
Thor: A Virtual Payment Channel Network
Construction Protocol over Cryptocurrencies

Qiushi Wei Dejun Yang Ruozhou Yu Guoliang Xue

Abstract—Payment Channel Networks (PCNs) have been pro-
posed as a second-layer solution to the scalability issue of
blockchain-based cryptocurrencies, most developed systems still
lack effective strategies for further scalability solutions. Virtual
payment channel (VPC) has been proposed as an off-chain
technique that avoids the involvement of intermediaries for
payments in a PCN. However, there is no research on how to
efficiently construct VPCs while considering the characteristics
of the underlying PCN. To fill this void, this paper focuses on
the VPC construction in a PCN. More specifically, we propose a
metric, Capacity to the Number of Intermediaries Ratio (CNIR),
to consider both the capacity of the constructed VPC and the
collateral locked by the involved users. We first study the VPC
construction problem for a single pair of users and design an
efficient algorithm that achieves the optimal CNIR. Based on this,
we propose Thor, a protocol that constructs a virtual payment
channel network (VPCN) for multiple pairs. Evaluation results
show that Thor can efficiently construct a VPCN and outperform
baseline algorithms in terms of the CNIR.

Index Terms—Cryptocurrency, payment channel network, vir-
tual payment channel

I. INTRODUCTION

Over the past decades, we have witnessed a flourishing of
cryptocurrencies as a decentralized form of currency, such as
Bitcoin [1] and Ethereum [2]. However, these digital curren-
cies have struggled to achieve large-scale usage due to signif-
icant overhead and demanding storage requirements [3]. The
second-layer solution [4] lives on top of the blockchain and
conducts payments off-chain. The most popular application is
the payment channel network (PCN) implemented in Bitcoin’s
Lightning Network (LN) [5] and the state channel network
(SCN) implemented in Ethereum’s Raiden Network [6]. Exist-
ing studies [7]–[16] have focused on addressing issues related
to routing, rebalancing, and collateral reduction.

When two users in PCN do not have a direct channel but are
connected through a path of channels, they transmit payments
to each other via this path, subject to the available balance
in each channel. For security, a Hash Timelock Contract
(HTLC) [17] is utilized, locking the balance on each channel
until all channels verify the payment’s outcome or until the
timelock period expires [5]. Compared to locking funds on
each channel through the HTLC, virtual payment channels

Wei and Yang are affiliated with Colorado School of Mines, Golden, CO
80401. Yu is affiliated with North Carolina State University, Raleigh, NC
27695. Xue is affiliated with Arizona State University, Tempe, AZ 85287.
Email:{qiushiwei, djyang}@mines.edu, ryu5@ncsu.edu, xue@asu.edu. This
research was supported in part by NSF grants 2008935, 2045539, and
2007083. The information reported here does not reflect the position or the
policy of the federal government.

(VPCs) offer the benefit of processing payments through a
single hop, facilitating completely off-chain channel construc-
tions, and presenting broader potential use cases. Current VPC
protocols such as Perun [18] provide the smallest example of
building a two-party virtual payment channel, which further
reduces the interaction with the blockchain and is implemented
with full concurrency using smart contracts in Ethereum with
its security proven in universally composable (UC) proof [19].
This two-party VPC concept was then extended to general
state channels in [20]. Dziembowski also introduces the multi-
party virtual state channels, specifically enabling more than
two parties to execute contracts off-chain [21].

The construction of VPCs demands collaborative effort
from all intermediaries along the path consisting of payment
channels. Such collaboration entails not only exchanging
messages to agree on the initiation phase but also involves
the intermediaries locking funds for a specified duration.
Excessive intermediaries make the total collateral requirement
burdensome. In addition, current protocols do not examine
how to efficiently optimize the number of intermediaries or
how to establish the VPCs for multiple pairs. To address the
above challenges, we first define a new metric Capacity to
the Number of Intermediaries Ratio (CNIR) for evaluating
both the number of intermediaries and the capacity of the
constructed VPC. Then we propose Thor, a protocol for
constructing VPCs that guarantees maximum CNIR in the
single-pair case, and efficiency for constructing VPCs in the
multi-pair case. Our algorithms can be implemented as a
decentralized protocol without trusted central servers. The
main contributions of this paper are:

• To the best of our knowledge, we are the first to study the
problem of optimal single VPC construction and multiple
VPC constructions evaluated by both VPC capacity and
the number of intermediaries in PCN, where users can
benefit from parallel VPC constructions off-chain.

• We design an optimal VPC construction algorithm for
a single pair of users. We then propose Thor, a protocol
that can construct a virtual payment channel network with
high CNIRs for the multi-pair case.

• Evaluation results demonstrate that Thor accomplishes
the maximum CNIR of the constructed VPC in the single-
pair case, and yields high CNIRs for the multi-pair case,
compared to the baseline algorithms.

Organization. Section II overviews the background related to
VPCs. Section III describes the system model and formulates

the problems. Section IV points out the challenges for the

protocol design. Section V illustrates the design of protocol

Thor. Section VI evaluates the related algorithms. Section VII

shows the conclusion.

II. BACKGROUND OVERVIEW

Ledger Payment Channel (LPC): LPCs are second-layer

solutions to address the blockchain’s scalability issue by con-

ducting micropayments without committing transactions to the

blockchain. LPC operates under a multisig smart contract [22]

that needs multiple authentic signatures to prevent single-

point failures. There are four stages in an LPC: (1) Open:

Participants follow a protocol that involves depositing funds

into a smart contract that will serve as collateral for the

duration of the channel. The initial state is signed by all

parties to set the starting point of the channel. (2) Update:

Parties exchange messages that are secured with cryptographic

signatures, and the states of the channels can then get updated.

(3) Dispute: Once the dispute is started, the opposing party is

required to respond within the challenge window. A dispute

can arise due to unresponsive participants, refusal of sign, or

invalid state proposals [23]. (4) Close: Participants are required

to submit the channel’s final, agreed-upon state on-chain, after

which the locked deposits will be returned to the participants.

C1 C2A I B

(a) 2VPC-1

A B C
C1 C2 D E

C3 C5 C6 F

(b) 2VPC>1

B C
C1 C2 D E

C3 C5A

(c) MVPC

Fig. 1. Three types of VPCs

Virtual Payment Channel (VPC): There are three types of

VPCs. (1) Two-party VPC with One Intermediary (2VPC-1):

If the two indirectly-connected parties desire to make off-chain

payments, they can either open a LPC or VPC [18]. Instead

of routing payments through hash-locked transactions across

an intermediary, a VPC-1 is constructed off-chain over two

LPCs. For example, a VPC-1 γ is constructed with the help

of I serving as the intermediary, as shown in Fig. 1(a). Here,

the two LPCs C1 and C2 are the two subchannels of γ. A
and B need to notify I of their proposal to employ her as

an intermediary for γ, which is done symmetrically by A’s

proposal to open an instance of the special virtual payment

channel contract in channel C1, as well as B’s proposal to

open another instance in channel C2. Both new instances

can be seen as a copy of the opened γ. If I agrees with

both proposals, γ is successfully opened and ready for future

transactions between A and B. The funds that the two end

users (EUs) A and B intend to put in γ as collateral will be

locked from their respective original deposits at CAI and CIB

for the duration that the γ remains active. At the same time, I
needs to lock up the same collateral to represent both A and B,

which means that I is ready to cover the commitments from

the transactions in the VPC. (2) Two-party LPC with More

Intermediaries (2VPC>1) [20]: A 2VPC>1 is constructed on

a path of LPCs between the two EUs recursively regardless of

the subchannel types. In Fig. 1(b), γ1 is first built between A
and C, with B as the intermediary. Then γ2 is built on top of

the two LPCs C5 and C6, with E serving as the intermediary.

