2023 20th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON) | 979-8-3503-0052-9/23/$31.00 ©2023 IEEE | DOI: 10.1109/SECON58729.2023.10287462

2023 20th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

Class-Aware Neural Networks for Efficient
Intrusion Detection on Edge Devices

Mohammed Ayyat, Tamer Nadeem and Bartosz Krawczyk
Department of Computer Science
Virginia Commonwealth University
Richmond, VA 23220, USA
{ayyatma, tnadeem, bkrawczyk} @vcu.edu

Abstract—The exponential growth of IoT and edge devices has
led to their widespread use across various applications. However,
the security of these devices remains a significant concern due to
their vulnerability to a broad spectrum of cyber-attacks. Network
Intrusion Detection Systems (NIDS) are crucial for identifying
and mitigating such threats. Traditional NIDS approaches, while
effective, struggle to detect sophisticated modern attacks and
often require substantial computational power and memory,
which may not be feasible for edge devices. Machine learning
and neural network-based methods have demonstrated promising
improvements in NIDS detection accuracy. Yet, their deployment
on resource-constrained edge devices presents a challenge. This
has led to the development of Dynamic Neural Networks, an
approach that allows models to adapt according to the input,
making them more efficient and lightweight. However, these
networks are class-agnostic, rendering them unsuitable for han-
dling cases with uneven classification priorities. In this paper,
we introduce ClassyNet, a platform designed for efficient, class-
aware NIDS on edge devices. ClassyNet leverages class-specific
feature extraction and a class-specific neural network archi-
tecture to enhance intrusion detection efficiency. Experimental
results indicate that our proposed approach matches the detection
accuracy of traditional machine learning and neural network-
based methods while significantly improving resource efficiency.

Index Terms—Network Intrusion Detection Systems, Edge
Deployment, Inference Latency, Early-Exit Neural Networks.

I. INTRODUCTION

The rapid expansion of the Internet of Things (IoT) has
resulted in a multitude of devices and applications that gen-
erate substantial amounts of data. This surge of IoT devices
has broadened the potential attack surface for cyber threats,
making the task of detecting and preventing network intrusions
increasingly complex. As a result, secure communication on
edge and IoT devices has become critical. In this context,
Network Intrusion Detection Systems (NIDS) play a pivotal
role in safeguarding IoT devices and networks. These systems
function by classifying network traffic to identify any anoma-
lies or specific classes of traffic that may indicate a threat.
However, traditional NIDS methods often face limitations due
to the computational resources available on edge and IoT
devices. This has led researchers to explore the potential of

This work was supported in part by the U.S. National Science Foundation
under Grant OAC-2212424; and in part by the Commonwealth Cyber Initia-
tive, an investment in the advancement of cyber research and development,
innovation, and workforce development.

Deep Neural Networks for enhancing the effectiveness and
efficiency of NIDS in this increasingly data-rich environment.

The past decade has seen a significant surge in the appli-
cation of Deep Neural Networks (DNNs). They have been
effectively utilized in various domains such as image recog-
nition [1], speech recognition [2], natural language process-
ing [3], self-driven network protocols [4], synthesizing net-
work traffic [5], and many other domains achieving impres-
sive results. Furthermore, their efficacy in Network Intrusion
Detection Systems (NIDS) has been well-demonstrated [6]-
[8]. The proliferation of DNNs has been facilitated by the
availability of vast amounts of data and advancements in
computing power, particularly with the advent of graphics
processing units (GPUs) and specialized hardware like tensor
processing units (TPUs). However, as these neural networks
evolve to become more complex and larger in size, the
necessity for efficient and scalable deployment becomes in-
creasingly critical.

To address the challenge of deploying DNNs on edge
devices and the IoT, dynamic neural networks have been
proposed [9]. Dynamic neural networks, particularly early-exit
dynamic neural networks [10], allow a network to exit early
if it has enough evidence to classify an input into a particular
class, reducing the computational overhead of classification
tasks. This enables more computationally intensive tasks to
run on edge devices and the IoT, improving the performance
and scalability of IoT applications.

Traditional early-exit dynamic neural networks such as
BranchyNet [11] have been proposed to address the challenge
of deploying DNNs on edge devices and the IoT. However,
these networks do not take into account the importance of
different classes in the classification task, which may result in
suboptimal performance in detecting high-priority threats in
network intrusion detection. To address this issue, we propose
a novel approach named ClassyNet, which augments early-
exit dynamic neural networks with class-based classification
capabilities. Our approach assigns different priorities to dif-
ferent types of network threats, allowing high-priority threats
to exit the network early for faster detection. ClassyNet builds
on the benefits of BranchyNet, while also taking into account
the importance of different classes in the classification task,
enabling more efficient and effective management of network
security.

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 12,2024 at 01:53:47 UTC from IEEE Xplore. Restrictions apply.
979-8-3503-0052-9/23/$31.00 ©2023 IEEE 204

2023 20th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

In this paper, we introduce ClassyNet, an innovative ap-
proach that enhances traditional early-exit dynamic neural
networks such as BranchyNet [11]. Our approach is highly
scalable and seamlessly integrates into existing network in-
trusion systems. We demonstrate its effectiveness in improv-
ing the speed and accuracy of high-priority threat detection
through evaluations on multiple network intrusion datasets,
including NSL-KDD [12], UNSW-NB15 [13], and CICIDS17
[14]. The paper begins with a brief background on dynamic
neural networks and their role in intrusion detection (Section
ID). It then discusses the motivation behind ClassyNet and its
potential use cases (Section III) and then provide an overview
of ClassyNet’s architecture (Section IV). Following this, we
describe the datasets used for testing our approach (Section
V). The paper concludes with an evaluation of ClassyNet on
various datasets and testing scenarios (Section VI), and our
final conclusions (Section VIII).

II. BACKGROUND
A. Dynamic Neural Network

Dynamic deep neural networks approaches aim to mainly
accelerate the underlying models by allowing them to alter
their internal structure or parameters during the inference
process by manipulating the network width, depth, or routing
during runtime, thereby providing them with enhanced flexi-
bility and superior adaptability to the underlying use case [9].
However, their susceptibility to adversarial attacks targeting
resources remains a significant concern [15].

