Check for
Updates

Optimizing Honeypot Placement Strategies with Graph Neural
Networks for Enhanced Resilience via Cyber Deception

Mohamed Osman
Virginia Commonwealth University
Richmond, VA, USA
osmanmw(@vcu.edu

Ahmed Hemida
DEVCOM Army Research Laboratory
Adelphi, MD, USA
ahmed.h.hemida.ctr@army.mil

ABSTRACT

In the ever-evolving realm of cybersecurity, strategic honeypot
placement is pivotal for enhanced network deception. This paper
introduces a novel approach, leveraging Graph Neural Networks
(GNNs), to optimize honeypot placements, outstripping traditional
game-theoretic methods. Traditional techniques often face com-
putational inefficiencies due to the "curse of dimensionality" in
complex dynamic environments. Our GNN model, through exten-
sive exploration of architectures including Graph Attention Trans-
formers (GAT) and Graph Transformer models, showcases supe-
rior performance. With the integration of game-theoretic edge fea-
tures, the model achieves a remarkable test accuracy of 92.34%.
Additionally, our GNN solution provides a 139x inference speedup
over classical methods, underpinning its efficiency and potential
to revolutionize cybersecurity strategies.

CCS CONCEPTS

« Security and privacy — Network security; Mobile and wire-
less security; « Computing methodologies — Machine learn-
ing.

KEYWORDS

Honeypot Placement, Network Deception, Graph Neural Networks,
Cyber Security, Graph Attention Transformers, Optimization Strate-
gies.

ACM Reference Format: Mohamed Osman, Tamer Nadeem, Ahmed
Hemida, & Charles Kamhoua. 2023. Optimizing Honeypot Place-
ment Strategies with Graph Neural Networks for Enhanced Re-
silience via Cyber Deception. In Proceedings of the 2nd Graph Neu-
ral Networking Workshop 2023 (GNNet ’23), Dec. 8, 2023, Paris,
France. ACM,NY,NY, USA, 7 pages. https://doi.org/10.1145/3630049
3630169

@ This work is licensed under a Creative Commons Attribu-
tion International 4.0 License.
BY

GNNet ’23, December 8, 2023, Paris, France

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0448-2/23/12.
https://doi.org/10.1145/3630049.3630169

37

Tamer Nadeem
Virginia Commonwealth University
Richmond, VA, USA
tnadeem@vcu.edu

Charles Kamhoua
DEVCOM Army Research Laboratory
Adelphi, MD, USA
charles.a.kamhoua.civ@army.mil

Node 2
Weight 2

A

[Node1
| Weight5 |

Entry Node

'/Node s \Target Nodes
| weight 200/

Weight 100

Figure 1: An example scenario with an attacker starting out
at the entry node (in blue). A honeypot (H) may be placed
along any of the edges to capture the attacker as it tries
to reach one of the target nodes (in red). We restrict our
scenario to only one honeypot, and attempt to optimize its
placement.

1 INTRODUCTION

Modern computer networks have become highly connected and
heterogeneous due to the integration of a diverse array of devices
and protocols, including Internet of Things (IoT), robots, sensors,
and other connected systems. This growing complexity and het-
erogeneity, although essential for providing sophisticated services
and adapting to rapidly changing demands, also pose significant
security challenges. Networks now encompass an increasing num-
ber of devices with different operating systems, making them more
susceptible to interference, cyber attacks, and complex manage-
ment issues such as patching vulnerabilities. These security con-
cerns become even more critical in military environments, where
the Internet of Battlefield Things (IoBT)[11, 14] necessitates the
protection of critical nodes and system components.

To counter cyber threats, network administrators, or defenders,
often employ cyber deception techniques during the reconnais-
sance stage of an attack.[24] During this stage, attackers gather
information about targeted systems and networks to develop their
attack strategies. Cyber deception techniques involve manipulat-
ing the network interfaces to disguise the true state of the network,
thereby disrupting the attacker’s decision-making process. Hon-
eypots, which are decoy systems designed to attract and engage
attackers, play a crucial role in enhancing network resilience by

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3630049.3630169
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3630049.3630169&domain=pdf&date_stamp=2023-12-05

GNNet ’23, December 8, 2023, Paris, France

intercepting attacker paths. However, traditional game-theoretic
approaches for honeypot placement exhibit limitations and inef-
ficiencies in dynamic environments with multiple attackers and
honeypots. Additionally, these methods often rely on computation-
ally intensive iterative algorithms, such as fictitious play, rendering
them slow and less practical for real-time applications.

To illustrate our approach, we consider a scenario depicted in
Fig. 1. In this specific setting, the network is exposed to a single at-
tacker, entering through a designated entry node. Our primary ob-
jective is to ascertain the most strategic edge within this network
on which to deploy a honeypot. By doing so, we aim to maximize
our chances of intercepting and neutralizing the attacker, thereby
safeguarding the network’s integrity.