Next, γ3 is built on γ1 and the LPC C3. Finally, γ4 is built on

both γ3 and γ2. When more intermediaries are involved, all

subchannels must be created/closed before the target VPC can

be opened/closed. (3) VPC with Multiple End Users (MVPCs):

MVPCs [21] are constructed when EUs are more than two. A

specific instance of a five-party VPC is illustrated in Fig. 1(c).

The five EUs: A, B, C, D, and E, are interconnected via

LPCs. B chooses not to participate in γ, so it acts as the

intermediary in the 2VPC-1 between A and C. A contract

instance is initialized in each subchannel as a replica of γ. The

creation of MVPC is also off-chain, but it requires consensus

from all EUs.

III. NETWORK MODEL AND PROBLEM FORMULATION

In this section, we describe the network model and present

our problem formulation.

A. Network Model
The payment channel network (PCN) can be modeled

as a bidirectional weighted graph G = (V, E). V =
{v1, v2, . . . , vn} is the set of n nodes, every node vi in the

network represents a user who holds a cryptocurrency account

and has at least one LPC with another user. E = {ei,j |vi, vj ∈
V} is the set of m directional edges, and i ↔ j represents a

bidirectional channel between nodes vi and vj . Let δ̄i,j denote

the balance on ei,j . Let δi,j denote the maximum locked
balance (MLB) that vi would offer to be locked for VPC

construction on channel ei,j . It is reasonable that δ̄i,j ≥ δi,j ,

since vi is unable to lock more balance than the original

balance. For those who are not willing to participate in the

VPC construction, δi,j = 0. Note that the MLBs are public

data, which will not expose the private balance information.

Let M = {δi,j |δi,j > 0, ∀ei,j ∈ E} denote the set of MLBs

from those nodes who are willing to participate. In addition,

let N = {(s1, t1), . . . , (sK , tK)} denote the set of K node

pairs requesting VPC construction between them. A virtual
payment channel network (VPCN) is a network of VPCs

between nodes in a PCN. Thus, we leave this topic for our

future work.

B. Problem Formulation
Any node pair (s, t) that does not have a LPC connecting

them can choose to construct a VPC, where s and t are the

two EUs. The virtual channel type we are interested in is

the two-party VPC between a node pair (s, t). Given that

the PCN is bidirectional and VPC is constructed on top of

a path, an underlying ledger channel path (ULP) P is

two directed paths traversing the same nodes but in reverse

directions between a node pair and it is the bottom structure of

the VPCs. Let P = {P s→t, P t→s} denote a bidirectional path

s ↔ I1 ↔ I2 ↔ . . . ↔ Id ↔ t, where IP = {I1, I2, . . . , Id}
is the set of d intermediaries. Here P s→t is the directional

path from s to t: s → I1 → I2 → . . . → Id → t, and P t→s is

the other directional path from t to s: t → Id → . . . → I2 →
I1 → s. We are only interested in simple paths for which the

nodes in the sequence are distinct. For K pairs, we have the

ULP set P = {P1, P2, . . . , PK}.

The MLB of a path, denoted by δ(P s→t) is the mini-

mum of the MLBs on the edges along the path P s→t, i.e.,

δ(P s→t) = min({δi,j : ∀ei,j ∈ P s→t}). Similarly, δ(P t→s)
denotes the MLB of the path P t→s. In addition, we define

the maximum capacity as c := as,t + at,s for the constructed

VPC γ, where as,t and at,s represent the maximum balance

that s and t can respectively contribute to γ. We define the new

metric Capacity to the Number of Intermediaries (CNIR)
as r := c

d . The rationale of introducing CNIR is two-fold: 1)

a larger capacity can support more potential transactions over

the constructed VPC; and 2) a fewer number of intermediaries

means less collateral will be locked and less fee will be

charged to the end users. Thus, it is logical to aim for high

CNIR in VPC construction.

A modular recursive approach is applied to construct a VPC

on a ULP that has more than one intermediary, where VPCs

are constructed recursively on top of VPC or other already

constructed VPCs [20]. We extend the concept of subchannels
to any two channels (VPC or LPC) that constitute a VPC

in our paper. We use Fig. 2 as an example to show the

relationship between the capacity and MLBs in the recursive

VPC construction process. The initial MLB values on i ↔ j
and j ↔ k is shown in Fig. 2(a). vi and vk desire to construct

a VPC γi,k between them. vi, vj and vk need to lock a certain

amount of balances to construct γi,k from the two subchannels

i ↔ j and j ↔ k. Therefore, the balance distribution in the

subchannels changes after γi,k is constructed, as shown in

Fig. 2(b). The maximum balance ai,k that node vi can put on

γi,k should be mutually determined by δi,j and δj,k. Intuitively,

this amount should not be more than what vi can maximally

offer (δi,j) and what vj can lock in represent of vi (δj,k).

Therefore, in order to reach the maximum capacity of γi,k:

ai,k = min(δi,j , δj,k), ak,i = min(δk,j , δj,i) (1)

In this case, the two subchannels i ↔ j and j ↔ k con-

struct γi,k with the maximum capacity c = min(δi,j , δj,k) +
min(δk,j , δj,i). The total MLB δi,j + δj,i + δj,k + δk,j in

Fig. 2(b) remains the same as in Fig. 2(a). Once γi,k is

built, a new bidirectional edge i ↔ k is added to the VPCN.

However, the distribution of the MLB changes: the MLB on

the subchannels decreases, while the MLB on the newly built

VPC increases.

(a) Before γi,k being constructed

(b) After γi,k being constructed

... ...

............

