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How mosquitoes may respond to rapid climate warming remains unknown
for most species, but will have major consequences for their future distri-
butions, with cascading impacts on human well-being, biodiversity and
ecosystem function. We investigated the adaptive potential of a wide-ranging
mosquito species, Aedes sierrensis, across a large climatic gradient by conduct-
ing a common garden experiment measuring the thermal limits of mosquito
life-history traits. Although field-collected populations originated from vastly
different thermal environments that spanned over 1200 km, we found limited
variation in upper thermal tolerance between populations. In particular, the
upper thermal limits of all life-history traits varied by less than 3°C across
the species range and, for most traits, did not differ significantly between
populations. For one life-history trait—pupal development rate—we did
detect significant variation in upper thermal limits between populations,
and this variation was strongly correlated with source temperatures, provid-
ing evidence of local thermal adaptation for pupal development. However,
we found that maximum environmental temperatures across most of the
species’ range already regularly exceed the highest upper thermal limits
estimated under constant temperatures.

This result suggests that strategies for coping with and/or avoiding ther-
mal extremes are likely key components of current and future mosquito
thermal tolerance.

1. Introduction

How mosquitoes respond in the face of rapid anthropogenic climate warming is
a key open question of ecological and public health concern. As temperature
impacts nearly all aspects of mosquito life cycles, climate warming may cause
large shifts in their distributions and dynamics [1,2]. In particular, current pre-
dictions suggest that mosquito distributions may shift higher in latitude and
elevation, expanding into temperate regions as they become newly suitable,
and contracting in some tropical regions as they become too warm [3-6]. How-
ever, these predictions have not typically incorporated the potential for
mosquito adaptive responses, and thus may overestimate declines at current
warm edges.

Temperature sets fundamental limits on mosquito distributions as mosquito
survival and reproduction are inhibited beyond critical thermal limits. As temp-
eratures exceed those limits under warming, mosquito populations could
persist through a variety of mechanisms including range shifts to track suitable
temperatures, shifts in daily and/or seasonal activity patterns to avoid high
temperatures, behavioural thermoregulation (i.e. actively seeking out cooler
microhabitats), and increased heat tolerance through evolutionary adaptation
[7]. Of these responses, evolutionary adaptation may be particularly important
for enabling long-term persistence, but the potential for mosquito thermal
adaptation remains poorly understood, owing to several empirical knowledge
gaps [8-10].

A key component of whether a given mosquito species can evolutionarily
adapt to warming is the presence of standing variation in upper thermal

© 2024 The Author(s) Published by the Royal Society. All rights reserved.



Downloaded from https://royalsocietypublishing.org/ on 11 September 2024

field collection
(10 populations)

‘I\;‘a

lab rearing
(1 generation)

21.5°C

life-history tracking

larval pupal
survival and  survival and adult
development development lifespan

~ 9\4. ‘?@ _,M 32°C
=519, n o, =40-71

Motal

% — ﬁ?{ . mt 28°C

Mgy = 363, 1 = 25-40

— ﬁ —* m 24°C

Mgar = 337, 1y, = 19-38

xg“ ’@% — 17°C

Ry = 172, Moon = 9-20

\— ® - A 13°C

Ry = 158, Roop = 8-19

% all in diapause

~ s°C
e Higgar = 187, 1y = 11-21

Figure 1. Sample collection locations and experimental design used to measure mosquito thermal performance. Ten populations were collected as larvae from tree
holes across the Western USA, reared in the laboratory under common conditions for one generation, then randomly designated into one of six temperature treat-
ments. The total number of larvae assigned to each treatment is noted above () s is the range of larvae from each population (m,p); electronic supplementary
material, table S2 indicates the full breakdown of larvae per population and treatment. Individuals were checked daily for life stage transitions (e.g. larvae to pupae,
pupae to adult) or death. Map colours denote the average maximum annual temperature (°C) from 1991 to 2020 from PRISM data. Electronic supplementary
material, figure ST shows the average minimum and mean temperature across this same extent. Population metadata, including full site names, latitude, longitude

and elevation are provided in electronic supplementary material, table S1.

tolerance within a species [10]. Decades of research on
mosquito thermal biology have demonstrated variation in
thermal performance between species (e.g. [1,11,12]). Further,
several studies have identified within-species variation in
response to other aspects of climate, such as cold tolerance
in Aedes albopictus [13,14] and aridity tolerance in Anopheles
gambiae [15,16]. Only a few studies have investigated within-
species variation in upper thermal tolerance in mosquitoes,
and have generally found some evidence of standing variation
(i.e. differing rates of survival, reproduction or development
among populations at high temperatures), but little evidence
of local thermal adaptation (i.e. higher heat tolerance observed
in populations from warmer environments than those from
cooler environments) [17-21].

