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Abstract—Payment Channel Networks (PCNs) have been pro-
posed as a second-layer solution to the scalability issue of
blockchain-based cryptocurrencies, most developed systems still
lack effective strategies for further scalability solutions. Virtual
payment channel (VPC) has been proposed as an off-chain
technique that avoids the involvement of intermediaries for
payments in a PCN. However, there is no research on how to
efficiently construct VPCs while considering the characteristics
of the underlying PCN. To fill this void, this paper focuses on
the VPC construction in a PCN. More specifically, we propose a
metric, Capacity to the Number of Intermediaries Ratio (CNIR),
to consider both the capacity of the constructed VPC and the
collateral locked by the involved users. We first study the VPC
construction problem for a single pair of users and design an
efficient algorithm that achieves the optimal CNIR. Based on this,
we propose Thor, a protocol that constructs a virtual payment
channel network (VPCN) for multiple pairs. Evaluation results
show that Thor can efficiently construct a VPCN and outperform
baseline algorithms in terms of the CNIR.

Index Terms—Cryptocurrency, payment channel network, vir-
tual payment channel

I. INTRODUCTION

Over the past decades, we have witnessed a flourishing of
cryptocurrencies as a decentralized form of currency, such as
Bitcoin [1] and Ethereum [2]. However, these digital curren-
cies have struggled to achieve large-scale usage due to signif-
icant overhead and demanding storage requirements [3]. The
second-layer solution [4] lives on top of the blockchain and
conducts payments off-chain. The most popular application is
the payment channel network (PCN) implemented in Bitcoin’s
Lightning Network (LN) [5] and the state channel network
(SCN) implemented in Ethereum’s Raiden Network [6]. Exist-
ing studies [7]-[16] have focused on addressing issues related
to routing, rebalancing, and collateral reduction.

When two users in PCN do not have a direct channel but are
connected through a path of channels, they transmit payments
to each other via this path, subject to the available balance
in each channel. For security, a Hash Timelock Contract
(HTLC) [17] is utilized, locking the balance on each channel
until all channels verify the payment’s outcome or until the
timelock period expires [5]. Compared to locking funds on
each channel through the HTLC, virtual payment channels
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(VPCs) offer the benefit of processing payments through a
single hop, facilitating completely off-chain channel construc-
tions, and presenting broader potential use cases. Current VPC
protocols such as Perun [18] provide the smallest example of
building a two-party virtual payment channel, which further
reduces the interaction with the blockchain and is implemented
with full concurrency using smart contracts in Ethereum with
its security proven in universally composable (UC) proof [19].
This two-party VPC concept was then extended to general
state channels in [20]. Dziembowski also introduces the multi-
party virtual state channels, specifically enabling more than
two parties to execute contracts off-chain [21].

The construction of VPCs demands collaborative effort
from all intermediaries along the path consisting of payment
channels. Such collaboration entails not only exchanging
messages to agree on the initiation phase but also involves
the intermediaries locking funds for a specified duration.
Excessive intermediaries make the total collateral requirement
burdensome. In addition, current protocols do not examine
how to efficiently optimize the number of intermediaries or
how to establish the VPCs for multiple pairs. To address the
above challenges, we first define a new metric Capacity to
the Number of Intermediaries Ratio (CNIR) for evaluating
both the number of intermediaries and the capacity of the
constructed VPC. Then we propose Thor, a protocol for
constructing VPCs that guarantees maximum CNIR in the
single-pair case, and efficiency for constructing VPCs in the
multi-pair case. Our algorithms can be implemented as a
decentralized protocol without trusted central servers. The
main contributions of this paper are:

« To the best of our knowledge, we are the first to study the
problem of optimal single VPC construction and multiple
VPC constructions evaluated by both VPC capacity and
the number of intermediaries in PCN, where users can
benefit from parallel VPC constructions off-chain.

e We design an optimal VPC construction algorithm for
a single pair of users. We then propose Thor, a protocol
that can construct a virtual payment channel network with
high CNIRs for the multi-pair case.

« Evaluation results demonstrate that Thor accomplishes
the maximum CNIR of the constructed VPC in the single-
pair case, and yields high CNIRs for the multi-pair case,
compared to the baseline algorithms.

Organization. Section II overviews the background related to
VPCs. Section III describes the system model and formulates



the problems. Section IV points out the challenges for the
protocol design. Section V illustrates the design of protocol
Thor. Section VI evaluates the related algorithms. Section VII
shows the conclusion.

II. BACKGROUND OVERVIEW

Ledger Payment Channel (LPC): LPCs are second-layer
solutions to address the blockchain’s scalability issue by con-
ducting micropayments without committing transactions to the
blockchain. LPC operates under a multisig smart contract [22]
that needs multiple authentic signatures to prevent single-
point failures. There are four stages in an LPC: (1) Open:
Participants follow a protocol that involves depositing funds
into a smart contract that will serve as collateral for the
duration of the channel. The initial state is signed by all
parties to set the starting point of the channel. (2) Update:
Parties exchange messages that are secured with cryptographic
signatures, and the states of the channels can then get updated.
(3) Dispute: Once the dispute is started, the opposing party is
required to respond within the challenge window. A dispute
can arise due to unresponsive participants, refusal of sign, or
invalid state proposals [23]. (4) Close: Participants are required
to submit the channel’s final, agreed-upon state on-chain, after
which the locked deposits will be returned to the participants.
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Fig. 1. Three types of VPCs
Virtual Payment Channel (VPC): There are three types of
VPCs. (1) Two-party VPC with One Intermediary (2VPC-1):
If the two indirectly-connected parties desire to make off-chain
payments, they can either open a LPC or VPC [18]. Instead
of routing payments through hash-locked transactions across
an intermediary, a VPC-1 is constructed off-chain over two
LPCs. For example, a VPC-1 ~ is constructed with the help
of I serving as the intermediary, as shown in Fig. 1(a). Here,
the two LPCs Cy and Cy are the two subchannels of ~. A
and B need to notify I of their proposal to employ her as
an intermediary for -, which is done symmetrically by A’s
proposal to open an instance of the special virtual payment
channel contract in channel Cy, as well as B’s proposal to
open another instance in channel C5. Both new instances

