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ABSTRACT

In the ever-evolving realm of cybersecurity, strategic honeypot

placement is pivotal for enhanced network deception. This paper

introduces a novel approach, leveraging Graph Neural Networks

(GNNs), to optimize honeypot placements, outstripping traditional

game-theoretic methods. Traditional techniques often face com-

putational inefficiencies due to the "curse of dimensionality" in

complex dynamic environments. Our GNN model, through exten-

sive exploration of architectures including Graph Attention Trans-

formers (GAT) and Graph Transformer models, showcases supe-

rior performance. With the integration of game-theoretic edge fea-

tures, the model achieves a remarkable test accuracy of 92.34%.

Additionally, our GNN solution provides a 139x inference speedup

over classical methods, underpinning its efficiency and potential

to revolutionize cybersecurity strategies.
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Figure 1: An example scenario with an attacker starting out

at the entry node (in blue). A honeypot (H) may be placed

along any of the edges to capture the attacker as it tries

to reach one of the target nodes (in red). We restrict our

scenario to only one honeypot, and attempt to optimize its

placement.

1 INTRODUCTION

Modern computer networks have become highly connected and

heterogeneous due to the integration of a diverse array of devices

and protocols, including Internet of Things (IoT), robots, sensors,

and other connected systems. This growing complexity and het-

erogeneity, although essential for providing sophisticated services

and adapting to rapidly changing demands, also pose significant

security challenges. Networks now encompass an increasing num-

ber of devices with different operating systems, making themmore

susceptible to interference, cyber attacks, and complex manage-

ment issues such as patching vulnerabilities. These security con-

cerns become even more critical in military environments, where

the Internet of Battlefield Things (IoBT)[11, 14] necessitates the

protection of critical nodes and system components.

To counter cyber threats, network administrators, or defenders,

often employ cyber deception techniques during the reconnais-

sance stage of an attack.[24] During this stage, attackers gather

information about targeted systems and networks to develop their

attack strategies. Cyber deception techniques involve manipulat-

ing the network interfaces to disguise the true state of the network,

thereby disrupting the attacker’s decision-making process. Hon-

eypots, which are decoy systems designed to attract and engage

attackers, play a crucial role in enhancing network resilience by
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intercepting attacker paths. However, traditional game-theoretic

approaches for honeypot placement exhibit limitations and inef-

ficiencies in dynamic environments with multiple attackers and

honeypots. Additionally, these methods often rely on computation-

ally intensive iterative algorithms, such as fictitious play, rendering

them slow and less practical for real-time applications.

To illustrate our approach, we consider a scenario depicted in

Fig. 1. In this specific setting, the network is exposed to a single at-

tacker, entering through a designated entry node. Our primary ob-

jective is to ascertain the most strategic edge within this network

on which to deploy a honeypot. By doing so, we aim to maximize

our chances of intercepting and neutralizing the attacker, thereby

safeguarding the network’s integrity.

To address these challenges, this study proposes a Graph Neu-

ral Network[25] (GNN)-based model for determining the optimal

placement of honeypots in a given network topology. Our approach

leverages the power of GNNs to process graph-structured network

data and generate honeypot placement strategies that maximize

the probability of intercepting attacker paths. We investigate the

application of various GNN architectures, including Graph Atten-

tion Transformers (GAT) variants[6, 29], Graph Convolutional Net-

works (GCN)[13], and Graph Transformer models[8], to identify

the most suitable architecture for the problem at hand.

Furthermore, we explore a variety of input features, such as

node values as the only node features, binary features for entry and

target nodes, and reward matrix data derived from classical game-

theoretic algorithms. We also implemented with different feature

embedding approaches. This exploration of input features aims to

assess their impact on model performance and identify the most

effective feature set for the GNN-based approach.