However, these studies typically investigated relatively
few mosquito populations from a limited portion of the
species range, owing to logistical challenges of collecting,
rearing and experimenting on many wide-ranging popu-
lations. Furthermore, mosquito thermal tolerance was
typically measured on select life-history traits or metabolic
rates, potentially obscuring patterns of thermal adaptation
evident across the full life cycle [9,22,23]. Thus, the extent
of variation in upper thermal tolerance among populations
within a species and the evidence for thermal adaptation is
still unknown.

We set out to rigorously investigate the evidence for
mosquito thermal adaptation by using Aedes sierrensis, the
western tree hole mosquito, as a novel model system. Ae. sier-
rensis makes an ideal model species for this investigation
because it is commonly occurring across its distribution (ran-
ging from Southern California to British Columbia and
coastal to montane environments [24,25]), which covers a
large range of thermal environments, presenting varying
selection pressures and opportunities for local thermal adap-
tation. This species has a seasonal life cycle driven by
temperature, precipitation and day length cues, and which
occurs in discrete, easy-to-sample habitat (water-filled tree

holes) [25], facilitating field collection of individuals at the
same life stage across the species range. Further, although
Ae. sierrensis is not a known vector of human pathogens, it
is congeneric to major human disease vectors (i.e. Ae. aegypti,
Ae. albopictus) and is itself a vector of dog heartworm, making
results potentially informative for understanding warming
responses in these vector species. Leveraging this model
system, we set out to answer the following specific research
questions: (i) how much does thermal tolerance vary between
populations across the species range? (ii) Is variation in thermal
tolerance, if observed, correlated with the source thermal
environment? (i.e. is there evidence of local thermal adaptation?)
(iii) At present, how often do environmental temperatures
exceed mosquito populations’ laboratory-estimated upper
thermal limits?

To answer these questions, we conducted a common
garden experiment using 10 Ae. sierrensis populations span-
ning nearly the entire species range (1200 km; figure 1). The
thermal environments of collected populations varied
widely, with annual mean temperatures varying by greater
than 7°C, and average daily maxima in the spring and
summer varying by greater than 5°C. We reared these field-
collected populations in the laboratory for one generation at
common temperatures, then separated F; individuals into
one of six temperature treatments ranging from 5 to 32°C.
We tracked individuals daily to measure individual life-
history traits including larval and pupal survival and devel-
opment rates, and adult lifespan. We then fit thermal
performance curves to these experimental data to estimate
upper and lower thermal limits and thermal optima for
each population and trait. In our investigation of variation
in mosquito thermal tolerance, we compared variation in
these estimated upper thermal limits for each trait and popu-
lation. We note that prior studies of mosquito thermal
tolerance have used a variety of methods to measure thermal
tolerance including static and dynamic heat tolerance assays
(e.g. ‘thermal knockdowns’) [12,26], reciprocal transplants
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[13] and comparisons of niche-based distribution models
[27]. These methods may each capture a slightly different
component of thermal tolerance (e.g. capacity for heat
shock responses, combined genetic and plastic responses),
thus our metric of thermal tolerance may not be comparable
across all approaches. We focused on upper thermal limits
from trait thermal performance curves as they capture high
temperature constraints across the lifespan.

Despite originating from a wide range of thermal environ-
ments, populations differed little in their thermal limits for
most life-history traits. For pupal development rate, we did
find significant variation in upper thermal limits between
populations, with five times greater variation in upper ther-
mal limits than previously found in ectotherm species
across this same range. Further, this variation corresponded
with populations’ source thermal environments, providing
evidence of local thermal adaptation. Whether this evidence
indicates the capacity for adaptation to climate warming
will depend, in part, on current and future temperatures.
We found that maximum environmental temperatures
across most of the species range frequently exceed the highest
upper thermal limits we estimated for any trait or population.
While not directly comparable, this suggests that Ae. sierrensis
populations already experience short-term temperatures
beyond what they can tolerate during longer, constant
exposures. Strategies for coping with and avoiding these
thermal extremes such as night-time repair, diapause and
behavioural thermoregulation are thus likely important
aspects of mosquito thermal tolerance and life histories.