can be seen as a copy of the opened . If I agrees with
both proposals, «v is successfully opened and ready for future
transactions between A and B. The funds that the two end
users (EUs) A and B intend to put in ~ as collateral will be
locked from their respective original deposits at C'4; and Cp
for the duration that the v remains active. At the same time, [
needs to lock up the same collateral to represent both A and B,
which means that [ is ready to cover the commitments from
the transactions in the VPC. (2) Two-party LPC with More
Intermediaries (2VPC>1) [20]: A 2VPC>1 is constructed on
a path of LPCs between the two EUs recursively regardless of
the subchannel types. In Fig. 1(b), v is first built between A
and C, with B as the intermediary. Then - is built on top of
the two LPCs C5 and Cjg, with E serving as the intermediary.
Next, 73 is built on 7; and the LPC C}. Finally, 74 is built on
both ~3 and 2. When more intermediaries are involved, all
subchannels must be created/closed before the target VPC can
be opened/closed. (3) VPC with Multiple End Users (MVPCs):
MVPCs [21] are constructed when EUs are more than two. A
specific instance of a five-party VPC is illustrated in Fig. 1(c).
The five EUs: A, B, C, D, and E, are interconnected via
LPCs. B chooses not to participate in vy, so it acts as the
intermediary in the 2VPC-1 between A and C. A contract
instance is initialized in each subchannel as a replica of . The
creation of MVPC is also off-chain, but it requires consensus
from all EUs.

III. NETWORK MODEL AND PROBLEM FORMULATION

In this section, we describe the network model and present
our problem formulation.

A. Network Model

The payment channel network (PCN) can be modeled
as a bidirectional weighted graph G = (V,&). V =
{v1,v9,...,v,} is the set of n nodes, every node v; in the
network represents a user who holds a cryptocurrency account
and has at least one LPC with another user. £ = {e; ;|v;, v; €
V} is the set of m directional edges, and i <+ j represents a
bidirectional channel between nodes v; and v;. Let §; ; denote
the balance on ¢; ;. Let §; ; denote the maximum locked
balance (MLB) that v; would offer to be locked for VPC
construction on channel e; ;. It is reasonable that &; ; > &; ;,
since v; is unable to lock more balance than the original
balance. For those who are not willing to participate in the
VPC construction, §; ; = 0. Note that the MLBs are public
data, which will not expose the private balance information.
Let M = {0; ;]0; ; > 0,Ve; ; € £} denote the set of MLBs
from those nodes who are willing to participate. In addition,
let N' = {(s1,t1),...,(sk,tx)} denote the set of K node
pairs requesting VPC construction between them. A virtual
payment channel network (VPCN) is a network of VPCs
between nodes in a PCN. Thus, we leave this topic for our
future work.

B. Problem Formulation

Any node pair (s,t) that does not have a LPC connecting
them can choose to construct a VPC, where s and ¢ are the



two EUs. The virtual channel type we are interested in is
the two-party VPC between a node pair (s,t). Given that
the PCN is bidirectional and VPC is constructed on top of
a path, an underlying ledger channel path (ULP) P is
two directed paths traversing the same nodes but in reverse
directions between a node pair and it is the bottom structure of
the VPCs. Let P = { P! P!} denote a bidirectional path
s« 11 < Iy ... 1< t, where Ip = {Il,IQ,...,Id}
is the set of d intermediaries. Here P*~! is the directional
path from s to t: s — Iy — Iy — ... — I; — t, and P"™% is
the other directional path from t to s: ¢t = I; — ... = Is —
I — s. We are only interested in simple paths for which the
nodes in the sequence are distinct. For K pairs, we have the
ULP set P = {P17P2,...,PK}.

The MLB of a path, denoted by §(P*~*) is the mini-
mum of the MLBs on the edges along the path P*~¢, ie.,
§(P*7") = min({d; ; : Ve, ; € P¥7'}). Similarly, 6(P"7%)
denotes the MLB of the path P'™*. In addition, we define
the maximum capacity as ¢ := as; + a4 s for the constructed
VPC ~, where a,; and a;, represent the maximum balance
that s and ¢ can respectively contribute to . We define the new
metric Capacity to the Number of Intermediaries (CNIR)
as r := 7. The rationale of introducing CNIR is two-fold: 1)
a larger capacity can support more potential transactions over
the constructed VPC; and 2) a fewer number of intermediaries
means less collateral will be locked and less fee will be
charged to the end users. Thus, it is logical to aim for high
CNIR in VPC construction.