There are different types of dynamic neural networks, each
designed to handle different types of input data. Sample-wise
dynamic networks are used for processing inputs where the
number of samples can vary, such as in speech recognition
or natural language processing. These networks are designed
to handle variable-length inputs and can adjust their struc-
ture based on the number of samples. Spatial-wise dynamic
networks, on the other hand, are used for image processing
and computer vision tasks. They can handle inputs of varying
sizes and adjust their structure accordingly. For example, a
spatial-wise dynamic network can process images of different
resolutions or aspect ratios. Temporal-wise dynamic networks
are used for processing sequential input data, such as in video
processing or time-series analysis. They can handle inputs
of varying lengths and adjust their structure based on the
sequence length.

B. BranchyNet Overview

BranchyNet [11] is a dynamic exit solution that incorporates
side branches into the core baseline neural network to permit
premature exit of certain input samples. This strategy hinges
on the fact that preliminary blocks of the network can accu-
rately predict a sizable chunk of the data set. By facilitating
an early exit for these data units, the overall computations
performed by the network can be greatly decreased, thereby
leading to lower average runtime and energy usage. Our
implementation of BranchyNet closely mirrors the variation
outlined in [16], specifically designed for IoT deployment

Block 3

Block 2

Block 1

loT Data

Fig. 1: Overview of BranchyNet architecture.

circumstances. The architecture of BranchyNet, inclusive of
how the additional branches augment the foundational network
and enable expedited inference, is displayed in Figure 1.

The BranchyNet training regimen involves solving a collec-
tive optimization problem predicated on the aggregate of all
the classification loss functions tied to each exit point. The loss
function steers the learning process by gauging the model’s
performance in response to the input data. During training,
each early branch is allocated a weight to modulate its relative
significance, with these weights guiding the model to prioritize
certain branches.

In the inference process, the input sample is first fed into the
partial network linked to the initial exit. If the exit generates an
output that is less than a predetermined threshold, signaling
high confidence, a label is attached to the sample, and the
inference procedure is halted. Should the sample not pass the
exit check, it moves to the subsequent block. This process
repeats in an iterative manner until the sample takes an exit
at one of the later exit points.

C. Network Intrusion Detection Systems

Network Intrusion Detection Systems (NIDS) scrutinize
network traffic to identify and report anomalies based on
pre-established detection parameters. NIDS discern intrusive
behavior by contrasting it with legitimate user behavior. How-
ever, more sophisticated attacks often generate traffic that
mimics user behavior, necessitating more intelligent NIDS.
There are three primary types of traditional NIDS. Signature-
based detection [17] examines network traffic to identify
patterns that match known signatures or existing attacks.
Anomaly-based detection [18] analyzes network traffic to
detect patterns that deviate from normal or baseline behavior.
It operates by collecting network traffic samples and applying
statistical methods to analyze deviations; when a threshold is
surpassed, it alerts the administrator of an anomaly. Lastly,
stateful protocol analysis [19] involves comparing network
traffic to recognized protocol profiles provided by vendors.
This method is used to identify a random sequence of com-
mands in both the network and application layer.

However, each of these methods has its own limitations
when dealing with normal and abnormal traffic patterns. These
limitations can lead to false positives, false negatives, process-
ing slowdowns, increased CPU usage, and more. Traditional
machine learning techniques, such as Naive Bayes, Decision
Trees, and Support Vector Machines, have improved detection
accuracy. However, they require expert knowledge and may
not perform optimally for multiclass problems with numerous

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 12,2024 at 01:53:47 UTC from IEEE Xplore. Restrictions apply.

205

2023 20th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

features. Moreover, self-learning intrusion detection systems
and deep learning algorithms have further enhanced detection
and classification capabilities. As previously mentioned, deep
learning algorithms have shown success in speech recognition,
image processing, natural language processing, and others.

III. MOTIVATION

Current state-of-the-art early exit based models, such as
BranchyNet, suffer from a limitation in that they are class-
agnostic, which hinders their ability to effectively handle
edge-specific conditions and contexts. For instance, a single
classification application or service may be required to process
inputs from classes with varying levels of importance and
sensitivity, or to handle imbalanced inputs where a few specific
classes make up the majority of the input population. The
importance of classes can vary based on the user of the
system and the specific use case, as the same classes within
the same classification problem may have different degrees
of importance due to variations in context. For example, an
object classification model installed on a security camera may
be trained to detect both humans and vehicles, but in certain
situations, detecting humans may become more crucial than
vehicles, or vice versa. This runtime-based relative importance
is independent of data imbalance problems during training.

NIDS is a prime example of a classification problem that
handles categories classes of varying degrees of sensitivity.
There are lower priority attacks such as network probing
activity and higher priority attacks such as an ongoing exploit
for a serious vulnerability activity that has the potential for
catastrophic harm. Detecting the ongoing exploit even a few
milliseconds early can help the network deploy countermea-
sures faster and prevent large-scale network damage. The same
holds true for personal health monitoring, as recognizing a
heart attack is far more crucial than detecting slightly increased
blood pressure.

This led us to the development of ClassyNet, a framework
specifically designed for dynamic early exit classification
models that are class-aware, tailored for use in NIDS. These
models, particularly when combined with model splitting, offer
several advantages. They can prioritize classes of network
intrusions based on their severity, pushing high-priority threats
such as ongoing serious vulnerability exploits to early exits.
This strategy allows NIDS to more effectively meet its oper-
ational objectives by minimizing the inference path and thus
the computation time.