(c) Before γi,l being constructed

(d) After γi,l being constructed

Fig. 2. Recursive VPC construction model

The two-party VPC in Fig. 2(a) can be seen as a building
unit for those VPCs on longer ULPs, where the two sub-

channels can be extended to any channel type as introduced

in Section II. They can either be both VPCs, or one VPC

and one LPC, or both LPCs. If now vl wants to build

a VPC with vi, then vl and vi need to utilize γi,k and

k ↔ l as the two subchannels as shown in Fig. 2(c). In

order to reach the maximum capacity for the constructed

VPC, we assign ai,k to the MLB of vi on the new ei,k:

δi,k = ai,k. Symmetrically, we have δk,i = ak,i. After

the γi,l is constructed as shown in Fig. 2(d), the balance

distribution pattern is similar to Fig. 2(b). Similarly, we

have ai,l = min(δi,k, δk,l) = min(min(δi,j , δj,k), δk,l) and

al,i = min(δl,k, δk,i) = min(δl,k,min(δk,j , δj,i)). By this

bottom-up construction from γi,j to γi,l, the two-party VPC

γi,l with one more intermediary than γi,j is being built. The

construction order is from γi,j to γi,l, and γi,l is considered

as a upper-level VPC of γi,k.

The construction is a recursive bottom-up process that starts

from LPCs to the target VPC [20]. It is assumed that the

subchannels of the VPCs will be prevented from being closed

until these VPCs are closed. There is a special real-time value

named “validity” [18] that the two parties of the VPC agree on

when the VPC is opened to prevent the EUs from maliciously

letting the intermediaries’ money be locked forever in their

VPCs. The VPC will be closed as the validity of time passes,

which differs from the LPCs where the close phase is initiated

by the parties of the channel.

In this paper, we focus on the following protocol design

problem: given multiple node pairs in a PCN, we aim to design

a protocol to construct a VPCN connecting these node pairs

with high CNIRs.

IV. DESIGN RATIONALE AND CHALLENGES

A. Design Rationale

When VPCs are created, all involved intermediaries need
to lock a certain amount of balance as collateral. Their
locked funds become unavailable until the upper-level VPCs
are closed. Existing protocols [18], [20] related to the two-
party VPCs involving more than one intermediary do not
consider the collateral held by intermediaries during the VPC
construction. Thus, it is necessary to design a protocol that can
strategically select ULPs for the node pairs while considering
the resulting capacity of the constructed VPCs and the number
of involved intermediaries.

B. Design Challenges

Thor should achieve the VPC construction with maximum
CNIR for the single-pair case and efficient construction of
VPCs with high CNIR for the multi-pair case. The challenges
are as follows:

• Each node pair can try all of its paths and pick the
one that gives it maximum CNIR. However, it may take
exponential time as the number of paths of the node pair
may not be polynomially bounded.

• Various subchannels and construction orders exist even
when forming the target VPC on top of the same ULP.
Before the node pair finds a ULP with to construct
their VPC, we need to figure out whether the order they
construct the subchannels affects the capacity of the VPC.

• Breadth-First Search (BFS) [24] can be used to search
a BFS tree data structure. The resulting BFS tree can
be utilized to discover paths and exclusively identify the
shortest path connecting a pair of nodes. Even though
Breadth-First Search ensures the minimum number of
intermediaries, it does not ensure the highest CNIR.

• A solution to the problem of the single-pair case cannot
be directly applied to the multi-pair case due to the mutual
influence and competence between those ULPs sharing
common LPCs. In addition, each path’s allocated MLB
can be computed after considering all path selections.
Thus how to compute the available MLB on each edge
before path selection has not been solved yet.

V. DESIGN OF Thor

Thor is based on three algorithms: Optimal ULP Finding
for Single Pair (Algorithm 1), MLB computation for ULPs
(Algorithm 2), and Efficient ULPs Finding for Multiple Pairs
(Algorithm 3). Before introducing our algorithms, we first
prove that the construction order does not affect the maximum
capacity of the constructed VPC, then we address the rest
challenges by introducing Algorithm 1 for finding the optimal
ULP with maximum CNIR in the single-pair case. Finally, we
use Algorithm 2 and Algorithm 3 to solve the problem of the
multi-pair case based on Algorithm 1.

A B C D E F
5 4 2 5 3 10 5 1 5 3

γ2γ1
γ34 2

4 2
1 52 1

2 4
2 4

5 1

γ4
1 2

(a) First topology of the VPC between node A and F

A B C D E F
5 4 2 5 3 10 5 1 5 3

γ2γ1
γ3

γ4
2 131

1 5

1

1

2

42
3

5
1

4 2

(b) Second topology of the VPC between node A and F

Fig. 3. We present two examples to demonstrate that different subchannel
topology of γ4 does not impact the maximum capacity of γ4.

A. Capacity is Independent of the Construction Order

Theorem 1. The maximum capacity c of the virtual state chan-
nel γ for the node pair (s, t) on a ULP P = {P s→t, P t→s} is
the sum of both δ(P s→t) and δ(P t→s) and the construction
order of the subchannels does not affect the maximum capacity
of γ:

as,t = δ(P s→t), at,s = δ(P t→s) (2)
c = as,t + at,s = δ(P s→t) + δ(P t→s) (3)

Proof. The capacity c consists of two portions as,t and at,s as
shown in Eq. (1). We will show that both as,t and at,s come
from multiple min-comparisons of the MLB values all the way
from its P . Suppose there is a number of d intermediaries
in P = s ↔ I1 ↔ I2 ↔ . . . ↔ Id ↔ t. Given the
bottom-up construction approach, we consider the sequence
in which the subchannels are constructed: starting from γs,I1 ,
then proceeding to γs,I2 , γs,I3 . . ., until reaching the γ. Each
two consecutive constructed VPCs differs by the length of
one intermediary. Since P is bidirectional, the two maximum
amounts as,t and at,s should follow:

as,t = min(. . .(min(δs,I1 , δI1,I2), . . .), δId,t) (4)
at,s = min(. . .(min(δI1,s, δI2,I1), . . .), δs,I1) (5)

Then we have as,t = δ(P s→t) and at,s = δ(P t→s)
based on the definition of the MLB of a path. Thus, we
prove Eq. (2) based on Eq. (4) and Eq. (5) for the above
construction order. Following the definition of capacity, we
have Eq. (3). Additionally, all MLBs in Eq. (4) and Eq. (5)
originate from the bottom LPC channels. Instead of nesting
multiple min-operations, directly extracting the smallest MLB
from the set of MLBs on P gives the same result (for example,
min(min(min(a, b), c), d) = min(a, b, c, d)). In other words,
the MLB order in the nested min-operations in Eq. (4) and
Eq. (5) is indeed the construction order of the subchannels.
This order does not affect δ(P s→t) and δ(P t→s) since the
minimum value can be directly extracted. In return, the con-
struction order does not affect the maximum capacity of γ.

