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Hybrid Persistency of Excitation in Adaptive Estimation
for Hybrid Systems

A. Saoud M. Maghenem

Abstract— We propose a framework of stability analysis for a
class of linear non-autonomous hybrid systems, with solutions
evolving in continuous time governed by an ordinary differential
equation and undergoing instantaneous changes governed by a
difference equation. Furthermore, the jumps may also be triggered
by exogeneous hybrid signals. The proposed framework builds
upon a generalization of notions of persistency of excitation (PE)
and uniform observability (UO), which we redefine to fit the realm
of hybrid systems. Most remarkably, we propose for the first time in
the literature a definition of hybrid persistency of excitation. Then,
we establish conditions, under which hybrid PE is equivalent to
hybrid UO and, in turn, uniform exponential stability (UES). Our
proofs rely on an original statement for hybrid systems, expressed
in terms of £, bounds on the solutions. We illustrate the utility of
our results on a generic adaptive estimation problem.

[. INTRODUCTION

Persistency of excitation (PE), roughly speaking, is the
property of a function of time that consists in the function’s en-
ergy never vanishing. Over five decades, several mathematical
definitions of PE have been proposed in various contexts (e.g.,
depending on whether the said function evolves in continuous
or in discrete time) to guarantee different stability properties.
For linear continuous-time-varying systems, some PE proper-
ties guarantee uniform (in the initial time) exponential stability
[1] or uniform global asymptotic stability [2]. For results
concerning systems evolving in discrete time, we refer to [3],
[4], where the concept of PE was originally introduced.

Furthermore, with a careful handling, that involves replacing
some instance of the state with the system’s solutions in the
system’s equations, PE-based statements tailored for linear
systems may also apply to nonlinear systems [5]. In this case,
a solution-dependent PE notion is necessary and sufficient
to ensure uniform asymptotic stability. For particular classes
of nonlinear non-autonomous systems, forms of solution-
dependent PE conditions have been proposed in [6], [7], [8].
A non-solution-dependent PE condition tailored for nonlinear
systems is provided in [9], where it is also showed to be
necessary for uniform global asymptotic stability of generic
nonlinear non-autonomous systems.
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The classes of systems where the PE property is used in-
clude, but are not restricted to, those appearing in problems of
identification [10], adaptive control [11], learning-based iden-
tification [12], and state estimation [13], [14]. For instance,
the so-called gradient systems, which appear in the context of
gradient-descent estimation are among the linear time-varying
systems, for which, PE is necessary and sufficient for UES of
the origin. Moreover, convergence rate estimates [15], [5] and
strict Lyapunov functions for gradient systems are available in
the literature [16]. One of the landmark results in the study
of PE is that it is equivalent to uniform observability (UO)
for passive systems satisfying structural properties reminiscent
of the Kalman-Yacubovich-Popov Lemma [17]. For nonlinear
time-varying systems, there is an equivalence between PE
along solutions and zero-state detectability [6]. To the best of
our knowledge persistency of excitation has not been formally
defined for hybrid systems, whose models combine differential
and difference equations. Yet, the coexistence of continuous-
and discrete-time phenomena (what we call hybrid phenom-
ena) is unavoidable in some scenarios of control systems. This
calls for Lyapunov-stability conditions stated in terms of a PE
notion tailored for hybrid systems.

In this Note, which is the outgrowth of [18], we study
this question for hybrid systems as considered in [19]. The
class of systems to which our own framework applies covers
impulsive systems, i.e., a type of non-autonomous systems
that experience jumps under the influence of a piece-wise
continuous signal, and not only depending on whether the
state trajectory is in the flow or the jump set at a given
instant. Our main contribution is the formulation of a property
of PE tailored for a class of hybrid systems, which we call
hybrid persistency of excitation (HPE). We establish that HPE
is equivalent to hybrid uniform observability (HUO) and we
establish UES under HUO. The HPE property that we define
captures the richness of time-varying piece-wise-continuous
signals; richness that cannot be captured otherwise by classical
definitions of PE, defined purely in continuous or discrete
time. For illustration, we show that a hybrid version of the
classical gradient-descent identification algorithm successfully
estimates the unknown parameters of a hybrid input-output
plant in cases where purely continuous- or purely discrete-
time algorithms fail.

Our main results are presented in Sections III and IV, but
we start our exposition with a brief recall of some definitions
and notations that pertain to hybrid-systems. An illustrative
example is provided in Section V.