In addition, our research examines different optimization strate-

gies, such as learning rate curves (one cycle [27], cosine annealing

warm restarts [17], ReduceLROnPlateau1), optimizers [7, 12, 16,

31], model ema [10], as well as various model sizes, and model

architectures incorporating the aforementioned layers tested. This

investigation into optimization strategies andmodel configurations

seeks to determine the most effective combination for enhancing

the GNN-based model’s performance in identifying optimal hon-

eypot placements.

Our research ultimately aims to contribute to the broader goal of

utilizing AI capabilities to improve network security and resilience

against cyber threats. By developing a more efficient and adaptable

solution compared to classical game-theory-based methods for op-

timal honeypot placement, we strive to enhance network decep-

tion and minimize the number of successful attack trials, thereby

safeguarding networks and systems against cyber threats.

The rest of the paper is organized as follows. We discuss the

related work in Section 2. Then we discuss the game theory model

and the attack graph in detail in section 3. In Section 4, we provide

the system model and provide the problem statement and opti-

mization model. In Section 5, we provide simulation/experimental

results regarding the performance of proposed solution in various

scenarios. Finally, we conclude and discuss future work in Sec-

tions 6 and 7.

1as implemented in PyTorch

2 RELATED WORK

Over the last decade, there has been a remarkable growth in the

deployment of DeepNeural Networks (DNNs) across various fields.

These networks have shown significant promise in areas such as

image recognition [15], speech recognition [1], natural language

processing [21], self-driven network protocols [23], synthesizing

network traffic [20], among others. Notably, their potential in net-

work security and privacy, especially in tasks like anomaly detec-

tion and intrusion detection systems, has been well-established [3,

9, 19, 32]. However, the vulnerability of these networks to adversar-

ial attacks, especially those targeting resources, remains a pressing

issue [4].

In the context of this paper, we broadly classify the most re-

lated work into two categories: (1) honeypot placement strategies

based on game theory, and (2) the application of graph-based neu-

ral networks for various tasks. In this section, we review the most

relevant literature in both areas and highlight the key differences

between our proposed approach and the existing methods.

2.1 Game Theory-based Honeypot Placement
Strategies

Game theory has been widely used to model and analyze the in-

teractions between attackers and defenders in cybersecurity, in-

cluding honeypot placement[2]. In a work by Anwar et al.[2], the

authors propose a scalable algorithm for allocating honeypots over

an attack graph. They model the problem as a two-person zero-

sum strategic game between a network defender and an attacker.

The game formulation captures the importance of different nodes

in the network, as well as the cost associated with various de-

fense strategies and the cost incurred by the attacker. Furthermore,

it considers a practical threat model concerning the available in-

formation about the attacker to the network defender. Nash equi-

librium defense strategies are analytically characterized, and the

complexity of a general game is discussed. The authors propose a

scalable algorithm to obtain honeypot allocation strategies in large-

scale networks, which we use as a basis for our work.

However, as mentioned earlier, traditional game-theoretic ap-

proaches for honeypot placement exhibit limitations and inefficien-

cies in dynamic environments with multiple attackers and hon-

eypots. Moreover, these methods often rely on computationally

intensive iterative algorithms, such as fictitious play, rendering

them slow and less practical for real-time applications.

2.2 Graph-based Neural Networks

Graph-based neural networks, includingGraphConvolutional Net-

works (GCN)[13], GraphAttention Transformers (GAT) variants[6,

29], and Graph Transformer models[8], have shown great poten-

tial in processing graph-structured data and tackling various tasks,

such as node classification, link prediction, and graph classification.

The GNNs have been widely employed in numerous application

domains, including social networks, recommender systems, and

drug discovery[25].

In our work, we leverage the power of GNNs to process graph-

structured network data and generate honeypot placement strate-

gies that maximize the probability of intercepting attacker paths.

We investigate the application of various GNN architectures to
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identify themost suitable architecture for the problem at hand. Fur-

thermore, we explore different input features, optimization strate-

gies, and model configurations to optimize model performance in

determining optimal honeypot placements.