A modular recursive approach is applied to construct a VPC
on a ULP that has more than one intermediary, where VPCs
are constructed recursively on top of VPC or other already
constructed VPCs [20]. We extend the concept of subchannels
to any two channels (VPC or LPC) that constitute a VPC
in our paper. We use Fig. 2 as an example to show the
relationship between the capacity and MLBs in the recursive
VPC construction process. The initial MLB values on i <> j
and j < k is shown in Fig. 2(a). v; and vy, desire to construct
a VPC ;. between them. v;, v; and vy, need to lock a certain
amount of balances to construct ; j from the two subchannels
i <> j and j <> k. Therefore, the balance distribution in the
subchannels changes after «;  is constructed, as shown in
Fig. 2(b). The maximum balance a; j that node v; can put on
i,k should be mutually determined by d; ; and ¢, 1. Intuitively,
this amount should not be more than what v; can maximally
offer (9; ;) and what v; can lock in represent of v; (; ).
Therefore, in order to reach the maximum capacity of ~; :

ik = min(éi,j, (Sj,k), Qi = min(&;w-, 5j,i) (1)

In this case, the two subchannels ¢ <+ j and j <> k con-
struct -y; ,, with the maximum capacity ¢ = min(d; ;,d;x) +
min(5k7j,5j7i). The total MLB 6; ; + 6, + 655 + 0r; in
Fig. 2(b) remains the same as in Fig. 2(a). Once -, is
built, a new bidirectional edge i <+ k is added to the VPCN.
However, the distribution of the MLB changes: the MLB on
the subchannels decreases, while the MLB on the newly built
VPC increases.

(a) Before ~y; ;. being constructed
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(b) After v; j being constructed

(d) After v; ; being constructed

Fig. 2. Recursive VPC construction model

The two-party VPC in Fig. 2(a) can be seen as a building
unit for those VPCs on longer ULPs, where the two sub-
channels can be extended to any channel type as introduced
in Section II. They can either be both VPCs, or one VPC
and one LPC, or both LPCs. If now wv; wants to build
a VPC with v;, then v; and v; need to utilize ~;; and
k <> [ as the two subchannels as shown in Fig. 2(c). In
order to reach the maximum capacity for the constructed
VPC, we assign a; ) to the MLB of v; on the new e¢;:
ik a; . Symmetrically, we have 0,; = a,. After
the v;; is constructed as shown in Fig. 2(d), the balance
distribution pattern is similar to Fig. 2(b). Similarly, we
have a;; = min(d;x,0k,;) = min(min(d; ;,d; ), %) and
al; = min(élyk,ém) = min(éhk’min(ék’j,éj’i)). By this
bottom-up construction from ~; ; to 7;;, the two-party VPC
i, with one more intermediary than ~y; ; is being built. The
construction order is from ~; ; to 7, ;, and -y;; is considered
as a upper-level VPC of v; j.

The construction is a recursive bottom-up process that starts
from LPCs to the target VPC [20]. It is assumed that the
subchannels of the VPCs will be prevented from being closed
until these VPCs are closed. There is a special real-time value
named “validity” [18] that the two parties of the VPC agree on
when the VPC is opened to prevent the EUs from maliciously
letting the intermediaries’ money be locked forever in their
VPCs. The VPC will be closed as the validity of time passes,
which differs from the LPCs where the close phase is initiated
by the parties of the channel.

In this paper, we focus on the following protocol design
problem: given multiple node pairs in a PCN, we aim to design
a protocol to construct a VPCN connecting these node pairs
with high CNIRs.



IV. DESIGN RATIONALE AND CHALLENGES

A. Design Rationale

When VPCs are created, all involved intermediaries need
to lock a certain amount of balance as collateral. Their
locked funds become unavailable until the upper-level VPCs
are closed. Existing protocols [18], [20] related to the two-
party VPCs involving more than one intermediary do not
consider the collateral held by intermediaries during the VPC
construction. Thus, it is necessary to design a protocol that can
strategically select ULPs for the node pairs while considering
the resulting capacity of the constructed VPCs and the number
of involved intermediaries.

B. Design Challenges

Thor should achieve the VPC construction with maximum
CNIR for the single-pair case and efficient construction of
VPCs with high CNIR for the multi-pair case. The challenges
are as follows:

o Each node pair can try all of its paths and pick the
one that gives it maximum CNIR. However, it may take
exponential time as the number of paths of the node pair
may not be polynomially bounded.

o Various subchannels and construction orders exist even
when forming the target VPC on top of the same ULP.
Before the node pair finds a ULP with to construct
their VPC, we need to figure out whether the order they
construct the subchannels affects the capacity of the VPC.

o Breadth-First Search (BFS) [24] can be used to search
a BFS tree data structure. The resulting BFS tree can
be utilized to discover paths and exclusively identify the
shortest path connecting a pair of nodes. Even though
Breadth-First Search ensures the minimum number of
intermediaries, it does not ensure the highest CNIR.

o A solution to the problem of the single-pair case cannot
be directly applied to the multi-pair case due to the mutual
influence and competence between those ULPs sharing
common LPCs. In addition, each path’s allocated MLB
can be computed after considering all path selections.
Thus how to compute the available MLB on each edge
before path selection has not been solved yet.

V. DESIGN OF Thor

Thor is based on three algorithms: Optimal ULP Finding
for Single Pair (Algorithm 1), MLB computation for ULPs
(Algorithm 2), and Efficient ULPs Finding for Multiple Pairs
(Algorithm 3). Before introducing our algorithms, we first
prove that the construction order does not affect the maximum
capacity of the constructed VPC, then we address the rest
challenges by introducing Algorithm 1 for finding the optimal
ULP with maximum CNIR in the single-pair case. Finally, we
use Algorithm 2 and Algorithm 3 to solve the problem of the
multi-pair case based on Algorithm 1.
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(a) First topology of the VPC between node A and F'

(b) Second topology of the VPC between node A and F'

Fig. 3. We present two examples to demonstrate that different subchannel
topology of 4 does not impact the maximum capacity of 4.