Il. PRELIMINARIES ON HYBRID SYSTEMS

After [19], a hybrid dynamical system # is the combina-
tion of a constrained differential equation and a constrained



difference equation given by
F(z) =zeC

P
H:{:ﬁ:G(z) z €D, M

where + € X < R™= denotes the state variable, X the
state space, C' € X and D < X denote the flow and jump
sets, respectively, and F' : C — R™= and G : D — R™=
correspond to the flow and jump maps. Solutions to (1) consist
in functions with hybrid time domain defined as follows.
Definition 1 (hybrid signal and hybrid arc): A hybrid sig-
nal ¢ is a function defined on a hybrid time domain denoted
dom ¢ < Ry x Z=o. The hybrid signal ¢ is parameterized
by ordinary time ¢ € Ry and a discrete counter j € Zxg.
Its domain of definition is denoted dom ¢ and is such that,
for each (T, J) € dom ¢, dom¢ n ([0, T] x {0,1,...,J}) =
u;—lzo ([tj,tj+1] x {j}) for a sequence {tj};]iol such that
tjy1 =15, to =0, and t;.1 = T. Moreover, if for each j € N,
the function ¢ — ¢(¢,j) is locally absolutely continuous on
the interval I7 := {t : (,j) € dom ¢}, then the hybrid signal
¢ is said to be a hybrid arc. =
Definition 2 (Solution to H): A hybrid arc ¢ : dom¢ —
R™= is a solution to H if ¢(0,0) € cl(C) u D;
(S2) for all j € Zxq such that I = {t: (t,7) € dom ¢} has
nonempty interior,

o(t.j) € C
o(t,j) = F(o(t,j))
(S3) for all (¢, ) € dom ¢ such that (¢, + 1) € dom ¢,

¢(t7j)€D7 ¢(t’j+1) :G(¢(t7.7)) o

A solution ¢ to H is said to be maximal if there is no
solution ¢ to H such that ¢(t,5) = ¢(t,7) for all (¢,j) €
dom ¢ and dom ¢ is a proper subset of dom . It is said to be
nontrivial if dom ¢ contains at least two points. It is said to
be continuous if it is nontrivial and never jumps. It is said to
be eventually discrete if 7" := sup, dom ¢ < o0 and dom ¢ N
({T} x Zs=p) contains at least two points. It is said to be
eventually continuous if J := sup; dom ¢ < co and dom ¢ N
(Rsg x {J}) contains at least two points. System H is said to
be forward complete if the domain of each maximal solution
is unbounded.

We are interested in sufficient conditions for uniform expo-
nential stability (UES) of sets A c X that are closed relative
to X, but not necessarily compact. Uniformity is considered
with respect to all the initial conditions that are at an arbitrary
given distance from the set A. This distance is defined as
|z| 4 = 1nf | — z|, where | - | denotes the Euclidean norm.

Deﬁnztzon 3 (UES): Let the closed subsets (A4,D) c X x
X. The set A is said to be UES for H on D if there exist s
and A > 0 such that, for each solution ¢ to H starting from
x, € D at (0,0), we have

lp(t,7)].a < V(t,j) e dome.  (2)

If D = X, we say that the set A is UES for H. D

for all ¢ € int(17),
for almost all ¢t € [ i;

H|xo|Ae—>\(t+j)

I1l. INTEGRAL CHARACTERIZATION OF UES

Our first statement is an original characterization of UES
for hybrid systems, in terms of uniform L,-integrability of

solutions. It is reminiscent of [8, Lemma 2] for continuous-
time systems and [20] for discrete-time systems. As the
solutions of hybrid systems may flow and jump, we first
introduce certain notations related to integration over a hybrid
time domain.

Hybrid Integral: Consider a function on a hybrid time do-
main ¢ : dom¢ — R”X” and let K € R.o v {+o} and
(t,7) € dom ¢. We use E ;i © dom ¢ to denote the shortest
hybrid time domain, stamng from (¢, j), of length larger or
equal than K and contained in dom ¢. Note that if K is finite,

then there exists a unique (sx,mg) € dom ¢, such that
K< (sg—t)+ (mg —j) <K +1, 3)

and a unique non-decreasing sequence

{tj,tj+1, ...,th7th+1} with tj =1t and th+1 = SK,
such that
E;bg &= [ty tir] X {3} O U [t tnge 1] < {mic}

Thus, the hybrid integral of ¢ over the domain E
defined as
tit1 my—1

L, O id(s) = Z C G(si)ds+ Y Bltien,i).

t,j, K =7

i 18

In particular, for K = +00, we have so, + Moy = +00.

Akin to the case where signals evolve purely in continuous
or discrete time—cf. [21], given a function ¢ on a hybrid time
domain starting at (t,, j,) € dom ¢, we define the hybrid £,-
norm, with p € [1,00), as

ol = [ [ tots

to:Jo,0

%
7z')|’f4d(s,z‘)] )
and the hybrid £, norm,

0] 4 = s {0ty DB, O

In the case that A = {0} we simply write |¢|, and |¢|o.

Then, the following statement generalizes [5, Lemma 3] to
the realm of hybrid systems.

