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A central goal of synthetic biology is the reprogramming of
living systems for predetermined biological functions. While
many engineering efforts have been made in living systems,
these innovations have been mainly employed with
microorganisms or cell lines. The engineering of multicellular
organisms including animals remains challenging owing to the
complexity of these systems. In this context, microbes, with
their intricate impact on animals, have opened new
opportunities. Through the utilization of the symbiotic
relationships between microbes and animals, researchers have
effectively manipulated animals in various ways using
engineered microbes. This focused approach has
demonstrated its significance in scientific exploration and
engineering with model animals, coral preservation and
restoration, and advancements in human health.
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Introduction

Recent advances in synthetic biology have enabled the
creation of highly programmable biology for specific
functions. Researchers integrated and automated the

design of synthetic gene circuits in cells to respond to
environmental signals [1-3]. Applying synthetic biology
to multicellular organisms, such as animals, faces chal-
lenges such as coordinating gene delivery and expression
across cell types, managing intercellular signaling com-
plexity, contending with developmental and evolu-
tionary constraints, and addressing ethical and safety
concerns associated with genetic modifications.

In contrast to the complexities of modifying animals di-
rectly, microbes present a tractable platform for lever-
aging synthetic biology advances to alter animal
physiology. Animals share intimate, lifelong relationships
with microbes that impact animal immunity, behavior,
development, metabolism, and more. Microbes interact
with animals through a variety of mechanisms, including
the exchange of metabolites, proteins, and RNA, all of
which can be precisely tailored using synthetic biology
methods [Figure 1]. This review will explore recent ad-
vances in using microbes for [1] reprogramming animal
physiology using Caenorhabditis elegans as a model, [2]
advancing environmental conservation with a focus on
coral preservation, and [3] enhancing human health out-
comes through disease diagnosis and therapeutics de-
livery. Using microbes to manipulate animal physiology
offers new and potentially transformative ways to under-
stand and control biological processes and to drive ad-
vancements in health, environmental sustainability, and
therapeutic development.

Programming animal physiology using Caenorhabditis
elegans as a model animal

An area of particular significance in the realm of mi-
crobe—animal interactions is the potential of engineered
microbes to revolutionize animal health and physiology
[4-7]. Recent breakthroughs in engineecred bacterial
modulation of animal physiology highlight the use of
Caenorhabditis elegans, a 1-mm-long soil nematode, as a
key model organism. Chosen for its simplicity, quick life
cycle, and easy maintenance, C. elegans is an ideal model
to study how engineered bacteria influence animal
health and development. WormBase offers a compre-
hensive repository of gene structures, mutants, RNAi
phenotypes, gene expressions, and protein interactions
on nematode biology [8]. Furthermore, C. elegans is
particularly useful for studying bacteria—animal interac-
tions as bacteria serve as its primary food source [9].
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Engineered microbes can interact with and modulate animal physiology and behavior through multiple modalities.
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Engineered microbes can sense environmental signals and modulate model animal C. elegans physiology and behavior.

Utilizing this relationship, researchers have engineered
bacteria to serve as environmental sensors, impact host
nutrient processing, and influence host physiology
[Figure 2].

Engineered bacteria as biosensors mark a major advance
in synthetic biology, providing new perspectives into
environmental monitoring and biological interactions.

This innovation has been applied to studies involving C.
elegans, where researchers have utilized genetically
modified bacteria to detect and respond to changes in
the nematode’s internal and external environments. For
sensing C. elegans intestinal environment, a bacterium
has been engineered to produce increasing levels of
green fluorescent protein (GFP) in response to changing
concentrations of isopropyl-p-d-1-thiogalactopyranoside
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(IPTG) using a pLac promoter [10]. Although the bac-
terium only detected IPTG, an artificial signal, this ap-
proach could be used to detect other environmental
changes. For example, using a heat switch ¢/857, Li et al.
engineered a heat-sensitive E. co/i that produced GFP in
C. elegans gut to indicate temperature changes [11].