A. Capacity is Independent of the Construction Order

Theorem 1. The maximum capacity c of the virtual state chan-
nel 7 for the node pair (s,t) on a ULP P = {P*™t Pt=%} js
the sum of both §(P*™') and §5(P'™%) and the construction
order of the subchannels does not affect the maximum capacity
of v:
as,t = (S(PS_HE),GLS = (()‘(Pt_m) (2)
C=ast+as = S(P57) 4 §(PTF) 3)

Proof. The capacity c consists of two portions as ¢ and a; s as
shown in Eq. (1). We will show that both a,; and a; s come
from multiple min-comparisons of the MLB values all the way
from its P. Suppose there is a number of d intermediaries
inmnP =s & I & b <& ... & I; +& t. Given the
bottom-up construction approach, we consider the sequence
in which the subchannels are constructed: starting from -, r,,
then proceeding to s r,, Vs,1s - - -» until reaching the . Each
two consecutive constructed VPCs differs by the length of
one intermediary. Since P is bidirectional, the two maximum
amounts as ¢ and a; s should follow:

as = min(..

.(min(5s711,511712),...),51”) (4)
.(min(511)5,5[27]1),...),(55,[1) (5)

Then we have as; = 6(P*7) and a;s = 6(P'7%)
based on the definition of the MLB of a path. Thus, we
prove Eq. (2) based on Eq. (4) and Eq. (5) for the above
construction order. Following the definition of capacity, we
have Eq. (3). Additionally, all MLBs in Eq. (4) and Eq. (5)
originate from the bottom LPC channels. Instead of nesting
multiple min-operations, directly extracting the smallest MLB
from the set of MLBs on P gives the same result (for example,
min(min(min(a, b), c),d) = min(a, b, ¢,d)). In other words,
the MLB order in the nested min-operations in Eq. (4) and
Eq. (5) is indeed the construction order of the subchannels.
This order does not affect §(P*~%) and §(P*™*) since the
minimum value can be directly extracted. In return, the con-
struction order does not affect the maximum capacity of v. [

ag,s = min(..

Fig. 3 demonstrates this unique characteristic described in
Theorem 1. The examples showcase two different subchannel



Algorithm 1: Optimal ULP Finding for Single Pair

Input: network G = (V, ), MLB set M and node
pair (s,t)
Output: maximum CNIR 7 and ULP {P5~t pt—s}
1 T"maz < O;Pmaz — {}’
2 for t1 € M and t5 € M do
3 Find a shortest bidirectional path
P = {Ps7t P75} from s to ¢, such that
§(Ps7Y) >ty and §(P'7%) > to;
4 Compute 7 using Eq. (6);
5 if r > 7100 then 7,0, <7, Proe +— P
6 end
7 return 7,,,, and Pp,q.

topologies for the same target 4. Both ways of construction
follow a bottom-up approach, meaning that the construction
is as follows: 71 — 2 — 73 — 4. For ~; in Fig. 3(a), the
intermediary is B and the two EUs are A and C. The maxi-
mum amount that A can lock on 7 is ag,c = min(5,2) = 2.
Similarly, we have ac, 4 = min(4,5) = 4. Then we have
aaCc = ap,c = 2 and ac,A = aB,A = 4. Similar min-
operations are then done recursively for 79, 73, and 4. Finally,
we have a4 p = 2 and ar 4 = 1. Another construction for 74
on the same ULP but with different subchannel constructions
is shown in Fig. 3(b). However, the maximum capacity of 4
is 2+ 1 = 3 in both Fig. 3(a) and Fig. 3(b). The capacity is
from the two highlighted MLBs: 2 is the MLB of the path
from A to F' and 1 is the MLB of the path from F to A.

Based on Theorem 1, the problem of finding a ULP with
maximum CNIR can be restated as to find such a ULP for the
node pair (s, ), such that the sum of the two MLBs §(P*™%)
and 6(P!™*) over the number of intermediaries d on this ULP
is the maximum.

§(Ps—)t) + 5(Pt~>s)

r= ] (6)

However, the original BFS does not support finding such an
optimal ULP with the maximum CNIR in polynomial time. We
need to modify BFS carefully.

B. ULP Finding for the Single-pair Case

We first designed the optimal algorithm for a single pair to
find the ULP with maximum CNIR shown in Algorithm 1.
As we aim to identify ULPs with the maximum CNIR of the
target virtual channel capacity to the number of intermediate
parties for a node pair, we first fix the two thresholds ¢; and o
for s — t and t — s directions, respectively (Line 2). The two
threshold ranges are bounded by the set of MLB values M. In
total, there are | M |? such iterations. Only when the two MLBs
satisfy d,, > t¢; for the edge e, , on s — ¢ direction and
dv,u > to for the edge e, on ¢t — s direction, the neighbor
v of u can be added to the ULP P. The 7,,,, should have
two corresponding ULPs P*~* and P'~*. In the end, the
maximum CNIR r and its P,,,, are returned. To summarize,
the complexity of Algorithm 1 should be O(m?(n +m)) due
to the outer for-loop O(m?) and the inner BFS O(n + m).

Lemma 1. When the two thresholds are at t; = t} and
to = t, the ULP that Algorithm 1 returns under the iteration

combination of t| and t}, for node pair (s,t) satisfies that
(P57 > ) and 5(P'%) > th.