Theorem 1 (Hybrid-integral characterization of UES):
Consider the hybrid system H := (C, F, D,G), as defined in
(1), and let (A,D) c X x X be closed subsets. The set A is
UES on D if and only if there exist ¢ and p > 0 such that,
for each ¢, solution to H starting from x, € D, we have

max {[6] 400 [6]4, } < el 1 (©6)

Moreover, (2) holds with A := —% and s := cexp(l/p) O
Proof of sufficiency: The solutions ¢ start at the hybrid
time (0,0), so the L-norms in (6) are to be considered on
E& 000" Now, following the proof lines of [5, Lemma 3], we
note that condition (6) implies that, for all (¢, j) € Eﬁi 0,005

(s,i) e Y} < cPlot, )l (D

Lﬂ’ A‘gb(s, i)’Ad(s

t,5,90

sup { [6(s, 1) [y

and

1) < ot 5) |- (8)



Next, we define the hybrid arc v : dom ¢ — R given by

)= [ lots

t,5,00

€))

Ji)[5d(s, 1),

and we distinguish the two following cases: for all ¢ such that
the solution flows, that is, if ¢ € int(}), with I} := {t : (t,j) €
dom ¢} having a nonempty interior, we have

itd) = 5 | [ ~Logeg)

the last inequality follows from (8). If the solution jumps, that
is, for all (¢,j) € dom ¢ such that (¢, + 1) € dom ¢, we have

o(td 1) — v(t, ) = —|ot ) < —Lo(t,4):

again, the last inequality follows from (8). Then, using the
comparison principle for hybrid systems—[22, Lemma 1], and
replacing a therein by -, we obtain

u(t,j) <

Next, let K > 0 be arbitrarily fixed. For each (¢, j) € Eg’,opo,

MK rtigy mg—1
> ZL |6(s, )" ds + Z

1 l f 1+1
> — sup
| &

i

tj+1
|¢<s,j>|§zds] oL <

e (0,0). (10)

z+1a

qi(mk)e Ef),j’K}ds]

1 mK—l
+C”[ >, sup{[o(r k)ﬁ:(T,k)GEﬁj’K}]
i=j
—ttmg—1—j
ZSK Z;K jsup{|¢)(7’k|A Tk:)eEfJK}
K —

=

‘¢(8K7 mK)‘i\’

where to obtain the last inequality we used (3) and (7). Then,
we define K := ¢ + 1 and we use (7) and (10) to conclude
that, for each (¢,7) € E((?,O,oo’

v(t, j) < e_%’jv(0,0) < cPe”

|b(sxc.mx)|"y < 16(0,0)[7.

The last inequality implies that, for each (s,i) €
K s+i
d0m¢\E30,K’ gb(s,i)!A < cerP e P ¢(0,0)|A. On the
other hand, for each (s,1) € E{f 0.5
|6(s,9)] 4 < ¢|9(0,0)] , < ceTeT e er $(0,0)] ,-

The statement of sufficiency follows; necessity is trivial. H

IV. UES FOR TIME-VARYING HYBRID SYSTEMS

Consider the non-autonomous hybrid system of the form

¢ = F'(¢t,])

("= GG ))
with state { € R"™¢, F/, G' : X —» R™¢, X := R™¢ x dom A,
and such that A is a hybrid signal whose domain is dom A
and I’y := {t : (t,j) € dom A}. The signal A may be an
exogenous hybrid signal or may also depend on the system’s
hybrid trajectories—see [22] for examples. Then, the solutions

t € int(I%)

(L) (6 + ) edoma,

to (11) are hybrid arcs whose domain is a subset of dom A.
That is, the solutions of (11) jump whenever A jumps.

To study the behavior of the solutions to (11), we recast
it in the form of (1), by including the hybrid time as a bi-

dimensional state variable. That is, defining z := [¢T p ¢]T,
system (11) can be rewritten as
[ [¢]  [FEpra)]
p| = 1 zeC
j 0
qui - - (12)
3 G'(&p,q)
pt| = p reD,
q* | | g+

where the flow and jump sets are, respectively, defined as
C:=Xand D :={zxeX:(pg+1) e domA}. Then, a
solution ( to (11), starting from the initial condition (, € R™<¢
at (t,,jo) € dom A, must coincide with a solution ¢ to (12),
starting from the initial condition (&,,%,,J,) at hybrid time
(0,0). In this case, we have p(t, j) = t+t, and q(¢,5) = j+7o
for all (¢, 7) € dom ¢. We use this fact in what follows of the
paper to analyze time-varying hybrid systems in the form of
(11).

