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Time-Resolved Measurement (TRM) has been proposed as a method to improve charged particle 
microscopy. Under the assumption of direct secondary electron (SE) detection, TRM has been shown to 
reduce the mean-squared error (MSE) of estimation of SE yield 𝜂𝜂 [1,2] and to give robustness to beam 
current variation [3]. In this work, we translate increased accuracy in 𝜂𝜂 estimation into increased imaging 
resolution by numerically analyzing the performance of TRM using Fourier Ring Correlation (FRC). FRC 
is a method commonly used for determining the resolution of electron microscopic (EM) reconstructions 
[4,5]. It is the normalized correlation between the Fourier transforms of two independent reconstructions 
of the sample, as a function of spatial frequency. Resolution is defined as the inverse of the highest spatial 
frequency at which the FRC is above a predefined threshold [6]. This study is valuable to quantify the 
advantages of TRM in charged particle microscopy.  
 
We evaluated the performance of three estimators for 𝜂𝜂 using Monte Carlo simulation: 

1. The conventional 𝜂𝜂 estimator, which divides the number of detected SEs by the average dose 𝜆𝜆, the 
expected number of incident ions within the pixel dwell time 

2. The oracle estimator, which divides the number of detected SEs by the number of incident ions. 
Since the number of incident ions cannot be precisely known, this estimator is not practical but it 
serves as a theoretical limit on the performance of implementable estimators.  

3. The maximum likelihood (ML) estimator, which estimates 𝜂𝜂 as the value that maximizes the joint 
likelihood of the number of detected SEs and the number of clusters of detected SEs. 
 

To analyze the performance of these estimators, we used a real SEM image of nanoparticles on a carbon 
mesh of size 600-by-600 pixels, shown in Figure 1(a), to generate synthetic images for each estimator. 
We scaled the pixel values of the ground truth image such that 𝜂𝜂 lay between 1 to 6 for all pixels, to reflect 
the usual range of 𝜂𝜂 in focused-ion beam (FIB) microscopy. We chose a scan step size of 2 ground truth 
pixels to simulate the coarseness of the beam scan compared to the ground truth. The incident beam was 
modeled with a Gaussian distribution centered on each scan location, with a standard deviation of 5 pixels 
and average dose of 10. We chose a beam standard deviation larger than the step size to simulate the image 
resolution being limited by beam size/interaction volume rather than by scan grid density. The simulated 
images are shown in Figure 1(b)-(d). The ML estimate shows more of the ground truth details compared 
to the noisier conventional image. To quantify this difference, we found the MSE between a Gaussian 
filtered, downsampled version of the ground truth and reconstructed images. The MSE values were 0.68 
for conventional, 0.46 for ML and 0.26 for oracle images. 
 
To calculate the FRC resolution of each estimate, we synthesized ten images for each estimator using the 
scan step and beam profile described above. Using the resulting 45 image pairs for each estimator, we 
calculated FRC curves shown in Figure 2. The solid blue curve for each estimator is the mean FRC as a 
function of spatial frequency across all 45 image pairs, and the error bars are the standard deviations of 



t h es e v al u es. W e esti m at e d r es ol uti o n fr o m t h es e F R C c ur v es b y l o o ki n g at t h eir i nt ers e cti o n wit h t h e � 2 �  
c ur v e [ 5], w hi c h r e pr es e nts a 2 𝜎𝜎  u p p er si g nifi c a n c e l e v el o n t h e F R C b ei n g e q u al t o 0. W e f o u n d t h e 
r es ol uti o n t o b e 1 3. 8 5 pi x els f or c o n v e nti o n al, 1 1. 3 8 pi x els f or M L, 1 0. 3 9 pi x els f or t h e or a cl e i m a g e. 
T h es e r es ults s h o w si mil ar a d v a nt a g es of T R M c o m p ar e d t o c o n v e nti o n al i m a gi n g as t h e  a n al ysis of M S E 
i n [ 2]. H a vi n g est a blis h e d t h e p ossi bl e r es ol uti o n g ai n wit h F R C t hr o u g h si m ul ati o ns, w e ar e n o w w or ki n g 
t o d e m o nstr at e i m pr o v e d r es ol uti o n fr o m e x p eri m e nt al d at a [ 7]. 
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Fi g u r e 1: Si m ul ati o n of ti m e -r es ol v e d i m a gi n g. C ol or b ar s h o ws r a n g e of S E yi el ds f or all p a n els.   

 
( a) C o n v e nti o n al                                                        ( b) M L 
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Fi g u r e  2 :  E v al u ati o n  of  r es ol uti o n  f or  
c o n v e nti o n al i m a gi n g a n d T R M. F o uri er -
ri n g  c orr el ati o n  c ur v es  (s oli d  bl u e)  f or   
( a)  c o n v e nti o n al  esti m at or,  ( b)  M L  
esti m at or, a n d ( c) or a cl e esti m at or.   


