;l(Smez ) ] (14)

The coefficient in front of 276 (w + ') defines the spectral density of frequency fluctuations
Sa(w) [23,31]. In the limit x > g\/ﬁ, this will be of the form:

w \2 w \?
WE
x/2 ws
with wg < x/2 [see Fig. 2 (b)]. The value of Sx (w) at w = 0 determines the effective linewidth Af. In
this ideal scenario, Af = Cy cotf?/4, which is the same scaling as the one that appears in studies

of the superradiant laser [1]. As @ — 7/2 (ain — @), Af approaches 0, and thus it is ultimately
limited by finite size effects. The corner frequency ws = NCy cosf/2 marks the point at which

Sa(w) = 2Af

) (15)
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Sa(w) switches from constant to ~ w? behaviour, which in a real laser are characteristic of the
Schawlow-Townes noise floor and of shot noise (due to a finite laser output power) respectively.

The construction of the feedback loop [i.e. the specific choice of B(w)] also requires informa-
tion on the response function |R(w)| to guarantee large low-frequency gain [R(0)5(0)] and keep
the loop stable. In this case, |R(w)| behaves as [see Eq. (11)]

1

IR@)] ox i

1/2 (16)

[1+ Qw/x)?] " [1+ @/wp)?]

and is schematically depicted in Fig. 2 (c). In this ideal case, wg is also NCy cos@/2, though this
is not generic. Furthermore, a realistic calculation of Af, ws and wg requires that single particle
sources of decoherence be included in the analysis.

3. Non ideal model

In any realistic system there is dephasing and incoherent decay, and these processes will modify
both the steady state of the system and its linear response to perturbations. This is encoded in
the Heisenberg-Langevin equations that replace Eq. (3):

0:d= —%ZZ— l'gg_ +\/E[ain+6:4\in(t)]

~ ~ ~ + + ~ ~ ~ ~
0,8 = iAtS'+2igSz’d—(W)S'+\/NyF'(t)+ Ny, Fy (0 +/Nyaly, () (7)

OSZ—lg(aTS —a§f)—(y+yp)(sz+—) VN Fz(t)+ NprZ (1),

where 4 is the dephasing rate, y is the natural spontaneous emission rate of the transition, y is
the rate of the depumping process depicted in Fig. 1 (b), F and Fy FZ are noise operators associated
to spontaneous emission (notice FZ is hermitian), and F v, 18 a noise operator associated to
dephasing. We have also included an additional depumping process, yp, with associated noise
operators FY and F F2 , and which can be engineered via coherent driving onto a rapidly decaying
auxiliary third level [see Fig. 1(b)]. In principle the noise operators are defined in terms of the
degrees of freedom which cause the associated decay processes, but they are in general difficult
to access, unlike ﬁout(t). In practice, we are interested mostly in their effect on the system, which
is encoded in their lowest order correlators. The only nonzero ones (up to hermitian conjugation)
are [32,33]:

(FyF ) =< L OF; (1)) =581
Po (Pt By 0B (1)) =261
Y Y Yp
(FzFeh) =<A§p({)?§p(ﬂ)> = (82 +4)ou-1) (18)
<ﬁ;d(t)F (t)> (% <§}§>)5(t—t’)
(By,0F;, ) = (3 +£2) a0~ 11

Similarly to the ideal case, this system hosts resonant cooperative fluorescence [19]. As in the
previous section, we first investigate the system within the mean field approximation, then
compute the fluctuations of the output light with respect to the steady state and analyze how
these incoherent processes modify our results for frequency estimation and feedback.
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3.1. Mean field analysis

Once again, we replace (@,S5", S, Aou) by c-numbers (a, /, Z, @ou) and omit all noise operators.
The resulting equations are nonlinear but their steady state solution can be parameterized in
terms of z=Z/N as:

2Uin J . /YTYp [ Qin 2NCeftz 2ZNCefr+1
a = ~ =1 Qout = Ain | -————1, (19)
VK(—2NCez) N T V161 ) \1=2NCeggz 2ZNCei— 1
where Ceft = 4g%/(I'k) = Cy/T is the effective cavity cooperativity, I = y +y4 + Yp is the total
dephasing rate, Iy = N2 Ces(y + Yp)/16 and z satisfies:

a_ﬁl__(z+1/2)( 1 )2

= Z—
81 z 2N Cett

The natural scale for ocizn is set by Iy and is connected to the ideal threshold field ((xfn) by
Iy = (afn)z(y +7vp)/T. The fate of the transition present in the ideal model depends on the
value of NCgi. When NCgg < 8, there is only one real solution to Eq. (20) and the mean field
observables are smooth functions of the input field strength ai, [see Fig. 2(d) for NCgg = 4].
Notably, there is one “dark point” where aqy = 0, i.e. no light comes out of the cavity [see
Eq. (19) with z = —1/(2NCes)]. In the context of cooperative resonance fluorescence, as discussed
before in Ref. [14, 16, 19], the smooth behavior observed in this regime is a manifestation of the
disappearance of the phase transition observed in the absence of decoherence.

When NCef > 8, there are input field amplitudes i, for which there are three real solutions for
z. Two of them correspond to stable steady states and one is in an unstable branch [see Fig. 2 (d)
for NCefr = 10,100] [19]. This leads to bistability when:

(20)

3

3
8 205 1 8 8
1-4/1- 3+4/1- < 144/1- 3—4/1- 1)
NCetf NCetf Iy 16 NCets NCetf

In the limit NCgg > 1, the lower and upper bounds become 16/(NCeg) and 1 [34], respectively.
This bistable behaviour is accompanied by large discontinuous jumps between stable solutions
and thus the presence of hysteresis [19] instead of the smooth second order transition observed in
the ideal case [14]. It is preferable to work in non-bistable regimes to avoid the large fluctuations
associated with these switches.

1
16

3.2. Fluctuations

We linearize Eq.(17) about any of the mean field steady state solutions and look at Y, ?out and
S, which carry information about A,. They satisfy:

~ r ~ . - - -
6;(8/36) _ (—5 —2gNz) (Si‘) N DA+ \/NyFJ’f(t) + \/N)//\pFip(t) + \/Ndejfd(t) ’ 22)

LX _ (G- . 7+ nx _ (o- o+ nx _— (- i+ ;
where F; = (FY + Fy)/2, F;,‘p = (pr + pr)/Z and F;fd = (F“ + FWA)/Z are the C(irresponAdlng
quadrature noise operators. We can then calculate the behaviour of Y oy through Yoy =0Yin —
VY. In frequency space, omitting transient behaviour:

. Zgﬁfi]) A) + (ia.)+m+)(z:w+m_)
(iw-1)(iw-1-) (iw-1)(iw-1-)

(x/2) /N CerT

(iw-1)(iw-1-

Y out (@) = — 8V in(w)

)[ﬂﬁ;‘(wn,/_y,,ﬁ;‘p(w)ﬂ/y—dﬁ;‘d(w) ., (23)
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Figure 3. (a) Power spectral density of output quadrature Yout as a function of input light
intensity aizn for NCefr = 0.5,4,10, 100 (green, red, blue and purple, respectively). Solid lines
are stable solutions and dashed lines are unstable. Bistable regions are shaded. (b) Effective
linewidth, measured in units of Afy = (47) "1 (Cy/4)[T'/ (yp +7v)1. The “dark point” for each
NCegss is marked by the black circle (nonexistent for the green curve).

where I, = &L +/ (KZ—F)Z +2g2Nz and my = 5% +,/(531)2 4 2¢2Nz. The smallest decay
constant, /_, is modified due to the presence of the extra dissipation sources and is always finite.

In the limit g\/I_V,F < «, these constants reduce to [, =~ m, = «/2, I = I'(1 = 2NCg2)/2 and
m_ = -T(1+2NCgz)/2.