Proof. In Algorithm 1, for a node pair (s, t), every bidi-
rectional edge u <> v added to the BFS tree under each
iteration combination of t; and ¢, always guarantees that
Suw > t,V(u,v) € P57 and similar for 6,4: 0po >
th,V(v,u) € P75, Since the MLB of every bidirectional edge
added to the BFS tree has the above property, then the MLB
should also have this property: §(P$7%) > t/, symmetrically
we have §(P'%) > t,. Thus we have proved the lemma. [

Theorem 2. Algorithm I returns the optimal ULP with max-
imum CNIR for node pair (s,t) in a bidirectional connected
network G(V, &).

Proof. First, if the network is connected and the two nodes
of the pair are not directly connected, there must exist at
least one ULP between them, otherwise, the network becomes
disconnected. We also need to prove that the maximum CNIR
ULP must exist in at least one iteration of the combination of
the two thresholds. We prove it by contradiction.

Suppose there exists a ULP with the maximum CNIR

I = tlj{,b under two MLBs ¢} and ¢, with a number of
d’ intermediaries, but it is not returned in any combination of
t; € M and t5 € M. Obviously, such ULP cannot be found
when t; >t} and ¢t >t} (according to Lemma 1). But what
if t7 <t} and ty < t5?

We first consider when t; = ¢} and t; = t. Follow
our consumption for contradiction proof, Algor/i/thtp 1 should
return a ULP with a smaller CNIR " = tl;,’,tz than 7/,
given that d”’ < d’ (shortest path is always a by-product of
BFS [24]), t{ >t} and t§ > t}, (Lemma 1). Then we have the
CNIR for this ULP r" = t/l/;,tg > tllj,t/z, which contradicts
the hypothesis that t/lj,t; should be the highest ratio, thus it
is already enough to prove Theorem 2.

Regarding t; < ¢} and t2 < t, we know that the shortest
ULP is always returned, but it is not guaranteed that the
maximum CNIR ULP is returned. Consequently, we have also
demonstrated that if there is a minimum of one optimal ULP
between node s and ¢ with two MLBs ] and t), it ought to
be discovered at least when ¢; = ¢} and t2 = t,. Hence, we
have proved Theorem 2. [

C. ULPs Finding for the Multi-pair Case

In this section, we aim to design an algorithm to find ULPs
with the maximum CNIR for the multi-pair case, which is
the core of the Thor protocol. To address this problem, we
design our algorithm that is inspired by the game theory-
based algorithm in [25]. The network routing problem in [25]
was formulated as a game, where each source-destination
pair is a player and the objective of each player is to find
a path with the maximum bandwidth under the max-min
fair bandwidth allocation. Their algorithm converges to a set



of best response paths for all players, where no player can
increase its bandwidth by unilaterally changing its path.

Since multiple ULPs may share a common edge, it is
necessary to decide how to allocate MLBs among these
ULPs. Algorithm 2 is designed to compute the MLB
of each ULP given a set of ULPs under the max-
min fair allocation principle proposed in [25]. Let A =
(O(PF1), 6(P%), ..., 0(Pg"), 8(Pj7*)) denote the MLB
vector and let r = (r1,732,...,rk) denote the CNIR vector.
The primary idea of Algorithm 2 is to calculate the global
MLB bottleneck b, = argmine, ;ce 6”j iteratively, where b,
is defined as the edge possessing the least even share of the
MLB and w; ; is the number of ULPs that utilizes e; ; (Line 5).
Any ULP in the directional ULP set that uses b, gets an
equal share of the MLB on b, and then is removed from the
network. The MLBs are decreased by the MLB consumed
from the removed ULPs. The above procedures are repeated
until the directional ULP set becomes empty (Lines 5 to 14).
Finally, we can use A to calculate the CNIR for every node
pair (Line 16). We use Fig. 4(a) as an example to demonstrate
Algorithm 2. In the first iteration, ec, p is selected as b, as
wo e = L, then we get §(P2) = 6(Py) = 1. In the second
iteration, §(P;) = 6(P5) = 1.5 and by = ec . In the
final iteration, 6(P1) = 6(Fs) = 1.5 and b, = ec p, the
resulting network is shown in Fig. 4(b). The CNIR for a pair
can only be calculated after both MLBs of P~t and P!~*
are returned. Finally, we can get the three ratios for the node
pairs: 7} = M = 1.25, = w = 1.25
and r3 = % = 3. Algorlthm 2 has a complex1ty of
O(Km).
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(a) Before running Algorithm 2 (b) After running Algorithm 2

Fig. 4. An example with six ULPs for three node pairs (A, D), (A, E) and
(D,E): A=A+B-C~>D,P,=D-C-B+A, Ps=A+B-C->
E,PL=FE-C-B-+A, Ps=D-C-~EFE, Ps =F -~ C - D. Removed
edges are denoted with “x”.

Let us introduce more notations. When the ULP of the

node pair (Sk,tx) Py is not in the network, let P_, =
{P1, -+ ,Py_1, Pxy1, -, Pk} denote the set of ULPs. Let
d_1(Py ) denote the MLB of the ULP P,. Let A_; denote
the MLB vector. Let W ’] denote the U LPs of the node pairs
that utilize edge e; ;. Let wl_Jk = |W_ | denote the number
pairs sharing edge e; ;. After the node pair (sg,t;) changes
its ULP to P/, let P’ = {P{, P}, ..., P} denote the ULP set
for all node pairs, where P, = P, if x # k.

Definition 1. [Best Response ULP] The best response ULP
Sfor the node pair (sy,ty) is a ULP Py, given P_y, such that
the CNIR 71}, is maximized.