To address these challenges, this study proposes a Graph Neu-
ral Network[25] (GNN)-based model for determining the optimal
placement of honeypots in a given network topology. Our approach
leverages the power of GNNs to process graph-structured network
data and generate honeypot placement strategies that maximize
the probability of intercepting attacker paths. We investigate the
application of various GNN architectures, including Graph Atten-
tion Transformers (GAT) variants[6, 29], Graph Convolutional Net-
works (GCN)[13], and Graph Transformer models[8], to identify
the most suitable architecture for the problem at hand.

Furthermore, we explore a variety of input features, such as
node values as the only node features, binary features for entry and
target nodes, and reward matrix data derived from classical game-
theoretic algorithms. We also implemented with different feature
embedding approaches. This exploration of input features aims to
assess their impact on model performance and identify the most
effective feature set for the GNN-based approach.

In addition, our research examines different optimization strate-
gies, such as learning rate curves (one cycle [27], cosine annealing
warm restarts [17], ReduceLROnPlateau'), optimizers [7, 12, 16,
31], model ema [10], as well as various model sizes, and model
architectures incorporating the aforementioned layers tested. This
investigation into optimization strategies and model configurations
seeks to determine the most effective combination for enhancing
the GNN-based model’s performance in identifying optimal hon-
eypot placements.

Our research ultimately aims to contribute to the broader goal of
utilizing Al capabilities to improve network security and resilience
against cyber threats. By developing a more efficient and adaptable
solution compared to classical game-theory-based methods for op-
timal honeypot placement, we strive to enhance network decep-
tion and minimize the number of successful attack trials, thereby
safeguarding networks and systems against cyber threats.

The rest of the paper is organized as follows. We discuss the
related work in Section 2. Then we discuss the game theory model
and the attack graph in detail in section 3. In Section 4, we provide
the system model and provide the problem statement and opti-
mization model. In Section 5, we provide simulation/experimental
results regarding the performance of proposed solution in various
scenarios. Finally, we conclude and discuss future work in Sec-
tions 6 and 7.

!as implemented in PyTorch

38

Mohamed Osman, Tamer Nadeem, Ahmed Hemida, & Charles Kamhoua

2 RELATED WORK

Over the last decade, there has been a remarkable growth in the
deployment of Deep Neural Networks (DNNs) across various fields.
These networks have shown significant promise in areas such as
image recognition [15], speech recognition [1], natural language
processing [21], self-driven network protocols [23], synthesizing
network traffic [20], among others. Notably, their potential in net-
work security and privacy, especially in tasks like anomaly detec-
tion and intrusion detection systems, has been well-established [3,
9,19, 32]. However, the vulnerability of these networks to adversar-
ial attacks, especially those targeting resources, remains a pressing
issue [4].

In the context of this paper, we broadly classify the most re-
lated work into two categories: (1) honeypot placement strategies
based on game theory, and (2) the application of graph-based neu-
ral networks for various tasks. In this section, we review the most
relevant literature in both areas and highlight the key differences
between our proposed approach and the existing methods.

2.1 Game Theory-based Honeypot Placement
Strategies

Game theory has been widely used to model and analyze the in-
teractions between attackers and defenders in cybersecurity, in-
cluding honeypot placement[2]. In a work by Anwar et al.[2], the
authors propose a scalable algorithm for allocating honeypots over
an attack graph. They model the problem as a two-person zero-
sum strategic game between a network defender and an attacker.
The game formulation captures the importance of different nodes
in the network, as well as the cost associated with various de-
fense strategies and the cost incurred by the attacker. Furthermore,
it considers a practical threat model concerning the available in-
formation about the attacker to the network defender. Nash equi-
librium defense strategies are analytically characterized, and the
complexity of a general game is discussed. The authors propose a
scalable algorithm to obtain honeypot allocation strategies in large-
scale networks, which we use as a basis for our work.

However, as mentioned earlier, traditional game-theoretic ap-
proaches for honeypot placement exhibit limitations and inefficien-
cies in dynamic environments with multiple attackers and hon-
eypots. Moreover, these methods often rely on computationally
intensive iterative algorithms, such as fictitious play, rendering
them slow and less practical for real-time applications.

2.2 Graph-based Neural Networks

Graph-based neural networks, including Graph Convolutional Net-
works (GCN)[13], Graph Attention Transformers (GAT) variants[6,
29], and Graph Transformer models[8], have shown great poten-
tial in processing graph-structured data and tackling various tasks,
such as node classification, link prediction, and graph classification.
The GNNs have been widely employed in numerous application
domains, including social networks, recommender systems, and
drug discovery[25].