The noise spectral density of Y out at @ = 0 can be calculated from Eq. (23):
(1+2NCef;2)? 4N Cef
(1-2NCef2)?2 (1 -2NCez)?
and is shown in Fig. 3(a) as a function of a‘izn/lo. The smallest values of noise improve with
increasing NCgg, but fall within bistable regions. Outside those regions, reducing N Cefs brings
the noise closer to shot noise levels.

S¥ou (0) =

(24)

3.3. Stabilization via feedback

Applying the formulas of Section 2.4 leads to the following effective linewidth:

2Mf_(g)(y+yp+m) (1+2NCeft2)” + 4N Cofy
4 Y+Yp 2 (NCefg + 2N Cefsz) (—2NCef2) |

which is parameterized by z and hence is an implicit function of the input field intensity aizn
(since z depends on aj,). We have expressed Eq. (25) as a product of three different factors to
make the discussion clearer. The first factor is the scaling present both in the ideal section and in
the superradiant laser. The second factor I'/(y +7,) strongly penalizes the effective linewidth
when y4; > y +yp, which is a consequence of a reduction in the size of the radiating dipole
moment J x /(y +7,)/T [see Eq. (19)]. Under these conditions, an adjustable depumping rate
provides an advantage when the natural y is small, as is the case in narrow linewidth transitions.
If yp > yg4, then (y +y,)/T = 1 and there is no penalization. The third factor includes all the
effects of operating at different aj, and is difficult to estimate a priori. It can be of order 1 or
much bigger than 1 depending on ajy, as shown in the next subsection.

In Fig. 3 (b) we show Af as a function of input light intensity for different values of NCg,
normalized to Afy = (47:)_1(Cy/4) [T/(y +yp)]l. When NCes > 8, the aj, that minimizes Af falls
within regimes of bistability. Outside of these regions, we find that it is preferable to work at
more moderate values of NCe for fixed aizn/ Iy. Reducing NCg too much is not convenient

(25)
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either because the size of the signal acquired through the output light is also reduced, negatively
impacting Af [see Fig. 3 (b) for NCe¢ = 0.5].

3.4. Operating regimes

We describe here two possible operating regimes corresponding to different values of a;y, discuss
the achievable effective linewidths Af, and calculate the corner frequencies ws and wg.

3.4.1. Stronginput field

Here we take aizn > Iy = N? Cett(yp +7)/16, a situation previously analyzed in Ref. [23], and
which leads to z ~ 1/ “izn — 0, @out ® —ipn, and J (dipole moment) ~ 1/aj,. Since J shrinks with
larger ajy, the size of the signal necessary to estimate frequency fluctuations is reduced, while
the noise in the output light does not change significantly [see Eq. (24) at z = 0]. The effective
linewidth is:

_Cy( I (e,
ZJTAf— 2 (Yp+Y)(4IO (1+4NCeff) (26)

In this case, apart from I'/(y +y), there is an extra factor proportional to the input intensity that
is much larger than one by assumption. This is the linewidth found in Ref. [23], except for the
factor (1 +4NCgg) which includes the additional noise due to the single particle decoherence
processes. Even when NCgg > 8, the strong input field region is free from bistability, which is
advantageous if manipulating NC is not possible or easy. On the other hand, the achievable
effective linewidth is then also penalized from the extra (1 +4NCe¢) factor.

In contrast to the ideal case, ws and wg are now different. In the limit gv/N,T < « they are
ws =T'/NCe+1/4 and wgr =T'/2. It is desirable to have a large wg, either by increasing N Ce,
at the expense of a larger linewidth Af, or by modifying the depumping rate y,. An important
final piece of information is an estimate of the size of detunings A; under which the linear
approximation is valid. Solving the mean field equations in the presence of a static detuning
Ay leads to a dispersive curve similar to Fig. 2 (a), but where the maximal value is obtained at
Ao = NCeiT'@in/ /81y = NCyain/ /81y instead of Ag ~ NCy (ideal case). Linearity is thus valid for
a larger range of A;, as compared to the ideal case, at the expense of a smaller slope and hence
lower sensitivity.