Next, we introduce the concept of observed available MLLB
followed by the observed available bandwidth in [25], which

Algorithm 2: MLB computation for ULPs
Input: network G, MLB set M and ULP set P
Output: MLB vector A and CNIR vector r

1 EC E,PC <+ 0,05 ; < d;5,Veij €E;

2 foreach k € [1, K] do P «+ PCU{P'} U{P[7*};
3 §(P) « 0,VP € P,
4 while P¢ # () do

5 by < argmine, ;ce

c
i,

(‘

6 6t€mp — wb
7 forPGPCandbgGP do

5(P) — 5temp;
forall ¢; ; € P do
10 (5(’ (—(5° —6(P);wi)j <—wi,j—1;
1 if 60, —Othen EC+— &%\ e
12 end
13 Pe«— P\ {P};
14 end
15 end

BRI +5(PL)

16 for k€ [1, K] do ), < =3ty
k

17 return A and r

will be helpful in explaining Algorithm 3. We leave the proof
of the correctness of observed available MLB in [25]. The
observed available MLB 67 ; of edge e; ; € & are calculated
based on the following equations:

WZ_]()—{Z|Z€W]/\5]C( )<5k( )} (7)
Sig— X Sw(P)
S5 i 2eWh] ()
W= {a |2 e WH N Oy(Pr) > — o)
®)
= X 6k(P)
i cEWHI WL
‘W;k. +1

Wz_fé(x) is the set of pairs whose current assigned MLB is

less than the pair x on edge e; ;. Wl_z is the set of pairs such
that the newly assigned MLB is at least as large as the MLB
of any other pairs. The observed available MLB on all edges
can be computed in O(K log K +mK) time for K pairs [25].

Now we introduce Algorithm 3 that is designed to find a set
of ULPs for the K node pairs, such that no pair can increase
its CNIR by unilaterally changing its ULP. We abbreviate the
Algorithm 1 as Agl and Algorithm 2 as Ag2 in Algorithm 3
to save space. Algorithm 3 proceeds in a round-robin fashion
with only one node pair changing its ULP at each state.
Algorithm 3 starts with calculating the initial ULP set (Lines 2
to 5). Then when a node pair plans to change its ULP, it runs
the following steps until no ULP is changed in the ULP set:

1) Calculate the MLB vector A and the CNIR vector r for
all ULPs using Algorithm 1 (Lines 8).

2) Calculate the MLB vector A_; for the set of ULPs
without Py using Algorithm 1(Line 9).



Algorithm 3: Efficient ULPs Finding for Multiple
Pairs
Input: network G = (V, £) and MLB set M
Output: ULP set P
1P« 0;
2 foreach k € [1, K] do

3 Run Agl (G, M, (sk,tx)) to obtain Pj;
4 P+ PU {Pk};
5 end
6 repeat
7 foreach k € [1, K] do
8 Run Ag2 (G, M, P) to obtain A and r;
9 Run Ag2 (G, M, P\ {P}) to obtain A_y;
10 Compute M using Eq. (9);
11 Run Agl (G, M, (s, t;)) to obtain
). and Py;
12 if 7}, > 7, then P, < P} ;
13 P+ PU{P:}
14 end
15 until no ULP is changed ;
16 return P.

3) Calculate the observed available MLBs M? for all edges
using Algorithm 2 (Line 10).

4) Re-select a ULP for pair (s, t;) based on the resulting
network using Algorithm 1 (Line 11), if the new CNIR
is higher than the old one, then the old ULP is replaced,
otherwise the old ULP is kept (Line 12).

5) Add the updated ULP to the ULP set (Line 13).

Now we prove the convergence of Algorithm 3.

Lemma 2. Assume that the node pair (sy,ty) changes its ULP
from Py to P|. Define W ={1,2,..., K}, W= ={zeW|
re =T Wh={zeW|r, <r,}, and W ={z e W |
ry > T4}, then we have  min 1, > min 7.
TEW, UW; TEW, UW;

Proof. The Lemma 4.1 in [25] has proved that the minimum
bandwidth among the paths whose bandwidths (in our case,
MLB of the path) change increases strictly after a path selfishly
changes its path. First, it is clear that k € WW;, otherwise, the
node pair (sg,t;) has no incentive to change its ULP with a
less CNIR. In addition, the ULP lengths for pairs in W\ {k}
are fixed before and after k£ changes its ULP. Thus the CNIRs
of these ULPs will strictly change with respect to the changing
pattern of the MLB of the paths (Eq. (6)). This indicates that
the minimum CNIR of W U W; increases as well. We have
proved that the minimum CNIR among the ULPs whose ratios
change also increases strictly. O

Theorem 3. Algorithm 3 converges in O((Knm)& (m?(n +
m))) time, where m is the number of edges, n is the number
of nodes and K is the number of node pairs.

Proof. Theorem 4.1 in [25] proves that the vector of the
bandwidth increases lexicographically (in our case, MLB of
the path). Similarly, we conclude that whenever a node pair
changes its ULP, the CNIR vector r also increases lexico-

graphically (Lemma 2). We know that there is a finite number
of ULPs for each pair. Thus the number of ULP configurations
is finite as well. Now we prove an upper bound on the number
of times the ordering of CNIR can increase. Lemma 6.1
in [25] proves that the MLB value on a global bottleneck
must be equally shared by all ULPs using it. Given that the
CNIR of a ULP is decided by both the MLB and the number
of intermediaries, thus the number of possible values of the
minimum CNIR is bounded by O(Knm). There are at most K’
node pairs whose ULPs are at this value. Repeating the same
analysis for all the pairs, we conclude that the upper bound is
O((Knm)X) for K pairs. Therefore, the time complexity of
Algorithm 3 is O((Knm)X (m?(n +m))). O

D. VPC Construction Protocol

In Thor, time is divided into discrete time slots. At the begin-
ning of each time slot, each pair that desire to construct a VPC
between them will broadcast its intent. After receiving the
broadcast intents from other pairs, each pair first obtains the
network G = (V, £) and M, which are periodically announced
by users who are interested in joining as intermediaries. Each
node pair then follow Algorithm 3 to select its ULP and
calculate its MLBs. We now prove that all pairs will follow the
Thor protocol in Theorem 4 assuming there is no collusion.