Remark 1: If the set A := {z € X : £ = 0} is UES for
(12), as per Definition 3, then the origin {¢ € R™< : { = 0}
is UES for (11), that is, every solution ¢, starting at (,, j,)
from (,, satisfies

[SCWIRS

with x and X independent of (¢,, jo)- o

_>\ t+] to— 70)

KlCole V(t,j) € dom¢,  (13)

A. Problem formulation and standing hypotheses

In the sequel, we focus on perturbed non-autonomous hybrid
systems of the form—cf. Eq. (11),

é = _A(tuj)c
¢t =[Im. — B(t,5)]¢
(t,5),(t,j +1) e dom A,

t e int(I%)

H (14)

where A and B (are assumed to) have the same hybrid time
domain, that is, A and B : dom A — R™¢*™¢,

Remark 2: This class of systems is important as it covers a
number of interesting cases that appear in adaptive estimation.
For instance, when A(t, j) and B(t, j) are both symmetric and
positive semidefinite, the model (14) generalizes that of the so-
called gradient system, studied both in continuous and discrete
time in the context of identification [1], [15] and multi-agent
systems [23], [16]. The functions A and B may come from
expressing outputs and inputs along solutions; namely, for a
system Z = A, (y,u)z, we let A(t,j) := A.(y(t,J),u(t,5)).
This artifice is commonly used to analyze some nonlinear
observers [13], [14]. .

In what follows, we investigate sufficient conditions for the
origin {¢ € R™¢ : ¢ = 0} to be UES for H’ in (14). We solve
this problem under two standing hypotheses reminiscent of
those commonly used in the context of continuous- or discrete-
time systems. The first one essentially guarantees uniform sta-
bility of the origin {¢ € R™<¢ : { = 0} and global boundedness
of the solutions to (14). Roughly speaking, for this system we



require the existence of a Lyapunov function with negative
semidefinite derivative along flows and non-increasing over
jumps. The second Assumption imposes uniform boundedness
of the matrices A and B, which is common in the realm of
non-autonomous systems.

Assumption 1 (Lyapunov (Non-Strict) Inequalities): There
exists P : domA — R™¢*™<¢ and p;, ps > 0 such that
P(t,j) = P(t,5)7, and p; < |P|y < p2, and there exist
Qc, Qq : dom P — R™<*™¢ such that Q.(t,7), Qa(t,j) are
symmetric positive semi-definite, for all ¢ € int(I7),

P(t,§) — A(t,5) T P(t,§) — P(t, ) A(t, ) < —Q.(t,5), (15)

and, for all (¢,7) € dom A such that (¢,7 + 1) € dom A,

[Lme — B(t, )] P(t,j + D[Im, — B(t,5)] — P(t,5)
< _Qd(t7.])

Assumption 2 (Uniform Boundedness): There exist A B>
0 such that |B|o, < B and |A],, < A.

(16)

Next, we establish uniform exponential stability for (14)
under Assumptions 1 and 2. We provide sufficient conditions
in terms of hybrid uniform observability (HUO) and hybrid
persistency of excitation (HPE).

B. UES under HUO

Consider the hybrid system ' in (14) with the hybrid
output y : dom A — R™v given by

ot ) = {C’C(t,j)c if ¢eint(l%)

Cy(t,5)¢ otherwise, an

for some C.gq4 domA — R™*™<¢  Furthermore, we
introduce the hybrid transition matrix M : dom A xdom A —
R™¢*™¢ guch that, for each ((t,7), (to,Jo)) € domA x
dom A, the solution ( starting from (, at (¢,, j,) satisfies

C(taj) :M((tvj)’(tmjo))CLr (18)

The hybrid transition matrix M is the solution to the hybrid
system

M((t, ) (o, Jo)) = —A(t, HIM((t, ), (to, Jo))
for almost all ¢ € I, (19a)
M((t,5 +1), (to, Jo)) = [Ime — B(t,5)] M((,5); (tosJo))
(t,5),(t,j +1) edom A, (19b)
M((to,Jo)s (tos Jo)) = Im<~ (19¢)
Then, we define hybrid uniform observability as follows.
Definition 4 (HUO): The pair {(A, B), (C.,Cy4)} is HUO
if there exist K, u > 0 such that, for each (¢,,j,) € dom A,

M ((5,), (tos o)) T @ (5, )M ((5,5), (tor Jo)) d(s, )

E?oijvK
> :u“Imgv (20)
where ® : dom A — R™<*"™¢ is given by
o [ Ot )T Ot §) if teint(T)
®(t,7) = { Cy(t,7)TCq(t,§) otherwise. @

(]

Theorem 2 (HUO < UES): Consider the hybrid system H’
in (14) such that Assumption 2 holds, and Assumption 1 holds
for Q. :== C/C. and Qg := CJCd. Then, the origin {¢ =
0} is UES provided that the pair {(4, B), (C., Cy4)} is HUO.
Moreover, if the origin {¢ € R™¢ : ( = 0} is UES and (15)-
(16) hold with equality, then the pair {(A, B),(C., Cy)} is
HUO. o