Moreover, for edge devices with limited memory, inputs
from high-priority intrusion classes can be processed using
the partial model that resides on-device. This approach avoids
the overhead of transmission and allows for faster response
times to serious threats. As demonstrated in our results, we can
design and train models with exits positioned at the very start
of the network model. These models are capable of accurately
classifying a significant proportion of the targeted intrusion
samples, such as detecting an ongoing exploit even a few
milliseconds early, which can help deploy countermeasures
faster and prevent large-scale network damage. Therefore, by

using early exit techniques, we can construct a neural network
model for NIDS by maintaining only a small fraction of
the model on the limited memory of the edge device for
early inference. Meanwhile, more challenging samples, such
as lower priority attacks like network probing activity, can be
sent to the cloud for further analysis.

IV. CLASSYNET

A. Model Overview

Our ambition is to architect a neural network that modulates
its output so that most samples classified at a specific exit point
belong to a manually adjustable, predefined set of classes. For
instance, in a network intrusion detection system, our design
could prioritize rapid responses to high-risk intruders.

ClassyNet diverges from traditional early-exit models by
associating a predefined set of classes with each exit, rather
than treating all classes equally across all exits. The subset of
classes at a given exit includes all subsets from preceding exits
and a new subset unique to that exit. The aim is to ensure that
any input, belonging to one of these subsets, is likely to exit
at the corresponding point. The allocation of class sets to each
exit point is performed manually by the system operator at the
start of the training process. We assume that the operator is
somehow aware of which classes that require prioritization.

In order to adjust the traditional early exit models to favor
specific classes at dedicated exits, we need a novel mechanism
embedded in the neural network training procedure that is
capable of promoting the classification of the subset classes
with higher confidence. For this purpose, we introduce two
complementary techniques to enhance early exit models:

e Bag-of-Classes (BoC). In this approach, we consolidate
all non-desired classes into a single class, referred to as
the class bag. Samples belonging to non-desired classes are
treated as one super-class, which is prevented from exiting
the network at the designated exit. The objective is to train the
network to first identify the boundaries between the desired
classes, while deferring the non-desired classes to later exits.
This method draws inspiration from binarization approaches
commonly used in multi-class classification [20]. In the
evaluation section, we refer to this approach as ClassyNet
or CN.

e Cost-sensitive loss matrix (CS). Here we use a cost
matrix C' during training. In this matrix, each pair of true
and predicted labels is assigned a specific value (weight),
which is then multiplied by its raw loss value before being
reduced across the entire batch. This method allows us
to assign higher penalties to errors within certain classes,
thereby emphasizing the importance of correct classification
of a given class at any specific exit of the neural network.
Our work is highly inspired by [21] and other literature on
instance-level and class-level costs for the loss function. Cost-
sensitive learning is most commonly used for imbalanced
datasets, where cost is seen as a penalization factor for
mistakes made in minority classes. However, we argue that
cost-sensitive approaches can be used beyond that in order
to model importance among classes. Additionally, this cost

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 12,2024 at 01:53:47 UTC from IEEE Xplore. Restrictions apply.

206

2023 20th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

Block 3

Block 2

loT Data

Cost Matrix 1
Cost Matrix 2

BoC labels 1
BoC labels 2

BoC labels N

Fig. 2: ClassyNet model architecture highlighting the integration of
an additional cost matrix and the process of sample relabeling within
the supplementary branches.

matrix approach can be used in conjunction with Bag-of-
Classes approach to achieve class-based early exit. In the
evaluation section, we refer to the combination of the two
approaches as ClassyNet+ or CN+.

Figure 2 provides an overview of the ClassyNet model
architecture. figure highlights the addition of the set of bag
labels, which is necessary for the Bag-of-Classes approach,
and the integration of the cost matrix, which is essential for
the Cost-sensitive loss matrix. Moreover, the figure illustrates
how both approaches can be seamlessly incorporated within
the fundamental multi-exit architecture.

B. ClassyNet Training

The core of the training process relies on the loss function,
acting as the primary performance evaluator for the model in
relation to the provided input data. Serving as a navigational
tool, the loss function assists in gauging the model’s predictive
accuracy based on the given input. The ClassyNet training
procedure employs a joint training method anchored in the
resolution of a single optimization problem, combining the
outputs from all exits.

To better understand the composition of the loss function,
let’s introduce some notations. We denote an input sample as
x, while its corresponding one-hot encoded label is represented
by y. The predicted label of z at exit n is denoted as y,,. We
use K, to specify the number of classes within the Bag-of-
Class assigned to exit n, and N to denote the total number
of exits. The training regimen commences by propagating
the input = through the network, subsequently generating the
output probability vector p,, at each individual exit n. Here

Pn = fexitn(x) (1)
where f.:, is the function representing the transformation of
sample x at any given exit n. p, has a number of values equal
to the number of classes K,, and indicates the likelihood that
the sample belongs to any given class. p,, is then normalized
by passing through a softmax layer to obtain the output logit
vector ¢, as shown in Eqn. 2 where ||||; is the L1 norm

operator. exp(py)

Gn = softmaz(p,) = ———2— 2)
lezp(pn) 1

Un, 1s then element-wise multiplied with the true label

vector y resulting in a scalar value that corresponds to the

correct class. This scalar value is then multiplied by a constant

obtained from the cost matrix C,, assigned to exit n, which
depends on the actual label y and the predicted label y/,. The
constant is used to weight whether the prediction is correct
and whether the sample is exiting from its designated exit.
To determine the predicted label y/,, we select the class that
has the highest probability from the softmax output. The final
product of this process provides the loss value for a given
sample x. When this operation is performed for every sample
in a batch and the results are summed, it yields the total loss
at the exit as shown in Eqn. 3.

Lem’tn (ya Q) - - Z Cn(yay;)yloggn 3
xEbatch

Our training method has a unique characteristic: if a sample
from a batch decides to exit at any point during the training
process, it will not proceed to subsequent exits. Instead, we
assign a zero weight to its corresponding value in the cost
matrix. This strategy diverges from conventional methods out-
lined in literature, but we found it yielded superior accuracy.
To determine if a sample should exit, we compute the cross-
entropy of the sample and compare it against a pre-defined
threshold specific to that exit.