3.4.2. Dark point

This corresponds to no light coming outside the cavity, namely ay, = 0. At this operating

point, the effective linewidth is:

27[Af=ﬂ( I )( NCerr ) 27)

2 \y+yp) \NCegr—1

and only exists when NCe > 1. In this case, apart from I'/y, there is a third factor which is of
order one when NCgst = 2. Hence, the achievable linewidth can be of the same size as that of the
superradiant laser (~ Cy) [1], provided y+y, and I are comparable. Consider again the 1§y — 3Py
transition in 8’Sr in the cavity of Ref. [30]. Using g = 27 x4 Hz, x = 27 x 160 kHz, y; = 27 x3 Hz, an
artificially augmented spontaneous emissionrate y ,+y = yg and N = 10° atoms leads to Af = 0.5
mHz at NCgfs = 6.6.

Within the approximations gv/N,T' < k, the corner frequencies are now wg = \/NCeI'2 =
VNCyT and wg =T. Increasing ws while avoiding bistability (NCes < 8) requires increasing
the depumping rate y,,. Furthermore y, also enhances wg, which could be as small as y when
Ya =7Yp =0, and this relaxes technical constraints on the feedback loop gain. Note also that if we
apply a depumping strong enough that I' ~ NCy/2, then ws ~ NCy, similar to the result for the
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superradiant laser at optimal pumping rate. Finally, the response (¥ oy¢) to large static detunings
Ay is still dispersive, as in Fig. 2 (a), with the maximal value attained at Ag = NCgg[' = NCy (similar
to ideal case).

This “dark point” is representative of the properties of the system close to the minimum Af
[see Fig. 3 (b)], and could be easily identified by looking at the reflected intensity. Numerically, we
find that Eq. (27) is at most within a factor of 2 of the optimal Af when 2 < NCgg < 8.

4. Conclusions and outlook

We have calculated the effective linewidth of a laser stabilized to an ensemble of atoms inside
a QED cavity across various values of input light intensity and atom-light interaction strength,
measured in terms of the cooperativity parameter NCqg. We find that working with moderate
values of NCe € [2,8] is preferable and can lead to effective linewidths comparable to those of
the superradiant laser, provided the total dephasing and effective spontaneous emission rates
are of the same size. These predictions open a path for a complementary implementation
of ultranarrow linewidth light which does not require a strong incoherent pump but instead
coherent drive and feedback and thus a more versatile and amenable avenue for the experimental
generation of continuous coherent light with longlived dipoles. Furthermore, concerns about the
finite lifetime of atoms in the cavity can be addressed by continuous atom loading schemes [9].

The achievable linewidths using this configuration in state-of-the-art cavities with alkaline-
earth atoms are in the mHz range. Further improvements would require reducing the ratio g2/«
while keeping N Ce¢s fixed, which could be realized using a larger number of atoms.

Table 1. List of parameters I

2g Single photon Rabi frequency Wq, We, Wy Atomic, cavity, drive frequencies
x  Cavity power decay rate At =wg—wq Drive-atom detuning

Y Spontaneous emission rate F=y+yp+va Total dephasing rate

Yp Depumping rate C=4g%/(xy) Cavity cooperativity

Ya Dephasing rate Cess = CyIT Effective cooperativity

N Atom number ai =gN/(2yx)  Ideal critical input field

Af Effective linewidth Iy= (aicn)2 (y+7yp)/T  Input field scale

Table 2. List of parameters and variables II (O stands for any variable)

a=X+iY Intracavity field a Mean field intracavity field
S, 2 S =8 x—1 S y Atomic variables Z=Nz,] Mean field atomic variables
Ain=Xin+iYin Input field Qin Mean field input field
Aout = Xout + i Yout Output field Mout Mean field output field
AﬁWZ”AF; = 13’5 - iﬁ% Noise due to y ?;d =f’y‘d - iﬁ%ﬁd Noise due to y4
Ff,p,F;p = F;ﬁp -1 F;:p Noise due to y), So(w) Noise spectral density of O
R(w) Response function Eq. (16) | O(w) = [ et o dt Fourier transform of O
ws Corner frequency of Sx (w) WR Corner frequency of R(w)
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