2. Methods

(a) Field collection

Ae. sierrensis typically completes one life cycle per year, with
adults laying eggs in naturally occurring tree holes. Eggs hatch
when the tree holes fill with water beginning in the late
autumn and advance through four larval instars and one pupal
life stage throughout the winter before eclosing as adults in the
spring and summer [24]. Most North American Ae. sierrensis
populations (e.g. those from 26 to 46°N), including all of our col-
lected populations, undergo diapause between the fourth larval
instar and pupal life stage, and all populations undergo embryo-
nic diapause [28]. We collected larval Ae. sierrensis from 346 tree
holes spanning over 1200 km across the Western USA between
October 2021 and April 2022 (figure 1; electronic supplementary
material, table S1 for collection metadata). We collected Ae. sier-
rensis and tree hole water in plastic cups and maintained these at
cold temperatures (less than 10°C) during transportation to the
laboratory, then at 4°C until processing. We visually inspected
individuals from each sampled tree hole for the presence of
Lambornella clarki—a ciliate parasite that can infect larval Ae. sier-
rensis. Only larvae from tree holes without the parasite were used
in this experiment. Further, to maintain sufficient genetic vari-
ation and avoid excessive inbreeding, we reared only larvae
from tree holes with at least 30 collected individuals.

(b) Laboratory rearing

After processing, we maintained select populations (i.e. those
from tree holes with >30 individuals and no L. clarki) under
shared laboratory conditions of 21.5°C, and a 13 h:11 h light:
dark cycle. We periodically fed larvae a finely ground mix of Tet-
ramin fish flakes (48% by weight), guinea pig chow (48%) and
liver powder (2%). Once reaching the adult stage, we housed

populations in 8 x 8 x8 cm aluminium collapsible cages (Bio-
Quip, Rancho Dominguez, CA, USA) with continuous access to
a 10% sugar solution. We offered each population a blood meal
of defibrinated sheep’s blood approximately once per week and
placed an oviposition cup, consisting of a paper cup lined with
water-soaked coffee filter paper, inside each cage within 4 days
of the first blood-feeding. We collected eggs and held these at
room temperature for 2 weeks, then in the refrigerator at 4°C
and near 24 h darkness to mimic winter conditions and promote
hatching (potentially because these cold, dark conditions cause
eggs to enter and exit diapause, as would occur in the field; B
Barner 2021, personal communication, Solano County vector
control), which occurred 1 to 3 months later.

To ensure sufficient sample sizes for each treatment of the
experiment, we only used populations that produced greater
than 300 eggs in total. This resulted in 10 populations for use in
the experiment (figure 1), wherein ‘population” refers to a group
of individuals originating from the same tree hole. These collec-
tions are highly likely to represent distinct populations, as the
minimum distance between any pair of populations used in the
experiment was 3.4 km, and Ae. sierrensis adults are weak fliers
and typically do not disperse far from their larval tree hole [29].
We note that a more precise definition of a population would
incorporate specific dispersal capabilities and/or genetic
structuring, but this has not yet been investigated for Ae. sierrensis.

To hatch eggs, we prepared a separate tray for each popu-
lation, which consisted of 500 ml Arrowhead distilled water,
300 ml autoclaved tree hole water (combined from all sampled
tree holes) and three-quarters teaspoon of Brewers’ yeast. We
submerged egg papers from each population in trays between
4 and 6 July 2022, 24 h after the respective hatching tray was
prepared.

We note that by using F; individuals in our experiment, we
have not eliminated maternal/cross-generational effects, which
may impact thermal tolerance [30]. That is, while we sought to
minimize direct environmental effects on thermal tolerance (i.e.
‘phenotypic plasticity’) and capture genetically based differ-
ences, environmental effects from prior generations could still
impact F; thermal tolerance.