Finally, The global loss then is computed by multiplying
the loss derived from each exit and the weight assigned to that
exit. This is followed by the application of back-propagation
to optimize the value of this global loss. Given that, the overall

loss function for ClassyNet becomes
N

LClassyNet = Z wnLem’tn 4
n=1

C. ClassyNet Inference

The inference process of ClassyNet can be summarized as
follows. The classification network of ClassyNet initiates by
processing the sample through the initial exit of the network
model, which includes the first block of the network and the
branch of the first exit. This generates a normalized probability
vector, whose cross-entropy is immediately calculated and
compared with a predefined threshold. If the computed cross-
entropy is lesser than this threshold, a label is assigned to the
sample, thereby concluding the inference procedure.

If we are using Bag-of-Classes, the process is slightly
altered. Termination only occurs if the generated label is
among the set of classes designated to the specific exit. If the
label is associated with classes not assigned to the exit, the
sample remains within the network, because further processing
is required to identify its precise class.

The thresholds of the exits are assigned before the start
of the inference process. They are using to determines the
conditions for terminating the process at that exit. If a sample
does not meet the threshold conditions for any reason, it
continues through the network to the next block. This process
repeats until the sample either meets an exit threshold or
reaches the final exit, at which point it must exit. These
thresholds control the balance between runtime and accuracy.
Setting higher entropy thresholds may increase the number of
early exits, but at the cost of reduced overall model accuracy.

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 12,2024 at 01:53:47 UTC from IEEE Xplore. Restrictions apply.

207

2023 20th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

(@) (®) © (@
. 3: Base early-exit neural network.

) (@ (®) © (©)
Fig. 4: ClassyNet using Bag-of-Classes (BoC). Combined set of
classes is grey shaded.

D. ClassyNet Visual Example.

To better understand the operation of ClassyNet classifica-
tion and its distinction from standard early-exit models, we
present an example using a synthetic dataset. This dataset
comprises five different classes (Red, Yellow, Green, Blue,
and Purple) and a neural network with four total exit points.
To illustrate the difference in how decision boundaries evolve
between the traditional early-exit approach and the ClassyNet
approach, we have made two set of figures (Figure 3 and
Figure 4) corresponding to the change in decision boundaries
over the different exits for both approaches.

The set of figures in Figure 3 demonstrates the evolution of
the classification boundaries of the standard early-exit model
across the different exits of the network. Figure 3a presents
relatively simplistic decision boundaries for all classes. These
boundaries start to improve in subsequent exits (Figures 3b and
3c¢), as the network learns to differentiate and separate between
different classes more effectively. By the final exit (Figure 3d),
the network achieves satisfactory decision boundaries for all
classes. From the figures, We can observe that each exit
deals with a complex multi-class decision boundary, making
it challenging to achieve high accuracy for specific targeted
classes at earlier exits. This observation suggests potential for
the BoC approach to simplify early exit classification tasks.

On the other hand, the set of figures in Figure 4 shows the
evolution of the classification boundaries using the ClassyNet
model with the BoC implementation. In this scenario, the Red
class is assigned to the first exit, the Green class is assigned
to the second exit, the Blue class is assigned to the third exit,
and the remaining classes are assigned to the last exit. These
assignments are all incremental.

Figure 4a shows a significantly improved decision boundary
(compared to Figure 3a) that focuses on discriminating the
assigned class (Red) from all others. This approach simplifies
the initial complex multi-class classification problem into a
binary classification, leading to better boundary representation
and higher accuracy. Similar observations apply to Figure 4b,
where the assigned class (Green) has a clearer decision
boundary compared to Figure 3b. Finally, Figure 4d is identical
to Figure 3d, as it considers all four classes at the end.

To incorporate the cost matrix in our example, and to
understand how it is populated, we consider four different
cases: correct label for a targeted class, incorrect label for
a targeted class, correct label for a non-targeted class, and
incorrect label for a non-targeted class. We assign a set of
weight costs cj, ca, c3, and ¢4 for each case, respectively.
Assuming that we want to train one of the exits to target
samples from two classes, for example Blue, and Green, and
become more capable at classifying samples from these two
classes. The weight values can be chosen to direct the training
process to favor these two targeted classes. For example,
c1 should always be lower than co to incentivize correct
classification. The same applies to c3 and c4 is the same. Since
we want to encourage more samples from the first two classes
to exit at this exit, ¢; and ¢y should also be lower than cg
and c4 because the former two weights represent the targeted
classes while the latter two are for non-desired classes.

V. DATASETS

Effective network security analysis depends heavily on the
quality and selection of data. The suitability and practical use
of data are crucial factors in conducting successful research.
The size of data also affects the performance of machine learn-
ing and deep learning models. In this paper, we selected three
different datasets - NSL-KDD, CICIDS17, and UNSW-NB15
- to test the effectiveness of our approach. In the following
sections, we provide a brief overview of each dataset in terms
of its sample size, features, and other relevant characteristics.

A. KDD CUPY9 Dataset

The KDD Cup99 dataset [12] is a widely used resource
for network intrusion detection. It was developed for the
Classifier-Learning Competition in 1999 and is based on
DARPA datasets. The KDD Cup99 dataset consists of ap-
proximately 4.9 million network connection records, which are
categorized as normal or anomalous. Anomalous connections
are further classified into four categories: Denial of Service
(DoS), User to Root (U2R), Remote to Local (R2L), and
Probing attacks. Normal connections represent 97% of the total
data, while anomalous connections represent the remaining
3%. Each network connection record contains 41 features,
including basic features of network connections such as source
IP address, destination IP address, source port number, des-
tination port number, protocol type, and other attributes that
are derived from these basic features. These derived features
include the number of failed login attempts, the number of
compromised user accounts, and the number of root accesses.
Of the 41 features, 34 are continuous and 7 are categorical.
The dataset is highly imbalanced, with a small proportion of
the data corresponding to the different types of attacks.

B. NSL-KDD

The KDD Cup99 dataset carries statistical issues which
lead to poor approximation and estimation [12]. Those issues
were addressed in the NSL-KDD [22] dataset. The NSL-
KDD dataset contains 41 features, including basic features of

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 12,2024 at 01:53:47 UTC from IEEE Xplore. Restrictions apply.