Proof: HUO = UES: The stability of the origin {¢ € R™¢ :
¢ = 0} may be analyzed using the framework described
in Section II. By rewriting the system as one that is time-
invariant, i.e., of the form (12) with flow and jump maps

F(z):=[-¢"A(p,g)" 1 0],
G(x) = [ [Im. — Blp,@)]" p q+1]",

state = := (£, p,q) € X := R™¢ x dom A, and flow and jump
sets defined by C := X and D := {x € X : (p,g+ 1) €
dom A}, respectively. In particular, after Remark 1, the UES
bound (13) holds for H' if the set

A:={xeX:£=0},

(22a)
(22b)

(23)

which is closed relative to X, is UES (as per Definition 3) for
‘H, defined by (12), (22), C, and D as defined above. Thus, to
prove the first item we use Theorem 1 and this equivalent time-
invariant representation of #'. That is, we explicitly compute
¢ > 0 such that, along each solution ¢ to the hybrid system
(12) with data as in (22), and starting from x, := (&,, to, jo)
at (0,0), it holds that

mae {16700 [0l < el

where A is defined in (23). To that end, we introduce the
Lyapunov function candidate

V(z):= ¢ P(p, )k,

where P is introduced in Assumption 1. Furthermore, after
the latter, we have

(VV(2), F(z)) < =€ Qe(p, a)¢

(24)
(25)

Vz e C,

while

V(G(@) - V() < 36 Quip ) Ve D.

Therefore, after (21), along the maximal solution ¢, we have

for all ¢ € int(I%,), while
V(¢(t’j + 1))_V(¢(taj))
< =€t 5) " 0(p(t, ), q(t,4))E(t, 5)

for almost all (¢,5) € dom¢ such that (¢,j + 1) € dom ¢.
Thus, using the fact that (). and Q)4 are positive definite from
Assumption 1, it follows that

V(d)(tv])) < V((Z)(0,0)) V(t,j) € E(()ﬁ,o,om



which implies that, for each (t,j) € EgiO’oo, we have

plet ) < Vet )

Finally, since |¢| = ’¢|A’ we conclude that ‘qﬁ!ioo <
%|¢(0, 0)}1. This establishes the first bound in (24).

Next, we compute the second bound. To that end, we follow
the proof steps of [24, Proposition 1]. Let the HUO property
generate K > 0 and, for each (¢,5) € dom ¢, a unique pair
(sk,mx) € dom ¢ satisfying (3). We have

V(o(t, 7)) ¢(5K7mK)) =
j €5, 1) T®(p(s, 1), g(5, )€ (s, 1)d (5. 7)

f]K

< V(6(0,0)) < paléo|”.

(26)

—recall that £(s,4) is a component of the solution ¢(s, ) to
(12). Now, because the latter is a time-invariant equivalent
representation of (14), the hybrid arc £(s,i), with (s,i) €
Ef’ ;1o starting at (t,j) coincides with the solution to (14),
¢, starting at (¢t + t,,j + jo). Therefore, the relation

C(s+to,i+ 7o) =
M((s+toyi+]o)s (tto, j+70))C((E+to, T +7o))
which holds under (18), implies that

&(s,19) = M((s,1), (t, ))&, ), 27)
where
M((s,1), (t,7)) := M((5 + to, i + Jo), (t +to, 7 + Jo))-
As a result, we obtain
V(g(t, 7)) = V(¢(sx,mi)) = &(t,§) " x
f M((s,9), (t,5)) T (p(s, 1), q(s,1)) M((s,4), (t,7))d(s, )
Xé“zt,y ) = plét, ).

Next, since }f(t,j)|2 > %|§(SK,mK)|2, we obtain

V((t, ) —

p1 2
V(o(sk,mk)) = Mp:‘f(SK,mKﬂ :
Integrating on both sides over Eg,O,oo , and using the fact that

€ (s, 0)1* = [o(s,7)[%

we obtain
. Py . .
L V(o )i(s, 1) = P22 ng’ o5, 1) (s, )

¢
0,0,K
_ bhip |

(4
P2 EOOK

V(s,i) € B g o

5.4)[%,d(s, 1),

which, in turn, implies that

| 1o

0,0,00

P2 V((s,8))d(s, i)

(s,4) < —
P Jeg,

K

+f ) |6(s, )| d(s, )

0,0,K

(K+1)[w+pl]}¢00|A.

This completes the proof of UES.