() Experimental design

The experiment consisted of tracking life histories for individual
Ae. sierrensis from 1 of 10 populations, held at one of six tempera-
ture treatments (figure 1; see electronic supplementary material,
table S2 for sample sizes). The temperature treatments—5, 13, 17,
24, 28 and 32°C—were chosen based on the range of tempera-
tures realistically experienced by Ae. sierrensis in the field and
based on survival rates assessed during pilot experiments con-
ducted in the laboratory (figure 1; electronic supplementary
material, figure S1). These constant temperatures were main-
tained using Fisher Scientific Isotemp incubators (for the 13°C,
24°C, 28°C and 32°C treatments) and climate-controlled rooms
(for the 5°C and 17°C treatments). Although fluctuating tempera-
tures could have more closely mimicked natural conditions, we
chose to use constant temperatures here as it provides a baseline
for characterizing thermal responses and because measuring all
possible combinations of temperature mean and variability
would have been intractable.

The experiment began with larvae emerging 48 h after egg
paper submersion (i.e. approximately 1-day old larvae). For each
individual, we measured the following traits: larval survival,
larval development rate, pupal survival, pupal development rate
and adult lifespan. We intentionally included more larvae from
each population in the higher temperature treatments as we
expected greater mortality at these temperatures based on pilot
experiments. We visually inspected each individual on a daily
basis, recording life stage transitions and deaths, and moving
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individuals into the appropriate housing for the given life stage. We
maintained larvae in plastic containers in groups of five with
approximately 100 ml of water and 4 mg of larval food, in accord-
ance with Aedes rearing protocols that promote high larval
survivorship in the absence of other factors [31,32]. We maintained
pupae individually in glass vials with approximately 5 ml deio-
nized water. Upon eclosion, we transferred adults to individual
4 oz plastic specimen cups with one 10% sugar-soaked cotton
ball and observed each individual until death. Any larva that was
alive but had not pupated by 28 September 2022 (i.e. 82-84 days
after larval emergence) was counted as survived for the larval
survival trait and considered to be in diapause.

We characterized the source thermal environment of each popu-
lation using climate data from PRISM, which we accessed and
analysed using Google Earth Engine [33]. PRISM provides
gridded climate data at a 4 km resolution by downscaling data
from a network of monitoring stations [34]. We used either
daily or monthly temperature data from 2000 to 2020 to calculate
key variables capturing temperature means, variations and
extremes. We specifically sought to include only biologically
meaningful temperature variables, such as those previously
associated with thermal tolerance in ectotherms [35], rather
than many possible characterizations of climate (e.g. all 19
WorldClim bioclimatic variables). These variables included
annual mean temperature, mean temperature in January—-March
(the period when eggs typically exit diapause and hatch as
larvae), seasonal variation in temperature (defined as the differ-
ence between the mean warmest month temperature and the
mean coolest month temperature), average warm-season maxi-
mum (defined as the mean daily maxima in the spring and
summer) and the number of days where maximum temperatures
exceeded 35°C (the highest upper thermal limit for any trait esti-
mated from our experimental data) excluding periods of
potential dormancy (e.g. August-October).

Variables were calculated at a 1km buffer around the
sampled tree hole for each population, approximating the geo-
graphical range of an individual mosquito. We investigated
Pearson’s correlations between these temperature variables and
select thermal performance parameters and traits (i.e. those
with significant between-population variation).

While the above estimates of source environmental tempera-
ture likely capture the thermal conditions for populations at a
broad spatial scale, they may not reflect the exact temperatures
within a given tree hole. We sought to directly measure tree
hole temperatures for each population by placing iButton temp-
erature loggers (DS1921G, manufactured by Maxim Integrated,
San Jose, CA, USA) in each sampled tree hole at the time of
location; however, only two iButtons were recovered the follow-
ing year. For these two tree holes, we compare the direct
temperature measurements made using the Buttons to the
estimates from the PRISM data described above.