Fig. 3 demonstrates this unique characteristic described in
Theorem 1. The examples showcase two different subchannel

Algorithm 1: Optimal ULP Finding for Single Pair
Input: network G = (V, E), MLB set M and node

pair (s, t)
Output: maximum CNIR r and ULP {P s→t, P t→s}

1 rmax ← 0, Pmax ← {};
2 for t1 ∈M and t2 ∈M do
3 Find a shortest bidirectional path

P = {P s→t, P t→s} from s to t, such that
δ(P s→t) ≥ t1 and δ(P t→s) ≥ t2;

4 Compute r using Eq. (6);
5 if r > rmax then rmax ← r, Pmax ← P ;
6 end
7 return rmax and Pmax

topologies for the same target γ4. Both ways of construction
follow a bottom-up approach, meaning that the construction
is as follows: γ1 → γ2 → γ3 → γ4. For γ1 in Fig. 3(a), the
intermediary is B and the two EUs are A and C. The maxi-
mum amount that A can lock on γ1 is aA,C = min(5, 2) = 2.
Similarly, we have aC,A = min(4, 5) = 4. Then we have
aA,C = aB,C = 2 and aC,A = aB,A = 4. Similar min-
operations are then done recursively for γ2, γ3, and γ4. Finally,
we have aA,F = 2 and aF,A = 1. Another construction for γ4
on the same ULP but with different subchannel constructions
is shown in Fig. 3(b). However, the maximum capacity of γ4
is 2 + 1 = 3 in both Fig. 3(a) and Fig. 3(b). The capacity is
from the two highlighted MLBs: 2 is the MLB of the path
from A to F and 1 is the MLB of the path from F to A.

Based on Theorem 1, the problem of finding a ULP with
maximum CNIR can be restated as to find such a ULP for the
node pair (s, t), such that the sum of the two MLBs δ(P s→t)
and δ(P t→s) over the number of intermediaries d on this ULP
is the maximum.

r =
δ(P s→t) + δ(P t→s)

d
(6)

However, the original BFS does not support finding such an
optimal ULP with the maximum CNIR in polynomial time. We
need to modify BFS carefully.

B. ULP Finding for the Single-pair Case

We first designed the optimal algorithm for a single pair to
find the ULP with maximum CNIR shown in Algorithm 1.
As we aim to identify ULPs with the maximum CNIR of the
target virtual channel capacity to the number of intermediate
parties for a node pair, we first fix the two thresholds t1 and t2
for s→ t and t→ s directions, respectively (Line 2). The two
threshold ranges are bounded by the set of MLB valuesM. In
total, there are |M|2 such iterations. Only when the two MLBs
satisfy δu,v ≥ t1 for the edge eu,v on s → t direction and
δv,u ≥ t2 for the edge ev,u on t → s direction, the neighbor
v of u can be added to the ULP P . The rmax should have
two corresponding ULPs P s→t and P t→s. In the end, the
maximum CNIR r and its Pmax are returned. To summarize,
the complexity of Algorithm 1 should be O(m2(n+m)) due
to the outer for-loop O(m2) and the inner BFS O(n+m).

Lemma 1. When the two thresholds are at t1 = t′1 and
t2 = t′2, the ULP that Algorithm 1 returns under the iteration
combination of t′1 and t′2 for node pair (s, t) satisfies that
δ(P s→t) ≥ t′1 and δ(P t→s) ≥ t′2.

Proof. In Algorithm 1, for a node pair (s, t), every bidi-
rectional edge u ↔ v added to the BFS tree under each
iteration combination of t1 and t2 always guarantees that
δu,v ≥ t′1,∀(u, v) ∈ P s→t, and similar for δv,u: δv,u ≥
t′2,∀(v, u) ∈ P t→s. Since the MLB of every bidirectional edge
added to the BFS tree has the above property, then the MLB
should also have this property: δ(P s→t) ≥ t′1, symmetrically
we have δ(P t→s) ≥ t′2. Thus we have proved the lemma.

Theorem 2. Algorithm 1 returns the optimal ULP with max-
imum CNIR for node pair (s, t) in a bidirectional connected
network G(V, E).

Proof. First, if the network is connected and the two nodes
of the pair are not directly connected, there must exist at
least one ULP between them, otherwise, the network becomes
disconnected. We also need to prove that the maximum CNIR
ULP must exist in at least one iteration of the combination of
the two thresholds. We prove it by contradiction.

Suppose there exists a ULP with the maximum CNIR
r′ =

t′1+t′2
d′ under two MLBs t′1 and t′2 with a number of

d′ intermediaries, but it is not returned in any combination of
t1 ∈ M and t2 ∈ M. Obviously, such ULP cannot be found
when t1 > t′1 and t2 > t′2 (according to Lemma 1). But what
if t1 ≤ t′1 and t2 ≤ t′2?

We first consider when t1 = t′1 and t2 = t′2. Follow
our consumption for contradiction proof, Algorithm 1 should
return a ULP with a smaller CNIR r′′ =

t′′1 +t′′2
d′′ than r′,

given that d′′ ≤ d′ (shortest path is always a by-product of
BFS [24]), t′′1 ≥ t′1 and t′′2 ≥ t′2 (Lemma 1). Then we have the
CNIR for this ULP r′′ =

t′′1 +t′′2
d′′ ≥ t′1+t′2

d′ , which contradicts
the hypothesis that t′1+t′2

d′ should be the highest ratio, thus it
is already enough to prove Theorem 2.

Regarding t1 < t′1 and t2 < t′2, we know that the shortest
ULP is always returned, but it is not guaranteed that the
maximum CNIR ULP is returned. Consequently, we have also
demonstrated that if there is a minimum of one optimal ULP
between node s and t with two MLBs t′1 and t′2, it ought to
be discovered at least when t1 = t′1 and t2 = t′2. Hence, we
have proved Theorem 2.

C. ULPs Finding for the Multi-pair Case

In this section, we aim to design an algorithm to find ULPs
with the maximum CNIR for the multi-pair case, which is
the core of the Thor protocol. To address this problem, we
design our algorithm that is inspired by the game theory-
based algorithm in [25]. The network routing problem in [25]
was formulated as a game, where each source-destination
pair is a player and the objective of each player is to find
a path with the maximum bandwidth under the max-min
fair bandwidth allocation. Their algorithm converges to a set

of best response paths for all players, where no player can
increase its bandwidth by unilaterally changing its path.

Since multiple ULPs may share a common edge, it is
necessary to decide how to allocate MLBs among these
ULPs. Algorithm 2 is designed to compute the MLB
of each ULP given a set of ULPs under the max-
min fair allocation principle proposed in [25]. Let ∆ =
(δ(P s→t

1), δ(P t→s
1), . . . , δ(P s→t

K), δ(P t→s
K)) denote the MLB

vector and let r = (r1, r2, . . . , rK) denote the CNIR vector.
The primary idea of Algorithm 2 is to calculate the global
MLB bottleneck bg = argminei,j∈E

δi,j
wi,j

iteratively, where bg
is defined as the edge possessing the least even share of the
MLB and wi,j is the number of ULPs that utilizes ei,j (Line 5).
Any ULP in the directional ULP set that uses bg gets an
equal share of the MLB on bg and then is removed from the
network. The MLBs are decreased by the MLB consumed
from the removed ULPs. The above procedures are repeated
until the directional ULP set becomes empty (Lines 5 to 14).
Finally, we can use ∆ to calculate the CNIR for every node
pair (Line 16). We use Fig. 4(a) as an example to demonstrate
Algorithm 2. In the first iteration, eC,B is selected as bg as
δC,B

wC,B
= 1, then we get δ(P2) = δ(P4) = 1. In the second

iteration, δ(P3) = δ(P5) = 1.5 and bg = eC,E . In the
final iteration, δ(P1) = δ(P6) = 1.5 and bg = eC,D, the
resulting network is shown in Fig. 4(b). The CNIR for a pair
can only be calculated after both MLBs of P s→t and P t→s

are returned. Finally, we can get the three ratios for the node
pairs: r1 = δ(P1)+δ(P2)

2 = 1.25, r2 = δ(P3)+δ(P4)
2 = 1.25

and r3 = δ(P5)+δ(P6)
1 = 3. Algorithm 2 has a complexity of

O(Km).