208

2023 20th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

network connections such as source IP address, destination IP
address, source port number, destination port number, protocol
type, and other attributes that are derived from these basic
features. These derived features include the number of failed
login attempts, the number of compromised user accounts, and
the number of root accesses. The dataset contains 23 different
attack types, which are classified into four main categories:
denial of service (DoS), probing, user-to-root (U2R), and
remote-to-local (R2L).

C. UNSW-NBI5

The UNSW-NBI15 dataset [13] is a relatively newer dataset
compared to other datasets like KDD Cup99. It was developed
in 2015 by researchers from Australian Centre for Cyber Secu-
rity. It contains approximately 2.5 million network connection
records categorized as normal or anomalous, with 49 features
containing both flow and packet-based features. Those features
are further divided into four different categories, namely: con-
tent, basic, flow, and time. It includes nine different categories
of attacks, as well as a set of “unknown” connections. The
dataset was designed to provide more realistic and diverse
network traffic data, with a focus on capturing traffic from
different types of attacks. Its size and diversity make it a
valuable resource for researchers in the field of network
intrusion detection.

D. CICIDS17

The CICIDS17 [14] dataset is a publicly available bench-
mark dataset for network intrusion detection, created by re-
searchers at the Canadian Institute for Cybersecurity in 2017.
It contains over 18 million network traffic records, captured in
a campus network environment, and is designed to represent
a variety of realistic attack scenarios. The dataset consists
of 80 features, categorized into seven different classes: basic
features, content features, time-based features, host-based fea-
tures, flow-based features, and attack categories. The attack
categories are divided into four different classes: denial of
service, reconnaissance, network infiltration, and exfiltration.
One of the key features of the CICIDS17 dataset is its focus
on newer and more sophisticated attack types, including botnet
attacks, IoT-based attacks, and web application attacks.

VI. EVALUATION

In this section, we will evaluate the performance of
ClassyNet versus Baseline neural network and BranchyNet
under different testing scenarios. We evaluate the success of
the ClassyNet model in assigning different priorities to differ-
ent classes and causing them to leave from the exits they are
assigned to. We also evaluate ClassyNet impact on Accuracy,
Inference time on Edge and non-Edge environments. All the
results presented in this section were obtained from training
and evaluating each scenario, averaged over ten runs.

A. Experiment Design

1) Classification models.: For our experiments, we use a
1d convolutional neural network [23] design consisting of 5

convld layers. The first layer is the input layer and it is of
varying size to match the size of the incoming traffic. It is
followed by the 1d convolutional layers aiming to build ab-
straction to understand the underlying structure of the network
traffic. The last layer is a dense layer corresponding to the
number of outputs. We use categorical cross entropy loss in
addition to the Adam optimizer to help alleviate overfitting.
The learning rate is 0.005.

This model provides the backbone classifier for both the
BranchyNet and ClassyNet models. Our augmented models
has 3 exits positioned at layers #2, #5, #10 respectively. The
implementation for both BranchyNet and ClassyNet was built
on top of Intel Labs distiller framework [24]. All our models
were trained for 1000 epochs and run multiple times to obtain
and the values of our hyper-parameters including the cost
matrix were obtained through experimentation.

We developed two models of ClassyNet for the following set
of experiments; ClassyNet and ClassyNet+. ClassyNet makes
use of the Bag-of-Classes approach in training the model.
While ClassyNet+ uses a combination of both Bag-of-classes
and Cost-sensitive loss matrix. As mentioned in Section V, we
evaluated ClassyNet on all 3 dataset. However, due to space
limitation, we usually showcase the results from one or two
datasets if all three are exhibiting the same behavior.

2) Evaluation platform.: Our local experiments utilized
Python 3.7 and PyTorch 1.14, while training and evaluating all
models on a workstation equipped with an AMD Ryzen 7900X
CPU, two Nvidia RTX 4090 GPUs, and 256GB of memory.
While for our Edge experiments, we used Nvidia Jetson TX2
equipped with an ARM Cortex A-57 CPU and 8GB of RAM.
It also has a 256-core Nvidia Pascal GPU architecture with 256
NVIDIA CUDA cores. To simulate a lower-end configuration,
we disabled the GPU in some experiments.

3) Performance metrics.: In assessing the performance of
our ClassyNet in comparison to BranchyNet, we are consid-
ering the following aspects:

o Exit Efficiency. We evaluate how many of samples be-
longing to targeted classes exited from the assigned exits
and use that to assess the exit efficiency of the model.
Additionally, we also evaluate how many of these samples
exited at subsequent exits to evaluate the impact further down
the model.

e Latency Time. We compute the total computation time
for all the testing data, and we use it as an indicator for
the latency for this set of experiments. In the upcoming
experiments that solely simulate edge environment, we add
the appropriate communication latency.

e Accuracy. We compare the overall classification accuracy
of both ClassyNet and BranchyNet over the multiple datasets
over all classes.

e Edge Deployment We test ClassyNet against other model
in an edge environment. The objective of the experiments
is to evaluate the practicality and efficiency of ClassyNet
when we deploy it on edge devices with limited resources.
The main resources we are focusing on are the memory

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 12,2024 at 01:53:47 UTC from IEEE Xplore. Restrictions apply.