To the best of our knowledge, our work is the first to propose

a GNN-based model for optimizing honeypot placement strategies

in network deception and resilience against cyber attacks. By de-

veloping a more efficient and adaptable solution compared to clas-

sical game-theory-based methods, we strive to enhance network

deception andminimize the number of successful attack trials, thereby

safeguarding networks and systems against cyber threats.

In summary, our research combines the strengths of both game

theory-based honeypot placement strategies and graph-based neu-

ral networks to address the limitations and inefficiencies of tradi-

tional methods. By incorporating the reward matrices from game

theory approaches as edge features in our GNN-based model, we

aim to develop an innovative and effective solution for determining

the optimal placement of honeypots in network topologies.

3 ATTACK GRAPH & GAME THEORY MODEL

In this section, we define the attack graph and describe the formu-

lation of the game theory model.

3.1 Attack Graph

Attack Graphs (AGs) are widely used in cybersecurity to model

potential attacks by mapping out all possible scenarios [22]. These

graphs are typically constructed based on network topologies, vul-

nerabilities, etc [30]. Consequently, an AG can be interpreted dif-

ferently depending on the specific scenario at hand. In this context,

we examine an attack graph composed of �푁 nodes, represented as

the graph�퐺 (�푉 , �퐸), where �푁 = |�푉 |. Each node denotes a vulnerabil-

ity linked to a host or machine within the network. The presence

of an edge �푒�푢,�푣 ∈ �퐸 connecting nodes �푢 and �푣 implies the ability

to exploit a vulnerability at node �푣 through one at node �푢. Nodes

within the graph are assigned values denoted as�푤�푣 , reflecting their

significance to the network administrator. Nodes with higher val-

ues represent valuable assets within the network, containing criti-

cal information and databases essential to the tactical network. It is

reasonable to assume that these nodes, due to their elevated values,

are particularly attractive to potential adversaries and network at-

tackers. These attackers aim to maximize their expected rewards

by strategically choosing from the set of all accessible nodes to

compromise. In our model, we posit that the attacker possesses

knowledge of the values associated with each node. This assump-

tion holds as attackers often gain access to internal information

regarding the network structure and employ network scanning

tools for probing [18] during the attack reconnaissance stage.

We make the assumption that the defender lacks precise infor-

mation about the attacker’s location, reflecting a practical threat

model. Nonetheless, the defender is aware of the potential entry

points the attacker might exploit to penetrate the network. Net-

work records allow the defender to establish a distribution �푓�푎 (·)

over these entry points, where �푉�푒 ⊂ �푉 represents the entry point

set. In essence, the defender can ascertain the probability that an

attacker might breach the network through an entry point �푢 ∈ �푉�푒
as �푓�푎 (�푢), with the constraint

∑
�푢∈�푉�푒 �푓�푎 (�푢) = 1. The objective of

the defender is to formulate a proactive strategy for the placement

of honeypots within a given network, utilizing the constructed

attack graph. To this end, we have transposed this problem into a

two-player game theoretical framework, the specifics of our game

model are described in the subsequent section.

3.2 Game Theory Model

Our game is defined as a triple (N ,A, �푅), presenting the defender

and attacker as the set of players N = {1, 2}, their respective

action spaces A = A1 × A2, and the zero-sum nature of their

rewards, �푅1 + �푅2 = 0. The defender’s prerogative is the judicious

allocation of honeypots within the network, a strategic maneu-

ver captured by the meticulously constructed attack graph. The

attacker, conversely, is advancing through the network, with each

move carrying the intrinsic risk of exposure and associated costs.

The defender’s strategy is to decide where to place the honeypots

or whether to abstain from placing them to avoid costs �푃�푐 . The

honeypots are placed on the edges modeling fake services and

vulnerabilities to mislead the attacker. The attacker’s strategy in-

volves deciding which node to attack next while balancing the risk

of exposure and the associated attack cost,�퐴�푐 . The attacker reward

matrix, �푅2 = −�푅1.