A B C

D

4 6 4 2
3
6

3
6

E

(a) Before running Algorithm 2

A B C

D

1 4 1 x
x 3
.5

x 3.5

E

(b) After running Algorithm 2

Fig. 4. An example with six ULPs for three node pairs (A,D), (A,E) and
(D,E): P1 = A) B) C) D, P2 = D) C) B) A, P3 = A) B) C)

E, P4 = E) C) B) A, P5 = D) C) E, P6 = E) C) D. Removed
edges are denoted with “x”.

Let us introduce more notations. When the ULP of the
node pair (sk, tk) Pk is not in the network, let P−k =
{P1, · · · , Pk−1, Pk+1, · · · , PK} denote the set of ULPs. Let
δ−k(Px) denote the MLB of the ULP Px. Let ∆−k denote
the MLB vector. Let W i,j

−k denote the ULP s of the node pairs
that utilize edge ei,j . Let wi,j

−k = |W i,j
−k| denote the number

pairs sharing edge ei,j . After the node pair (sk, tk) changes
its ULP to P ′

k, let P ′ = {P ′
1, P

′
2, . . . , P

′
K} denote the ULP set

for all node pairs, where P ′
x = Px if x ̸= k.

Definition 1. [Best Response ULP] The best response ULP
for the node pair (sk, tk) is a ULP Pk given P−k, such that
the CNIR rk is maximized.

Next, we introduce the concept of observed available MLB
followed by the observed available bandwidth in [25], which

Algorithm 2: MLB computation for ULPs
Input: network G, MLB set M and ULP set P
Output: MLB vector ∆ and CNIR vector r

1 Ec ← E ,Pc ← ∅, δci,j ← δi,j ,∀ei,j ∈ E ;
2 foreach k ∈ [1,K] do Pc ← Pc ∪ {P s→t

k } ∪ {P t→s
k };

3 δ(P)← 0,∀P ∈ Pc;
4 while Pc ̸= ∅ do
5 bg ← argminei,j∈E

δci,j
wi,j

;

6 δtemp ←
δcbg
wbg

;
7 for P ∈ Pc and bg ∈ P do
8 δ(P)← δtemp;
9 forall ei,j ∈ P do

10 δci,j ← δci,j − δ(P);wi,j ← wi,j − 1;
11 if δci,j = 0 then Ec ← Ec \ ei,j ;
12 end
13 Pc ← Pc \ {P};
14 end
15 end
16 for k ∈ [1,K] do rk ← δ(P s→t

k)+δ(P t→s
k)

len(P s→t
k)−1

;
17 return ∆ and r

will be helpful in explaining Algorithm 3. We leave the proof
of the correctness of observed available MLB in [25]. The
observed available MLB δ◦i,j of edge ei,j ∈ E are calculated
based on the following equations:

Ŵi,j
−k(x) = {z | z ∈ W

i,j
−k ∧ δ−k (Pz) < δ−k (Px)} (7)

Wi,j

−k = {x | x ∈ Wi,j
−k ∧ δ−k(Px) ≥

δi,j−
∑

z∈Ŵi,j
−k

(x)

δ−k(Pz)

wi,j
−k−|Ŵi,j

−k(x)|+1
}

(8)

δ◦i,j =

δi,j −
∑

x∈Wi,j
−k\W

i,j
−k

δ−k (Px)∣∣∣Wi,j

−k

∣∣∣+ 1
(9)

Ŵi,j
−k(x) is the set of pairs whose current assigned MLB is

less than the pair x on edge ei,j . Wi,j

−i is the set of pairs such
that the newly assigned MLB is at least as large as the MLB
of any other pairs. The observed available MLB on all edges
can be computed in O(K logK+mK) time for K pairs [25].

Now we introduce Algorithm 3 that is designed to find a set
of ULPs for the K node pairs, such that no pair can increase
its CNIR by unilaterally changing its ULP. We abbreviate the
Algorithm 1 as Ag1 and Algorithm 2 as Ag2 in Algorithm 3
to save space. Algorithm 3 proceeds in a round-robin fashion
with only one node pair changing its ULP at each state.
Algorithm 3 starts with calculating the initial ULP set (Lines 2
to 5). Then when a node pair plans to change its ULP, it runs
the following steps until no ULP is changed in the ULP set:

1) Calculate the MLB vector ∆ and the CNIR vector r for
all ULPs using Algorithm 1 (Lines 8).

2) Calculate the MLB vector ∆−k for the set of ULPs
without Pk using Algorithm 1(Line 9).

Algorithm 3: Efficient ULPs Finding for Multiple
Pairs
Input: network G = (V, E) and MLB set M
Output: ULP set P

1 P ← ∅;
2 foreach k ∈ [1,K] do
3 Run Ag1(G,M, (sk, tk)) to obtain Pk;
4 P ← P ∪ {Pk};
5 end
6 repeat
7 foreach k ∈ [1,K] do
8 Run Ag2(G,M,P) to obtain ∆ and r;
9 Run Ag2(G,M,P \ {Pk}) to obtain ∆−k;

10 Compute Mo using Eq. (9);
11 Run Ag1(G,Mo, (sk, tk)) to obtain

r′k and P ′
k;

12 if r′k > rk then Pk ← P ′
k ;

13 P ← P ∪ {Pk};
14 end
15 until no ULP is changed ;
16 return P.

3) Calculate the observed available MLBsMo for all edges
using Algorithm 2 (Line 10).

4) Re-select a ULP for pair (sk, tk) based on the resulting
network using Algorithm 1 (Line 11), if the new CNIR
is higher than the old one, then the old ULP is replaced,
otherwise the old ULP is kept (Line 12).

5) Add the updated ULP to the ULP set (Line 13).
Now we prove the convergence of Algorithm 3.

Lemma 2. Assume that the node pair (sk, tk) changes its ULP
from Pk to P ′

k. Define W = {1, 2, . . . ,K}, W= = {x ∈ W |
rx = r′x}, W↑ = {x ∈ W | rx < r′x}, and W↓ = {x ∈ W |
rx > r′x}, then we have min

x∈W↓∪W↑
r′x > min

x∈W↓∪W↑
rx.