To qualitatively understand how populations’ estimated upper
thermal limits compared with source environmental conditions, we
also calculated the number of days exceeding 31.6°C during the
adult activity period (e.g. March-July), as this was the estimated
upper thermal limit for adult lifespan (the lowest limit for any
trait). However, we did not investigate correlations between this
environmental variable and thermal performance characteristics
to minimize multiple testing. The Ae. sierrensis dormancy and
adult activity windows described above were informed by prior
research in this system [36,37], as well as extensive Ae. sierrensis sur-
veillance data available from VectorSurv (https://gateway.
vectorsurv.org). Specifically, we examined variation in trapped
adult abundance across the year using surveillance data from
2000 to 2020 for the trap closest to each of our collection sites
(electronic supplementary material, figure S52).

To estimate the thermal limits and performance characteristics of
each trait and population, we fit thermal response curves to the
experimental data using a Bayesian approach following methods
described in detail in Shocket et al. [38]. We first visually
inspected the temperature-performance data to determine the
most appropriate functional form of the thermal response for
each trait. Consistent with prior work, we used quadratic fits
truncated to a maximum of 1 for larval and pupal survival,
quadratic fits for adult lifespan, and Briere fits for larval and
pupal development rate [38,39] (electronic supplementary
material, table S3).

We fit a first set of Bayesian models for each combination of
trait and population across temperatures using uniform priors
for the thermal limit parameters bounded by biologically plaus-
ible temperature cut-offs as in prior studies [11,38-41] (i.e. trait
performance was set to zero below 0°C and above 40-45°C
depending on the trait; electronic supplementary material, table
S3). For larval and pupal development rate, and adult lifespan,
we modelled the observed data as normally distributed with
the mean predicted by the thermal response function at that
temperature and the standard deviation, o, as a gamma distribu-
ted parameter, 1/0°, with shape parameter a=0 and rate
parameter = 1000. For larval and pupal survival probabilities,
we modelled the observed data as binomially distributed with
the probability and number of trials based on the proportional
survival and sample size for that temperature-population combi-
nation. We truncated thermal response functions at zero for all
traits, as well as at one for survival probability traits. We fit
models using Markov Chain Monte Carlo (MCMC) sampling,
which uses simulation to approximate the posterior distribution,
using the ‘R2jags’ package [42]. For each thermal response, we
ran three independent chains with a 5000-iteration burn-in, and
thinned the chains by saving every eighth iteration. This fitting
process produced 7500 values in the posterior distribution for
each parameter of the thermal response function (i.e. Trin, Trmax
and ¢q) and enabled us to calculate additional derived quantities
for each trait and population including the maximum trait
performance value (Pp,,y), the temperature at maximum per-
formance (T,py) and the temperature range where performance
is at least 50% of the maximum (Tyyeatn; S€€ electronic supplemen-
tary material, figure S3 for theoretical thermal performance
curve). We refer to the above fitting process as our ‘low
information” model specification.

To reduce the uncertainty in our parameter estimates, we then
fit a second set of models—the main models presented in the
text—using informative priors generated using a two-step process.
In the first step, we specified low information priors as described
above for each population and trait but using only the tempera-
ture-performance data from the other nine populations (i.e. a
‘leave-one-out” approach [38]). We fit a Gamma probability distri-
bution to the posterior distributions of each thermal response
parameter using the ‘MASS’ package [43]. We then used these
hyperparameters as informative priors in a second round of
model fitting. To ensure the hyperparameters did not have an
outsized influence on the resulting posterior distributions, we
increased the variance of the priors through multiplication by a
constant k, set at 0.1 or 0.01, depending on the trait (electronic sup-
plementary material, table S3). The parameter estimates from this
‘informative’ model specification are presented as the main results
in the text but did not differ qualitatively from those made
through the ‘low information” model specification presented in
the supplement. When investigating variation in thermal perform-
ance parameters, we interpreted non-overlapping credible
intervals as biologically meaningful and statistically supported
differences between populations and/or traits [4448]. It is
worth noting that the leave-one-out informative prior approach
biases our thermal performance curve fits to be more similar
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Figure 2. For most life-history traits, thermal performance varies minimally between populations. Each curve denotes the average thermal performance for one
population for a given trait. Populations are coloured and ordered in the legend by their latitude of collection.

across populations, making the resulting estimates of differences
among populations conservative. On the other hand, this
approach has the advantage of realistically constraining uncer-
tainty, for example in cases where a trait was poorly quantified
at a given temperature (i.e. few individuals in a given population
survived to the relevant life stage).

3. Results

(@) How much does thermal tolerance vary between
populations across the species range?