The reward function can easily be expressed as follows,

�푅1 (�푎1, �푎2 ) =




−�푃�푐 +�퐴�푐 +�퐶�푎�푝 ∗ �푤�푣 ; �푎1 = �푒�푎,�푣 , �푎2 = �푣 ∀�푣 ∈ V
−�푃�푐 +�퐴�푐 + �퐸�푠�푐 ∗ �푤�푢 ; �푎1 = �푒�푎,�푣 , �푎2 = �푢∀�푢 ≠ �푣 ∈ V

−�푃�푐 ; �푎1 = �푒�푎,�푣 , �푎2 = 0 ∀�푣 ∈ V
0 ; �푎1 = 0, �푎2 = 0

(1)

where �퐶�푎�푝 and �퐸�푠�푐 represent the rewards for the defender and

attacker, respectively. �퐶�푎�푝 denotes the defender’s capture reward,

earned when the attacker exploits an edge where a honeypot is

placed. In contrast, �퐸�푠�푐 denotes the attacker’s escape reward, ac-

quired when the attacker successfully exploits an edge where no

honeypot is positioned, thus evading capture. Finally, taking zero

actions signifies that both the defender and attacker are opting to

back off, a decision that occurs when either player is confronted

with very high action costs. The reward matrix of the game encap-

sulates all possible attack and defense scenarios along with their

corresponding outcomes. It is possible to determine the Nash equi-

librium strategies of the game using standard game-solvingmethod-

ologies, such as linear programming [2].

However, traditional game-solving techniques like linear pro-

gramming [2] often grapple with the curse of dimensionality. This

challenge arises due to the computational complexity that grows

exponentially with increasing network size, the number of honey-

pots, and the diversity of attack paths. To address these limitations,

we explore the potential of Graph Neural Networks (GNNs) as

illustrated in fig 2. Specifically:

1. End-to-End Learning Approach: This method purely uti-

lizes the graph topology to model and predict the optimal strate-

gies. The goal is to minimize the difference between the predicted

probabilities from the GNN and those obtained from the game-

solving technique. This is depicted on the right side of fig 2.

2.Hybrid Approach: Combining information from both the re-

ward matrix and the graph topology, this approach aims to harness

the strengths of both the end-to-end and game theory approaches,

as portrayed on the left side of fig 2.
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In mathematical terms, given the predicted probabilities �푃GNN
from theGNNand the true probabilities �푃true from the game-solving

technique, our objective is to minimize the cross entropy loss:

L = −
∑

�푖

�푃true (�푖) log �푃GNN (�푖)

4 METHODOLOGY

In this section, we present our methodology for developing a GNN-

based model to optimize honeypot placement strategies, aimed at

enhancing network deception and resilience against cyber attacks.

We discuss the experimental design, input feature engineering,model

architecture exploration, and optimization strategy evaluation.

4.1 Experimental Setup

Our experiments were conducted on a fixed graph topology with a

predetermined number of nodes. The experiments consisted of one

attacker, three target nodes, one honeypot, and one entry node.

To introduce variability, the rewards for non-target nodes were

randomized. We divided the dataset into training and testing sets

to assess the performance of the proposed GNN-based models. All

the presented experiments are conducted on a dataset containing

100,000 generated graph configurations with a node count set to

30.

4.2 Input Feature Engineering

4.2.1 Node Features. Node features in our framework capture es-

sential information pertaining to the nodes in the graph. Specifi-

cally, each node is characterized by the following attributes:

(1) Node Value (�푣): Represents the primary attribute of the

node. This can be a continuous scalar value.

(2) Entry Node Indicator (�푒): A binary indicator that desig-

nates whether the node is an entry node. It takes a value of

1 if the node is an entry node, and 0 otherwise.

(3) Target Node Indicator (�푡 ): A binary vector where the �푖-th

element is set to 1 if the node is the �푖-th target node, and 0

otherwise.