UES = HUO: We now assume uniform exponential stability
of the origin {¢ € R™<¢ : { = 0} for H'. To verify HUO, we
start rewriting H’ in the form (12) and let ¢ := (£,p,q) be a
corresponding solution generating a solution ¢ to H’ starting
at (to, jo) € dom A. Given (¢,7) € dom ¢, we consider the
unique pair (s, mg) € dom ¢ satisfying (3) for some K > 0
that we specify later. Using the properties of the matrix P in
Assumption 1, we conclude the existence of a;,as > 0 such
that

V(g(sk,mi)) = &(sk,mx) P(sk, mg)&(sk, mi)

<arexp” N V(e(t, 7).

The latter implies that

~V(6(t, ) + V($(sx,mK)) < (a1 exp™ 5 =1) V(4(, ).
Now, we fix K sufficiently large such that

Wi=— (a1 exp 2K —1) p2 > 0.

Furthermore, we note that (26) holds with an equality since
we assumed that (15)-(16) hold with equality. Hence,

f €0, ) @0, 1), a5 D)€L, D, ) 2 ()T E00.5).

Fmally, the proof is completed using (27) and the fact that
p(s,4) = s+ to, q(s,i) =i+ jo, and E?]K = E£+t,jo+j,K'
|

C. UES Under HPE

The following is a relaxed PE property, which captures the
richness of signals that may fail to be PE if considered as
functions of purely continuous or purely discrete time.

Definition 5 (HPE): The pair (A, B) of hybrid arcs A, B :
dom A — R™¢*™M¢_je., with dom A = dom B, is said to be
HPE if there exist K and p > 0 such that
Y(to,jo) € dom A,

(I)AB(s7i)d(Sai) = /’LImC (28)

A
Eto Jo, K

where ® 45 : dom A — R™¢*™< is given by

L A(tj) if teint(Dh)
Pap(t,J) ~—{ B(t,j) otherwise.

Theorem 3, below, generalizes to the realm of hybrid
systems, the well-known fact that PE is equivalent to UO—
see [17]. Yet, Theorem 3 is not a direct extension since its
proof approach is original. For instance, it differs from that
used in [25] for continuous-time systems by being direct and
not relying on many intermediate results.

The statement is formulated for systems satisfying the
following structural property, which is reminiscent of so-
called gradient systems, at the basis of classical identification
schemes both in discrete and continuous time [26]. In Sec-
tion V we briefly revisit a case-study for illustration.

Assumption 3 (Structural property) For each (t,j) €
dom A, A(t,j) = A(t,5)T = 0, B(t,j) = B(t,j)" = 0,
and |B(t7])|w < 1

a



Theorem 3 (HPE < HUQ): Consider the hybrid system
H' under Assumptions 2 and 3. Let C, := /A and Cy =
V/B. Then, the pair (A, B) is HPE if and only if the pair
{(A,B), (C.,Cq)} is HUO. o

Proof: HPE = HUQ: Under Assumption 3, it follows that
Assumption 1 holds with P = I,,,,, Q.(t,5) = A(t,j), and
Qa(t,j) = B(t,j). Therefore, to verify the HUO property, it
suffices to find p, > 0 such that, for each (¢,,j,) € dom A,
we have

| ot inits. )

A
to,jo, K

2 MoIm<7

where we defined

FO(S,j) =M ((Saj)v (toajo»T q)AB(Saj)M ((57.7)7 (tmjo))
to compact the notation, KX comes from the HPE of (A, B).
Then, to establish (29), we show that, for each (, € R™<¢,

T J Ty (5, )d(5,5) Co = tolGol?-

A .
to,jo, K

To that end, first we note that

<Tf (5, 9)d(s, ) o = j C(5,0) T an(5,5)¢(s,5)d(5.9)

toJoK toJoK

and we proceed to find p, > 0 such that

‘)T@AB<s,j)c<s,j)d(s,j> > 110/Co|2. (30)

So, to prove (30), we express V as

mig mg—1
V=2 Vel + X Vel (31)
J=Jo J=Jo
ti+1
Ve(j) = ) C(s,5) T A(s,7)C(s, )ds, (32)
Va(j) = C(tj41,5) " B(tj41,5)¢(ti51,4),  (33)

and we compute suitable lower bounds for these functions.
In [22] we show that, for each p > 0 and for each j €

{joa"'va}’
p tj+1 L2
] = A ) )2 o
VF(J)>1+p t (5,7)2C| ds
p(A% +24)(2( = jo) + 1)(tj41 — t5)(tj41 — tj, + DV
Va(i) = 220 = jo) + D(Altje1 —t; > +2)V
+—\B s )i

Combining the lattgr two inequalities, we obtain the follow-
ing upper bound on V for each p > 0:

mel 2

g P N1
Ve ’Bt EC,
1_’_pj22j (J-&-IJ)C

2p mE ftﬁl
J’_i
1+p,2 e

J=Jo "

2

A(s,1)2¢,| ds

(29) *

—§V2 (G = Jo) + D(Altj1 — t5,) +2)

— pA(A + VZ (J = Jo) + D)(tjs1 — t5)(tjr1 — 5, +1).
J=Jo
Hence,
- 20|¢, |2 .
V= 2ol J P ap(s,i)d(s, i) — p(mx — jo + 1)°V
1+ P EA

o K

[1;1(8[( - tjo) + 2) + A([l + 1)(81{ — tj,,)(SK — tjn + 1)] .

