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Dynamic Characterization of a Fast-responding
Nanophotonic Gas Sensor using

Optimization-based System Identification
Bibek Ramdam∗, Eman M. Abdelazim∗, Hyun-Tae Kim, Hosam K. Fathy, and Miao Yu

AbstractÐ This paper develops and parameterizes a dynamic model of a
novel nanophotonic gas sensor. The sensor employs a functionalized micro-
ring resonator to measure CO2 concentrations in biomedical applications.
The literature presents both computational and experimental approaches
for characterizing nanophotonic sensor response times. However, it can be
challenging to distinguish between the dynamics of a fast-responding sen-
sor versus the dynamics of the setup used for characterizing it. We address
this challenge using optimization-based system identification. Specifically,
we construct a test rig that supplies mixed N2/CO2 flow to the sensor
and measures the sensor’s voltage amplitude response at a given laser
excitation wavelength. Step response experiments are conducted using this
test rig, at different gas flowrates and concentrations. A state-space model is
then constructed, capturing the sensor’s first-order dynamics as well as the gas transport, manifold filling, and first-order
valve actuator dynamics of the test setup. A particle swarm optimizer is used for least-squares model parameterization.
The resulting residuals are reasonable in magnitude, two observations being that their magnitude changes with CO2
concentration and that they exhibit some coloring, potentially due to the setup’s signal processing filters. The estimated
time constant has reasonable CramÂer-Rao bounds, and is close in magnitude to finite element predictions.

Index TermsÐ Gas sensors; nanophotonics; sensor dynamics; system identification.

I. INTRODUCTION

Nanotechnology has played a vital role in advancing optical

gas sensors [1]±[3]. In recent years, metal organic frameworks

(MOFs), which possess a nanoporous structure capable of

selectively adsorbing specific gas molecules [4], [5], have re-

ceived significant attention for their ability to enhance the sens-

ing performance of both refractive index (RI)-based [6]±[10]

and infrared absorption-based gas sensors [10]±[14]. When a

MOF layer is applied to the optical path of a gas sensor, the

interaction between light and the target gas is greatly enhanced

due to the selective adsorption of the gas molecules on the

expansive surface area of the nanoporous MOF. This enhanced

light-gas interaction improves the sensitivity and lowers the

detection limit of the sensor. Furthermore, a thin-film MOF

coating layer, typically measuring just a few micrometers in

thickness, results in a short gas diffusion time, enabling the

development of fast-responding optical gas sensors. However,

precise characterization of such fast-responding gas sensors
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remains a challenge. For example, recent studies on MOF-

based optical gas sensors have reported a wide range of sensor

response time, ranging from hundreds of milliseconds to tens

of seconds [6]±[14], despite employing similar sensing mecha-

nisms and MOF films of similar thickness and diffusivity. This

discrepancy arises due to the difficulty in achieving a rapid

change in gas concentration within the gas cell. Additionally,

the measured time response often includes the dynamics of the

gas handling system, including valve actuation for gas flow

control and gas mixing/filling in the manifold and gas cell.

The response of a gas handling system cannot be neglected

when characterizing fast-responding gas sensors, especially

those with sub-second response times.

Optimization-based system identification provides tools for

estimating the parameters of coupled dynamic systems from

experimental input-output data [15], [16]. Such tools have

the potential to enable the simultaneous estimation of the

parameters of a novel sensor plus the setup used for test-

ing/characterizing it. This can be particularly valuable in

research efforts where one seeks to characterize the dynamic

response of a fast sensor in the presence of slower test setup

dynamics. One goal of this work is to demonstrate such

application of system identification to a novel dissolved carbon

dioxide (CO2) sensor. Specifically, we employ optimization-

based system identification to characterize the response time

of a novel fast-responding MOF-based optical gas sensor by

analyzing the combined sensor and gas handing system. As
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a proof of concept, a RI-based optical CO2 gas sensor is

developed using a silicon microring resonator coated with ZIF-

8 and PDMS. Further, a state-space model that incorporates

(i) the sensor, (ii) valve actuation, and (iii) gas mixing/filling

dynamics is constructed. The time constant of the first-order

sensor dynamics is estimated, and CramÂer-Rao error bounds

for this constant are determined through Fisher information

analysis. It should be noted that the sensor response time,

commonly defined as the time taken to reach 90% of a steady-

state or maximum level (τ90), is approximately 2.3 times of

the time constant (τ ) [17]. To validate the accuracy of the

estimated sensor response time, the dynamic gas diffusion

in the sensor is simulated using a finite element method.

The novelty of this paper stems from its optimization-based

experimental characterization of the sub-second response time

of a MOF-based optical gas sensor from combined sen-

sor/test setup data. Furthermore, the proposed optimization-

based system identification approach enables the cost-effective

characterization of various fast-responding sensors, as it allows

the use of conventional test systems with significantly slower

dynamic responses compared to the sensor response.