Given these attributes, the node feature vector x�푖 for the �푖-th

node can be represented as:

x�푖 =



�푣�푖
�푒�푖
t�푖


(2)

For nodes with continuous values, we further enrich the repre-

sentation using Fourier features[28]. Let �푓 (�푣) denote the Fourier

transformation of a scalar �푣 . The transformed node value feature

becomes �푓 (�푣�푖 ). For binary attributes (entry and target indicators),

we leverage embedding tables, resulting in vectors emb�푒 (�푒�푖 ) and

emb�푡 (t�푖 ), respectively.

Therefore, the enhanced node feature vector X�푖 becomes:

X�푖 =



�푓 (�푣�푖 )

emb�푒 (�푒�푖 )

emb�푡 (t�푖 )


(3)

In our exploratory experiments we’ve empirically found that at

larger data scales the use of embedding tables and fourier features

enhances accuracy. We reason that this is because increasing their

dimensionality allows our model to allocate more parameters to

these inputs.

4.2.2 Edge Features. Edges in our graph are enriched with reward

matrix data derived from game-theoretic algorithms. Let R�푖 �푗 repre-

sent the reward matrix data for an edge between nodes �푖 and �푗 . The

incorporation of these reward matrices as edge features augments

the GNN’s capability to understand and make strategic decisions

on honeypot placements, seamlessly blending game-theoretic in-

sights with graph-based learning.

4.2.3 Feature Processing and Integration. To prepare the data for

the GNN-based model, we process the node and edge features as

follows:

(1) Node Feature Processing: Each node feature X�푖 is passed

through a node embedder. The node embedder consists of a

Fourier transformation for the node value, and embeddings

for binary features, combined linearly to produce the final

node representation.

(2) Edge Feature Processing: Edge features R�푖 �푗 are directly

transformed into a fixed-size vector using a linear layer, pro-

ducing the edge representation.

Once processed, these features are fed into the GNN. Within

the GNN, node representations are updated through various lay-

ers, while the edge features provide additional context for these

updates. We show a simplified overview of this method in Fig 2.

4.3 Optimizing and Accelerating the Simulator

We optimized the simulator from [2] by creating a parallelized,

just-in-time compiled version of their algorithm for calculating

rewards. We observed that in practice, fictitious play was approxi-

mately 200 times slower than this optimized algorithm. This obser-

vation motivated our approach to use the reward matrix as edge

features, transforming the problem into approximating only the fic-

titious playmodule instead of both the rewardmatrix and fictitious

play. By optimizing the reward matrix calculation, we were able

to significantly reduce the computational overhead. Fig 2 shows

a block diagram of a simulator and the two proposed GNN input

schemes.

4.4 Model Architecture Exploration

We investigated various GNN architectures to identify the most

suitable one for the problem at hand. We considered Graph At-

tention Transformers (GAT) variants [6, 29], Graph Convolutional

Networks (GCN) [13], and Graph Transformer models [8]. We ex-

perimentedwith differentmodel sizes andmodel architectures that

incorporated the aforementioned layers to determine the best-performing

configuration for identifying optimal honeypot placements.

To further enhance the performance of the GNN-based model,

we examined various optimization strategies, such as learning rate

curves (one cycle [27], cosine annealing warm restarts [17], and Re-

duceLROnPlateau), optimizers [7, 12, 16, 31], and model ema [10].
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Figure 2: In the middle a block diagram of the simulator is

shown. On the left and right, different GNN input configu-

rations are shown.

Our goal was to determine the most effective combination of op-

timization strategies and model configurations to maximize the

GNN-basedmodel’s ability to identify optimal honeypot placements.

The best configuration without edge features utilized GATv2 [6]

and included skip connections for every layer, layer normaliza-

tion [5], and the SwiGLU [26] activation function. Edge embed-

dings were generated by concatenating node embeddings, which

were then used for making predictions.

The best configuration using edge features was the edge feature

variant of the Graph Transformer [8]. The model implementation

followed the architecture presented in the paper. Mean edge fea-

tures were used to make predictions.