In our work, we leverage the power of GNNs to process graph-
structured network data and generate honeypot placement strate-
gies that maximize the probability of intercepting attacker paths.
We investigate the application of various GNN architectures to

Optimizing Honeypot Placement with GNNs

identify the most suitable architecture for the problem at hand. Fur-
thermore, we explore different input features, optimization strate-
gies, and model configurations to optimize model performance in
determining optimal honeypot placements.

To the best of our knowledge, our work is the first to propose
a GNN-based model for optimizing honeypot placement strategies
in network deception and resilience against cyber attacks. By de-
veloping a more efficient and adaptable solution compared to clas-
sical game-theory-based methods, we strive to enhance network

deception and minimize the number of successful attack trials, thereby

safeguarding networks and systems against cyber threats.

In summary, our research combines the strengths of both game
theory-based honeypot placement strategies and graph-based neu-
ral networks to address the limitations and inefficiencies of tradi-
tional methods. By incorporating the reward matrices from game
theory approaches as edge features in our GNN-based model, we
aim to develop an innovative and effective solution for determining
the optimal placement of honeypots in network topologies.

3 ATTACK GRAPH & GAME THEORY MODEL

In this section, we define the attack graph and describe the formu-
lation of the game theory model.

3.1 Attack Graph

Attack Graphs (AGs) are widely used in cybersecurity to model
potential attacks by mapping out all possible scenarios [22]. These
graphs are typically constructed based on network topologies, vul-
nerabilities, etc [30]. Consequently, an AG can be interpreted dif-
ferently depending on the specific scenario at hand. In this context,
we examine an attack graph composed of N nodes, represented as
the graph G(V, E), where N = |V|. Each node denotes a vulnerabil-
ity linked to a host or machine within the network. The presence
of an edge e, , € E connecting nodes u and v implies the ability
to exploit a vulnerability at node v through one at node u. Nodes
within the graph are assigned values denoted as wy, reflecting their
significance to the network administrator. Nodes with higher val-
ues represent valuable assets within the network, containing criti-
cal information and databases essential to the tactical network. It is
reasonable to assume that these nodes, due to their elevated values,
are particularly attractive to potential adversaries and network at-
tackers. These attackers aim to maximize their expected rewards
by strategically choosing from the set of all accessible nodes to
compromise. In our model, we posit that the attacker possesses
knowledge of the values associated with each node. This assump-
tion holds as attackers often gain access to internal information
regarding the network structure and employ network scanning
tools for probing [18] during the attack reconnaissance stage.

We make the assumption that the defender lacks precise infor-
mation about the attacker’s location, reflecting a practical threat
model. Nonetheless, the defender is aware of the potential entry
points the attacker might exploit to penetrate the network. Net-
work records allow the defender to establish a distribution f;(-)
over these entry points, where Ve C V represents the entry point
set. In essence, the defender can ascertain the probability that an
attacker might breach the network through an entry point u € Ve
as fa(u), with the constraint 3},cy, fa(u) = 1. The objective of

39

GNNet ’23, December 8, 2023, Paris, France

the defender is to formulate a proactive strategy for the placement
of honeypots within a given network, utilizing the constructed
attack graph. To this end, we have transposed this problem into a
two-player game theoretical framework, the specifics of our game
model are described in the subsequent section.

3.2 Game Theory Model

Our game is defined as a triple (N, A, R), presenting the defender
and attacker as the set of players N' = {1, 2}, their respective
action spaces A = A; X Ay, and the zero-sum nature of their
rewards, R + Ry = 0. The defender’s prerogative is the judicious
allocation of honeypots within the network, a strategic maneu-
ver captured by the meticulously constructed attack graph. The
attacker, conversely, is advancing through the network, with each
move carrying the intrinsic risk of exposure and associated costs.
The defender’s strategy is to decide where to place the honeypots
or whether to abstain from placing them to avoid costs P.. The
honeypots are placed on the edges modeling fake services and
vulnerabilities to mislead the attacker. The attacker’s strategy in-
volves deciding which node to attack next while balancing the risk
of exposure and the associated attack cost, A. The attacker reward
matrix, Ry = —R;.
The reward function can easily be expressed as follows,

—P.+Ac+Cap+wy; a;=eqpay=0 YoeV
_) =Pc+Ac+Escxw,; ai=egp,az=uVu#toveV
Ri(as, a2) = -P.; a;=egp,a3=0 YoeV ®
0; a; =0,a, =0

where Cap and Esc represent the rewards for the defender and
attacker, respectively. Cap denotes the defender’s capture reward,
earned when the attacker exploits an edge where a honeypot is
placed. In contrast, Esc denotes the attacker’s escape reward, ac-
quired when the attacker successfully exploits an edge where no
honeypot is positioned, thus evading capture. Finally, taking zero
actions signifies that both the defender and attacker are opting to
back off, a decision that occurs when either player is confronted
with very high action costs. The reward matrix of the game encap-
sulates all possible attack and defense scenarios along with their
corresponding outcomes. It is possible to determine the Nash equi-
librium strategies of the game using standard game-solving method-
ologies, such as linear programming [2].