The remaining sections of this paper are organized as

follows. Section II describes the design and fabrication of

the dissolved CO2 gas sensor with ZIF-8/PDMS coating,

experimental setup for characterizing the sensor response

time, and the results of the characterization experiments.

Section III presents estimation of the time constants using

the optimization-based system identification method and FEM

simulations of gas diffusion. Further, it provides a discussion

of the obtained results. Finally, Section IV concludes the paper.

II. SENSOR AND EXPERIMENTS

A. Sensor Design

The dissolved CO2 gas sensor consists of a silicon ring

resonator and a ZIF-8/PDMS top cladding layer, as shown

in Figs. 1(a) and 1(b). The high-Q ring resonator facilitates

low detection limit RI sensing [18], [19]. Moreover, the ZIF-8

cladding layer enables selective and sensitive detection of the

RI change induced by CO2 adsorption in the ZIF-8. The gas-

permeable and hydrophobic PDMS coating layer allows CO2

molecules to diffuse into and out of the ZIF-8 while separating

the ZIF-8 from the sensing solution. Note that the sensing

surface area is mainly determined by the ring waveguide length

and the thickness of the ZIF-8 coating. As long as the ring

waveguide is fully coated with a ZIF-8 film, the sensitivity is

independent of the shape of the ZIF-8 coating. Further details

of the sensor design and its operation principle can be found

in [20]. The sensor fabrication process can be found in Sec.

1 of the Supplementary Material.

B. Experimental Test Setup

Fig. 2 shows the schematic diagram of the experimental

setup for characterizing the sensor time constant. Light from

a tunable laser (TSL-510, Santec) was passed through a

polarization controller and coupled into the sensor using a

single-mode optical fiber (SMF). The light from the sensor

was collected by a fiber-optic photoreceiver (Model 2053,

Fig. 1. Schematic showing (a) the developed dissolved CO2 sensor
and (b) its cross-sectional view.

Fig. 2. Experimental setup for characterizing the time constant of the
gas sensor. The inset within the figure shows the CAD rendering of the
gas cell on top of the sensor. DAQ: data acquisition instrument, MFC:
mass flow controllers, PC: polarization controller, PD: photodetector,
SG: signal generator, SMF: single mode fiber, SV: solenoid valve, TL:
tunable laser.

New Focus) and the output voltage of the photoreceiver was

logged using a data acquisition system (Picoscope 6000, Pico

Technology) with a sampling rate of 1 millisecond.

N2 and CO2 were used as the carrier and test gases,

respectively. The flow rates of both gases were regulated using

mass flow controllers (MFCs) (N2: 6A0107BV-NC, CO2:

6A0107SV-CA, Dakota Instruments). Moreover, a solenoid

valve (2W-025-08, ATO Inc), operated using a function gener-

ator (AFG3102C, Tektronix) was integrated between the CO2

gas cylinder and its MFC to control the timing of CO2 gas flow.

The CO2 and N2 gas flows from the MFCs were combined

using a connector tube and were fed into the gas cell, as shown

in the inset within Fig. 2. The entire experiment was performed

under room temperature and atmospheric pressure conditions.

Additionally, before the experiment the sensor was placed in

N2 flow for 12 hours to stabilize its signal.

C. Characterization Experiments

An experimental dataset with varying CO2 concentrations

and total gas flowrates is required for the optimization-based

system identification. Note that N2 flowrate does not need to

be constant if varying total flowrates are achieved. Table I

shows the seven experimental conditions that were used for

sensor characterization. The experiment examined three CO2

concentrations of 11.1%, 14.3%, and 16.7%. For 11.1% and
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14.3% CO2 concentrations, two different gas flow rates were

examined whereas three different flow rates were tested for

16.7% CO2 concentration.

Figs. 3(a), 3(c), and 3(e) show the transmission spectra of

the sensor at CO2 concentrations of 11.1%, 14.3%, and 16.7%,

respectively. In each figure, the solid black curve represents the

sensor’s response to 0% CO2 concentration (i.e., pure N2 flow).

The red colored curves represent the sensor’s response to one

of the total flow rates, which is the sum of CO2 and N2 flow

rates. The green arrow indicates the excitation wavelength of

1574.400 nm used for characterizing the dynamic response of

the sensor. The excitation wavelength of 1574.4 nm, which is

located close to the largest slope of the resonance, was chosen

because it provides a large intensity modulation in response

to the resonance shift induced by CO2 concentration changes.

The transmission spectra exhibit that the resonance wavelength

redshifts with increasing CO2 concentration. These redshifts

result from the increase in the refractive index of the ZIF-8

cladding induced by CO2 adsorption. Note that the three CO2

concentration levels and the excitation wavelength of 1574.400

nm were selected based on the conditions as follows. Firstly,

the sensor is operated within the linear region of the resonance

curve. Additionally, to accommodate the manual operation

of the MFCs, which have the smallest division of 1 L/min

in their measurement scales, the flow rate is controlled with

approximately 0.5 L/min increment for reasonable accuracies.

