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Abstract—This paper develops and parameterizes a dynamic model of a
novel nanophotonic gas sensor. The sensor employs a functionalized micro-
ring resonator to measure CO, concentrations in biomedical applications.
The literature presents both computational and experimental approaches
for characterizing nanophotonic sensor response times. However, it can be
challenging to distinguish between the dynamics of a fast-responding sen-
sor versus the dynamics of the setup used for characterizing it. We address
this challenge using optimization-based system identification. Specifically,
we construct a test rig that supplies mixed N,/CO, flow to the sensor
and measures the sensor’s voltage amplitude response at a given laser
excitation wavelength. Step response experiments are conducted using this
testrig, at different gas flowrates and concentrations. A state-space model is
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then constructed, capturing the sensor’s first-order dynamics as well as the gas transport, manifold filling, and first-order
valve actuator dynamics of the test setup. A particle swarm optimizer is used for least-squares model parameterization.
The resulting residuals are reasonable in magnitude, two observations being that their magnitude changes with CO,
concentration and that they exhibit some coloring, potentially due to the setup’s signal processing filters. The estimated

time constant has reasonable Cramér-Rao bounds, and is close in magnitude to finite element predictions.

Index Terms— Gas sensors; hanophotonics; sensor dynamics; system identification.

[. INTRODUCTION

Nanotechnology has played a vital role in advancing optical
gas sensors [1]-[3]. In recent years, metal organic frameworks
(MOFs), which possess a nanoporous structure capable of
selectively adsorbing specific gas molecules [4], [5], have re-
ceived significant attention for their ability to enhance the sens-
ing performance of both refractive index (RI)-based [6]-[10]
and infrared absorption-based gas sensors [10]-[14]. When a
MOF layer is applied to the optical path of a gas sensor, the
interaction between light and the target gas is greatly enhanced
due to the selective adsorption of the gas molecules on the
expansive surface area of the nanoporous MOF. This enhanced
light-gas interaction improves the sensitivity and lowers the
detection limit of the sensor. Furthermore, a thin-film MOF
coating layer, typically measuring just a few micrometers in
thickness, results in a short gas diffusion time, enabling the
development of fast-responding optical gas sensors. However,
precise characterization of such fast-responding gas sensors
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remains a challenge. For example, recent studies on MOF-
based optical gas sensors have reported a wide range of sensor
response time, ranging from hundreds of milliseconds to tens
of seconds [6]-[14], despite employing similar sensing mecha-
nisms and MOF films of similar thickness and diffusivity. This
discrepancy arises due to the difficulty in achieving a rapid
change in gas concentration within the gas cell. Additionally,
the measured time response often includes the dynamics of the
gas handling system, including valve actuation for gas flow
control and gas mixing/filling in the manifold and gas cell.
The response of a gas handling system cannot be neglected
when characterizing fast-responding gas sensors, especially
those with sub-second response times.

Optimization-based system identification provides tools for
estimating the parameters of coupled dynamic systems from
experimental input-output data [15], [16]. Such tools have
the potential to enable the simultaneous estimation of the
parameters of a novel sensor plus the setup used for test-
ing/characterizing it. This can be particularly valuable in
research efforts where one seeks to characterize the dynamic
response of a fast sensor in the presence of slower test setup
dynamics. One goal of this work is to demonstrate such
application of system identification to a novel dissolved carbon
dioxide (CO,) sensor. Specifically, we employ optimization-
based system identification to characterize the response time
of a novel fast-responding MOF-based optical gas sensor by
analyzing the combined sensor and gas handing system. As
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a proof of concept, a RI-based optical CO, gas sensor is
developed using a silicon microring resonator coated with ZIF-
8 and PDMS. Further, a state-space model that incorporates
(i) the sensor, (ii) valve actuation, and (iii) gas mixing/filling
dynamics is constructed. The time constant of the first-order
sensor dynamics is estimated, and Cramér-Rao error bounds
for this constant are determined through Fisher information
analysis. It should be noted that the sensor response time,
commonly defined as the time taken to reach 90% of a steady-
state or maximum level (79q), is approximately 2.3 times of
the time constant (7) [17]. To validate the accuracy of the
estimated sensor response time, the dynamic gas diffusion
in the sensor is simulated using a finite element method.
The novelty of this paper stems from its optimization-based
experimental characterization of the sub-second response time
of a MOF-based optical gas sensor from combined sen-
sor/test setup data. Furthermore, the proposed optimization-
based system identification approach enables the cost-effective
characterization of various fast-responding sensors, as it allows
the use of conventional test systems with significantly slower
dynamic responses compared to the sensor response.