Finally, using the HPE of the pair (A, B), we conclude that

_ 2
Ve e Gl = (e +2)?

x [?(K + 1)+ 14+ AA+2)(K + 1) (K + 2)} V. (34)

Thus, (30) follows by choosing
b 1/(K +2)?
AR+ D)1+ AA 2 (K + 1) (K +2)

HUO = HPE: Since we already showed that HUO implies
UES of {¢ € R™¢ : ¢ = 0} for H'. As a result, by taking a
solution ¢ to H' starting at (¢,5) € dom A, we conclude the
existence of K > 0 and a unique pair (sx,mg) € dom A
such that (3) holds and

|Im< — M((SK,mK)v (tm]))‘ =

Next, we let p := exp™ K+ /2 [ := max{A, B}. On the
other hand, we note that

M((SKva)7 (tv.]))
:fAmB(s,m) [M((s,m), (£,5)) — I, ] d(s,m)

t, 5, K

1/2.
— ImC

+ fEA D ap(s,m)d(s,m).

t,j, K
Now, if the HPE property is not verified, then we can find
(t,j) € dom A such that §,_, ®ap(s,m)d(s,m) < plp, . As
t,j,K
a result, we obtain

|M((SK7mK)7 (t’.])) - Imc'
L[ M) () = Dncldls,m) +

t,3, K

By letting f : dom A — R such that f(¢,7)

f(s,m) = Lf(s,m) for a.a. s e I}

f(s,m+1)=[1+L]f(s,m) (s,m),(s,m+1)€ dom A,

we conclude that |[M((sx, mxk), (t,5)) = Im.| < f(sx,mK)

and at the same time f(sx,my) < pexp”E+D) <1/2. =
We deduce the following consequence of Theorem 3.
Theorem 4 (UES under HPE): Consider the hybrid system

H’ in (14) under Assumptions 2 and 3, and let the pair (4, B)

be HPE. Then, the origin {¢ = 0} is UES for H'. o

= p and



V. CASE-STUDY: THE HYBRID GRADIENT-DESCENT
ALGORITHM

Consider the linear regression model
Yy = ’l/}Tov

where ¢ : dom) — R™¢ is known as regressor, 8 € R™ is
a constant vector of unknown parameters, and y : domy — R
is the output. An estimate of #, denoted é, may be carried
out dynamically, in function of the tracking error e := g — y,
where ¢ := wTé. A well-known identification law is based on
the minimization of the cost J(e) := (1/2)e.

In the continuous-time setting,. i.e., if domvy = [0,+400),

(35)

the update law for 6 is given by § = —vV;J(e), where V;.J
denotes the gradient of .J with respect to 6. Hence,

0 ==y —y(®)], ¥>0
—see [27]. In this case, it is we}l-known (see, e.g., [11]) that,
if ¢ is bounded, UES of {# = 0} is equivalent to:
(CPE) There exist T'> 0 and p > 0 such that

t+T
(8)0(s) "ds = plm,

(36)

VtE=0.  (37)

t
In the discrete-time setting, i.e., if the regressor’s domain is
dom ¢ = Zs, the gradient algorithm is given by

Ot +1) = 0(t) — a(t)VyJ(e), (38)

where o : Zso — [0,1] is given by o(t) := W, and
v > 0 is the adaptation rate [10]. In the this case, the discrete-
time PE condition reads—cf. [4]:

(DPE) There exist N > 0 and g > 0 such that
t+N

N w()(s)T = plm, VE=0.  (39)
s=t

When the data (v, y) of the linear regression model (35) is
hybrid; namely, when it is allowed to exhibit both continuous-
and discrete-time evolution, we write

y(t,j) =¥t 5)70  (t,j) € dom.

In this case, we propose to design a hybrid gradient-descent

algorithm in a way that whenever the data (v,y) jump,

i.e., undergo an instantaneous change, g is updated via (38);

whenever the data (v, y) flow, i.e., evolve continuously, 0 is

updated via (36). More precisely:

(HG1) When ) flows, that is, for all ¢ € int(Ifb), with If/; =
{t: (t,j) € dom}, 6 is updated by

(HG2) When ¢ jumps, that is, for all (¢, j) € dom 1) such that
(t,j + 1) € dom, the estimate 6§ is updated using

_ ’Yw(tj)[w(tvj)—ré(t?j) — y(tv.])]
L+ 9[9(t, 5)? '

(40)

e(tvj + 1) = 0(t7.7)

Then, the dynamics of the parameter estimation error 6 = 6—6
is governed by a hybrid system as in (14), with ¢ := 6,
At 5) = ()0 (t5) T @1)

()Y (¢ 5)"
L+ ylp(t, 5)1*

which satisfy the structural properties in Assumption 3. Fur-
thermore, it is assymed that, by design, there exists ¢ > 0
such that [¢)|,, < ¢ holds and the pair (A4, B) is HPE.