Proof. The Lemma 4.1 in [25] has proved that the minimum
bandwidth among the paths whose bandwidths (in our case,
MLB of the path) change increases strictly after a path selfishly
changes its path. First, it is clear that k ∈ W↑, otherwise, the
node pair (sk, tk) has no incentive to change its ULP with a
less CNIR. In addition, the ULP lengths for pairs in W \ {k}
are fixed before and after k changes its ULP. Thus the CNIRs
of these ULPs will strictly change with respect to the changing
pattern of the MLB of the paths (Eq. (6)). This indicates that
the minimum CNIR of W↓ ∪W↑ increases as well. We have
proved that the minimum CNIR among the ULPs whose ratios
change also increases strictly.

Theorem 3. Algorithm 3 converges in O((Knm)K(m2(n +
m))) time, where m is the number of edges, n is the number
of nodes and K is the number of node pairs.

Proof. Theorem 4.1 in [25] proves that the vector of the
bandwidth increases lexicographically (in our case, MLB of
the path). Similarly, we conclude that whenever a node pair
changes its ULP, the CNIR vector r also increases lexico-

graphically (Lemma 2). We know that there is a finite number
of ULPs for each pair. Thus the number of ULP configurations
is finite as well. Now we prove an upper bound on the number
of times the ordering of CNIR can increase. Lemma 6.1
in [25] proves that the MLB value on a global bottleneck
must be equally shared by all ULPs using it. Given that the
CNIR of a ULP is decided by both the MLB and the number
of intermediaries, thus the number of possible values of the
minimum CNIR is bounded by O(Knm). There are at most K
node pairs whose ULPs are at this value. Repeating the same
analysis for all the pairs, we conclude that the upper bound is
O((Knm)K) for K pairs. Therefore, the time complexity of
Algorithm 3 is O((Knm)K(m2(n+m))).

D. VPC Construction Protocol

In Thor, time is divided into discrete time slots. At the begin-
ning of each time slot, each pair that desire to construct a VPC
between them will broadcast its intent. After receiving the
broadcast intents from other pairs, each pair first obtains the
network G = (V, E) andM, which are periodically announced
by users who are interested in joining as intermediaries. Each
node pair then follow Algorithm 3 to select its ULP and
calculate its MLBs. We now prove that all pairs will follow the
Thor protocol in Theorem 4 assuming there is no collusion.

Theorem 4. Each pair has no incentive to not follow the
protocol unilaterally if all other pairs follow.

Proof. Assume pair (sk, tk) does not follow the protocol,
while others follow. Let P−k denote the set of ULPs of other
pairs. Let P ′

k denote the ULP selected by the pair (sk, tk). Let
Pk denote the ULP of pair (sk, tk) if it followed the protocol.
Let r′ and r denote the CNIRs of pair (sk, tk) with these
two ULPs, respectively. By the definition of the best response
ULP, r′ ≤ r. Therefore, pair (sk, tk) cannot increase its CNIR
by not following the Thor protocol.

Each node pair then starts building its own VPC on the
selected ULP concurrently. The computed MLBs are the actual
balances that will be locked on the VPC. Now we introduce
how the recursive process is done on a protocol level using the
computed MLBs from our Algorithm 3. We follow the same
balanced construction as in [20]. Balanced construction means
that s and t construct the subchannels concurrently with their
next closest intermediary from the two ends of the ULP toward
the center of the ULP. Furthermore, the two VPCs used to
build an upper-level VPC have approximately the same length.
Let βs denote the number of the constructed subchannels that
have s as one of their EUs. Let βt denote the number of the
constructed subchannels that have t as one of their EUs. We
have the following relationship between βs and βt when the
number of intermediaries is d:

βs = 1, βt = 0 if d = 1

βs = βt =
d−1
2 if d is odd and d > 1

βs =
d
2 , βt =

d
2 − 1 if d is even and d > 1

(1)

(3) Exchange

(1)
(2) (2)

(a) Basis step

(1) (4)
(5)

(5)

(3) Exchange

(1)
(2) (2)

(4)

(6) Exchange

(b) Recursion step

Fig. 5. A bottom-up recursive VPC construction protocol

We use Fig. 5(a) to illustrate the basis case when the

two subchannels are both LPCs. In this figure, vi and vk
are the two EUs, vj is the intermediary, and the two LPC

channels are i ↔ j and j ↔ k. γi,k is the basis VPC being

constructed. αi, αj and αk are the construction approvals.

A construction approval is a tuple with four attributes. For

EUs, the first is the VPC that needs to be constructed, the

second is the amount of balance that the approval sender

needs to lock, the third is the amount of balance that the

other EU needs to lock and the fourth is the signature of

the sender. Therefore, αi := (γi,k, δ(P
s→t), δ(P t→s), σi)

and αk := (γi,k, δ(P
t→s), δ(P s→t), σk), respectively. For the

intermediary, the difference is that the second and the third

attribute are both the amount of balance that the intermediary

needs to lock on behalf of the two EUs, respectively. There-

fore, αj := (γi,k, δ(P
s→t), δ(P t→s), σj).

The construction of a basis VPC involves three steps [18]:

1) vi and vk send their approvals αi and αk to vj .

2) If vj agrees on both αi and αk, it sends its own approval

αj to vi and vk.

3) vi and vk exchange the αj they received.

Once the above steps are performed, vi locks δ(P s→t) and

vk locks δ(P t→s) from their respective LPCs to construct

γi,k. The same processes can be performed recursively for any

VPC that utilizes a ULP with more than one intermediary. The

recursive step is shown in Fig. 5(b) for any subchannels that

are not both LPCs. vi and vl construct the γi,l on the LPC

k ↔ l and the VPC γi,k. The above three steps of exchanging

messages will be repeated among vi, vk, and vl. To apply the

recursive process in a more general case, now consider such

a ULP P = vi ↔ I1 ↔ I2 ↔ . . . ↔ Id ↔ vq with d in-

termediaries {I1, I2, . . . , Id}. If d is odd, then the constructed

subchannels will be perfectly balanced. vi constructs the first

VPC with I2, then constructs the second VPC with I3, until

it constructs with I d−1
2

. Symmetrically, vq constructs the first

VPC with Id−1, then constructs the second VPC with Id−2,

until it constructs with I d−1
2

. Finally, vi and vq construct the

γi,q with I d−1
2

served as the intermediary. If d is even, then

vi needs to construct one more VPC than vq . Both vi and vq
start the same subchannel building process concurrently until

both vi and vq construct the VPC with I d
2+1. Finally, vi and

vq construct γi,q with I d
2+1 served as the intermediary.