209

2023 20th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

Normal DoS (PC2) Probe (PC1) R2L U2R

a Exit Exit Exit Exit Exit Exit Exit Exit Exit Exit Exit Exit Exit | Exit Exit
a #1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3
% Base 0 0 22447 0 0 17383 0 0 3225 0 0 307 0 0 224
d BN 5476 4573 12398 4415 3146 9821 645 728 1852 86 93 127 33 50 141
Z CN 0 0 22038 0 12402 5491 1072 | 1195 957 0 0 310 0 0 172

CN+ 0 0 22724 0 13807 4291 1204 | 1271 750 0 0 313 0 0 204
=~ Normal DDoS FTP-Patator (PC1) PortScan (PC2) Brute Force
7 | Base 0 0 162910 0 0 25891 0 0 1672 0 0 32182 0 0 1098
=) BN 67918 | 32391 61194 10267 5528 9641 614 313 558 12872 6541 11512 | 483 264 413
S CN 0 0 16391 0 0 25192 857 502 325 0 25423 7271 0 0 912
© [TCN+ 0 0 16573 0 0 26241 945 591 212 0 28172 4376 0 0 1041

TABLE I: The distribution of the classes of NSL-KDD and CICIDS17 datasets over exits using all models. PC1 indicate the first priority
class, PC2 indicate the second priority classes. Classes ’Sql-inject’ and *XSS’ has been omitted from CICIDS17 due space limitation.

requirements for model deployment and the latency of the
inference computation.

B. Experiment Results

1) Results - Exit Efficiency: Table I shows the class distri-
butions of the NSL-KDD dataset under the different models.
The experiments show similar properties when used on the
CICIDS17 dataset and the UNSW-NB15, which we have to
omit due to space limitation. For the base model, no samples
exit at either Exit #1 or #2 since it has no early exit points.
For BranchyNet, the table shows similar distribution for each
class at the different exits with 24% leaving at Exit #I,
17% leaving at Exit #2, and 59% leaving at the last Exit.
For the ClassyNet experiments, for the NSL-KDD dataset, we
assigned the class Probe as priority class #1 and allowed it
to exit starting from Exit #1. We assigned the class DoS as
priority class #2 and allowed to exit starting from the second
Exit #2. Similarily for the CICIDS dataset, we assigned FTP-
Patator as priority class #1 and PortScan as #2. Looking at
the ClassyNet distribution, we notice a sizeable improvement
in the number of samples of the priorities classes assigned to
a specific exit, as the number of samples correctly classified
from the priority classes increases by up to 68% in some
classes. This clearly shows the viability of our approach in
developing class-aware models that significantly increase the
number of samples of only specific classes exiting at specific
exits. Finally, the ClassyNet+ distribution shows that adding
the cost matrix to the training process further increases the
percentage of the assigned classes leaving by up to 90%
compared to BranchyNet, as they are heavily incentivized to
exit from their assigned exits because of the additional penalty
associated with leaving from later exits.

2) Results - Latency Time.: To properly evaluate the in-
ference time of the class based classifer, we created multiple
synthetic testing data containing different percentages of the
targeted classes. Figure 5 shows the latency (inference) time of
the four models for different compositions of testing data and a
total size of 10k samples using the NSL-KDD dataset. Figure 6
show the results for the UNSW-NB15, which exhibit similar
behavior to the NSL-KDD dataset. Due to space limitation,
we will focus on discussing NSL-KDD results. We start with
synthetic testing data containing 10% of the priority classes,
we gradually increase the percentage of samples belonging to
these classes till they reach 90% of the total testing data.

™ Base Branchy

[a
o

2500

2000

1500

1000

500

Inference Time (ms)

0

10% 20% 30% 40% 50% 60% 70% 80% 90%

Fig. 5: Total inference time of 10000 samples over different com-
positions of the NSL-KDD dataset.

| \ Base

2500

2000

1500

1000

Inference Time (ms)
w
8

o NVl Wl WZEl Nz NG Nz NZET NGED NGE
10% 20% 30% 40% 50% 60% 70% 80% 90%

Fig. 6: Total inference time of 10000 samples over different com-
positions of the UNSW-NB15 dataset.

The figure shows that the latency time of both the Baseline
and BranchyNet models is constant, which is to be expected
given that both of these models are independent of any
manipulation of testing data. BranchyNet does shows a lower
latency time than the Baseline model. This is to be expected
as BranchyNet allows for samples to leave from earlier exits
thus lowering the inference time. We can also observe that
BranchyNet initially outperforms ClassyNet in total latency
time when the percentage of the targeted classes is small. This
is because ClassyNet limits the early exits to only specific
classes and forces others to later exits, as opposed to the more
open exiting criteria of BranchyNet. ClassyNet+ shows more
reduction in latency time because of the cost matrix highly
penalizing samples leaving from later exits.

As the composition of the data changes, with more sam-
ples belonging to the target class, the performance gap be-
tween BranchyNet and textitClassyNet begins to decrease until

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 12,2024 at 01:53:47 UTC from IEEE Xplore. Restrictions apply.

210

2023 20th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

ClassyNet overtakes BranchyNet. This happens when around
30% of the samples belong to the targeted classes. This shows
that capabilities of ClassyNet, and how class-aware classifier
can target classes with a high success rate. For example,
when the target class represents 90% of the entire testing
samples, the total inference time of ClassyNet is about 200ms,
which is only 35% of the corresponding time of BranchyNet .
Additionally, we calculate the total inference time for multiple
synthetic dataset of 5000 samples, with all the samples being
from priority classes, or randomly drawn from all the different
classes. The results are shown in Table II for both NSL-KDD
and CICIDS17 dataset. They clearly show that ClassyNet
outperforms the Baseline and BranchyNet when dealing with
data from targeted classes with ClassyNet as it was able to
classify the synthetic set in 3.57x faster than BranchyNet.

NSL-KDD CICIDS17
PC1 PC2 | All Classes PC1 PC2 All Classes
Base | 1011ms | 991ms 1018ms 5268ms | 5332ms 5556ms
BN | 551ms | 574ms 581ms 2885ms | 2942ms 3177ms
CN 193ms | 301ms 823ms 1046ms | 1642ms 4362ms
CN+ | 154ms | 287ms 801ms 837ms | 1587ms 4495ms

TABLE 1I: Total inference time for 5000 samples given that all
samples are from the PC1, PC2, or randomly drawn from the dataset.
Results are shown for NSL-KDD and CICIDS17 datasets.