The symbiotic relationship between animals and their
gut microbiota is crucial for nutrition, as bacterial me-
tabolism and enzymes help unlock nutrients not readily
accessible to the animal alone. As a demonstration of
how an engineered gut microbiome can expand nutri-
tional opportunities for animals, Sun et al. colonized C.
elegans  gut  with  cellulose-degrading  microbe
Pseudomonas cellulosa, enabling the nematodes to meta-
bolize cellulose, a substance that was initially in-
accessible to this species [3]. This showcases how
changing the localized gut bacteria can extend the ani-
mal’s nutritional capabilities. Furthermore, when P. ce/-
lulosa and Lactobacillus plantarum were combined in the
presence of cellulose, they jointly reduced the pro-
liferation of pathogen Sa/monella by 10-fold compared
with either of the strains. This demonstrates that en-
gineered bacterial communities can change the host’s
nutrition and help fight pathogens [3].

Bacterially produced metabolites and RNA can also im-
pact animal physiology. In C. elegans, ingestion of bacte-
rially produced RNA can trigger specific and potent RNA
interference that has been used previously to study gene
functions [12,13]. Programmed to produce RNA under
the control of synthetic gene circuits, engineered bacteria
successfully silenced C. elegans genes to modulate its GFP
expression, twitching behavior, and fat storage through
feeding [14]. Importantly, the transfer of genetic circuit
output from E. coli to C. elegans allows for the manipula-
tion of C. elegans physiology through genetic logic gates,
including ‘AND’ and ‘OR’ gates. Bacterial metabolites
also influence C. ¢legans hosts in various ways, including
development, lifespan, and behavior [4,15,16]. Using en-
gineered E. coli, researchers were able to optogenetically
control the production of colonic acid directly inside C.
elegans gut [17]. Optogenetic production enabled re-
searchers to study colonic acid’s local effect on protecting
intestinal mitochondria, extending the lifespan by pre-
venting stress-induced hyperfragmentation [17].

Using C. elegans has shown engineered bacteria’s capacity
to sense environmental signals and alter host physiology.
Beyond model organisms, the application of engineered
bacteria holds promise for influencing host organisms,
presenting opportunities for environmental sustain-
ability and therapeutic innovations.

Improving coral health through microbiome engineering
Just as engineered bacteria have been used to expand
the nutritional repertoire of C. elegans by enabling them
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to metabolize previously indigestible substances and
mitigate environmental stresses, similar strategies are
being explored to fortify coral health. The manipulation
of the coral microbiome through microbial community
transplantation and the introduction of beneficial bac-
teria aim to bolster coral resilience in the face of climate-
induced stressors [Figure 3].

Coral reefs are vital for coastal protection, biodiversity,
and socio-economic activities. Corals form a symbiotic
relationship with Symbiodiniaceae algae, providing cru-
cial nutrients through photosynthesis. Environmental
stressors such as rising sea temperatures lead to coral
bleaching, compromising their primary energy source
[18]. Given the essential role of coral reefs, coral re-
storation and preservation has garnered substantial at-
tention [19]. Other than Symbiodiniaceae, coral-
associated bacteria play a multifaceted role in host or-
ganic and inorganic nutrient acquisition and protection
from pathogens [20]. Microbiome engineering and mi-
crobial community transplantation have emerged as
strategies to mitigate environmental stressors against
corals [21-23].

Beneficial microorganisms enhance coral fitness through
their symbiotic relationships [24,25]. Doering et al. con-
ducted coral microbiome transfer (CMT) for coral pre-
servation. They identified donor corals in reefs with high
environmental variability. Fresh homogenates from coral
donor tissues were used to inoculate heat-susceptible
recipients. The bleaching response and microbiomes of
recipients were documented using 16S rRNA gene
metabarcoding, revealing the successful transmission of
128 donor-specific bacterial species [26]. During heat
bleaching assays, the presence of beneficial micro-
organisms for corals reduced “post-heat stress dis-
order,” leading to higher survival rates and stable
photosynthesis from their endosymbiotic algae [24,26].

When environmental changes lead to increased levels of
oxidative stress, reactive oxygen species (ROS) from
Symbiodiniaceae are hypothesized to enter host cells,
triggering coral bleaching [19]. To test the impact of an
engineered microbiome scavenging ROS on coral heat
tolerance, researchers inoculated the coral model Ex-
aiptasia diaphana with ROS-scavenging bacteria [19,20].
They found a high relative abundance of free radical
bacteria after inoculation, demonstrating successful in-
corporation of some species of bacteria into the coral
holobiont. Further research on the prolonged integration
of engineered bacterial consortia into the coral holobiont
is necessary before deploying this strategy.