Theorem 4. Each pair has no incentive to not follow the
protocol unilaterally if all other pairs follow.

Proof. Assume pair (sg,t;) does not follow the protocol,
while others follow. Let P_j denote the set of ULPs of other
pairs. Let P, denote the ULP selected by the pair (si, tx). Let
P, denote the ULP of pair (s, %) if it followed the protocol.
Let ' and r denote the CNIRs of pair (sg,t;) with these
two ULPs, respectively. By the definition of the best response
ULP, v’ < r. Therefore, pair (sg, t;) cannot increase its CNIR
by not following the Thor protocol. O

Each node pair then starts building its own VPC on the
selected ULP concurrently. The computed MLBs are the actual
balances that will be locked on the VPC. Now we introduce
how the recursive process is done on a protocol level using the
computed MLBs from our Algorithm 3. We follow the same
balanced construction as in [20]. Balanced construction means
that s and ¢ construct the subchannels concurrently with their
next closest intermediary from the two ends of the ULP toward
the center of the ULP. Furthermore, the two VPCs used to
build an upper-level VPC have approximately the same length.
Let 3, denote the number of the constructed subchannels that
have s as one of their EUs. Let 3; denote the number of the
constructed subchannels that have ¢ as one of their EUs. We
have the following relationship between B and B; when the
number of intermediaries is d:

Bs=1,0=0 ifd=1
By =P = 4 if d is odd and d > 1
Bs=9%8=9%—1 ifdisevenandd > 1
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Fig. 5. A bottom-up recursive VPC construction protocol

We use Fig. 5(a) to illustrate the basis case when the
two subchannels are both LPCs. In this figure, v; and vy
are the two EUs, v; is the intermediary, and the two LPC
channels are ¢ <+ j and j <> k. ;1 is the basis VPC being
constructed. «;, o and «y are the construction approvals.
A construction approval is a tuple with four attributes. For
EUs, the first is the VPC that needs to be constructed, the
second is the amount of balance that the approval sender
needs to lock, the third is the amount of balance that the
other EU needs to lock and the fourth is the signature of
the sender. Therefore, a; := (i, 6(P57),6(P"7%),0y)
and oy, == (745, 6(P'7%),6(P57"), oy,), respectively. For the
intermediary, the difference is that the second and the third
attribute are both the amount of balance that the intermediary
needs to lock on behalf of the two EUs, respectively. There-
fore, aj := (Vi 6(P571),8(P'7%), 0;).

The construction of a basis VPC involves three steps [18]:

1) v; and vy, send their approvals «; and ay, to v;.

2) If v; agrees on both o; and o, it sends its own approval

o to v; and vy.

3) wv; and vy exchange the «; they received.

Once the above steps are performed, v; locks §(P*~") and
v locks 6(P'™%) from their respective LPCs to construct
vi,k- The same processes can be performed recursively for any
VPC that utilizes a ULP with more than one intermediary. The
recursive step is shown in Fig. 5(b) for any subchannels that
are not both LPCs. v; and v; construct the «;; on the LPC
k <+ [ and the VPC ~; ;.. The above three steps of exchanging
messages will be repeated among v;, vi, and v;. To apply the
recursive process in a more general case, now consider such
aULP P =v; & I} & Iy < ... & I; < v, with d in-
termediaries {Iy, s, ..., I;}. If d is odd, then the constructed
subchannels will be perfectly balanced. v; constructs the first
VPC with I, then constructs the second VPC with I3, until
it constructs with Ja—1. Symmetrically, v, constructs the first
VPC with I;_1, then constructs the second VPC with I4_o,
until it constructs with Ja—1. Finally, v; and v, construct the
Vi,q With T i1 served as the intermediary. If d is even, then
v; needs to construct one more VPC than vq. Both v; and v,
start the same subchannel building process concurrently until
both v; and v, construct the VPC with I dqg Finally, v; and
vq construct 7; g with T4, served as the intermediary.

VI. PERFORMANCE EVALUATION

A. Evaluation Setup

We used a core network with 298 nodes and 2093 edges from
the Bitcoin LN on Jan. 25, 2022 [26]. A pre-processing of
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the whole network was operated to obtain a connected sub-
graph from the original topology. Assume the top 4% with the
highest capacity are participating in constructing the VPC. In
addition, all isolated nodes and nodes with degrees that are less
or equal to 3 were removed to get the largest connected compo-
nent. After prepossessing, the minimum, maximum, and mean
capacities were $4212, $366240, and $13803, respectively.
The number of node pairs was set in the range of 40, 80, 120,
160, and 200 for the VPC constructions. We ran each setting
for 50 times with different seeds to average out random noise.
We evaluated the following evaluation metrics: the number of
hops needed in the transaction phase, CNIR, and the capacity
of the VPCs. The current payment channel construction is
a nascent development without recent algorithms for direct
comparison. Therefore, we compare Thor with the following
baseline algorithms:

1) K-path union (KPU): We first use Algorithm 1 to
compute the ULP for each pair, then use Algorithm 2
to compute the capacity and the CNIR of each ULP
without any further iterations in the multi-pair case.