However, traditional game-solving techniques like linear pro-
gramming [2] often grapple with the curse of dimensionality. This
challenge arises due to the computational complexity that grows
exponentially with increasing network size, the number of honey-
pots, and the diversity of attack paths. To address these limitations,
we explore the potential of Graph Neural Networks (GNNs) as
illustrated in fig 2. Specifically:

1. End-to-End Learning Approach: This method purely uti-
lizes the graph topology to model and predict the optimal strate-
gies. The goal is to minimize the difference between the predicted
probabilities from the GNN and those obtained from the game-
solving technique. This is depicted on the right side of fig 2.

2. Hybrid Approach: Combining information from both the re-
ward matrix and the graph topology, this approach aims to harness
the strengths of both the end-to-end and game theory approaches,
as portrayed on the left side of fig 2.

GNNet ’23, December 8, 2023, Paris, France

In mathematical terms, given the predicted probabilities PgNN
from the GNN and the true probabilities Piye from the game-solving
technique, our objective is to minimize the cross entropy loss:

L == Pue(i) log Ponn (i)

4 METHODOLOGY

In this section, we present our methodology for developing a GNN-
based model to optimize honeypot placement strategies, aimed at
enhancing network deception and resilience against cyber attacks.
We discuss the experimental design, input feature engineering, model
architecture exploration, and optimization strategy evaluation.

4.1 Experimental Setup

Our experiments were conducted on a fixed graph topology with a
predetermined number of nodes. The experiments consisted of one
attacker, three target nodes, one honeypot, and one entry node.
To introduce variability, the rewards for non-target nodes were
randomized. We divided the dataset into training and testing sets
to assess the performance of the proposed GNN-based models. All
the presented experiments are conducted on a dataset containing
100,000 generated graph configurations with a node count set to
30.

4.2 Input Feature Engineering

4.2.1 Node Features. Node features in our framework capture es-
sential information pertaining to the nodes in the graph. Specifi-
cally, each node is characterized by the following attributes:

(1) Node Value (v): Represents the primary attribute of the
node. This can be a continuous scalar value.

(2) Entry Node Indicator (e): A binary indicator that desig-
nates whether the node is an entry node. It takes a value of
1 if the node is an entry node, and 0 otherwise.

(3) Target Node Indicator (¢): A binary vector where the i-th
element is set to 1 if the node is the i-th target node, and 0
otherwise.

Given these attributes, the node feature vector x; for the i-th
node can be represented as:

(%
X = |e)
t;

For nodes with continuous values, we further enrich the repre-
sentation using Fourier features[28]. Let f(v) denote the Fourier
transformation of a scalar v. The transformed node value feature
becomes f(v;). For binary attributes (entry and target indicators),
we leverage embedding tables, resulting in vectors embe (e;) and
emby (t;), respectively.

Therefore, the enhanced node feature vector X; becomes:

f(vi)
X; = |embe (e;) (3)
emby (t;)

40

Mohamed Osman, Tamer Nadeem, Ahmed Hemida, & Charles Kamhoua

In our exploratory experiments we’ve empirically found that at
larger data scales the use of embedding tables and fourier features
enhances accuracy. We reason that this is because increasing their
dimensionality allows our model to allocate more parameters to
these inputs.

4.2.2 Edge Features. Edges in our graph are enriched with reward
matrix data derived from game-theoretic algorithms. Let R;; repre-
sent the reward matrix data for an edge between nodes i and j. The
incorporation of these reward matrices as edge features augments
the GNN’s capability to understand and make strategic decisions
on honeypot placements, seamlessly blending game-theoretic in-
sights with graph-based learning.

4.2.3 Feature Processing and Integration. To prepare the data for
the GNN-based model, we process the node and edge features as
follows:

(1) Node Feature Processing: Each node feature X; is passed
through a node embedder. The node embedder consists of a
Fourier transformation for the node value, and embeddings
for binary features, combined linearly to produce the final
node representation.

(2) Edge Feature Processing: Edge features R;; are directly
transformed into a fixed-size vector using a linear layer, pro-
ducing the edge representation.

Once processed, these features are fed into the GNN. Within
the GNN, node representations are updated through various lay-
ers, while the edge features provide additional context for these
updates. We show a simplified overview of this method in Fig 2.