We investigated variation in mosquito thermal performance
between 10 populations across the species range. For each
population, we characterized the thermal performance of
life-history traits by fitting thermal response curves
(figure 2) to our experimental data and estimating the ther-
mal limits and thermal optima (figure 3).

We found minimal variation in thermal tolerance between
populations for most life-history traits (figures 2 and 3; elec-
tronic supplementary material, figures S4-S8). In particular,
for all life-history traits, both upper and lower thermal
limits varied by less than 3°C across populations (figure 3;
electronic supplementary material, figure S9). For upper

thermal limits, we found the greatest variation across popu-
lations in adult lifespan (2.8°C variation), and the least
variation in larval survival (0.6°C); thermal limits were not
significantly different between populations for either trait
(i.e. 95% credible intervals overlapped). Similarly, thermal
optima varied by less than 1.5°C for all traits except larval
and pupal survival, for which our estimates had the greatest
uncertainty (partly due to high juvenile survivorship across
the intermediate temperature treatments). Variation between
populations was non-significant for nearly all life-history
traits and thermal performance parameters, with three excep-
tions: the upper thermal limits (Tyay) of larval and pupal
development rates and the thermal optima (T, of pupal
development rates. Upper thermal limits for larval and
pupal development rates each varied by 1.6°C across popu-
lations (33.3-34.9°C and 32.1-33.7°C, respectively), while
the thermal optima of pupal development rate varied by
1.4°C (26.3-27.7°C).

(b) Is variation in thermal performance correlated with
the source thermal environment?

To assess evidence of local thermal adaptation, we
investigated the relationship between the source thermal
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environment (table 1) and experimentally measured thermal
performance parameters, using only the parameters with
biologically significant between-population variation (i.e.
those where populations had non-overlapping 95% credible
intervals). This included the upper thermal limits (Tinax) of
larval and pupal development rates, and the thermal
optima (Topy) of pupal development rates.

We found several correlations that reflected patterns of
local thermal adaptation. In particular, we found that Tpax
and T,pe of pupal development were positively correlated
with annual mean temperature, maximum daily tempera-
tures in the spring and summer, and the number of days
exceeding 35°C (r: 0.64-0.71; figure 4). Together, this is
consistent with local thermal adaptation of pupal develop-
ment rate to high temperatures. By contrast, Th.x of larval
development rate was not strongly correlated with any
source temperature variable. We note that these reported

correlations are only statistically significant (p <0.05) prior
to adjustment for multiple comparisons, the necessity of
which is debated when making only specific, biologically
meaningful comparisons (as we have done here) rather than
all possible comparisons [49,50]. The majority of the above
correlations remained significant after removing TPOW’
(electronic supplementary material, table S6), the lowest
latitude population, indicating that our findings of thermal
adaptation are not solely driven by this population.

(c) At present, how often do environmental
temperatures exceed mosquito populations’
laboratory-estimated upper thermal limits?

We found that for all populations, maximum temperatures in
the surrounding environment already exceed our estimated
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Table 1. Thermal characteristics of the source environment for each population listed in order of decreasing latitude (i.e. north to south). Values represent
averages from 2000 to 2020, calculated from PRISM climate data at a 1 km buffer around the sampled tree hole. See Methods: Characterizing the source thermal
environment for definitions of each temperature variable. See electronic supplementary material, figure S10 for correlations between temperature variables and
electronic supplementary material, figure S11 for comparisons between the PRISM and iButton temperature estimates for the ‘SB" and ‘POW’ populations.

annual Jan—-March seasonal
mean mean temp.
temp. (°C) temp. (°C) variation (°C)
EUG 1148 633 16.01
HOP 1457 9.41 1538
PLA 1608 991 18.08
MARZ 1424 1031 1.6
MAR1 1404 10.18 1129
RA 1545 1149 1161
WAW 15.83 873 2051
e e S e
5B 16.44 1182 13.51
POW 1875 15.08 11,65

upper thermal limits. In particular, the number of days per
year with an hourly temperature exceeding 35°C—above
the highest upper thermal limit we estimated for any popu-
lation or life-history trait at constant temperature—ranged
from 2 to 20 days (table 1). This metric specifically excluded
times of the year when Ae. sierrensis populations are likely
in dormancy (i.e. August-October) — if all months were
included, there were an average of 4-42 days exceeding
this threshold. Similarly, the number of days exceeding
31.6°C—the lowest estimated upper thermal limit (adult
lifespan)—ranged from 9 to 40 days during adult activity
season (i.e. March—July) or 18-88 days across the entire year.