Excess nitrogen, often from agricultural runoff, is an-
other stressor between corals and their endosymbiotic
algae. A current hypothesis suggests that an increase of
nitrogen is detrimental to coral reproduction and growth,
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Engineered microbes have the capacity to assist corals in alleviating environmental stresses.

but if maintained at stable levels, it may be beneficial
and necessary for specific coral species [27]. To assess
nutrient exchange between bacteria and corals, coral
larvae were incubated with °N-labeled coral-associated
bacteria [21]. An increase in detected nitrogen isotopes
within corals suggests coral larvae acquire nutrients from
bacteria, potentially improving their survival in early-life
stages [21]. Engineered bacteria or bacterial commu-
nities could be developed to assist coral larvae in critical
stages such as settlement and polyp growth.

Fragoso et al. incubated fragments of Mussismilia harttii
with a bacterial consortium capable of degrading water-
soluble oil fractions [28]. The inoculated coral exhibited
a reduction in the adverse effects of a simulated oil spill.
This demonstrates that utilizing bacterial communities
from the environment enables acquisition of enhanced
survivability for host corals.

Microbial supplementation has the potential to address
multiple stressors simultaneously and positively influ-
encing the entire reef ecosystem [29], but deploying
microbes at scale has inherent challenges that must be
overcome. The intricate interactions between in-
troduced and native microorganisms in coral reef

ecosystems are difficult to predict, and interventions
must be carefully designed to avoid harm to these sen-
sitive organisms. Coral reefs can occupy large areas of
the ocean floor, thus, strategies to physically deploy
microbes must be developed. Currents and tides could
be used strategically to help distribute microbes across
the reef. Ultimately, it may be infeasible to deploy in-
terventions across a whole reef, but a strategy of targeted
deployment could be used to save distributed coral co-
lonies that can then serve as founders to reseed the reef
after a bleaching event. Despite the challenges, ex-
ploring innovative approaches is crucial for developing
sustainable methods to improve coral reef health. Syn-
thetic biology plays a significant role in leveraging mi-
crobial communities to amplify positive interactions and
mitigate the impact of harmful elements, including pa-
thogenic microorganisms among coral reefs.

Enhancing human health outcomes through disease
diagnosis and therapeutics delivery

Beyond programming the model animal C. elegans and
improving coral health, bacterial product modalities such
as RNAs and proteins, as well as microbiota transplanta-
tion have enabled engineered bacteria to offer therapeutic
benefits to a range of human health conditions. There are
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Engineered microbes can provide therapeutic benefits through multiple bacterial product modalities.

numerous comprehensive reviews in this area [30-33],
and here we highlight some of the representative studies
and recent advancements using different modalities for
various conditions, including inflammatory diseases,
cancer, infections, and metabolic disorders [Figure 4].

In the context of inflammatory bowel disease (IBD), bac-
teria have been engineered to detect inflammation signals,
including tetrathionate and thiosulfate [34-37]. Engineering
lactic acid bacteria (ILAB) and nonpathogenic E. co/i to
produce cytokines such as IL-10 and IL.-35 has shown
promise in modulating inflammation as indicated by up to
50% reduction in disease activity index (DAI) [38-40]. Ad-
ditionally, LAB and engineered E. co/i-producing nano-
bodies and short-hairpin RNA have been effective in
reducing inflammation markers such as TNF-a and COX-2
in murine models and reducing DAI by up to sixfold
[11,41-43]. An alternative method is to engineer bacteria to
produce antioxidant enzymes, providing a long-lasting
therapeutic impact [44,45].

In cancer therapy, engineered bacteria have been used
to deliver cytokines and nanobodies targeting immune
checkpoints leading to tumor regression [46-49]. Bac-
teria have also been engineered to act as vaccines, pro-
ducing tumor-associated antigens to stimulate adaptive
immune responses. For example, engineered Lactoba-
cillus casei producing modified full-length HPV16 E7

protein reduced cervical intraepithelial neoplasia grade 3
(CIN3) to CIN2 in 70% of patients. Similarly, en-
gineered E. coli-producing antigen-bearing outer-mem-
brane vesicles (OMVs) decreased lung metastases from
over 150 to less than 50 in animals during tumor re-
challenge [46,50]. Additional approaches involve en-
gineering bacteria to produce prodrug enzymes. For
instance, Sal/monella  typhimurium and Bifidobacterium
longum can convert nontoxic prodrugs such as 5-fluor-
ocytosine into the active antitumor agent 5-fluorouracil,
inhibiting tumor growth effectively [51,52].