4.3 Optimizing and Accelerating the Simulator

We optimized the simulator from [2] by creating a parallelized,
just-in-time compiled version of their algorithm for calculating
rewards. We observed that in practice, fictitious play was approxi-
mately 200 times slower than this optimized algorithm. This obser-
vation motivated our approach to use the reward matrix as edge
features, transforming the problem into approximating only the fic-
titious play module instead of both the reward matrix and fictitious
play. By optimizing the reward matrix calculation, we were able
to significantly reduce the computational overhead. Fig 2 shows
a block diagram of a simulator and the two proposed GNN input
schemes.

4.4 Model Architecture Exploration

We investigated various GNN architectures to identify the most
suitable one for the problem at hand. We considered Graph At-
tention Transformers (GAT) variants [6, 29], Graph Convolutional
Networks (GCN) [13], and Graph Transformer models [8]. We ex-
perimented with different model sizes and model architectures that

incorporated the aforementioned layers to determine the best-performing

configuration for identifying optimal honeypot placements.

To further enhance the performance of the GNN-based model,
we examined various optimization strategies, such as learning rate
curves (one cycle [27], cosine annealing warm restarts [17], and Re-
duceLROnPlateau), optimizers [7, 12, 16, 31], and model ema [10].

Optimizing Honeypot Placement with GNNs

R
Graph
v 1
' : Graph Attention
: Reward Matrix Trra)nsfom‘er
; f ! (GATV2)
Graph Game-solving
Transformer ! Method
i Classical ;
' Game Model)

Output Probability

Figure 2: In the middle a block diagram of the simulator is
shown. On the left and right, different GNN input configu-
rations are shown.

Our goal was to determine the most effective combination of op-
timization strategies and model configurations to maximize the
GNN-based model’s ability to identify optimal honeypot placements.

The best configuration without edge features utilized GATv2 [6]
and included skip connections for every layer, layer normaliza-
tion [5], and the SwiGLU [26] activation function. Edge embed-
dings were generated by concatenating node embeddings, which
were then used for making predictions.

The best configuration using edge features was the edge feature
variant of the Graph Transformer [8]. The model implementation
followed the architecture presented in the paper. Mean edge fea-
tures were used to make predictions.

5 EXPERIMENTAL RESULTS

In this section, we present the experimental results and perfor-
mance evaluation of the proposed GNN-based models for optimal
honeypot placement in a network topology. We evaluate our mod-
els using two primary metrics: accuracy and cross-entropy loss.
Accuracy reflects the proportion of correctly predicted honeypot
placements, while cross-entropy loss measures the discrepancy be-
tween the predicted probability distribution and the target distribu-
tion. Lower cross-entropy loss and higher accuracy indicate better
performance.

We perform an 80-20 train-test split and perform no model se-
lection. We train for 100 epochs for all experiments. Further, to
show how our technique scales, we perform experiments with the
training set size set to 80k, 10k and 2k samples. Test set size is static
at 20k samples. All experiments are run on a machine with a 7950X
CPU and NVidia RTX 4090 GPU. A batch size of 1024 is used.

5.1 Model Performance Evaluation

We compared the performance of our best performing models with
and without edge features. Table 1 summarizes the test accuracy
and cross-entropy loss values for these models.

41

GNNet ’23, December 8, 2023, Paris, France

Test Accuracy & Loss vs Dataset Size

09 e ., /
-1.6
0.8
1.4
307
E 2
! 128
: p
< 7
g 1.0¢
ol
0.4 N
03
o 0.6
0.2 ‘
B 10k o

Dataset Size

Figure 3: Graph showing accuracy and loss at different data
scales.

As shown in Table 1 and Fig 3, our best performing model with
edge features, the Graph Transformer, achieved a test accuracy
of 92.34% and a cross-entropy loss of 0.5248. In contrast, the best
performing model without edge features, GATv2, had a lower test
accuracy of 48.47% and a higher cross-entropy loss of 1.737. These
results demonstrate the effectiveness of incorporating edge fea-
tures derived from game-theoretic algorithms into our GNN-based
model, leading to a substantial improvement in performance.

5.2 Impact of Input Features and Architectures

Our experiments revealed that extending the input features by adding
binary features for entry and target nodes, as well as incorporating
reward matrix data as edge features, significantly improved model
performance. Furthermore, embedding tables and fourier features
empirically led to modest improvements, especially at large data
scales.

In terms of model architectures, our exploration indicated that
GATv2 with skip connections, layer normalization, and the SwiGLU
activation function performed best without edge features. Mean-
while, the edge feature variant of the Graph Transformer achieved
the best performance when edge features were included.

5.3 Optimization Strategy Performance

Our evaluation of various optimization strategies revealed that the
optimal combination for maximizing the GNN-based model’s abil-
ity to identify honeypot placements consisted of the following: a
one cycle learning rate curve[27], the LAMB optimizer[31], and
model ema[10]. This combination proved to be the most effective
in enhancing the model’s performance.