The remaining sections of this paper are organized as
follows. Section II describes the design and fabrication of
the dissolved CO, gas sensor with ZIF-8§/PDMS coating,
experimental setup for characterizing the sensor response
time, and the results of the characterization experiments.
Section III presents estimation of the time constants using
the optimization-based system identification method and FEM
simulations of gas diffusion. Further, it provides a discussion
of the obtained results. Finally, Section IV concludes the paper.

[I. SENSOR AND EXPERIMENTS
A. Sensor Design

The dissolved CO, gas sensor consists of a silicon ring
resonator and a ZIF-8/PDMS top cladding layer, as shown
in Figs. 1(a) and 1(b). The high-Q ring resonator facilitates
low detection limit RI sensing [18], [19]. Moreover, the ZIF-8
cladding layer enables selective and sensitive detection of the
RI change induced by CO, adsorption in the ZIF-8. The gas-
permeable and hydrophobic PDMS coating layer allows CO,
molecules to diffuse into and out of the ZIF-8 while separating
the ZIF-8 from the sensing solution. Note that the sensing
surface area is mainly determined by the ring waveguide length
and the thickness of the ZIF-8 coating. As long as the ring
waveguide is fully coated with a ZIF-8 film, the sensitivity is
independent of the shape of the ZIF-8 coating. Further details
of the sensor design and its operation principle can be found
in [20]. The sensor fabrication process can be found in Sec.
1 of the Supplementary Material.

B. Experimental Test Setup

Fig. 2 shows the schematic diagram of the experimental
setup for characterizing the sensor time constant. Light from
a tunable laser (TSL-510, Santec) was passed through a
polarization controller and coupled into the sensor using a
single-mode optical fiber (SMF). The light from the sensor
was collected by a fiber-optic photoreceiver (Model 2053,
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Fig. 1. Schematic showing (a) the developed dissolved CO, sensor
and (b) its cross-sectional view.
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Fig. 2. Experimental setup for characterizing the time constant of the
gas sensor. The inset within the figure shows the CAD rendering of the
gas cell on top of the sensor. DAQ: data acquisition instrument, MFC:
mass flow controllers, PC: polarization controller, PD: photodetector,
SG: signal generator, SMF: single mode fiber, SV: solenoid valve, TL:
tunable laser.

New Focus) and the output voltage of the photoreceiver was
logged using a data acquisition system (Picoscope 6000, Pico
Technology) with a sampling rate of 1 millisecond.

N, and CO, were used as the carrier and test gases,
respectively. The flow rates of both gases were regulated using
mass flow controllers (MFCs) (N;: 6A0107BV-NC, CO,:
6A0107SV-CA, Dakota Instruments). Moreover, a solenoid
valve (2W-025-08, ATO Inc), operated using a function gener-
ator (AFG3102C, Tektronix) was integrated between the CO,
gas cylinder and its MFC to control the timing of CO, gas flow.
The CO, and N, gas flows from the MFCs were combined
using a connector tube and were fed into the gas cell, as shown
in the inset within Fig. 2. The entire experiment was performed
under room temperature and atmospheric pressure conditions.
Additionally, before the experiment the sensor was placed in
N, flow for 12 hours to stabilize its signal.

C. Characterization Experiments

An experimental dataset with varying CO, concentrations
and total gas flowrates is required for the optimization-based
system identification. Note that N, flowrate does not need to
be constant if varying total flowrates are achieved. Table I
shows the seven experimental conditions that were used for
sensor characterization. The experiment examined three CO,
concentrations of 11.1%, 14.3%, and 16.7%. For 11.1% and
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14.3% CO, concentrations, two different gas flow rates were
examined whereas three different flow rates were tested for
16.7% CO, concentration.