A modified lactic acid-free Steptococcus mutans strain
prevented dental caries by replacing traditional acid-
producing mutants crucial to the pathogenic process
[53]. Engineered strains of L. Jactis and E. coli with
bacteriocin secretion inhibited the growth of pathogens
such as Ewnterococcus faecalis and Pseudomonas aeruginosa
[54,55]. Additionally, biofilms composed of inactivated
Lacrobacillus casei showed significant antibacterial effec-
tiveness against methicillin-resistant  Staphylococcus
aureus [56]. Besides engineering specific bacterial strains,
RBX2660 (Rebyota) and SER-109 (Vowst) — both fecal
microbiota-based live biotherapeutic products — have
demonstrated efficacy in preventing the recurrence of
Clostridioides difficile infection, and received approval
from the Food and Drug Administration (FDA) in 2022
and 2023, respectively [57,58].
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In treating metabolic disorders, engineered bacteria
equipped with optimized enzymes can help digest spe-
cific metabolic by-products that are toxic when accumu-
lated at high levels. One of the most exciting
advancements for engineered bacteria is the development
of SYNB1934, an engineered E. co/i Nissle 1917 produ-
cing phenylalanine ammonia lyase with enhanced activity
[59]. This engineered strain breaks down phenylalanine, a
compound that patients with phenylketonuria (PKU)
cannot metabolize naturally [59]. In a Phase-2 clinical
trial, PKU patients receiving SYNB1934 treatment ex-
hibited a substantial 43% reduction in phenylalanine le-
vels from baseline, paving the way for SYNB1934 to
advance into a Phase-3 clinical trial in 2023 [59].

In summary, these engineered bacteria not only offer
novel treatments for chronic conditions such as IBD and
cancer but also provide a potent weapon against drug-
resistant pathogens and many other diseases. By in-
tegrating synthetic biology tools with natural bacterial
metabolic pathways, researchers can target specific dis-
ease markers.

Discussion

Engineered microbes exhibit versatile capabilities, im-
pacting host organisms in diverse ways. In model or-
ganisms such as C. elegans, engineered bacteria can sense
and respond to signals, delivering biomolecules for re-
porting or manipulation. Beyond model organisms, en-
gineered microbiomes have demonstrated significant
promise in environmental applications. For example,
they help corals adapt to changing environments and
neutralize harmful stressors. Finally, bacteria have been
engineered for therapeutic applications, detecting dis-
ease markers, and delivering targeted therapies to en-
hance efficacy without undesired side effects.

While engineered bacteria have demonstrated diverse
functions across a range of applications, their effective-
ness varies significantly outside the controlled conditions
of a laboratory, influenced by the unique characteristics
of individual hosts and fluctuating environments.
Dynamic control mechanisms that enable engineered
bacteria to consistently localize and function within
various hosts are worth exploring [60]. Such advance-
ments would ensure more uniform and predictable
outcomes across different individual hosts. The use of
animal models such as C. élegans, offers a rapid and high-
throughput method for testing these dynamic controls,
serving as a crucial step before transitioning to broader
environmental and health-related applications.

Additionally, safety concerns also require careful con-
sideration, including the biocontainment of engineered
bacteria, the potential for unforeseen repercussions on
host ecosystems, and the emergence of resistant strains.

To address these concerns, new artificial systems to
contain synthetically engineered microbes, such as a kill
switch developed in K. co/i Nissle 1917 [61], are cur-
rently being explored to aid in the safety concerns pro-
posed by FDA.

Synthetic biology’s influence spans a wide range of
disciplines, underscored by its essential role in var-
ious applications of biotechnology. By fostering
creativity and integrating interdisciplinary insights,
synthetic biology stands to drive significant ad-
vancements in our understanding and manipulation
of biological systems.
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