Table 1: Performance Comparison of GNN-based Models

Test Test

Model Accuracy | Cross-entropy
GATv2 (no edge features) 48.47% 1.737
Graph Transformer (edge features) 80k 92.34% 0.5241
Graph Transformer (edge features) 10k 27.98% 1.6436
Graph Transformer (edge features) 2k 21.88% 1.7392

GNNet ’23, December 8, 2023, Paris, France

5.4 Inference Latency and Energy
Consumption

For the game-theoretic solution, extensive testing revealed an av-
erage inference time of 1250 seconds when analyzing 100,000 sam-
ples. It’s important to note that this classical approach was exe-
cuted on a powerful multi-core system consisting of 16 CPU cores
and 32 threads (Ryzen 7950X). However, as the number of attack-
ers, honeypots, and nodes increases, the inference time of the game-
theoretic solution experiences exponential growth. In contrast, our

proposed GNN-based solution exhibited remarkable efficiency, achiev-

ing an inference time of approximately 9 seconds when processing
the same volume of samples. This performance was measured on
a single Nvidia RTX 4090 and it represents a speedup of almost
139x. Importantly, the GNN-based solution demonstrated polyno-
mial scaling, meaning that its inference time will not increase ex-
ponentially with the growth of system complexity. This scalability
advantage becomes especially pronounced when dealing with a
larger number of attackers, honeypots, or network nodes.

To understand the environmental impact and energy efficiency
of both solutions, we adopted a measure of efficiency described as
"samples processed per second per watt". For the game-theoretic
solution running on a CPU with a peak power target (PPT) of
230W and thermal design power (TDP) of 170W, we assumed a
worst-case scenario where the CPU is consuming its full PPT of
230W. Under this assumption, the CPU processed 100,000 samples
in 1250 seconds, resulting in an efficiency rate of approximately
0.348 samples per second per watt. In contrast, our GNN-based
approach on the RTX 4090 GPU, with a power consumption of
450W, processed the same number of samples in just 9 seconds.
This gives an impressive efficiency of approximately 24.691 sam-
ples per second per watt. The stark difference in these rates under-
scores the power-efficient nature of our GNN-based approach, po-
sitioning it as a more environmentally friendly option, especially
in scenarios demanding high computational resources. Lastly, both
the multiprocessing version of the simulator and our proposed
GNN reported high levels of hardware utilization, meaning that
they efficiently use the available resources of the hardware. As we
further optimize the system, we expect to approach the theoretical
maximum power consumption of the hardware due to increased
utilization. This expected trend further justifies our decision to
use worst-case power consumption scenarios for our efficiency
estimations.

6 DISCUSSION

The GNN-based model proposed in this paper showcases the vi-
ability of leveraging advanced machine learning architectures to
tackle long-standing problems in cybersecurity. However, like all
solutions, the approach presented here comes with inherent chal-
lenges and potential avenues for improvement.

Scaling to Larger Network Topologies: Scaling to Larger Net-
work Topologies: A primary constraint of our GNN model arises
from its dependency on a specific reward matrix size, which is de-
fined by the simulator we utilize. This results in a model with an in-
put linear layer tailored to match the reward matrix’s dimensions.
Consequently, any alteration in the network topology inherently

42

Mohamed Osman, Tamer Nadeem, Ahmed Hemida, & Charles Kamhoua

changes the reward matrix size, necessitating a corresponding ad-
justment to the model’s input layer. While the core of our model re-
mains invariant to topological changes, its ability to adapt to varied
topologies without re-instantiating the input layer poses a limita-
tion. The model exhibits commendable adaptability when weights
fluctuate within a singular topology. However, its performance un-
der completely diverse topologies is yet to be explored. Further-
more, although adapting to a different reward matrix size is tech-
nically straightforward—by creating a new input linear layer—this
approach’s practicality in dynamic real-world scenarios remains
unproven. We leave further exploration on this critical point to
future work.

Multiple Attackers and Honeypots: Another layer of com-
plexity arises when considering scenarios with multiple attackers
and honeypots. The dynamic interactions among various attack-
ers, each potentially having different objectives and strategies, will
significantly complicate the game-theoretical framework. Incorpo-
rating this into a GNN structure would require a more intricate
modeling of node and edge features.

Generalization Across Diverse Networks: While the model
demonstrated promising results on the fixed graph topology, its
performance on different and more diverse network structures re-
mains to be tested. This is crucial, as real-world networks can sig-
nificantly vary in their configurations.

Future work should also investigate the integration of more ad-
vanced reinforcement learning techniques. These can potentially
eliminate the need for targets from fictitious play and allow the
model to learn optimal honeypot placements through direct inter-
actions with the environment.