5 EXPERIMENTAL RESULTS

In this section, we present the experimental results and perfor-

mance evaluation of the proposed GNN-based models for optimal

honeypot placement in a network topology. We evaluate our mod-

els using two primary metrics: accuracy and cross-entropy loss.

Accuracy reflects the proportion of correctly predicted honeypot

placements, while cross-entropy loss measures the discrepancy be-

tween the predicted probability distribution and the target distribu-

tion. Lower cross-entropy loss and higher accuracy indicate better

performance.

We perform an 80-20 train-test split and perform no model se-

lection. We train for 100 epochs for all experiments. Further, to

show how our technique scales, we perform experiments with the

training set size set to 80k, 10k and 2k samples. Test set size is static

at 20k samples. All experiments are run on a machine with a 7950X

CPU and NVidia RTX 4090 GPU. A batch size of 1024 is used.

5.1 Model Performance Evaluation

We compared the performance of our best performingmodels with

and without edge features. Table 1 summarizes the test accuracy

and cross-entropy loss values for these models.
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Figure 3: Graph showing accuracy and loss at different data

scales.

As shown in Table 1 and Fig 3, our best performing model with

edge features, the Graph Transformer, achieved a test accuracy

of 92.34% and a cross-entropy loss of 0.5248. In contrast, the best

performing model without edge features, GATv2, had a lower test

accuracy of 48.47% and a higher cross-entropy loss of 1.737. These

results demonstrate the effectiveness of incorporating edge fea-

tures derived from game-theoretic algorithms into our GNN-based

model, leading to a substantial improvement in performance.

5.2 Impact of Input Features and Architectures

Our experiments revealed that extending the input features by adding

binary features for entry and target nodes, as well as incorporating

reward matrix data as edge features, significantly improved model

performance. Furthermore, embedding tables and fourier features

empirically led to modest improvements, especially at large data

scales.

In terms of model architectures, our exploration indicated that

GATv2with skip connections, layer normalization, and the SwiGLU

activation function performed best without edge features. Mean-

while, the edge feature variant of the Graph Transformer achieved

the best performance when edge features were included.

5.3 Optimization Strategy Performance

Our evaluation of various optimization strategies revealed that the

optimal combination for maximizing the GNN-based model’s abil-

ity to identify honeypot placements consisted of the following: a

one cycle learning rate curve[27], the LAMB optimizer[31], and

model ema[10]. This combination proved to be the most effective

in enhancing the model’s performance.

Table 1: Performance Comparison of GNN-based Models

Test Test

Model Accuracy Cross-entropy

GATv2 (no edge features) 48.47% 1.737

Graph Transformer (edge features) 80k 92.34% 0.5241

Graph Transformer (edge features) 10k 27.98% 1.6436

Graph Transformer (edge features) 2k 21.88% 1.7392
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5.4 Inference Latency and Energy
Consumption

For the game-theoretic solution, extensive testing revealed an av-

erage inference time of 1250 seconds when analyzing 100,000 sam-

ples. It’s important to note that this classical approach was exe-

cuted on a powerful multi-core system consisting of 16 CPU cores

and 32 threads (Ryzen 7950X). However, as the number of attack-

ers, honeypots, and nodes increases, the inference time of the game-

theoretic solution experiences exponential growth. In contrast, our

proposedGNN-based solution exhibited remarkable efficiency, achiev-

ing an inference time of approximately 9 seconds when processing

the same volume of samples. This performance was measured on

a single Nvidia RTX 4090 and it represents a speedup of almost

139x. Importantly, the GNN-based solution demonstrated polyno-

mial scaling, meaning that its inference time will not increase ex-

ponentially with the growth of system complexity. This scalability

advantage becomes especially pronounced when dealing with a

larger number of attackers, honeypots, or network nodes.