2) Shortest path (Shortest): Dijkstra algorithm [27] is
deployed for finding the shortest ULP. For the single-
pair case, we compare Shortest with Algorithm 1. For
the multi-pair case, we first use Shortest to find ULPs,
then calculate the CNIR and capacity of each ULP
using Algorithm 2. Note that the current PCN protocol
also uses the shortest path algorithm in routing (PCN-
shortest), thus we also compare Thor with Shortest
for measuring the number of intermediaries.

3) Widest path (Widest): The widest path algorithm [28] is
deployed for finding ULPs that maximize the capacities
of the ULPs. For the single-pair case, we compare
Widest with Algorithm 1. For the multi-pair case, we
first use Widest to find ULPs, then calculate the CNIR
and capacity of each ULP using Algorithm 2.

B. Results

Fig. 6(a) shows the number of intermediaries involved in
Shortest and Thor. Shortest shows higher maximum, min-
imum, and average of the intermediaries compared to Thor.
This is due to the HTLC routing protocol used in a PCN, where
routers are needed during the transaction phase. However, the
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pair of users make transactions through the VPC between
them in a VPCN, thus only one hop is needed. This is
beneficial for those pairs who desire to make transactions
without going through routers. The convergence results are
shown in Fig. 6(b), where one iteration is from Line 6 to
Line 15 in Algorithm 3. The average number of iterations
increases with the number of node pairs. We also observe
that the average number of iterations is less than 10 in all
cases studied, which is far less than the theoretic bound in
Theorem 3.

Fig. 7 shows the performance of the three algorithms in
CNIR and capacity with respect to the number of pairs in
the single-pair case. Each pair runs Algorithm 1 individually
and obtains their CNIR and capacity. Fig. 7(a) and Fig. 7(b)
show the average CNIR and average capacity for the three
algorithms Shortest, Widest and Thor. In Fig. 7(a), Thor
outperforms the Shortest and Widest algorithms in terms of
CNIR. This is because Thor is optimal in finding the ULP
with the maximum CNIR for the single-pair case (Theorem 2).
In Fig. 7(b), the Shortest, which considers only the shortest
ULP, inherently can only achieve lower capacity than Thor
and Widest, respectively. Widest always selects a ULP with
the highest capacity, thus it has the best performance in
capacity compared to the other two algorithms. Thor considers
CNIR and can reach a relatively bigger capacity than Short-
est, but it does not guarantee the maximum capacity.

Fig. 8 shows the performance of the four algorithms with the
increase of the number of pairs in terms of CNIR and capacity
for the multi-pair case. Fig. 8(a) shows the CNIR achieved by
Thor, Shortest, Widest, and KPU algorithms in the multi-
pair case. It is observed that Thor always outperforms the other
three algorithms in CNIR at any number of pairs. A factor
contributing to the higher CNIR is that Thor lets the node pair
select the best response ULP. Widest shows better CNIR, this
is because Widest still considers the capacity while Shortest
does not. For KPU, it uses Algorithm 1 to find the ULPs and
then calculate the CNIR for all pairs using Algorithm 2. Even
though KPU selects the ULPs based on the maximum CNIR
in the single-pair case, the returned ULP set is not the best
response path set in the multi-pair case. Thus, the actual CNIR
achieved by KPU is less than Thor in the multi-pair case.

Fig. 8(b) shows the capacity achieved by the four algorithms
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Fig. 8. Comparison results for the multi-pair case

when the number of pairs ranges from 40 to 200. Shortest
selects ULPs based on the least number of intermediaries
without considering the capacity of the ULP, hence it is
expected to have the least average capacity. Widest chooses
ULPs based on the maximum capacity of the ULP for each pair
in the multi-pair case. However, the actual allocation of the
MLB for those ULPs is computed mutually after all ULPs are
selected by Widest in Algorithm 2. Thus, even though Widest
initially finds the ULPs with the maximum capacity, the actual
capacities of these selected ULPs should be determined by the
allocated MLBs, which are not guaranteed to be the maximum
capacities for all pairs. In addition, since there is no iteration
performed and no node pair can select ULP with better CNIR
in KPU, KPU shows less capacity compared to Thor.

Both CNIR and capacity achieved by all algorithms decrease
as the number of node pairs increases in Fig. 8. This is
expected due to the competence of MLB on the shared
common edges. A decrease in MLB negatively impacts the
CNIR and capacity for the multi-pair case.

To summarize, our evaluation results show the importance
of constructing VPC in help reduce the number of interme-
diaries for transactions. In addition, for the single-pair case,
the results show that Algorithm 1 can find ULPs with the
maximum CNIR. For the multi-pair case, the results show that
Algorithm 3 converges to the best response ULPs rapidly and
achieves very good CNIR as well as capacity.

VII. CONCLUSION

In this paper, we introduced the new metric CNIR and investi-
gated the virtual payment channel construction protocol Thor.
We mainly studied the problem of how to construct VPCs
for the single-pair case and the multi-pair case. We stated a
set of design rationales and challenges for the Thor design.
We designed our algorithm to find the ULP with maximum
CNIR for the single-pair and to efficiently find the ULPs for
multiple pairs based on the single-pair case. We also designed
the VPC construction protocol for multiple users to construct a
VPCN concurrently. We proved that Thor can construct VPC
with maximum CNIR for the single-pair case and construct a
VPCN for multiple pairs. The evaluation results demonstrate
that Thor can find the ULP with maximum CNIR for the
single-pair case, and reach high CNIR for the multi-pair case.
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