3) Results - Accuracy.: Table III summarizes the classi-
fication accuracy of Baseline, BranchyNet, ClassyNet, and
CLassyNet+ models under all datasets. From the table, we
observed that both early-exit models have a decrease of
less than 1% in accuracy compared to the Baseline model.
However, this decrease is minimal and could be ignored.
Moreover, we can observe that ClassyNet has an additional mi-
nor reduction in accuracy compared to BranchyNet. However,
ClassyNet+ shows a smaller reduction in accuracy compared
to ClassyNet, we attribute this to the normalizing factor of
the cost matrix. However, all the changes in accuracy among
different models are very minor as they all fall within 1% of
baseline accuracy. We attribute this slight accuracy reduction
to the fact that ClassyNet targets traditionally difficult samples
of the target classes and attempts to adjust the model to finalize
the inference process on these samples in earlier exits.

NSL-KDD | CICIDS2017 | UNSW-NB15
Baseline 97.61% 96.89% 94.65%
BranchyNet 97.31% 96.52% 94.18%
ClassyNet 97.13% 96.38% 93.97%
ClassyNet+ 97.24% 96.42% 94.11%

TABLE III: Accuracy results for the different models under different
architectures and datasets.

4) Results - Edge Deployment.: To test the system under
different memory configuration, we implemented a model par-
titioning scheme. Model partitioning is a common technique
with multi-exit models, where a small part of the model is
deployed on the edge usually ending with an optional exit
and the remainder of the model is deployed on the cloud and
gets to process samples that the smaller part could not classify.
Additionally, we perform our testing using two configuration
of synthetic datasets; Uniform datasets use randomly drawn

samples from the full dataset and mimic the distribution of
the traffic. Biased datasets are more loaded with samples from
high priority classes. The results are shown in Table IV. The
first row in the table represent a full deployment on the edge.
While the subsequent rows show the memory footprint taken
by the partial model left on the edge. The memory sizes
correspond to the memory required to deploy the set of layers
associated with the various blocks of both BranchyNet and
ClassyNet. From the table, we observe that for BranchyNet,
the total latency increase with with lower memory sizes for
both the Uniform and Biased test cases as more samples need
to be sent forward to the cloud for further processing due to
the lowering computational capabilities at lower memory sizes.
However, for ClassyNet, we observe that this patterns holds
true as well. However, for the Biased test, when the majority
of the testing samples belong to priority classes, the overall
inference remains considerably low compared to BranchyNet.

BranchyNet ClassyNet ClassyNet+
Mem | Uniform | Biased | Uniform | Biased | Uniform | Biased
6.8M 544 586 876 174 740 232
1.6M 1900 2486 5836 860 4670 338
0.33M 4730 5116 7752 1410 7186 590
0.15M 6298 6472 8692 1722 8336 904

TABLE IV: Inference Time of different synthetic dataset of 1000
samples under model splitting scenario. Uniform test cases use
randomly drawn samples from the dataset. Biased test cases has 80%
drawn from priority classes.

VII. RELATED WORK

Network intrusion detection is the process of detecting
unauthorized and malicious activities in a computer network.
In recent years, neural networks have become popular for net-
work intrusion detection due to their ability to learn complex
patterns and classify them with high accuracy. In this related
works section, we review the literature on network intrusion
detection using neural networks. Several studies have explored
the use of neural networks for network intrusion detection. For
example, in [25], a neural network-based intrusion detection
system was proposed that could classify network traffic into
three categories: normal traffic, known attacks, and unknown
attacks. The system achieved high detection rates for both
known and unknown attacks. Another approach to network
intrusion detection using neural networks was proposed in
[26]. The authors used a self-organizing map (SOM) neural
network to cluster network traffic and identify anomalous
behavior. The system achieved high accuracy and was able to
detect both known and unknown attacks. In [27], the authors
proposed an intrusion detection system based on deep learning
using a stacked autoencoder neural network. The system was
trained on the UNSW-NB15 dataset, which contains a variety
of attack types, and achieved high detection rates for both
known and unknown attacks. More recently, [6] proposed a
convolutional neural network-based intrusion detection system
that achieved high detection rates on the NSL-KDD dataset.
[28] proposed a system that combined deep learning and
clustering for anomaly-based intrusion detection and achieved
high accuracy on the KDD Cup 99 dataset. Additionally, [7]

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 12,2024 at 01:53:47 UTC from IEEE Xplore. Restrictions apply.

211

2023 20th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

proposed hybrid intrusion detection systems that combined
multiple neural network architectures to achieve high detection
rates on various datasets.

All of these papers deal with class-agnostic network in-
trusion system with no ability to assign different priorities
to different threats. Unlike our proposed solution, ClassyNet,
which is designed to provide a class-aware early-exit model
capable of dealing with some unique challenges in edge
environments.

VIII. CONCLUSION

In this paper, we designed and developed ClassyNet, the
first dynamic class-aware classification model for edge devices
with limited resources that significantly reduces inference
latency time in supporting real-time applications by allowing
different priorities to be assigned to different classes and
enabling classes of higher priority to finish the inference
earlier. We detailed the architecture and design details of
the proposed ClassyNet, which included two novel additions
to early-exit models; Bag-of-Classes and Cost-sensitive loss
matrix to enable class-aware training.

We demonstrated its application in network intrusion detec-
tion and showed that this approach can significantly improve
the detection of high priority threats while reducing the
computational overhead. We compared several performance
metrics of ClassyNet vs BranchyNet under different sets of
testing data, exit numbers, and testing environments. Further-
more, we compared ClassyNet’s performance on edge devices
with varied memory capacity limits to that of BranchyNet
and two network pruning strategies. According to the results,
ClassyNet could achieve up to 4x quicker inference latency
time than the nearest model of comparable techniques. We
are researching several directions in our future work including
developing a mechanism that automatically assigns classes
to the ClassyNet’s many exits in the most efficient way. In
addition, we are looking at how to utilize ClassyNet with
imbalanced data. We believe that this work will spark new
and exciting research on class-aware classification.

REFERENCES

[1] Z. Li, W. Yang, S. Peng, and F. Liu, “A survey of convolutional neural
networks: Analysis, applications, and prospects,” 2020.