The voltage responses of the sensor to changes in CO2

concentration are shown in Figs. 3(b), 3(d), and 3(f). In

each figure, the solid black line represents the driving signal

from the function generator that controls the solenoid valve

operation. Initially, the valve was in a closed state at 0 V, i.e.,

CO2 gas was not flowing into the gas cell. It switched to an

open state, allowing CO2 gas to flow in the gas cell, when the

signal changed to 3.3 V. The other colored curves represent

the sensor’s response at different total flow rates, synchronized

with the driving signal.

The response curves show that there is a delay between the

driving signal and the sensor response. This delay decreased

as the total flow rate increased. Moreover, the sensor response

reached its maximum voltage faster with an increasing flow

rate. This flowrate dependency is believed to result from the

gas transport delay and the manifold mixing of CO2 and O2

gases. Additionally, the sensor response includes a flow rate

independent delay resulting from the physical opening/closing

process in the solenoid valve actuation. Note that the voltage

change induced by the resonance wavelength shift should

be the same for the same CO2 concentration experiment

regardless of the total flow rates. However, the experimental

results, as shown in Figs. 3(b), 3(d) and 3(f), reveal that

the resonance shifts were not consistent across different total

flow rates. This inconsistency arises because the actual CO2

concentrations at different total flow rates deviate from the

nominal value. This discrepancy is attributed to the difficulty in

precisely controlling CO2 and O2 flow rate with an increment

0.5 L/min increment using the manual MFCs. To address

this problem, electronic MFCs with a high precision can be

employed to achieve better control and eliminate this error.

III. MODELING AND PARAMETERIZATION

A. State-Space Model

The remainder of this paper assumes that the coupled

dynamics of the sensor plus its test setup are governed by

the third-order, lumped-parameter state-space model derived

below. We begin by deriving the governing equations for this

model based on physical first principles, then utilize it for

sensor characterization.

Fig. 4 provides a conceptual representation of the dynamics

captured by the proposed model. We assume the experimental

setup supplies N2 and CO2 at two volumetric flowrates, QN2

and QCO2
, respectively. Mixing these two flows furnishes a

volumetric CO2 concentration equal to cCO2
= QCO2

/Q,

where the total volumetric flowrate, Q, is given by:

Q = QN2
+QCO2

(1)

We assume that over the course of a given sensor char-

acterization experiment, the above CO2 concentration changes

between some user-prescribed maximum and minimum values,

cmax and cmin, respectively. It is convenient to define a

dimensionless indicator function, x1(t), that goes from 0

to 1 as this concentration goes from its minimum to its

maximum value, respectively. Mathematically, one can relate

CO2 concentration to this indicator function as follows:

cCO2
= cmin + (cmax − cmin)x1 (2)

Now we assume that the user-specified, desired CO2 con-

centration is some function, cdesCO2
(t), where t denotes time.

This desired CO2 concetration is achieved through the control

of a valve actuation system, as shown in the setup’s schematic.

It is important to note that this valve actuation’s response to the

control signal will not be instantaneous, since the valves will

have their own dynamics. Assuming, for simplicity, that these

dynamics are governed by linear first-order behavior leads to

the followig state equation:

dcCO2

dt
=

1

τv
(cdesCO2

− cCO2
), (3)

where τv is the actuation time constant. Substituting Eq. 2 into

Eq. 3 gives:

ẋ1 =
1

τv

cdesCO2
− cCO2

cmax − cmin

(4)

The above equation can now be rewritten as follows:

ẋ1 =
1

τv
(u− x1), (5)

where u(t) is itself a dimensionless indicator function that

goes from 0 to 1 as the user-commanded CO2 concentration

goes from cmin to cmax, and is related to cdesCO2
as follows:

cdesCO2
= cmin + (cmax − cmin)u(t) (6)
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TABLE I

SUMMARY OF EXPERIMENTAL CONDITIONS

Experiment # 1 2 3 4 5 6 7

Total Flowrate (L/min) 4.5 3.5 3.0 9.0 7.0 6.0 9.0

N2 Flowrate (L/min) 4.0 3.0 2.5 8.0 6.0 5.0 7.5

CO2 Flowrate (L/min) 0.5 0.5 0.5 1.0 1.0 1.0 1.5

CO2 conc. % 11.1 14.3 16.7 11.1 14.3 16.7 16.7

Fig. 3. Transmission spectra of the sensor measured at (a) 11.1%, (c)14.3%, and (e) 16.7% CO2 concentrations. The green arrow represents
the excitation wavelength of 1574.400 nm. Dynamic responses of the sensor at different flowrates for changes in CO2 concentration from 0% to
(b) 11.1%, (d)14.3%, and (f) 16.7%. Due to the limitations of the MFC’s, it was not possible to keep a constant total flow rate in our experiments.
However, it should be noted that the resonance shifts were induced by changes in CO2 concentration and remain unaffected by gas flow rate.