The above estimates are based on PRISM climate data,
which captures air temperature in the broader surrounding
environment, but not necessarily the precise temperature
experienced in a given tree hole. For two populations, we
were able to record temperatures within the tree hole for
approximately 1 year following larval collection. We found
that these direct measurements were strongly correlated with
temperature estimates from the PRISM climate data (r=0.91

warm-season
maximum (°C)

22.69

26.77

28.04

24.77
244

252
2819

26.52

27.86

21.77

no. days > 31.6°C

no. days > 35°C

across Jan- across March-
year July year July
429 23 18.33 9.45
24.90 1195 57.67 28863
29.95 17.00 7624 4027
871 418 595 1281
633 3.05 2086 1036
1043 4 704 1354
057 2095 87.76 4418
1471 CSTT 4667 2B
2681 .77 59.95 29.72
18.14 509 5062 2109

and r=0.87 for daily temperature estimates for the SB and
POW populations, respectively; electronic supplementary
material, figure S11). For these populations, the iButton
recorded daily temperatures that were, on average, 0.70°C
higher (SB) or 3.0°C lower (POW) than the PRISM estimates.
In both locations, tree hole temperatures exceeded 31.6°C on
several days (electronic supplementary material, figure S11),
indicating that populations are exposed to temperatures
above their estimated upper thermal limits for adult survival
at constant temperatures even within this microhabitat.

4. Discussion

In one of the largest-ranging studies of standing variation in
mosquito thermal tolerance to date, we found limited evidence
of variation between populations in the thermal responses of
life-history traits. Specifically, in our common garden exper-
iment using 10 Ae. sierrensis populations spanning over
1200 km, we found that upper thermal limits and thermal
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optima varied by <3°C for all life-history traits, and was typi-
cally not biologically meaningful (i.e. the credible intervals
overlapped for all populations; figure 2). In particular, upper
thermal limits varied between populations by as little as 0.6°
C (larval survival) and up to 2.8°C (adult lifespan). This
level of variation in trait upper thermal limits across latitude
(i.e. >0.6°C across populations spanning 10° of latitude) is
large relative to previous studies in terrestrial ectotherms
(0.3°C per 10° latitude [51]); however, it is considerably less
than the level of variation in environmental temperature
across this range [52].

Our finding of minimal variation in mosquito thermal
tolerance across the species range is consistent with prior
findings in a broad range of ectotherm species [53,54]. For
taxa including insects, arachnids, reptiles and amphibians,
upper thermal limits typically vary little across wide climatic
and latitudinal gradients [51,54-56], a pattern that has been
suggested to reflect hard evolutionary constraints on heat tol-
erance [57,58]. Although the underlying mechanism remains
unclear, the evolution of heat tolerance may be limited by
genetic constraints (e.g. low heritability) and/or biochemical
constraints (e.g. limits on enzyme stability at high tempera-
tures) [53,59,60]. Alternatively, this pattern could be driven
by behavioural strategies enabling populations to experience
and adapt to similar thermal regimes across their range [61],
and/or trade-offs in adapting to temperature versus other
abiotic or biotic selection pressures [62].

Despite generally limited variation in thermal tolerance
between populations, we did observe meaningful variation
in the thermal responses of larval and pupal development
rates (figure 2). For both traits, variation in upper thermal
limits was biologically meaningful, and was approximately
1.6°C across populations—five times the average variation
for terrestrial ectotherms spanning a similar latitudinal
extent [51] (electronic supplementary material, table S4).
Further, for pupal development rate, we found that variation
in populations’ thermal optima and upper thermal limits was
strongly correlated with variation in the source thermal
environment. Specifically, populations from environments
with higher mean and extreme temperatures had higher ther-
mal optima and limits for pupal development rate than those
from cooler source environments, providing clear evidence
for local thermal adaptation in this trait (figure 4).