Figs. 3(a), 3(c), and 3(e) show the transmission spectra of
the sensor at CO, concentrations of 11.1%, 14.3%, and 16.7%,
respectively. In each figure, the solid black curve represents the
sensor’s response to 0% CO, concentration (i.e., pure N, flow).
The red colored curves represent the sensor’s response to one
of the total flow rates, which is the sum of CO, and N, flow
rates. The green arrow indicates the excitation wavelength of
1574.400 nm used for characterizing the dynamic response of
the sensor. The excitation wavelength of 1574.4 nm, which is
located close to the largest slope of the resonance, was chosen
because it provides a large intensity modulation in response
to the resonance shift induced by CO, concentration changes.
The transmission spectra exhibit that the resonance wavelength
redshifts with increasing CO, concentration. These redshifts
result from the increase in the refractive index of the ZIF-8
cladding induced by CO, adsorption. Note that the three CO,
concentration levels and the excitation wavelength of 1574.400
nm were selected based on the conditions as follows. Firstly,
the sensor is operated within the linear region of the resonance
curve. Additionally, to accommodate the manual operation
of the MFCs, which have the smallest division of 1 L/min
in their measurement scales, the flow rate is controlled with
approximately 0.5 L/min increment for reasonable accuracies.

The voltage responses of the sensor to changes in CO,
concentration are shown in Figs. 3(b), 3(d), and 3(f). In
each figure, the solid black line represents the driving signal
from the function generator that controls the solenoid valve
operation. Initially, the valve was in a closed state at 0 V, i.e.,
CO; gas was not flowing into the gas cell. It switched to an
open state, allowing CO; gas to flow in the gas cell, when the
signal changed to 3.3 V. The other colored curves represent
the sensor’s response at different total flow rates, synchronized
with the driving signal.

The response curves show that there is a delay between the
driving signal and the sensor response. This delay decreased
as the total flow rate increased. Moreover, the sensor response
reached its maximum voltage faster with an increasing flow
rate. This flowrate dependency is believed to result from the
gas transport delay and the manifold mixing of CO, and O,
gases. Additionally, the sensor response includes a flow rate
independent delay resulting from the physical opening/closing
process in the solenoid valve actuation. Note that the voltage
change induced by the resonance wavelength shift should
be the same for the same CO, concentration experiment
regardless of the total flow rates. However, the experimental
results, as shown in Figs. 3(b), 3(d) and 3(f), reveal that
the resonance shifts were not consistent across different total
flow rates. This inconsistency arises because the actual CO,
concentrations at different total flow rates deviate from the
nominal value. This discrepancy is attributed to the difficulty in
precisely controlling CO, and O, flow rate with an increment
0.5 L/min increment using the manual MFCs. To address
this problem, electronic MFCs with a high precision can be
employed to achieve better control and eliminate this error.

[1l. MODELING AND PARAMETERIZATION
A. State-Space Model

The remainder of this paper assumes that the coupled
dynamics of the sensor plus its test setup are governed by
the third-order, lumped-parameter state-space model derived
below. We begin by deriving the governing equations for this
model based on physical first principles, then utilize it for
sensor characterization.

Fig. 4 provides a conceptual representation of the dynamics
captured by the proposed model. We assume the experimental
setup supplies N, and CO, at two volumetric flowrates, @,
and Qco,, respectively. Mixing these two flows furnishes a
volumetric CO, concentration equal to cco, = Qco,/Q,
where the total volumetric flowrate, @, is given by:

Q=Qn, +Qco, )

We assume that over the course of a given sensor char-
acterization experiment, the above CO, concentration changes
between some user-prescribed maximum and minimum values,
Cmaz and cpn, respectively. It is convenient to define a
dimensionless indicator function, x(t), that goes from 0
to 1 as this concentration goes from its minimum to its
maximum value, respectively. Mathematically, one can relate
CO, concentration to this indicator function as follows:

CCOy = Cmin + (Cmax - Cmin)xl (2)