The dimensionless, normalized input command u(t) de-

pends on the particular sensor characterization experiment at

hand. In an experiment where the user requests a step change

from minimum to maximum CO2 concentration at some time

to, followed by a return to minimum concentration at some

time tf , one can express u(t) as follows:

u(t) = U (t− to)− U (t− tf ) (7)
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where U () is the unit step function.

Now we assume that the fluid mixture generated by the

valve system enters a manifold of volume V . Moreover, we

assume that flow through this manifold is incompressible.

Finally, we assume that the dimensionless, normalized con-

centration of CO2 in this manifold is given by some indicator

function, x2(t). Then the law of conservation of mass states

that the rate of change of the mass of CO2 in this manifold

must equal the rate at which CO2 enters the manifold minus

the rate at which it is ejected from the manifold. Expressing

this law in terms of nomrmalized, dimensionless concentration

variables leads to the following equation:

V ẋ2 = Qx1 −Qx2

=⇒ ẋ2 =
Q

V
(x1 − x2)

(8)

Now we assume that this paper’s sensor is exposed to

the output of the above manifold mixing process. Moreover,

we assume that the sensor can be represented as a simple

lumped volume, Vs, where the dimensionless concentration

of CO2 inside this volume is x3(t). Finally, we assume that

the transport of gas between this lumped vollume and its

surroundings is governed by Fick’s law of diffusion. Then

the dynamics of the normalized CO2 concentration inside the

sensor volume are governed by the law of conservation of

mass, as follows:

Vsẋ3 =
DsAs

Ts

(x2 − x3), (9)

where Ds is the effective lumped sensor diffusivity, As is the

effective sensor diffusion area, and Ts is the effective sensor

diffusion thickness. Grouping terms allows the above equation

to be rewritten as follows:

ẋ3 =
1

τ
(x2 − x3), (10)

where τ = TsVs/DsAs is the sensor’s time constant. The

goal of this work is to estimate this time constant from

sensor characterization experiments. The input to these char-

acterization experiments, u(t), is a user-commanded change

in normalized CO2 concentration. The output is the voltage

signal produced by the sensor. For a sufficiently small range

of CO2 concentrations, we approximate this voltage as an

affine (i.e., constant plus linear) function of the normalized

CO2 concentration, x3(t), seen by the sensor:

y = yo + βx3 (11)

Altogether, the above equations constitute a state-space

model that can be used for sensor characterization. The model

contains three state equations plus one output equation, as

summarized below:

ẋ1 =
1

τv
(u− x1), ẋ2 =

Q

V
(x1 − x2)

ẋ3 =
1

τ
(x2 − x3), u(t) = U (t− to)− U (t− tf )

y = yo + βx3

(12)

Sensor characterization can now be formulated as an exer-

cise in estimating the above model’s parameters, as discussed

below.

Fig. 4. Schematic representation of sensor model.

B. System Identification

Seven experimental data sets were used for estimating the

parameters of the above state-space model. In all of these

experiments, CO2 concentration was switched between zero

and a nonzero maximum value. Table I shows the total

volumetric gas flowrate plus the maximum CO2 concentration

for each experiment. System identification was performed over

all 7 experiments simultaneously. Specifically, we used the

Matlab implementation of the particle swarm optimization

algorithm to minimize the quadratic sensor voltage prediction

error, summed over all sampling time instants in all 7 exper-

iments, subject to the above state-space sensor model. The

model was simulated with a 1-millisecond time step, equal to

the experimental sampling time, using the first-order forward

Euler integration method, assuming zero initial conditions for

all state variables. The list of optimization variables included:

τv , V , τ , in addition to experiment-dependent values of to,

tf , yo, and β. Including the instants in time, to and tf , in the

optimization is important because it allows the optimizer to

account for potential pure time delays between the moments

in time the user commands a step change in CO2 concentration

versus the moment in time the actuator initiates this step

change. Potential discrepancies between these two sets of

time instants can be caused by a number of factors, including

actuator stick/slip behavior. Moreover, allowing the parameters

yo and β to be experiment-dependent makes it possible to

characterize the sensor time constant even in the presence of

effects such as voltage drift from one experiment to the next.

The optimizer converged to an interior optimal solution for

this system identification problem, meaning that none of the

model parameter estimates hit a user-specified bound.
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Fig. 5. Representative identified sensor model response compared with
the sensor response obtained in the experiment (Experiment #1).

Fig. 5 demonstrates the quality of the curve fit obtained

using the above optimization procedure, for the first of 7 sensor

cycling experiments while the rest are shown in Figure S1 of

the Supplementary Material. A good quality of fit is obtained

across the board, for all 7 experiments. This quality of fit

corresponds to a root mean square sensor voltage prediction

error of 65.3 mV, across all 7 experiments. Fig. 6 provides

additional details by showing the statistical distribution of the

voltage prediction error, across all 7 experiments. Again, the

prediction errors are reasonable, reflecting a good quality of

fit.