In the following example, we illustrate a scenario, where
the regressor ¢ in (40) is a hybrid signal.

B(t,j) = (42)

Example 1 (Gathering real-time and old data): Consider
the continuous-time input-output model

yi(t) = v (1)70

where 17 : Ryg — R™ is the input and y; : Ryg — R is
the output. The pair (1, y1) defines the real-time input-output
data. On the other hand, we assume that we have a memory
containing a pair of old input-output data, which we denote
by (2, y2). The old data needs to be treated at specific times
defining the sequence {t1,%2,...,t;} < Rxo with ¢; < tj41.
As a result, the old input-output data satisfy

ya(t;) = a(t))T0  Vje{l,2,..,J}.

The incorporation of old data can be done periodically, it
can also be triggered by an external supervisory algorithm. As
a result, we introduce the hybrid time domain

domp := [0,t1] x {0} U [t1,t2] x {1} U ... U [ts, +0) x {J}.

t>0, (43)

(44)

Furthermore, we introduce the pair of hybrid input-output data,
gathering both old and real-time data, given by

@) ifteint(l))

1p(t7 ]) = {wQ (tg-&-l) otherWiSG:b
() ifteint(l))

y(t,j) = {yQ(th) otherwiself)

The pair of hybrid input-output data is related to the parameter
# according to (40).

The hybrid gradient algorithm in this context allows to
continuously explore real-time data on the open intervals
int(;,), j € {1,2,...,J}, and to discretely exploit old data
over the sequence of times {¢;}7 ;. o

Remark 3: When the hybrid arc v is eventually continuous
(respectively, eventually discrete or Zeno), HPE of the pair
(A, B) reduces to CPE of 12" (respectively, DPE). Further-
more, when the regressor v is scalar (i.e, my = 1), HPE of the
pair (A, B) implies that either CPE or DPE holds. However,
in the general case that my > 1, it is possible that HPE hold,
but none of the conditions CPE and DPE be satisfied. In other
words, let {*PE} be the set of functions satisfying the *PE
property. Then, {CPE}U{DPE} < {HPE}. .

For illustration, let us consider (40) with

o) = {[Sin(t) 0]T Vt e (25m,2(j + 1)7), j € Zsg

[05 1]7 )

otherwise,

SO, over successive continuous intervals of time,

BT = [Sm(t)Q 0

0 o] Vt e (2jm,2(j + 1)), j € Zso,



while at discrete instants,

sov= G5

The function ¢ " defined in (45) does not satisfy neither CPE
nor DPE. However, the corresponding maps A and B (with
7 = 1), defined on dom A = dom B = [ J2 ([2j7, 2(j + 1)n],
are given by

Altf) = [sin(t)2 0]7B(t7j>:[0.1111 0.2222]_

] Vit € {2, 47, ...},

0 0 0.2222 0.4444

The pair (A, B) is HPE, with K = 27 + 1 and p = 0.21.

HPE is less conservative than its counterparts CPE and DPE
as it captures the fact that the richness of a signal may be
enhanced by an appropriate mingling of exciting flows and
jumps, which, otherwise, are insufficient to guarantee that
neither (37) nor (39) hold. The latter being necessary, 60
in either case, but § — 0 under the hybrid gradient-descent
algorithm—see Fig. 1 below.

= 6 ]
—

o

—

g 4r .
=1 continuous gradient descent

;% discrete gradient descent

g 2+ hybrid gradient descent 4
n

m 0 Il Il Il

0 10 20 30 40 50 60 70 80
Time [

Fig. 1. Evolution of the norm of the parameter error 0 using continuous,
discrete, and hybrid gradient algorithms

V1. CONCLUSION AND FUTURE WORK

Persistency of excitation is a well-studied concept both
in continuous and discrete-time. Yet, a proper mathematical
setting for hybrid systems, that is, comprising both differential
and difference equations had been missing up to this Technical
Note. Through a simple example, one can see that persistency
of excitation cannot be used as defined so far in textbooks,
when it comes to analyzing systems that evolve in hybrid time.
In addition, we have illustrated through a simple identification
case-study that hybrid PE is a meaningful relaxed condition
that still guarantees uniform global asymptotic stability. We
believe that the proposed setting should serve to establish
many extensions to concurrent learning and observer design.
These lines of research are under study.
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