7 CONCLUSION

This paper presented an innovative GNN-based approach to op-
timize honeypot placements within network topologies, achiev-
ing promising results when compared to traditional game-theory-
based methods.

The inclusion of edge features, derived from game-theoretic al-
gorithms, proved instrumental in amplifying the performance of
the GNN-based model. This not only underscores the potency of
Graph Neural Networks in processing graph-structured data but
also emphasizes the synergy achieved by marrying classical game-
theoretic insights with advanced machine learning techniques.

While the initial results are encouraging, this paper also paves
the way for future research. Exploring more dynamic environments
testing the robustness of the model across diverse network struc-
tures, and integrating advanced learning techniques are just a few
of the exciting avenues to be pursued.

This work serves as a stepping stone towards a future where
Al capabilities play an instrumental role in fortifying networks
against cyber threats, ensuring a safer digital ecosystem for all.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. National Science Foun-
dation under Grant OAC-2212424; and in part by the Common-
wealth Cyber Initiative, an investment in the advancement of cy-
ber research and development, innovation, and workforce develop-
ment.

>

Optimizing Honeypot Placement with GNNs

REFERENCES

(1]
(2]

[10]

Mahbubul Alam, Manar D. Samad, and et. al. 2019. Survey on Deep Neural
Networks in Speech and Vision Systems. arXiv:1908.07656 [cs.CV]

Ahmed H Anwar, Charles Kamhoua, and Nandi Leslie. 2020. Honeypot al-
location over attack graphs in cyber deception games. In 2020 International
Conference on Computing, Networking and Communications (ICNC). IEEE, 502
506.

Mohammed Ayyat, Tamer Nadeem, and Bartosz Krawczyk. 2023. Class-Aware
Neural Networks for Efficient Intrusion Detection on Edge Devices. In 2023 20th
Annual IEEE International Conference on Sensing, Communication, and Network-
ing (SECON). 204-212. https://doi.org/10.1109/SECON58729.2023.10287462
Mohammed Ayyat, Santosh Kumar Nukavarapu, and Tamer Nadeem. 2022.
Dynamic Deep Neural Network Adversarial Attacks for Edge-based IoT Devices.
In GLOBECOM 2022 - 2022 IEEE Global Communications Conference. 61-67.
https://doi.org/10.1109/GLOBECOM48099.2022.10001235

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-
tion. arXiv preprint arXiv:1607.06450 (2016).

Shaked Brody, Uri Alon, and Eran Yahav. 2022. How Attentive are Graph
Attention Networks?. In International Conference on Learning Representations.
Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu,
Hieu Pham, Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, et al. 2023. Symbolic
discovery of optimization algorithms. arXiv preprint arXiv:2302.06675 (2023).
Vijay Prakash Dwivedi and Xavier Bresson. 2020. A generalization of trans-
former networks to graphs. arXiv preprint arXiv:2012.09699 (2020).

Mahmoud Said ElSayed, Nhien-An Le-Khac, Marwan Ali Albahar, and Anca Ju-
rcut. 2021. A novel hybrid model for intrusion detection systems in SDNs based
on CNN and a new regularization technique. journal of Network and Computer
Applications 191 (2021), 103160. https://doi.org/10.1016/j.jnca.2021.103160
Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and An-
drew Gordon Wilson. 2018. Averaging weights leads to wider optima and better
generalization. arXiv preprint arXiv:1803.05407 (2018).

Charles A Kamhoua. 2018. Game theoretic modeling of cyber deception in
the internet of battlefield things. In 2018 56th Annual Allerton Conference on
Communication, Control, and Computing (Allerton). IEEE, 862-862.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980 (2014).

Thomas N Kipf and Max Welling. [n.d.]. Semi-Supervised Classification
with Graph Convolutional Networks. In International Conference on Learning
Representations.

Alexander Kott, Ananthram Swami, and Bruce] West. 2016. The internet of
battle things. Computer 49, 12 (2016), 70-75.

Zewen Li, Wenjie Yang, Shouheng Peng, and Fan Liu. 2020. A Survey
of Convolutional Neural Networks: Analysis, Applications, and Prospects.
arXiv:2004.02806 [cs.CV]

Ilya Loshchilov and Frank Hutter. [n. d.]. Decoupled Weight Decay Regulariza-
tion. In International Conference on Learning Representations.

Ilya Loshchilov and Frank Hutter. [n.d.]. SGDR: Stochastic Gradient Descent
with Warm Restarts. In International Conference on Learning Representations.

G. Lyon. 2008. Nmap Network Scanning: Official Nmap Project Guide
to Network Discovery and Security Scanning. Insecure.Com, LLC.