The optimal parameter estimates obtained from the above

study highlight the value of the proposed system identification

approach. Three different sets of parameters were estimated by

the particle swarm optimizer. First, the optimizer estimated

the time constants associated with the sensor, the setup’s

first-order actuator dynamics, and the setup’s manifold filling

dynamics. The sensor’s time constant, τ , was estimated to be

48.1 ms, whereas the setup’s actuation time constant, τv , was

estimated to be 857.7 ms, and the setup’s manifold volume,

V , was estimated to be 58.23 mL. Note that τ and τv are

independent of the gas flow rate and that V was physically

measured to be approximately 60 mL: a fact that highlights the

success of this optimization effort. These parameter estimates

highlight the fact that the setup’s dynamics are much slower

than those of the sensor. Specifically, the actuation dynamics

have a time constant that is almost 18 times slower than

the sensor’s estimated time constant. Moreover, the flowrate-

dependent manifold filling dynamics, even for the fastest

flowrate of 9 L/min., have a slow time constant of 388ms.

Together, these values show the difficulty of estimating the

sensor’s time constant independently, without accounting for

the dynamics of the surrounding setup: a fact that underscores

the value and importance of this paper’s approach.

The second set of parameters estimated by the particle

swarm optimizer consisted of the experiment-dependent start

and end times for the experimental CO2 step changes - namely,

to and tf , for each experiment, respectively. A plot of the start

time and end time delays for each experiment with respect

to the commanded flowrates and CO2 concentration is shown

in Fig. 7(a). Particularly Fig. 7(b) suggests that these delays

Fig. 6. Distribution of sensor voltage estimation/prediction errors (bin
size: 0.05 V).

TABLE II

ESTIMATED PARAMETERS OF VOLTAGE CHARACTERISTICS

Exp. # 1 2 3 4 5 6 7

yo (V) 0.296 0.267 0.263 0.219 0.194 0.175 0.121

β (V) % 1.78 1.92 2.13 1.41 1.88 2.11 1.85

to (s) 24.6699 20.3555 25.3647 31.0635 29.3724 30.1734 24.5127

tf (s) 83.8527 79.3072 84.7885 89.5093 88.9165 89.9908 84.1776

could be flowrate dependent. Linear regression models are

constructed as toc − to = â0 + â11/Q, and tof − tf =
b̂0+ b̂11/Q to express the delay in start and end times toc− to
and tfc − tf , respectively. Both toc and tfc represent the

commanded start and end times in the experiments, respec-

tively. Both linear functions have the explanatory variable as

the reciprocal of flowrate 1/Q. The linear regression models

exclude the start delay of the 4th experiment and considers it

as an outlier, as shown in Fig. 7(b) with a red triangle. The

null hypotheses of these linear regression are that the delays

are not a flowrate dependent. These linear regression models

are shown in Fig. 7(c). They use six observations implying

that they have four degree of freedom. The linear regression

model of the start delays shows that the best linear fit of the

data is given by values of â0 and â1 equal to 0.1340 sec and

0.1125 L respectively. The R-squared value of this fit is 0.9414

showing that this model is unable to capture only a mere 6%

of the variation. The linear regression model of the end delays

shows that the best linear fit of the data is given by values of

b̂0 and b̂1 equal to 0.0161 sec and 0.0745 L respectively. The

R-squared value of this fit is 0.8976 indicating that this model

cannot explain 10% of the variation. Hence, it is concluded that

the delays in start time and end time are flowrate dependent.

The third set of parameters estimated by the particle swarm

optimizer was the baseline voltage yo and voltage rise β for

each experiment as shown in Table II. Estimates of the baseline

voltage, yo, show a small degree of drift between experiments.

Similar drift is visible when examining the values of the

estimated voltage rise, β, for different experiments involving

the same CO2 concentration. For instance, experiments 3, 6,

and 7 all pertain to a CO2 concentration of 16.7%. However,

the baseline voltages for these experiments range from 0.121

V to 0.263 V, and the jump in voltage corresponding to a

step CO2 concentration change ranges from 1.85 V to 2.13 V.
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Fig. 7. (a) A three-variable plot demonstrating the relationship between
flow rates, CO2 concentrations, and delay times. (b) Delay times with
respective to the flowrates of all seven data points. (c) Impact of fluid
flowrate on start/end delays along with their fit curves. There appears
to be a linear relationship between delay times and the reciprocal of
total flowrate. Note that, in each figure, the outlier is shown in red,
whereas the start delay and end delay values are shown in blue
and black, respectively. Additionally, the circle, square, and triangle
markers represent CO2 concentrations of 11.1%, 14.3%, and 16.7%,
respectively.

Such drift can potentially occur when a nano-photonic sensor

is employed in intensity-based demodulation mode, and serves

as a strong motivator for wavelength-based demodulation as

an alternative. Nevertherless, the value of the experimental

characterization work in this paper stems predominantly from

the degree to which it furnishes an estimate of the sensor

time constant, τ . Such an estimate is potentially useful for

understanding the performance limits of the sensor regardless

of whether it is used in intensity- or wavelength-based demod-

ulation mode. This creates a strong motivation for character-

izing the accuracy of the estimated sensor time constant, as

discussed in the next section of this paper.