Now we assume that the user-specified, desired CO, con-
centration is some function, 0%552 (t), where t denotes time.
This desired CO, concetration is achieved through the control
of a valve actuation system, as shown in the setup’s schematic.
It is important to note that this valve actuation’s response to the
control signal will not be instantaneous, since the valves will
have their own dynamics. Assuming, for simplicity, that these
dynamics are governed by linear first-order behavior leads to
the followig state equation:

dcco 1
2 = 7(6(10852 - 0002)7

3)

dt To

where T, is the actuation time constant. Substituting Eq. 2 into
Eq. 3 gives:

des
1 cco, —cco,

Iy = “4)
Tv Cmaxz — Cmin
The above equation can now be rewritten as follows:
. 1
iy = —(u— 1), ®)
Tov

where wu(t) is itself a dimensionless indicator function that
goes from O to 1 as the user-commanded CO, concentration

oes from ¢,in t0 Cmas, and is related to ¢85 as follows:
COs

Cdceéz = Cmin T (cmam - Cmm)u(t) (6)
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TABLE |
SUMMARY OF EXPERIMENTAL CONDITIONS
Experiment # 1 2 3 4 5 6 7
Total Flowrate (L/min) 4.5 3.5 3.0 9.0 7.0 6.0 9.0
N, Flowrate (L/min) 4.0 3.0 2.5 8.0 6.0 5.0 7.5
CO; Flowrate (L/min) 0.5 0.5 0.5 1.0 1.0 1.0 1.5
CO; conc. % 11.1 143 | 16.7 | 11.1 14.3 16.7 | 16.7
(a) : (b) 3
E 3.0 E —3.0
= 20 = 2.0
S S
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Fig. 8. Transmission spectra of the sensor measured at (a) 11.1%, (c)14.3%, and (e) 16.7% CO, concentrations. The green arrow represents
the excitation wavelength of 1574.400 nm. Dynamic responses of the sensor at different flowrates for changes in CO» concentration from 0% to
(b) 11.1%, (d)14.3%, and (f) 16.7%. Due to the limitations of the MFC’s, it was not possible to keep a constant total flow rate in our experiments.

However, it should be noted that the resonance shifts were induced by changes in CO» concentration and remain unaffected by gas flow rate.

The dimensionless, normalized input command w(t) de-
pends on the particular sensor characterization experiment at
hand. In an experiment where the user requests a step change
from minimum to maximum CO, concentration at some time

t,, followed by a return to minimum concentration at some
time ¢y, one can express u(t) as follows:

u(t) = %(t - to)

—U(t— tf)

(N
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where % () is the unit step function.

Now we assume that the fluid mixture generated by the
valve system enters a manifold of volume V. Moreover, we
assume that flow through this manifold is incompressible.
Finally, we assume that the dimensionless, normalized con-
centration of CO, in this manifold is given by some indicator
function, x2(¢). Then the law of conservation of mass states
that the rate of change of the mass of CO, in this manifold
must equal the rate at which CO, enters the manifold minus
the rate at which it is ejected from the manifold. Expressing
this law in terms of nomrmalized, dimensionless concentration
variables leads to the following equation:

Vig = Qx1 — Q2

E=4 j’;Q = %(xl —1’2)

®)

Now we assume that this paper’s sensor is exposed to
the output of the above manifold mixing process. Moreover,
we assume that the sensor can be represented as a simple
lumped volume, V;, where the dimensionless concentration
of CO, inside this volume is x3(t). Finally, we assume that
the transport of gas between this lumped vollume and its
surroundings is governed by Fick’s law of diffusion. Then
the dynamics of the normalized CO, concentration inside the
sensor volume are governed by the law of conservation of
mass, as follows:

Vit = (@ — x3), 9

where D is the effective lumped sensor diffusivity, A is the
effective sensor diffusion area, and T is the effective sensor
diffusion thickness. Grouping terms allows the above equation
to be rewritten as follows:

(10)

5.83 = ;(1’2 — I’g),

where 7 = T,V;/D A, is the sensor’s time constant. The
goal of this work is to estimate this time constant from
sensor characterization experiments. The input to these char-
acterization experiments, u(t), is a user-commanded change
in normalized CO, concentration. The output is the voltage
signal produced by the sensor. For a sufficiently small range
of CO, concentrations, we approximate this voltage as an
affine (i.e., constant plus linear) function of the normalized
CO, concentration, z3(t), seen by the sensor:

Y = Yo + Bx3 (11)

Altogether, the above equations constitute a state-space
model that can be used for sensor characterization. The model
contains three state equations plus one output equation, as
summarized below:

1
T = ;(U_x1)7
b= Las ), w) = t0) - w(t—t) 1D

T = V(ml — x2)

Y= Yo + Bx3

Sensor characterization can now be formulated as an exer-
cise in estimating the above model’s parameters, as discussed

below.