VI. PERFORMANCE EVALUATION

A. Evaluation Setup

We used a core network with 298 nodes and 2093 edges from

the Bitcoin LN on Jan. 25, 2022 [26]. A pre-processing of

40 80 120 160 200
Number of pairs

0

1

2

3

4

N
um

be
r

of
 in

te
rm

ed
ia

rie
s Shortest Thor

(a) Number of pairs vs. number of
intermediaries

40 80 120 160 200
Number of pairs

0

1

2

3

4

5

6

7

Nu
m

be
r o

f i
te

ra
tio

ns

(b) Number of pairs vs. number of
iterations

Fig. 6. Number of intermediary results and convergence results

the whole network was operated to obtain a connected sub-

graph from the original topology. Assume the top 4% with the

highest capacity are participating in constructing the VPC. In

addition, all isolated nodes and nodes with degrees that are less

or equal to 3 were removed to get the largest connected compo-

nent. After prepossessing, the minimum, maximum, and mean

capacities were $4212, $366240, and $13803, respectively.

The number of node pairs was set in the range of 40, 80, 120,

160, and 200 for the VPC constructions. We ran each setting

for 50 times with different seeds to average out random noise.

We evaluated the following evaluation metrics: the number of

hops needed in the transaction phase, CNIR, and the capacity

of the VPCs. The current payment channel construction is

a nascent development without recent algorithms for direct

comparison. Therefore, we compare Thor with the following

baseline algorithms:

1) K-path union (KPU): We first use Algorithm 1 to

compute the ULP for each pair, then use Algorithm 2

to compute the capacity and the CNIR of each ULP

without any further iterations in the multi-pair case.

2) Shortest path (Shortest): Dijkstra algorithm [27] is

deployed for finding the shortest ULP. For the single-

pair case, we compare Shortest with Algorithm 1. For

the multi-pair case, we first use Shortest to find ULPs,

then calculate the CNIR and capacity of each ULP

using Algorithm 2. Note that the current PCN protocol

also uses the shortest path algorithm in routing (PCN-
shortest), thus we also compare Thor with Shortest
for measuring the number of intermediaries.

3) Widest path (Widest): The widest path algorithm [28] is

deployed for finding ULPs that maximize the capacities

of the ULPs. For the single-pair case, we compare

Widest with Algorithm 1. For the multi-pair case, we

first use Widest to find ULPs, then calculate the CNIR

and capacity of each ULP using Algorithm 2.

B. Results

Fig. 6(a) shows the number of intermediaries involved in

Shortest and Thor. Shortest shows higher maximum, min-

imum, and average of the intermediaries compared to Thor.
This is due to the HTLC routing protocol used in a PCN, where

routers are needed during the transaction phase. However, the

40 80 120 160 200
Number of pairs

2000

3000

4000

5000

6000

7000
CN

IR

Shortest Widest Thor

(a) Number of pairs vs. CNIR

40 80 120 160 200
Number of pairs

2000

4000

6000

8000

10000

12000

Ca
pa

ci
ty

Shortest Widest Thor

(b) Number of pairs vs. capacity

Fig. 7. Comparison results for the single-pair case

pair of users make transactions through the VPC between

them in a VPCN, thus only one hop is needed. This is

beneficial for those pairs who desire to make transactions

without going through routers. The convergence results are

shown in Fig. 6(b), where one iteration is from Line 6 to

Line 15 in Algorithm 3. The average number of iterations

increases with the number of node pairs. We also observe

that the average number of iterations is less than 10 in all

cases studied, which is far less than the theoretic bound in

Theorem 3.

Fig. 7 shows the performance of the three algorithms in

CNIR and capacity with respect to the number of pairs in

the single-pair case. Each pair runs Algorithm 1 individually

and obtains their CNIR and capacity. Fig. 7(a) and Fig. 7(b)

show the average CNIR and average capacity for the three

algorithms Shortest, Widest and Thor. In Fig. 7(a), Thor
outperforms the Shortest and Widest algorithms in terms of

CNIR. This is because Thor is optimal in finding the ULP

with the maximum CNIR for the single-pair case (Theorem 2).

In Fig. 7(b), the Shortest, which considers only the shortest

ULP, inherently can only achieve lower capacity than Thor
and Widest, respectively. Widest always selects a ULP with

the highest capacity, thus it has the best performance in

capacity compared to the other two algorithms. Thor considers

CNIR and can reach a relatively bigger capacity than Short-
est, but it does not guarantee the maximum capacity.

Fig. 8 shows the performance of the four algorithms with the

increase of the number of pairs in terms of CNIR and capacity

for the multi-pair case. Fig. 8(a) shows the CNIR achieved by

Thor, Shortest, Widest, and KPU algorithms in the multi-

pair case. It is observed that Thor always outperforms the other

three algorithms in CNIR at any number of pairs. A factor

contributing to the higher CNIR is that Thor lets the node pair

select the best response ULP. Widest shows better CNIR, this

is because Widest still considers the capacity while Shortest
does not. For KPU, it uses Algorithm 1 to find the ULPs and

then calculate the CNIR for all pairs using Algorithm 2. Even

though KPU selects the ULPs based on the maximum CNIR

in the single-pair case, the returned ULP set is not the best

response path set in the multi-pair case. Thus, the actual CNIR

achieved by KPU is less than Thor in the multi-pair case.

Fig. 8(b) shows the capacity achieved by the four algorithms

40 80 120 160 200
Number of pairs

3000

4000

5000

6000

7000

8000

CN
IR

Shortest Widest KPU Thor

(a) Number of pairs vs. CNIR

40 80 120 160 200
Number of pairs

2000

4000

6000

8000

10000

12000

Ca
pa

ci
ty

Shortest Widest KPU Thor

(b) Number of pairs vs. capacity

Fig. 8. Comparison results for the multi-pair case

when the number of pairs ranges from 40 to 200. Shortest
selects ULPs based on the least number of intermediaries

without considering the capacity of the ULP, hence it is

expected to have the least average capacity. Widest chooses

ULPs based on the maximum capacity of the ULP for each pair

in the multi-pair case. However, the actual allocation of the

MLB for those ULPs is computed mutually after all ULPs are

selected by Widest in Algorithm 2. Thus, even though Widest
initially finds the ULPs with the maximum capacity, the actual

capacities of these selected ULPs should be determined by the

allocated MLBs, which are not guaranteed to be the maximum

capacities for all pairs. In addition, since there is no iteration

performed and no node pair can select ULP with better CNIR

in KPU, KPU shows less capacity compared to Thor.
Both CNIR and capacity achieved by all algorithms decrease

as the number of node pairs increases in Fig. 8. This is

expected due to the competence of MLB on the shared

common edges. A decrease in MLB negatively impacts the

CNIR and capacity for the multi-pair case.

To summarize, our evaluation results show the importance

of constructing VPC in help reduce the number of interme-

diaries for transactions. In addition, for the single-pair case,

the results show that Algorithm 1 can find ULPs with the

maximum CNIR. For the multi-pair case, the results show that

Algorithm 3 converges to the best response ULPs rapidly and

achieves very good CNIR as well as capacity.

VII. CONCLUSION

In this paper, we introduced the new metric CNIR and investi-

gated the virtual payment channel construction protocol Thor.
We mainly studied the problem of how to construct VPCs

for the single-pair case and the multi-pair case. We stated a

set of design rationales and challenges for the Thor design.