Fig. 8. Auto-correlation plot of the voltage prediction residuals (i.e.,
differences between measured and predicted voltages). Note that the
presence of large auto-correlation values for nonzero lags indicates that
the residuals are colored, as opposed to white. Possible explanations
include coloring of the raw voltage measurements due to the filtering
capabilities of the setup’s data acquisition hardware. Figure inset shows
the voltage prediction errors/residuals for all 7 experiments, each with
120,000 data points, combined into a single data series.

C. Uncertainty Quantification

To quantify the uncertainties in the above parameter esti-

mates, we begin by analyzing the residuals (i.e., voltage pre-

diction errors) for the above system identification study. The

inset within Fig. 8 shows these residuals for all 7 experiments

as a single sequence of data points. One observation is that

the voltage prediction errors depend on the underlying signal,

with higher CO2 concentrations leading to higher residuals.

This is an interesting observation that could potentially be

caused by the sensor’s underlying characteristics, with larger

CO2 concentrations generating both a larger voltage signal and

higher voltage noise. Fig. 8 shows the sample auto-correlation

of these voltage residuals. This auto-correlation is colored as

opposed to white. This could potentially be caused by signal

conditioning circuits/filters within the experimental setup’s

electronics. While both of these observations are interesting,

the magnitudes of the voltage residuals are reasonably small.

As a result, the uncertainty quantification study below fur-

nishes reasonable parameter estimation error bounds.

To perform uncertainty quantification, we note that the

previous section’s system identification problem statement im-

plicitly assumes that the discrepancy between the experimental

and identified sensor voltage is solely due to the measurement

noise. Then, for any discrete measurement i= 1,. . . .,n collected

at each time step δt:

yi = ŷi (θ) + vi (13)

where yi is the measured sensor voltage, and ŷi(θ) is the iden-

tified sensor voltage that depends on the estimated parameter

vector θ=[τ , τv , V , (y0)1,. . . ., (y0)7, β1,. . . , β7, (t0)1,. . . .,

(t0)7, (tf )1,. . . ., (tf )7]. This vector includes the 31 estimated

parameters of the model, and vi is the measurement noise. For

simplicity, this measurement noise is assumed to be Gaussian,

independent, and identically distributed (iid) with zero mean
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and variance σ2, v
iid∼N (0, σ2). This assumption is an approx-

imation of the characteristics of the residuals in Fig. 6, Fig. 8,

and the inset within Fig. 8. This approximation simplifies the

uncertainty quantification process, with the caveat that the

resulting parameter estimation error estimates are themselves

approximate. Given these assumptions, the probability density

function of the measured sensor voltage is expressed as:

fθ (y
n) =

1
(√

2πσ2

)n exp

(

− 1

2σ2

n
∑

i=1

(yi − ŷi (θ))
2

)

(14)

Following these assumptions, θ is calculated using the

maximum likelihood estimator (MLE) that is given as:

θ̂MLE = arg {max fθ (y)} , (15)

which is implemented in Matlab using the particle swarm

optimization algorithm, thereby furnishing the least squared

error. Generally, the CramÂer-Rao Lower Bound (CRLB) can be

used for uncertainty quantification assuming that the maximum

likelihood estimate of the unknown parameters is asymptoti-

cally unbiased. The CRLB theorem states the lowest possible

estimate of the covariance of an unbiased estimator equals the

inverse of the Fisher information matrix I . For the zero-mean

iid Gaussian noise I is given in terms of the sensitivity matrix

as follows:

I =
1

σ2
STS (16)

The sensitivity matrix is constructed by perturbing each ele-

ment k of θ with an infinitesimal change δθk and computing

the difference between the perturbed model prediction and true

model prediction with respect to the perturbed element of θk
as follows:

S =











s1 (δt) s2 (δt) · · · s31 (δt)
s1 (2δt) s2 (2δt) · · · s31 (2δt)

...
...

...
...

s1 (nδt) s2 (nδt) · · · s31 (nδt)











. (17)

Each element of the sensitivity matrix is expressed as:

sk (iδt) = lim
δθk→0

ŷi (θ + δθk)− ŷi (θ)

δθk
(18)

The above equations served as a recipe for applying un-

certainty quantification to this paper’s parameter estimation

results. First, the proposed state-space model was simulated

for the optimized parameter value to obtain baseline simulation

results. Then the simulation was repeated for a perturbation

applied to each parameter independently. This furnished the

above sensitivity matrix. Finally, the variance of the voltage

estimation residuals, together with this sensitivity matrix, was

used to compute the Fisher information matrix I . The inverse

of this Fisher information matrix provided CramÂer-Rao bounds

for the estimation errors associated with these parameters.