To understand the environmental impact and energy efficiency

of both solutions, we adopted a measure of efficiency described as

"samples processed per second per watt". For the game-theoretic

solution running on a CPU with a peak power target (PPT) of

230W and thermal design power (TDP) of 170W, we assumed a

worst-case scenario where the CPU is consuming its full PPT of

230W. Under this assumption, the CPU processed 100,000 samples

in 1250 seconds, resulting in an efficiency rate of approximately

0.348 samples per second per watt. In contrast, our GNN-based

approach on the RTX 4090 GPU, with a power consumption of

450W, processed the same number of samples in just 9 seconds.

This gives an impressive efficiency of approximately 24.691 sam-

ples per second per watt. The stark difference in these rates under-

scores the power-efficient nature of our GNN-based approach, po-

sitioning it as a more environmentally friendly option, especially

in scenarios demanding high computational resources. Lastly, both

the multiprocessing version of the simulator and our proposed

GNN reported high levels of hardware utilization, meaning that

they efficiently use the available resources of the hardware. As we

further optimize the system, we expect to approach the theoretical

maximum power consumption of the hardware due to increased

utilization. This expected trend further justifies our decision to

use worst-case power consumption scenarios for our efficiency

estimations.

6 DISCUSSION

The GNN-based model proposed in this paper showcases the vi-

ability of leveraging advanced machine learning architectures to

tackle long-standing problems in cybersecurity. However, like all

solutions, the approach presented here comes with inherent chal-

lenges and potential avenues for improvement.

Scaling to LargerNetworkTopologies: Scaling to Larger Net-

work Topologies: A primary constraint of our GNN model arises

from its dependency on a specific reward matrix size, which is de-

fined by the simulator we utilize. This results in a model with an in-

put linear layer tailored to match the reward matrix’s dimensions.

Consequently, any alteration in the network topology inherently

changes the reward matrix size, necessitating a corresponding ad-

justment to the model’s input layer. While the core of our model re-

mains invariant to topological changes, its ability to adapt to varied

topologies without re-instantiating the input layer poses a limita-

tion. The model exhibits commendable adaptability when weights

fluctuate within a singular topology. However, its performance un-

der completely diverse topologies is yet to be explored. Further-

more, although adapting to a different reward matrix size is tech-

nically straightforward—by creating a new input linear layer—this

approach’s practicality in dynamic real-world scenarios remains

unproven. We leave further exploration on this critical point to

future work.

Multiple Attackers and Honeypots: Another layer of com-

plexity arises when considering scenarios with multiple attackers

and honeypots. The dynamic interactions among various attack-

ers, each potentially having different objectives and strategies, will

significantly complicate the game-theoretical framework. Incorpo-

rating this into a GNN structure would require a more intricate

modeling of node and edge features.

Generalization Across Diverse Networks: While the model

demonstrated promising results on the fixed graph topology, its

performance on different and more diverse network structures re-

mains to be tested. This is crucial, as real-world networks can sig-

nificantly vary in their configurations.

Future work should also investigate the integration of more ad-

vanced reinforcement learning techniques. These can potentially

eliminate the need for targets from fictitious play and allow the

model to learn optimal honeypot placements through direct inter-

actions with the environment.

7 CONCLUSION

This paper presented an innovative GNN-based approach to op-

timize honeypot placements within network topologies, achiev-

ing promising results when compared to traditional game-theory-

based methods.

The inclusion of edge features, derived from game-theoretic al-

gorithms, proved instrumental in amplifying the performance of

the GNN-based model. This not only underscores the potency of

Graph Neural Networks in processing graph-structured data but

also emphasizes the synergy achieved by marrying classical game-

theoretic insights with advanced machine learning techniques.

While the initial results are encouraging, this paper also paves

theway for future research. Exploringmore dynamic environments,

testing the robustness of the model across diverse network struc-

tures, and integrating advanced learning techniques are just a few

of the exciting avenues to be pursued.

This work serves as a stepping stone towards a future where

AI capabilities play an instrumental role in fortifying networks

against cyber threats, ensuring a safer digital ecosystem for all.
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