N, =
Sensor
5=
co, mm) —()
©
Valve Setup Mixing Sensor
actuator tubing @ manifold @

Fig. 4. Schematic representation of sensor model.

B. System Identification

Seven experimental data sets were used for estimating the
parameters of the above state-space model. In all of these
experiments, CO, concentration was switched between zero
and a nonzero maximum value. Table I shows the total
volumetric gas flowrate plus the maximum CO, concentration
for each experiment. System identification was performed over
all 7 experiments simultaneously. Specifically, we used the
Matlab implementation of the particle swarm optimization
algorithm to minimize the quadratic sensor voltage prediction
error, summed over all sampling time instants in all 7 exper-
iments, subject to the above state-space sensor model. The
model was simulated with a 1-millisecond time step, equal to
the experimental sampling time, using the first-order forward
Euler integration method, assuming zero initial conditions for
all state variables. The list of optimization variables included:
Ty, V, T, in addition to experiment-dependent values of %,
t¢, Yo, and B. Including the instants in time, ¢, and ¢, in the
optimization is important because it allows the optimizer to
account for potential pure time delays between the moments
in time the user commands a step change in CO, concentration
versus the moment in time the actuator initiates this step
change. Potential discrepancies between these two sets of
time instants can be caused by a number of factors, including
actuator stick/slip behavior. Moreover, allowing the parameters
Yo and B to be experiment-dependent makes it possible to
characterize the sensor time constant even in the presence of
effects such as voltage drift from one experiment to the next.
The optimizer converged to an interior optimal solution for
this system identification problem, meaning that none of the
model parameter estimates hit a user-specified bound.
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Fig. 5. Representative identified sensor model response compared with
the sensor response obtained in the experiment (Experiment #1).

Fig. 5 demonstrates the quality of the curve fit obtained
using the above optimization procedure, for the first of 7 sensor
cycling experiments while the rest are shown in Figure S1 of
the Supplementary Material. A good quality of fit is obtained
across the board, for all 7 experiments. This quality of fit
corresponds to a root mean square sensor voltage prediction
error of 65.3 mV, across all 7 experiments. Fig. 6 provides
additional details by showing the statistical distribution of the
voltage prediction error, across all 7 experiments. Again, the
prediction errors are reasonable, reflecting a good quality of
fit.

The optimal parameter estimates obtained from the above
study highlight the value of the proposed system identification
approach. Three different sets of parameters were estimated by
the particle swarm optimizer. First, the optimizer estimated
the time constants associated with the sensor, the setup’s
first-order actuator dynamics, and the setup’s manifold filling
dynamics. The sensor’s time constant, 7, was estimated to be
48.1 ms, whereas the setup’s actuation time constant, 7, was
estimated to be 857.7 ms, and the setup’s manifold volume,
V', was estimated to be 58.23 mL. Note that 7 and 7, are
independent of the gas flow rate and that V was physically
measured to be approximately 60 mL: a fact that highlights the
success of this optimization effort. These parameter estimates
highlight the fact that the setup’s dynamics are much slower
than those of the sensor. Specifically, the actuation dynamics
have a time constant that is almost 18 times slower than
the sensor’s estimated time constant. Moreover, the flowrate-
dependent manifold filling dynamics, even for the fastest
flowrate of 9 L/min., have a slow time constant of 388ms.
Together, these values show the difficulty of estimating the
sensor’s time constant independently, without accounting for
the dynamics of the surrounding setup: a fact that underscores
the value and importance of this paper’s approach.