More specifically, each diagonal term in the resulting CRLB

matrix provided an estimation variance for the corresponding

parameter. Computing the square root of this variance and

multiplying by 3 finally furnished the ±3σ estimation errors

TABLE III

BOUNDS ON THE MODEL PARAMETERS

Parameter Bound

Sensor’s time constant τ ±5.6049 (ms)

Setup’s actuation time constant τv ±8.6029 (ms)

Manifold volume V ±0.6817 (mL)

for the parameter. Table III lists these estimation errors for the

three time constants associated with the sensor, setup actuator,

and manifold volume. All of these error bounds are small

compared to the nominal parameter estimates. This highlights

the degree to which the approach proposed in this paper can

enable the characterization of a fast nano-photonic sensor, even

when the dynamics of the underlying setup are much slower

than the sensor.

D. Finite Element Analysis of Sensor Time Constant

Finite element analysis was carried out to validate the

estimated sensor time constant. COMSOL Multiphysics (using

the Transport of Diluted Species interface) was used to model

and simulate the gas diffusion across the ZIF-8/PDMS coating

layer. Fig. 9(a) shows the 2D model of the ZIF-8/PDMS

coating layer of the sensor. The radius of the ring resonator

is 10 µm, and the thickness of the ZIF-8 and PDMS coating

layers is 1.5 µm and 7.0 µm, respectively. The gas diffusion

was simulated based on Fick’s law of diffusion as:

∂c

∂t
+∇ · (−D∇c) = 0 (19)

where c is the gas concentration, D is the diffusion coeffi-

cient, and t is time. The diffusion coefficients of CO2 gas in

the ZIF-8 and PDMS were set to 1.71×10 -10 m2/s [21] and

4.2×10 -9 m2/s [22], respectively. The gas concentration on the

top and right boundaries was set to 100 CO2 Vol %, while the

bottom boundary was set to a No Flux condition. The initial

condition was set to 0 CO2 Vol %. The point for checking

the gas concentration is positioned 220 nm above the bottom

boundary and is annotated as Probe. Note that this simulation

can be extended for light and heavy gas/vapor other than CO2,

provided that the diffusion coefficients of the gas/vapor in ZIF-

8 and PDMS are available.

The change in gas concentration at Probe is presented as

the red curve in Fig. 9(b). The simulated time constant is 12.9

msec, which is smaller than the estimated 48 msec. One of the

causes of this discrepancy is believed to be fabrication errors.

The ZIF-8 layer in the sensor was coated manually with a

dip coating process, which is suspected to have affected the

variation of film properties. For example, the refractive index

of ZIF-8, one of its material properties, varies across literature

from 1.34 to 1.49 refractive index unit (RIU) despite using

the same synthesis process [7], [23]. Similar to the refractive

index, we believe that such a coating process could affect the

diffusion coefficient. In case the diffusion coefficient of ZIF-8

is set to 2.6×10 -11 m2/s, approximately 15% of the reference

value, the simulated time constant becomes comparable to
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Fig. 9. (a) 2D simulation model for the gas diffusion across the
ZIF-8/PDMS coating layer. (b) Time-dependent simulation of the gas
concentration at Probe with two different diffusion coefficients of ZIF-8

the estimated value of 48 msec, shown as the blue curve in

Fig. 9(b). Therefore, considering these simulation results and

fabrication errors, we believe the system identification method

estimated the sensor time constant with reasonable accuracy.

IV. DISCUSSION AND CONCLUSIONS

We successfully characterized the dynamic response of

a fast-responding nanophotonic dissolved CO2 sensor using

optimization-based system identification. The nanophotonic

sensor employed a silicon ring resonator with ZIF-8/PDMS

cladding for dissolved CO2 gas sensing. Seven experimental

conditions with different CO2 concentrations and different gas

flow rates were used for characterizing the dynamic response

of the sensor. After applying Matlab’s implementation of

particle swarm optimization algorithm on the acquired exper-

imental results, the sensor’s time constant was estimated to

be 48.1±5.6 ms. Considering the simulated time constant and

errors in ZIF-8 fabrication, we believe the system identification

method estimated the sensor time constant with reasonable

accuracy. The proposed approach will offer a cost-effective

method for characterizing various fast responding sensors

using conventional test systems with slower responses than

the sensor response.

REFERENCES

[1] Y. Ma, B. Dong, and C. Lee, ªProgress of infrared guided-wave
nanophotonic sensors and devices,º Nano Convergence, vol. 7, no. 1,
pp. 1±34, 2020.

[2] W. Jin, H. Ho, Y. Cao, J. Ju, and L. Qi, ªGas detection with micro-
and nano-engineered optical fibers,º Optical Fiber Technology, vol. 19,
no. 6, pp. 741±759, 2013.

[3] H. Yuan, N. Li, W. Fan, H. Cai, and D. Zhao, ªMetal-organic framework
based gas sensors,º Advanced Science, vol. 9, no. 6, p. 2104374, 2022.

[4] R. J. Kuppler, D. J. Timmons, Q.-R. Fang, J.-R. Li, T. A. Makal, M. D.
Young, D. Yuan, D. Zhao, W. Zhuang, and H.-C. Zhou, ªPotential
applications of metal-organic frameworks,º Coordination Chemistry

Reviews, vol. 253, no. 23-24, pp. 3042±3066, 2009.
[5] H. Furukawa, K. E. Cordova, M. O’Keeffe, and O. M. Yaghi, ªThe

chemistry and applications of metal-organic frameworks,º Science, vol.
341, no. 6149, p. 1230444, 2013.