[2] M. Alam, M. D. Samad, and et. al., “Survey on deep neural networks
in speech and vision systems,” 2019.

[3] D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the usages of
deep learning in natural language processing,” 2019.

[4] H. B. Pasandi and T. Nadeem, “Towards a learning-based framework
for self-driving design of networking protocols,” IEEE Access, vol. 9,
pp. 34 829-34 844, 2021.

[5]1 S. K. Nukavarapu, M. Ayyat, and T. Nadeem, “Miragenet - towards
a gan-based framework for synthetic network traffic generation,” in
GLOBECOM 2022 - 2022 IEEE Global Communications Conference,
Dec 2022, pp. 3089-3095.

[6] X. Zhang, J. Ran, and J. Mi, “An intrusion detection system based on
convolutional neural network for imbalanced network traffic,” in 2019
IEEE 7th International Conference on Computer Science and Network
Technology (ICCSNT), 2019, pp. 456—460.

[7] M. S. ElSayed, N.-A. Le-Khac, M. A. Albahar, and A. Jurcut, “A novel
hybrid model for intrusion detection systems in sdns based on cnn
and a new regularization technique,” Journal of Network and Computer
Applications, vol. 191, p. 103160, 2021.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

S. Nukavarapu and T. Nadeem, “iknight—guarding iot infrastructure us-
ing generative adversarial networks,” IEEE Access, vol. 10, pp. 132 656—
132674, 2022.

Y. Han, G. Huang, S. Song, L. Yang, H. Wang, and Y. Wang, “Dynamic
neural networks: A survey,” arXiv preprint arXiv:2102.04906, 2021.
G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Weinberger,
“Multi-scale dense networks for resource efficient image classification,”
in International Conference on Learning Representations, 2018.
[Online]. Available: https://openreview.net/forum?id=Hk2almxAb

S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in 2016 23rd
International Conference on Pattern Recognition (ICPR). 1EEE, 2016,
pp. 2464-2469.

M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed anal-
ysis of the kdd cup 99 data set,” in IEEE Symposium on Computational
Intelligence for Security and Defense Applications, 2009, pp. 1-6.

N. Moustafa and J. Slay, “Unsw-nbl5: a comprehensive data set for
network intrusion detection systems (unsw-nb15 network data set),” in
2015 Military Communications and Information Systems Conference
(MilCIS), 2015, pp. 1-6.

I. Sharafaldin, A. Habibi Lashkari, and A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization,”
01 2018, pp. 108-116.

M. Ayyat, S. K. Nukavarapu, and T. Nadeem, “Dynamic deep neural
network adversarial attacks for edge-based iot devices,” in GLOBECOM
2022 - 2022 IEEE Global Communications Conference, Dec 2022, pp.
61-67.

S. K. Nukavarapu, M. Ayyat, and T. Nadeem, “ibranchy: An
accelerated edge inference platform for iot devices,” in The
Sixth ACM/IEEE Symposium on Edge Computing, ser. SEC ’21.
New York, NY, USA: ACM, 2021. [Online]. Available: https:
//doi.org/10.1145/3453142.3493517

A. Ganesan, P. Parameshwarappa, A. Peshave, Z. Chen, and T. Oates,
“Extending signature-based intrusion detection systems withbayesian
abductive reasoning,” 2019.

B. Molina-Coronado, U. Mori, A. Mendiburu, and J. Miguel-
Alonso, “Survey of network intrusion detection methods from
the perspective of the knowledge discovery in databases process,”
IEEE Transactions on Network and Service Management, vol. 17,
no. 4, pp. 2451-2479, dec 2020. [Online]. Available: https:
//doi.org/10.1109\ %2Ftnsm.2020.3016246

S. Pal, Y. Gupta, A. Kanade, and S. Shevade, “Stateful detection of
model extraction attacks,” 2021.

J. Firnkranz, “Class binarization,” in Encyclopedia of Machine Learning
and Data Mining, C. Sammut and G. I. Webb, Eds. Springer, 2017,
pp. 203-204.

C. Zhang, K. C. Tan, H. Li, and G. S. Hong, “A cost-sensitive deep belief
network for imbalanced classification,” IEEE Trans. Neural Networks
Learn. Syst., vol. 30, no. 1, pp. 109-122, 2019.

S. Revathi and A. Malathi, “A detailed analysis on nsl-kdd dataset using
various machine learning techniques for intrusion detection,” Int. Journal
of Engineering Research and Technology, vol. 2, 2013.

S. Kiranyaz, O. Avci, and et. al., “1d convolutional neural networks and
applications: A survey,” 2019.

N. Zmora, G. Jacob, L. Zlotnik, B. Elharar, and G. Novik, “Neural
network distiller: A python package for dnn compression research,”
October 2019. [Online]. Available: https://arxiv.org/abs/1910.12232

O. Linda, T. Vollmer, and M. Manic, “Neural network based intrusion
detection system for critical infrastructures,” in 2009 International Joint
Conference on Neural Networks, 2009, pp. 1827-1834.

Z. Liu and Y. Lai, “A data mining framework for building intrusion
detection models based on ipv6,” in Advances in Information Security
and Assurance, J. H. Park, H.-H. Chen, M. Atiquzzaman, C. Lee, T.-
h. Kim, and S.-S. Yeo, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 608-618.

N. Moustafa, J. Slay, and G. Creech, “Unsw-nb15: a comprehensive data
set for network intrusion detection systems (unsw-nbl5 network data
set),” in Military Communications and Information Systems Conference
(MilCIS). 1EEE, 2015, pp. 1-6.

E. Tufan, C. Tezcan, and C. Acarturk, “Anomaly-based intrusion
detection by machine learning: A case study on probing attacks to an
institutional network,” IEEE Access, vol. 9, pp. 50078-50092, 2021.
[Online]. Available: https://doi.org/10.1109\ %2Faccess.2021.3068961

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 12,2024 at 01:53:47 UTC from IEEE Xplore. Restrictions apply.

212