The second set of parameters estimated by the particle
swarm optimizer consisted of the experiment-dependent start
and end times for the experimental CO, step changes - namely,
t, and ¢, for each experiment, respectively. A plot of the start
time and end time delays for each experiment with respect
to the commanded flowrates and CO, concentration is shown
in Fig. 7(a). Particularly Fig. 7(b) suggests that these delays

N
o

N N N
o o o

Frequency (# of samples) x 10°
o
o

o
o

-0.3

-0.2

-0.1 0.0 0.1 0.2 0.3
Voltage residual range (V)

Fig. 6. Distribution of sensor voltage estimation/prediction errors (bin
size: 0.05 V).
TABLE II
ESTIMATED PARAMETERS OF VOLTAGE CHARACTERISTICS
Exp. # 1 2 3 4 5 6 7
Yo (V) 0.296 0.267 0.263 0.219 0.194 0.175 0.121
BNV) % 1.78 1.92 2.13 1.41 1.88 2.11 1.85
to () 24.6699 | 20.3555 | 25.3647 | 31.0635 | 29.3724 | 30.1734 | 24.5127
T; () | 83.8527 | 79.3072 | 84.7885 | 89.5093 | 88.9165 | 89.9908 | 84.1776

could be flowrate dependent. Linear regression models are
constructed as to. — t, = dp + d11/Q, and t,; — ¢ty =
bAo + b} 1/Q to express the delay in start and end times ¢,. —t,
and ty. — ty, respectively. Both t,. and t;. represent the
commanded start and end times in the experiments, respec-
tively. Both linear functions have the explanatory variable as
the reciprocal of flowrate 1/Q). The linear regression models
exclude the start delay of the 4™ experiment and considers it
as an outlier, as shown in Fig. 7(b) with a red triangle. The
null hypotheses of these linear regression are that the delays
are not a flowrate dependent. These linear regression models
are shown in Fig. 7(c). They use six observations implying
that they have four degree of freedom. The linear regression
model of the start delays shows that the best linear fit of the
data is given by values of dy and a; equal to 0.1340 sec and
0.1125 L respectively. The R-squared value of this fit is 0.9414
showing that this model is unable to capture only a mere 6%
of the variation. The linear regression model of the end delays
shows that the best linear fit of the data is given by values of
bo and by equal to 0.0161 sec and 0.0745 L respectively. The
R-squared value of this fit is 0.8976 indicating that this model
cannot explain 10% of the variation. Hence, it is concluded that
the delays in start time and end time are flowrate dependent.

The third set of parameters estimated by the particle swarm
optimizer was the baseline voltage y, and voltage rise 3 for
each experiment as shown in Table II. Estimates of the baseline
voltage, y,, show a small degree of drift between experiments.
Similar drift is visible when examining the values of the
estimated voltage rise, 3, for different experiments involving
the same CO, concentration. For instance, experiments 3, 6,
and 7 all pertain to a CO, concentration of 16.7%. However,
the baseline voltages for these experiments range from 0.121
V to 0.263 V, and the jump in voltage corresponding to a
step CO, concentration change ranges from 1.85 V to 2.13 V.
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Fig. 7. (a) A three-variable plot demonstrating the relationship between
flow rates, CO, concentrations, and delay times. (b) Delay times with
respective to the flowrates of all seven data points. (c) Impact of fluid
flowrate on start/end delays along with their fit curves. There appears
to be a linear relationship between delay times and the reciprocal of
total flowrate. Note that, in each figure, the outlier is shown in red,
whereas the start delay and end delay values are shown in blue
and black, respectively. Additionally, the circle, square, and triangle
markers represent CO» concentrations of 11.1%, 14.3%, and 16.7%,
respectively.

Such drift can potentially occur when a nano-photonic sensor
is employed in intensity-based demodulation mode, and serves
as a strong motivator for wavelength-based demodulation as
an alternative. Nevertherless, the value of the experimental
characterization work in this paper stems predominantly from
the degree to which it furnishes an estimate of the sensor
time constant, 7. Such an estimate is potentially useful for
understanding the performance limits of the sensor regardless
of whether it is used in intensity- or wavelength-based demod-
ulation mode. This creates a strong motivation for character-
izing the accuracy of the estimated sensor time constant, as
discussed in the next section of this paper.

o

differences between measured and predicted voltages). Note that the
presence of large auto-correlation values for nonzero lags indicates that
the residuals are colored, as opposed to white. Possible explanations
include coloring of the raw voltage measurements due to the filtering
capabilities of the setup’s data acquisition hardware. Figure inset shows
the voltage prediction errors/residuals for all 7 experiments, each with
120,000 data points, combined into a single data series.