[6] G. Lu and J. T. Hupp, ªMetal- organic frameworks as sensors: a ZIF-8
based fabry- pÂerot device as a selective sensor for chemical vapors and
gases,º Journal of the American Chemical Society, vol. 132, no. 23, pp.
7832±7833, 2010.

[7] H.-T. Kim, W. Hwang, Y. Liu, and M. Yu, ªUltracompact gas sensor
with metal-organic-framework-based differential fiber-optic fabry-perot
nanocavities,º Optics Express, vol. 28, no. 20, pp. 29 937±29 947, 2020.

[8] J. Tao, X. Wang, T. Sun, H. Cai, Y. Wang, T. Lin, D. Fu, L. L. Y.
Ting, Y. Gu, and D. Zhao, ªHybrid photonic cavity with metal-organic
framework coatings for the ultra-sensitive detection of volatile organic
compounds with high immunity to humidity,º Scientific reports, vol. 7,
no. 1, pp. 1±8, 2017.

[9] K.-J. Kim, P. Lu, J. T. Culp, and P. R. Ohodnicki, ªMetal±organic
framework thin film coated optical fiber sensors: a novel waveguide-
based chemical sensing platform,º ACS sensors, vol. 3, no. 2, pp. 386±
394, 2018.

[10] L. E. Kreno, J. T. Hupp, and R. P. Van Duyne, ªMetal- organic
framework thin film for enhanced localized surface plasmon resonance
gas sensing,º Analytical chemistry, vol. 82, no. 19, pp. 8042±8046, 2010.

[11] X. Chong, K.-J. Kim, P. R. Ohodnicki, E. Li, C.-H. Chang, and A. X.
Wang, ªUltrashort near-infrared fiber-optic sensors for carbon dioxide
detection,º IEEE Sensors Journal, vol. 15, no. 9, pp. 5327±5332, 2015.

[12] K.-J. Kim, X. Chong, P. B. Kreider, G. Ma, P. R. Ohodnicki, J. P.
Baltrus, A. X. Wang, and C.-H. Chang, ªPlasmonics-enhanced metal±
organic framework nanoporous films for highly sensitive near-infrared
absorption,º Journal of Materials Chemistry C, vol. 3, no. 12, pp. 2763±
2767, 2015.

[13] X. Chong, K.-J. Kim, E. Li, Y. Zhang, P. R. Ohodnicki, C.-H. Chang, and
A. X. Wang, ªNear-infrared absorption gas sensing with metal-organic
framework on optical fibers,º Sensors and Actuators B: Chemical, vol.
232, pp. 43±51, 2016.

[14] H. Zhou, X. Hui, D. Li, D. Hu, X. Chen, X. He, L. Gao, H. Huang,
C. Lee, and X. Mu, ªMetal±organic framework-surface-enhanced in-
frared absorption platform enables simultaneous on-chip sensing of
greenhouse gases,º Advanced Science, vol. 7, no. 20, p. 2001173, 2020.

[15] J. P. Norton, An introduction to identification. Courier Corporation,
2009.

[16] L. Ljung, System identification. Springer, 1998.
[17] J. Fraden and J. Fraden, Handbook of modern sensors: physics, designs,

and applications. Springer, 2010, vol. 3.
[18] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Ku-

mar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and
R. Baets, ªSilicon microring resonators,º Laser & Photonics Reviews,
vol. 6, no. 1, pp. 47±73, 2012.

[19] I. M. White and X. Fan, ªOn the performance quantification of resonant
refractive index sensors,º Optics express, vol. 16, no. 2, pp. 1020±1028,
2008.

[20] H.-T. Kim, B. Ramdam, and M. Yu, ªSilicon ring resonator with ZIF-
8/PDMS cladding for sensing dissolved CO2 gas in perfluorocarbon
solutions,º Sensors and Actuators B: Chemical, p. 135305, 2024.

[21] B. Bayati, A. Ghorbani, K. Ghasemzadeh, A. Iulianelli, and A. Basile,
ªStudy on the separation of h2 from co2 using a ZIF-8 membrane by
molecular simulation and maxwell-stefan model,º Molecules, vol. 24,
no. 23, p. 4350, 2019.

[22] A.-J. MÈaki, M. Peltokangas, J. Kreutzer, S. Auvinen, and P. Kallio,
ªModeling carbon dioxide transport in pdms-based microfluidic cell
culture devices,º Chemical Engineering Science, vol. 137, pp. 515±524,
2015.

[23] J. Hromadka, B. Tokay, S. James, R. P. Tatam, and S. Korposh,
ªOptical fibre long period grating gas sensor modified with metal organic
framework thin films,º Sensors and Actuators B: Chemical, vol. 221, pp.
891±899, 2015.