43

=
)

[20

[21

~
5,

[23

[24]

[25

[28

[29

[31

[32

GNNet ’23, December 8, 2023, Paris, France

https://books.google.com/books?id=a_ PKPQAACAA]
Santosh Nukavarapu and Tamer Nadeem. 2022. iKnight-Guarding IoT Infras-
tructure Using Generative Adversarial Networks. IEEE Access 10 (2022), 132656~
132674. https://doi.org/10.1109/ACCESS.2022.3224583

Santosh Kumar Nukavarapu, Mohammed Ayyat, and Tamer Nadeem. 2022.
MirageNet - Towards a GAN-based Framework for Synthetic Network Traffic
Generation. In GLOBECOM 2022 - 2022 IEEE Global Communications Conference.
3089-3095. https://doi.org/10.1109/GLOBECOM48099.2022.10001494

Daniel W. Otter, Julian R. Medina, and Jugal K. Kalita. 2019. A Sur-
vey of the Usages of Deep Learning in Natural Language Processing.
arXiv:1807.10854 [cs.CL]

Xinming Ou, Wayne F Boyer, and Miles A McQueen. 2006. A scalable approach
to attack graph generation. In Proceedings of the 13th ACM conference on
Computer and communications security. 336—345.

Hannaneh Barahouei Pasandi and Tamer Nadeem. 2021. Towards a Learning-
Based Framework for Self-Driving Design of Networking Protocols. IEEE Access
9 (2021), 34829-34844. https://doi.org/10.1109/ACCESS.2021.3061729

Neil C Rowe and Han C Goh. 2007. Thwarting cyber-attack reconnaissance
with inconsistency and deception. In 2007 IEEE SMC Information Assurance and
Security Workshop. IEEE, 151-158.

Franco Scarselli Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner,
and Gabriele Monfardini. 2009. The Graph Neural Network
Model. IEEE Transactions on Neural Networks 20, 1 (2009), 61-80.
https://doi.org/10.1109/TNN.2008.2005605

Noam Shazeer. 2020. Glu variants improve transformer.

arXiv:2002.05202 (2020).
Leslie N Smith and Nicholay Topin. 2019. Super-convergence: Very fast training

of neural networks using large learning rates. In Artificial intelligence and
machine learning for multi-domain operations applications, Vol. 11006. SPIE, 369-
386.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin
Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng.
2020. Fourier features let networks learn high frequency functions in low
dimensional domains. Advances in Neural Information Processing Systems 33
(2020), 7537-7547.

Petar Veli¢kovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph Attention Networks. In International
Conference on Learning Representations.

Shengwei Yi, Yong Peng, Qi Xiong, Ting Wang, Zhonghua Dai, Haihui Gao,
Junfeng Xu, Jiteng Wang, and Lijuan Xu. 2013. Overview on attack graph
generation and visualization technology. In 2013 International Conference on
Anti-Counterfeiting, Security and Identification (ASID). IEEE, 1-6.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bho-
janapalli, Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. [n. d.].
Large Batch Optimization for Deep Learning: Training BERT in 76 minutes. In
International Conference on Learning Representations.

Xiaoxuan Zhang, Jing Ran, and Jize Mi. 2019. An Intrusion Detection System
Based on Convolutional Neural Network for Imbalanced Network Traffic. In
2019 IEEE 7th International Conference on Computer Science and Network Tech-
nology (ICCSNT). 456-460. https://doi.org/10.1109/ICCSNT47585.2019.8962490

arXiv preprint

https://arxiv.org/abs/1908.07656
https://doi.org/10.1109/SECON58729.2023.10287462
https://doi.org/10.1109/GLOBECOM48099.2022.10001235
https://doi.org/10.1016/j.jnca.2021.103160
https://arxiv.org/abs/2004.02806
https://books.google.com/books?id=a_PkPQAACAAJ
https://doi.org/10.1109/ACCESS.2022.3224583
https://doi.org/10.1109/GLOBECOM48099.2022.10001494
https://arxiv.org/abs/1807.10854
https://doi.org/10.1109/ACCESS.2021.3061729
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/ICCSNT47585.2019.8962490

	Abstract
	1 Introduction
	2 Related Work
	2.1 Game Theory-based Honeypot Placement Strategies
	2.2 Graph-based Neural Networks

	3 Attack Graph & Game Theory Model
	3.1 Attack Graph
	3.2 Game Theory Model

	4 Methodology
	4.1 Experimental Setup
	4.2 Input Feature Engineering
	4.3 Optimizing and Accelerating the Simulator
	4.4 Model Architecture Exploration

	5 Experimental Results
	5.1 Model Performance Evaluation
	5.2 Impact of Input Features and Architectures
	5.3 Optimization Strategy Performance
	5.4 Inference Latency and Energy Consumption

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