C. Uncertainty Quantification

To quantify the uncertainties in the above parameter esti-
mates, we begin by analyzing the residuals (i.e., voltage pre-
diction errors) for the above system identification study. The
inset within Fig. 8 shows these residuals for all 7 experiments
as a single sequence of data points. One observation is that
the voltage prediction errors depend on the underlying signal,
with higher CO, concentrations leading to higher residuals.
This is an interesting observation that could potentially be
caused by the sensor’s underlying characteristics, with larger
CO; concentrations generating both a larger voltage signal and
higher voltage noise. Fig. 8 shows the sample auto-correlation
of these voltage residuals. This auto-correlation is colored as
opposed to white. This could potentially be caused by signal
conditioning circuits/filters within the experimental setup’s
electronics. While both of these observations are interesting,
the magnitudes of the voltage residuals are reasonably small.
As a result, the uncertainty quantification study below fur-
nishes reasonable parameter estimation error bounds.

To perform uncertainty quantification, we note that the
previous section’s system identification problem statement im-
plicitly assumes that the discrepancy between the experimental
and identified sensor voltage is solely due to the measurement
noise. Then, for any discrete measurement ¢= 1,....,n collected
at each time step dt:

yi = 9i (0) +v; (13)

where y; is the measured sensor voltage, and §;(6) is the iden-
tified sensor voltage that depends on the estimated parameter
vector 9=[7’, To, V, (yo)l,. ey (yo)7, 51,. cey ﬁ7, (t0)1,. cey
(to)7, (tf)1,---- (t5)7]. This vector includes the 31 estimated
parameters of the model, and v; is the measurement noise. For
simplicity, this measurement noise is assumed to be Gaussian,
independent, and identically distributed (iid) with zero mean
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and variance o2, v-IN (0,0%). This assumption is an approx-
imation of the characteristics of the residuals in Fig. 6, Fig. 8§,
and the inset within Fig. 8. This approximation simplifies the
uncertainty quantification process, with the caveat that the
resulting parameter estimation error estimates are themselves
approximate. Given these assumptions, the probability density
function of the measured sensor voltage is expressed as:

1 1 n R )
fo(y") = W €xp <—M ; (yi — 93 () )
(14)

Following these assumptions, 6 is calculated using the
maximum likelihood estimator (MLE) that is given as:

Orrrp = arg {max fo (y)}, (15)

which is implemented in Matlab using the particle swarm
optimization algorithm, thereby furnishing the least squared
error. Generally, the Cramér-Rao Lower Bound (CRLB) can be
used for uncertainty quantification assuming that the maximum
likelihood estimate of the unknown parameters is asymptoti-
cally unbiased. The CRLB theorem states the lowest possible
estimate of the covariance of an unbiased estimator equals the
inverse of the Fisher information matrix I. For the zero-mean
iid Gaussian noise [ is given in terms of the sensitivity matrix
as follows:

L or

I==55S (16)

o
The sensitivity matrix is constructed by perturbing each ele-
ment k£ of € with an infinitesimal change J6; and computing
the difference between the perturbed model prediction and true
model prediction with respect to the perturbed element of 6y
as follows:

s1(0t)  s9(dt) s31 (0t)
S1 (25t) S92 (2(5t) S31 (25t)
S = . : . a7
51 (ndt)  sg (ndt) s31 (ndt)
Each element of the sensitivity matrix is expressed as:
o e §i (04 060k) — 9; ()
sk (i0) = Jim 50, (18)

The above equations served as a recipe for applying un-
certainty quantification to this paper’s parameter estimation
results. First, the proposed state-space model was simulated
for the optimized parameter value to obtain baseline simulation
results. Then the simulation was repeated for a perturbation
applied to each parameter independently. This furnished the
above sensitivity matrix. Finally, the variance of the voltage
estimation residuals, together with this sensitivity matrix, was
used to compute the Fisher information matrix /. The inverse
of this Fisher information matrix provided Cramér-Rao bounds
for the estimation errors associated with these parameters.
More specifically, each diagonal term in the resulting CRLB
matrix provided an estimation variance for the corresponding
parameter. Computing the square root of this variance and
multiplying by 3 finally furnished the +30 estimation errors