We designed our algorithm to find the ULP with maximum

CNIR for the single-pair and to efficiently find the ULPs for

multiple pairs based on the single-pair case. We also designed

the VPC construction protocol for multiple users to construct a

VPCN concurrently. We proved that Thor can construct VPC

with maximum CNIR for the single-pair case and construct a

VPCN for multiple pairs. The evaluation results demonstrate

that Thor can find the ULP with maximum CNIR for the

single-pair case, and reach high CNIR for the multi-pair case.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized business review, p. 21260, 2008.

[2] S. Wang, Y. Yuan, X. Wang, J. Li, R. Qin, and F.-Y. Wang, “An overview
of smart contract: architecture, applications, and future trends,” in 2018
IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018, pp. 108–113.

[3] S. Kim, Y. Kwon, and S. Cho, “A survey of scalability solutions
on blockchain,” in 2018 International Conference on Information and
Communication Technology Convergence (ICTC). IEEE, 2018, pp.
1204–1207.

[4] A. Hafid, A. S. Hafid, and M. Samih, “Scaling blockchains: A compre-
hensive survey,” IEEE access, vol. 8, pp. 125 244–125 262, 2020.

[5] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain
instant payments,” 2016.

[6] R. Network-Fast, “cheap, scalable token transfers for ethereum,” Ac-
cessed: Jul, vol. 7, p. 2020, 2018.

[7] Q. Bai, Y. Xu, and X. Wang, “Understanding the benefit of being patient
in payment channel networks,” IEEE Transactions on Network Science
and Engineering, vol. 9, no. 3, pp. 1895–1908, 2022.

[8] V. Sivaraman, S. B. Venkatakrishnan, K. Ruan, P. Negi, L. Yang,
R. Mittal, G. Fanti, and M. Alizadeh, “High throughput cryptocurrency
routing in payment channel networks,” in 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20), 2020, pp.
777–796.

[9] Y. Zhang and D. Yang, “Robustpay: Robust payment routing protocol
in blockchain-based payment channel networks,” in 2019 IEEE 27th
International Conference on Network Protocols (ICNP). IEEE, 2019,
pp. 1–4.

[10] R. Yu, G. Xue, V. T. Kilari, D. Yang, and J. Tang, “Coinexpress: A
fast payment routing mechanism in blockchain-based payment channel
networks,” in 2018 27th international conference on computer commu-
nication and networks (ICCCN). IEEE, 2018, pp. 1–9.

[11] A. Miller, I. Bentov, S. Bakshi, R. Kumaresan, and P. McCorry, “Sprites
and state channels: Payment networks that go faster than lightning,” in
Financial Cryptography and Data Security: 23rd International Confer-
ence, FC 2019, Frigate Bay, St. Kitts and Nevis, February 18–22, 2019,
Revised Selected Papers. Springer, 2019, pp. 508–526.

[12] T. Close and A. Stewart, “Forcemove: an n-party state channel protocol,”
Magmo, White Paper, 2018.

[13] F. Engelmann, H. Kopp, F. Kargl, F. Glaser, and C. Weinhardt, “Towards
an economic analysis of routing in payment channel networks,” in
Proceedings of the 1st workshop on scalable and resilient infrastructures
for distributed ledgers, 2017, pp. 1–6.

[14] E. Rohrer, J.-F. Laß, and F. Tschorsch, “Towards a concurrent and
distributed route selection for payment channel networks,” in Data
Privacy Management, Cryptocurrencies and Blockchain Technology:
ESORICS 2017 International Workshops, DPM 2017 and CBT 2017,
Oslo, Norway, September 14-15, 2017, Proceedings. Springer, 2017,
pp. 411–419.

[15] S. Mazumdar, S. Ruj, R. G. Singh, and A. Pal, “Hushrelay: A privacy-
preserving, efficient, and scalable routing algorithm for off-chain pay-
ments,” in 2020 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC). IEEE, 2020, pp. 1–5.

[16] G. Di Stasi, S. Avallone, R. Canonico, and G. Ventre, “Routing payments
on the lightning network,” in 2018 IEEE international conference on
internet of things (IThings) and IEEE green computing and commu-
nications (GreenCom) and IEEE cyber, physical and social computing
(CPSCom) and IEEE smart data (SmartData). IEEE, 2018, pp. 1161–
1170.

[17] P. McCorry, M. Möser, S. F. Shahandasti, and F. Hao, “Towards
bitcoin payment networks,” in Information Security and Privacy: 21st
Australasian Conference, ACISP 2016, Melbourne, VIC, Australia, July
4-6, 2016, Proceedings, Part I 21. Springer, 2016, pp. 57–76.

[18] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski, “Perun: Virtual
payment hubs over cryptocurrencies,” in 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 2019, pp. 106–123.

[19] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in Proceedings 42nd IEEE Symposium on
Foundations of Computer Science. IEEE, 2001, pp. 136–145.

[20] S. Dziembowski, S. Faust, and K. Hostáková, “General state channel
networks,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 949–966.

[21] S. Dziembowski, L. Eckey, S. Faust, J. Hesse, and K. Hostáková, “Multi-
party virtual state channels,” in Advances in Cryptology–EUROCRYPT
2019: 38th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Darmstadt, Germany, May 19–23,
2019, Proceedings, Part I 38. Springer, 2019, pp. 625–656.

[22] C. D. Clack and C. McGonagle, “Smart derivatives contracts: the isda
master agreement and the automation of payments and deliveries,” arXiv
preprint arXiv:1904.01461, 2019.

[23] N. Papadis and L. Tassiulas, “Blockchain-based payment channel net-
works: Challenges and recent advances,” IEEE Access, vol. 8, pp.
227 596–227 609, 2020.

[24] A. Bundy and L. Wallen, “Breadth-first search,” Catalogue of artificial
intelligence tools, pp. 13–13, 1984.

[25] D. Yang, G. Xue, X. Fang, S. Misra, and J. Zhang, “Routing in max-
min fair networks: A game theoretic approach,” in The 18th IEEE
International Conference on Network Protocols. IEEE, 2010, pp. 1–10.

[26] “The Lightning Network.” [Online]. Available: https://lightning.network/
[27] E. W. Dijkstra, “A note on two problems in connexion with graphs,” in

Edsger Wybe Dijkstra: His Life, Work, and Legacy, 2022, pp. 287–290.
[28] A. P. Punnen, “A linear time algorithm for the maximum capacity path

problem,” European Journal of Operational Research, vol. 53, no. 3,
pp. 402–404, 1991.

	Introduction
	Background Overview
	Network Model and Problem Formulation
	Network Model
	Problem Formulation

	Design Rationale and Challenges
	Design Rationale
	Design Challenges

	Design of Thor
	Capacity is Independent of the Construction Order
	ULP Finding for the Single-pair Case
	ULPs Finding for the Multi-pair Case
	VPC Construction Protocol

	Performance Evaluation
	Evaluation Setup
	Results

	Conclusion
	References