That thermal adaptation was observed specifically in pupal
development rate may be due to the seasonal ecology of Ae.
sierrensis making the pupal life stage the most vulnerable to
high temperatures. In particular, Ae. sierrensis eggs and larvae
undergo a period of dormancy and are primarily active earlier
in the season, which may bulffer these life stages from high
temperature extremes, while adults may avoid high tempera-
tures through movement to cooler microhabitats [24,36].
Conversely, pupae have limited capacity for movement, no
period of dormancy and typically begin development in the
spring, which can have highly variable thermal conditions
across years and include high temperature extremes. This life-
history trait may thus experience the strongest thermal selection
pressure given the exposure to thermal stress and a lack of other
coping strategies. By measuring the thermal performance of
traits across the species life cycle, and using many populations
from across a wide thermal gradient, we were able to detect this
specific evidence of thermal adaptation, which has not been
clearly identified in prior investigations of thermal adaptation
in other mosquito species [17,18,20].

While we found evidence of local thermal adaptation,
whether mosquitoes can adapt to ongoing warming also
depends on current and future environmental temperatures.
We found that hourly maximum temperatures across most
of the species’ range already exceed our estimated upper ther-
mal limits (table 1). In particular, environmental temperatures
at each of our collection sites reached at or above 35°C—
exceeding the highest upper thermal limit we estimated for
any trait or population at constant temperature—for an aver-
age of 2-20 days out of the potential Ae. sierrensis activity
season (January—July). Similarly, environmental temperatures
exceeded 31.6°C—the lowest upper thermal limit across
measured life-history traits (adult lifespan, figure 3)—for 9-
40 days during this period. As we estimated mosquito
upper thermal limits under constant temperature conditions,
we cannot assess the impact of these short-term thermal
extremes on mosquito life histories and adaptive capacity.
That is, short-term thermal extremes (e.g. one to several
hours) that are followed by cooler temperatures could be tol-
erated through heat stress repair, as has been found to occur
during night-time in other ectotherm species [63]. In addition
to short-term heat repair, other strategies besides evolutionary
adaptation, such as seasonal life cycles and microhabitat selec-
tion may be important for sustaining Ae. sierrensis under rapid
climate warming. Accordingly, the majority of days exceeding
the 35°C and 31.6°C thresholds at our collection sites occurred
after July, when most individuals in the population are likely
in the dormant egg stage (electronic supplementary material,
figure S2). Further, the tree hole microhabitat in which Ae. sier-
rensis completes most of its life cycle may be cooler than the
surrounding environment, further buffering individuals from
thermal extremes (although we found this was not consistently
the case; electronic supplementary material, figure S11). In
general, our finding that populations” estimated upper thermal
limits are already exceeded over short time scales suggest that
strategies for acute heat tolerance and avoidance such as night-
time repair, diapause and behavioural thermoregulation may
be key components of Ae. sierrensis thermal tolerance.

As changes in short-term thermal extremes and temperature
fluctuations are key components of climate warming projections,
understanding their impact on mosquito life histories is a critical
future direction [64-68]. Our experiment focused on the impacts
of constant temperatures on mosquito trait performance—an
important first step in characterizing thermal tolerance for a
given species. However, coping with daily and seasonal temp-
erature fluctuations and thermal extremes likely requires a
different set of physiological or behavioural strategies than
coping with constant warm temperatures [69-71]. Thus, patterns
of mosquito thermal adaptation to these aspects of temperature
could differ from those estimated here. Prior studies in other
ectotherm species have tested whether thermal performance
under fluctuating temperatures can be predicted qualitatively
from thermal performance curves estimated at constant tempera-
tures, finding mixed results [72,73]. Experimentally testing this
approach in mosquitoes and estimating mosquito performance
under thermal regimes that reflect natural conditions using
populations from across the species range are important future
directions, which would improve estimates of potential
mosquito responses to climate warming.

This study involved collection of western tree hole mosqui-
toes—a native, non-vector species, for which no special permits
were required for collection or laboratory housing.
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All data and code used in this project are available on Dryad
Digital Repository: https:/ /doi.org/10.5061/dryad.80gb5Smkxd [74].

All data and code are also publicly and freely available at
the following GitHub repository: https://github.com/lcouper/
MosquitoThermalAdaptation.

Supplementary material is available online [75].
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