TABLE Ill
BOUNDS ON THE MODEL PARAMETERS

Bound
+5.6049 (ms)
+8.6029 (ms)
+0.6817 (mL)

Parameter

Sensor’s time constant 7

Setup’s actuation time constant T
Manifold volume V'

for the parameter. Table III lists these estimation errors for the
three time constants associated with the sensor, setup actuator,
and manifold volume. All of these error bounds are small
compared to the nominal parameter estimates. This highlights
the degree to which the approach proposed in this paper can
enable the characterization of a fast nano-photonic sensor, even
when the dynamics of the underlying setup are much slower
than the sensor.

D. Finite Element Analysis of Sensor Time Constant

Finite element analysis was carried out to validate the
estimated sensor time constant. COMSOL Multiphysics (using
the Transport of Diluted Species interface) was used to model
and simulate the gas diffusion across the ZIF-8/PDMS coating
layer. Fig. 9(a) shows the 2D model of the ZIF-8/PDMS
coating layer of the sensor. The radius of the ring resonator
is 10 pm, and the thickness of the ZIF-8 and PDMS coating
layers is 1.5 um and 7.0 um, respectively. The gas diffusion
was simulated based on Fick’s law of diffusion as:

Oc
§+V-(—DVC)—O

(19)

where c is the gas concentration, D is the diffusion coeffi-
cient, and ¢ is time. The diffusion coefficients of CO, gas in
the ZIF-8 and PDMS were set to 1.71x10 1% m?/s [21] and
4.2x10 ° m?/s [22], respectively. The gas concentration on the
top and right boundaries was set to 100 CO, Vol %, while the
bottom boundary was set to a No Flux condition. The initial
condition was set to 0 CO, Vol %. The point for checking
the gas concentration is positioned 220 nm above the bottom
boundary and is annotated as Probe. Note that this simulation
can be extended for light and heavy gas/vapor other than CO,,
provided that the diffusion coefficients of the gas/vapor in ZIF-
8 and PDMS are available.

The change in gas concentration at Probe is presented as
the red curve in Fig. 9(b). The simulated time constant is 12.9
msec, which is smaller than the estimated 48 msec. One of the
causes of this discrepancy is believed to be fabrication errors.
The ZIF-8 layer in the sensor was coated manually with a
dip coating process, which is suspected to have affected the
variation of film properties. For example, the refractive index
of ZIF-8, one of its material properties, varies across literature
from 1.34 to 1.49 refractive index unit (RIU) despite using
the same synthesis process [7], [23]. Similar to the refractive
index, we believe that such a coating process could affect the
diffusion coefficient. In case the diffusion coefficient of ZIF-8
is set to 2.6x 10 "' m?/s, approximately 15% of the reference
value, the simulated time constant becomes comparable to
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Fig. 9. (a) 2D simulation model for the gas diffusion across the

ZIF-8/PDMS coating layer. (b) Time-dependent simulation of the gas
concentration at Probe with two different diffusion coefficients of ZIF-8

the estimated value of 48 msec, shown as the blue curve in
Fig. 9(b). Therefore, considering these simulation results and
fabrication errors, we believe the system identification method
estimated the sensor time constant with reasonable accuracy.

V. DISCUSSION AND CONCLUSIONS

We successfully characterized the dynamic response of
a fast-responding nanophotonic dissolved CO, sensor using
optimization-based system identification. The nanophotonic
sensor employed a silicon ring resonator with ZIF-8/PDMS
cladding for dissolved CO, gas sensing. Seven experimental
conditions with different CO, concentrations and different gas
flow rates were used for characterizing the dynamic response
of the sensor. After applying Matlab’s implementation of
particle swarm optimization algorithm on the acquired exper-
imental results, the sensor’s time constant was estimated to
be 48.145.6 ms. Considering the simulated time constant and
errors in ZIF-8 fabrication, we believe the system identification
method estimated the sensor time constant with reasonable
accuracy. The proposed approach will offer a cost-effective
method for characterizing various fast responding sensors
using conventional test systems with slower responses than
the sensor response.
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